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the date of receipt and acceptance should be inserted later

Abstract In this work, we present new arithmetic for-

mulas for a projective version of the affine point rep-

resentation (x, x + y/x), for x 6= 0, which leads to an

efficient computation of the scalar multiplication opera-

tion over binary elliptic curves. A software implementa-

tion of our formulas applied to a binary Galbraith-Lin-

Scott elliptic curve defined over the field F2254 allows

us to achieve speed records for protected/unprotected

single/multi-core random-point elliptic curve scalar mul-

tiplication at the 127-bit security level. When executed

on a Sandy Bridge 3.4GHz Intel Xeon processor, our

software is able to compute a single/multi-core unpro-

tected scalar multiplication in 69, 500 and 47, 900 clock

cycles, respectively; and a protected single-core scalar
multiplication in 114, 800 cycles. These numbers are im-

proved by around 2% and 46% on the newer Ivy Bridge
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J. López: The author was supported in part by the Intel Labs
University Research Office.

T. Oliveira and F. Rodŕıguez-Henŕıquez
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and Haswell platforms, respectively, achieving in the

latter a protected random-point scalar multiplication

in 60,000 clock cycles.

1 Introduction

The Weierstrass form of an ordinary binary elliptic curve

defined over Fq, q = 2m, is given by the equation

E/Fq : y2 + xy = x3 + ax2 + b, (1)

with a, b ∈ Fq and b 6= 0. The set of affine points

P = (x, y) with x, y ∈ Fq that satisfy the above equa-

tion, together with the point at infinityO, form an addi-

tive abelian group with respect to the elliptic point ad-

dition operation. This group is denoted as Ea,b(Fq). The

number of points on the curve is denoted as #Ea,b(Fq),

and the integer t = q + 1 − #Ea,b(Fq), known as the

trace of Frobenius, satisfies |t| ≤ 2
√
q.

Alternative affine representations for binary elliptic

points, namely, (x, yx ) and (x, x+ y
x ), were introduced in

[32,43]. In [43] this last representation was designated

λ-affine representation of points, and was used for per-

forming the point doubling operation in [38,39,43], for

point halving in [32,44,17,6], and for point compression

in [40].

From the algorithmic point of view, point represen-

tation is one of the most important factors to consider

for obtaining an efficient scalar multiplication computa-

tion. Due to the relatively expensive cost of field multi-

plicative inversions associated with the arithmetic of

the affine point representation, projective coordinate

systems were introduced in the early nineties.

In the case of binary curves, one of the first pro-

posals was the homogeneous projective coordinates sys-

tem [1], which represents an affine point P = (x, y)

as the triplet (X,Y, Z), where x = X
Z and y = Y

Z ;

whereas in the Jacobian coordinate system [13], a pro-

jective point (X,Y, Z) corresponds to the affine point

(x = X
Z2 , y = Y

Z3 ). In 1998, López-Dahab (LD) coor-

dinates [38] were proposed using x = X
Z and y = Y

Z2 .

Since then, LD coordinates have become the most stud-

ied coordinate system for binary elliptic curves, with

many authors [31,35,3,34,9] contributing to improve

their performance. In 2007, Kim and Kim [30] presented

a 4-dimensional LD coordinate system that represents

P as (X,Y, Z, T 2), with x = X
Z , y = Y

T and T = Z2. In

a different vein, Bernstein et al. introduced in [9] a set

of complete formulas for binary Edwards elliptic curves.

The introduction in contemporary processor archi-

tectures of a native carry-less multiplier and vector in-

struction sets, such as Streaming SIMD Extensions (SSE)

and Advanced Vector Extensions (AVX), has brought
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a renewed interest to the study of efficient and secure

software implementations of scalar multiplication in el-

liptic curves defined over binary fields [46,5,4].

Among the works studying scalar multiplication over

binary elliptic curves, the authors in [46] were the first

to analyze the impact of using the carry-less multiplier

in the computation of the scalar multiplication over

Koblitz and NIST curves at the 112-, 128- and 192-

bit security levels. This work also presented multi-core

implementations of their algorithms based on the par-

allel formulations first given in [2]. The authors in [4]

held the record for the fastest unprotected implemen-

tation of scalar multiplication at the 128-bit security

level by employing the NIST-K283 curve, where a sim-

ple analogue of the 2-dimensional GLV (Gallant, Lam-

bert and Vanstone) method was used. This record was

recently broken in [36,37,15], where the authors merged

the GLS (Galbraith, Lin and Scott) and GLV meth-

ods to achieve a 4-dimensional decomposition of scalars

in a non-standardized twisted Edwards prime curve.

For protected implementations, authors in [11] hold the

speed records in a genus-2 hyperelliptic curve, and the

authors in [15] held the record in genus-1 elliptic curves

before the results reported in this paper.

Our contributions. This work further contributes to

the advances in binary elliptic curve arithmetic by pre-

senting a new projective coordinate system and its cor-

responding group law, which is based on the λ-affine

representation of a point P = (x, λ), where λ = x +
y
x . The efficient group law associated to this coordi-

nate system enables significant speedups in the main

loop of the traditional double-and-add and halve-and-

add scalar multiplication methods as well as the pre-

and post-computation efforts associated to these ap-

proaches. The concrete application of λcoordinates to

the 2-dimensional GLS-GLV method combined with an

efficient quadratic field arithmetic implementation al-

low us to claim the speed records at the 127-bit security

level for single and multi-core unprotected scalar mul-

tiplication, improving by 24% and 21% the timings re-

ported in [36,15], respectively. For protected single-core

scalar multiplication, our timings improve by 49%, 17%

and 4% the results reported in [46,37,11], respectively,

while staying slower than the latest speed record by a

16% margin [15]. In the newer Haswell processor, the

proposed implementations received a significant perfor-

mance boost, which allows us to report further speed

records for the unprotected and protected scenarios. 1

1 The benchmarking was run on Intel platforms Xeon
E31270 3.4GHz (Sandy Bridge), Core i5 3570 3.4GHz (Ivy
Bridge), and Core i7 4770K (Haswell). In addition, our library

2 Binary Field Arithmetic

A binary extension field F2m of order q = 2m can be

constructed by taking an m-degree polynomial f(x) ∈
F2[x] irreducible over F2. The F2m field is isomorphic to

F2[x]/(f(x)) and its elements consist of the collection

of binary polynomials of degree less than m. Quadratic

extensions of a binary extension field can be built us-

ing a degree two monic polynomial g(u) ∈ F2[u] that

happens to be irreducible over Fq. In this case, the field

Fq2 is isomorphic to Fq[u]/(g(u)) and its elements can

be represented as a+ bu, with a, b ∈ Fq. In this paper,

we developed an efficient field arithmetic library for the

fields Fq and its quadratic extension Fq2 , with m = 127,

which were constructed by means of the irreducible tri-

nomials f(x) = x127 + x63 + 1 and g(u) = u2 + u + 1,

respectively.

2.1 Field multiplication over Fq

Given two field elements a, b ∈ Fq, field multiplication

can be performed by polynomial multiplication followed

by modular reduction as, c = a · b mod f(x). Since the

binary coefficients of the base field elements Fq can

be packed as vectors of two 64-bit words, the usage of

the standard Karatsuba method allows us to compute

the polynomial multiplication step at a cost of three

64-bit products (equivalent to three invocations of the

carry-less multiplication instruction [46]), plus some ad-

ditions. Due to the very special form of f(x), modular

reduction is especially elegant as it can be accomplished

using essentially additions and shifts (see Section 2.4).

2.2 Field squaring, square root and multi-squaring

over Fq

Due to the action of the Frobenius operator, field squar-

ing and square-root are linear operations in any binary

field [42]. These two operations can be implemented at

a very low cost provided that the base field Fq is defined

by a square-root friendly trinomial or pentanomial. Fur-

thermore, vectorized implementations with simultane-

ous table lookups through byte shuffling instructions,

as presented in [5], kept square and square-root effi-

cient relative to multiplication even with the dramatic

acceleration of field multiplication brought by the na-

tive carry-less multiplier.

Multi-squaring, or exponentiation to 2k, with k >

5, is computed by consulting tables of field elements,

was submitted to the ECRYPT Benchmarking of Asymmetric
Systems (eBATS) where it is publicly available.
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as proposed in [2,10], which can be precomputed of-

fline. For fixed k, a table T of 24 · dm4 e field elements

can be precomputed such that T [j, i0 + 2i1 + 4i2 +

8i3] = (i0z
4j + i1z

4j+1 + i2z
4j+2 + i3z

4j+3)2
k

and a2
k

=∑dm4 e
j=0 T [j, ba/24jc mod 24].

2.3 Field inversion over Fq

Field inversion in the base field is carried out using

the Itoh-Tsujii algorithm [27], by computing a−1 =

a(2
m−1−1)2. The exponentiation is computed through

the terms (a2
i−1)2

k · a2k−1, with 0 ≤ k ≤ i ≤ m − 1.

The overall cost of the method is m− 1 squarings and

9 multiplications given by the length of the following

addition chain for m− 1 = 126,

1→ 2→ 3→ 6→ 12→ 24→ 48→ 96→ 120→ 126.

The cost of squarings can be reduced by computing each

required 2k-power as a multi-squaring whenever k > 5.

2.4 Modular Reduction

Table 1 provides the notation of the vector instructions

that were used for performing the modular reduction

algorithms to be presented in this section. This nota-

tion is closely based on [5], but notice that here, we

are invoking the three-operand AVX instructions cor-

responding to 128-bit SSE instructions. Bitwise logical

instructions operate across two entire vector registers

and produce the result in a third vector register. Bit-

wise shifts perform parallel shifts in the 64-bit integers

packed in a vector register, not propagating bits be-

tween contiguous data objects and requiring additional

instructions to implement 128-bit shifts. Bytewise shifts

are different in both the shift amount, which must be a

multiple of 8; and the propagation of shifted out bytes

between the two operands. Byte interleaving instruc-

tions take bytes alternately from the lower or higher

halves of two vector register operands to produce a third

output register.

For our irreducible trinomial f(x) = x127 + x63 + 1

choice, we use the procedure shown in Algorithm 1,

which requires ten vector instructions to perform a re-

duction in the base field Fq. This modular reduction al-

gorithm can be improved when performing field squar-

ing. In this case, the 253-bit polynomial a2, with a ∈ Fq,

is represented using two 128-bit registers r1||r0. By ob-

serving that the 63-th bit of the register r1 is zero,

the optimized modular reduction algorithm uses just

six vector instructions, as shown in Algorithm 2.

Algorithm 1 Modular reduction by trinomial f(x) =

x127 + x63 + 1.
Input: 253-bit polynomial d′ stored into two 128-bit registers
r1||r0.

Output: Fq element d′ mod f(x) stored into a 128-bit reg-
ister r0.
1: t0 ← (r1, r0) B 64
3: r1 ← r1 �64 1
5: r1 ← inthi64(r1, t0)
7: t0 ← t0 �64 63
9: r1 ← intlo64(t0, t0)
11: return r0

2: t0 ← t0 ⊕ r1
4: r0 ← r0 ⊕ r1
6: r0 ← r0 ⊕ r1
8: r0 ← r0 ⊕ t0
10: r0 ← r0 ⊕ (r1 �64 63)

Algorithm 2 Modular reduction by f(x) = x127 +

x63 + 1 for the squaring operation.

Input: 253-bit polynomial a2 stored into two 128-bit regis-
ters r1||r0.

Output: Fq element a2 mod f(x) stored into a 128-bit reg-
ister r0.
1: t0 ← (r1, r0) B 64
3: r1 ← r1 �64 1
5: t0 ← inthi64(r1, t0)
7: return r0

2: t0 ← t0 ⊕ r1
4: r0 ← r0 ⊕ r1
6: r0 ← r0 ⊕ t0

2.5 Half-trace over Fq

The trace function on F2m is the function Tr : F2m 7→
F2 defined as Tr(c) =

∑m−1
i=0 c2

i

. The solutions of qua-

dratic equations x2 + x = c over Fq, with Tr(c) = 0,

can be found by means of the half-trace function H :

F2m 7→ F2m , which is defined as H(c) =
∑(m−1)/2

i=0 c2
2i

.

A fast computation of this function can be achieved by

exploiting its linear property,

H(c) = H(

m−1∑
i=0

cix
i) =

m−1∑
i=0

ciH(xi),

and by using an 8-bit index look-up table T of size

28 · dm8 e elements such that,

H(c) =

dm8 e∑
j=0

T [j, b a
28j
c mod 28].

2.6 Field arithmetic over Fq2

Recall that the quadratic extension Fq2 of the base field

Fq is built using the monic trinomial g(u) = u2 + u +

1 ∈ F2[u] irreducible over Fq. An arbitrary field element

a ∈ Fq2 is represented as a = a0+a1u, with a0, a1 ∈ Fq.

Operations in the quadratic extension are performed

coefficient-wise. For instance, the multiplication of two

elements a, b ∈ Fq2 is computed as,

a · b = (a0 + a1u) · (b0 + b1u)

= (a0b0 + a1b1) + (a0b0 + (a0 + a1) · (b0 + b1))u,
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Table 1 Vector instructions used for the binary field arithmetic implementation.

Symbol Description AVX

⊕, ∧, ∨ Bitwise XOR, AND, OR VPXOR, VPAND, VPOR
�64,�64 Bitwise shift of packed 64-bit integers VPSLLQ, VPSRLQ

B Bytewise multi-precision shift VPALIGNR

intlo64, intlhi64
Byte interleaving of packed 64-bit

integers
VPUNPCKLBW, VPUNPCKHBW

with a0, a1, b0, b1 ∈ Fq.

The square and square-root of a field element a is

accomplished using the identities,

a2 = (a0 + a1u)2 = a20 + a21 + a21u,
√
a =

√
(a0 + a1u) =

√
a0 + a1 +

√
a1u,

respectively. The multiplicative inverse c of a field ele-

ment a is found by solving the equation a · c = (a0 +

a1u)(c0 + c1u) = 1, which yields the unique solution,

c0 = (a0 + a1)t−1 and c1 = a1t
−1, where t = a0a1 +

a0
2 + a1

2.

Solving quadratic equations over Fq2 of the form

x2 + x = c with Tr(c) = 0,1 reduces to the solution of

two quadratic equations over Fq, as discussed next. For

an element a = a0+a1u ∈ Fq2 , a solution x = x0+x1u ∈
Fq2 to the quadratic equation x2 +x = a, can be found

by solving the base field quadratic equations,

x20 + x21 + x0 = a0

x21 + x1 = a1

Notice that, since Tr(a1) = 0, the solution to the second

equation above can be found as x1 = H(a1). Then x0 is

determined from x20+x0 = x1+a1+a0+Tr(x1+a1+a0).

The solution is x = x0 +(x1 + Tr(x1 + a1 + a0))u [22].

The costs of the quadratic extension arithmetic in

terms of its base field operations and C language im-

plementation, are presented in Table 2. Throughout

this paper, we denote by (ab,mb, qb, sb, ib, hb, tb) and

(ã, m̃, q̃, s̃, ĩ, h̃, t̃) the computational effort associated to

the addition, multiplication, square-root, squaring, in-

version, half-trace and trace operations over Fq and Fq2 ,

respectively.

3 Lambda projective coordinates

In order to have a more efficient elliptic curve arith-

metic, it is standard to use a projective version of the

Weierstrass elliptic curve equation (1), where the points

are represented in the so-called projective space. In the

1 See §2.5 for a definition of the trace function Tr(c).

following we describe the λ-projective coordinates, a co-

ordinate system whose associated group law is intro-

duced here for the first time.

Given a point P = (x, y) ∈ Ea,b(Fq) with x 6= 0, the

λ-affine representation of P is defined as (x, λ), where

λ = x + y
x . The λ-projective point P = (X,L,Z) cor-

responds to the λ-affine point (X
Z ,

L
Z ). The λ-projective

equation form of the Weierstrass Equation (1) is,

(L2 + LZ + aZ2)X2 = X4 + bZ4. (2)

Notice that the condition x = 0 does not pose a limi-

tation in practice, since the only point with x = 0 that

satisfies Eq. (1) is (0,
√
b).

3.1 Group law

In this subsection, the formulas for point doubling and

addition in the λ-projective coordinate system are pre-

sented. Complementary formulas and complete proofs

of all theorems can be found in Appendix A.

Theorem 1. Let P = (XP , LP , ZP ) be a point in a

non-supersingular curve Ea,b(Fq). Then the formula for

2P = (X2P , L2P , Z2P ) using the λ-projective represen-

tation is given by

T = L2
P + (LP · ZP ) + a · Z2

P

X2P = T 2

Z2P = T · Z2
P

L2P = (XP · ZP )2 +X2P + T · (LP · ZP ) + Z2P .

For situations where the multiplication by the b-

coefficient is fast, one can replace a full multiplication

with a multiplication by the constant a2+b. We present

below an alternative formula for calculating L2P :

L2P = (LP +XP )2 · ((LP +XP )2 + T + Z2
P )

+ (a2 + b) · Z4
P +X2P + (a+ 1) · Z2P .

Theorem 2. Let P = (XP , LP , ZP ) and Q = (XQ,

LQ, ZQ) be points in Ea,b(Fq) with P 6= ±Q. Then the
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Table 2 Cost of the field arithmetic Fq2
∼= Fq[u]/ (u2 + u+ 1) with respect to the base field Fq and its C-language implementa-

tion. See §2.6 for the definition of the arithmetic operations (ab,mb, qb, sb, ib, hb, tb) and (ã, m̃, q̃, s̃, ĩ, h̃, t̃). ‘PCLMULQDQ’, ‘SSE
instr.’ and ‘tbl lkup.’ stand for carry-less multiplication, 128-bit SSE/AVX vector instruction and table look-up, respectively.

Arithmetic

over Fq2
Multiplication (m̃) Square-Root (q̃) Squaring (s̃) Inversion (̃i) Half-Trace (h̃)

Cost in
terms of Fq

arithmetic
operations

3mb + 4ab 2qb + ab 2sb + ab ib + 3mb + 3ab 2hb + tb + 2ab

Number of

instructions
invoked

9 PCLMULQDQ +
62 AVX instr.

37 AVX instr. 33 AVX instr.
36 PCLMULQDQ +

386 AVX instr. +
160 tbl lkup.

19 AVX instr.
+ 32 tbl lkup.

addition P + Q = (XP+Q, LP+Q, ZP+Q) can be com-

puted by the formulas

A = LP · ZQ + LQ · ZP

B = (XP · ZQ +XQ · ZP )2

XP+Q = A · (XP · ZQ) · (XQ · ZP ) ·A
LP+Q = (A · (XQ · ZP ) +B)2

+ (A ·B · ZQ) · (LP + ZP )

ZP+Q = (A ·B · ZQ) · ZP .

Furthermore, we derive an efficient formula for com-

puting the operation 2Q+P , with the points Q and P

represented in λ-projective and λ-affine coordinates, re-

spectively.

Theorem 3. Let P = (xP , λP ) and Q = (XQ, LQ, ZQ)

be points in the curve Ea,b(Fq). Then the operation

2Q + P = (X2Q+P , L2Q+P , Z2Q+P ) can be computed

as follows:

T = L2
Q + LQ · ZQ + a · Z2

Q

A = X2
Q · Z2

Q + T · (L2
Q + (a+ 1 + λP ) · Z2

Q)

B = (xP · Z2
Q + T )2

X2Q+P = (xP · Z2
Q) ·A2

Z2Q+P = (A ·B · Z2
Q)

L2Q+P = T · (A+B)2 + (λP + 1) · Z2Q+P .

Table 3 summarizes the costs of the following point

operations when using the λ-projective coordinate sys-

tem in an elliptic curve defined over the quadratic field

E/Fq2 ,

– full addition: R = P + Q, with P,Q represented

in λ-projective coordinates,

– mixed addition: R = P+Q, with P represented in

λ-affine coordinates andQ represented in λ-projective

coordinates,

– doubling:R = 2P, with P represented in λ-projective

coordinates and,

– atomic doubling and addition: R = 2Q + P

with P represented in λ-affine coordinates and Q

represented in λ-projective coordinates.

where the terms m̃a and m̃b denote the field multi-

plication by the curve constants a and b, respectively.

For comparison purposes, the costs of these operations

when using the López-Dahab (LD) projective coordi-

nate system [38] are also included.2

3.2 GLS curves

In 2001, Gallant, Lambert and Vanstone (GLV) [19]

presented a technique that uses efficient computable

endomorphisms available in certain classes of elliptic

curves that allows significant speedups in the scalar

multiplication computation. Later, Galbraith, Lin and

Scott (GLS) [18] constructed efficient endomorphisms

for a broader class of elliptic curves defined over Fq2 ,
where q is a prime number, showing that the GLV tech-

nique also applies to these curves. Subsequently, Han-

kerson, Karabina and Menezes investigated in [22] the

feasibility of implementing the GLS curves over F22m .

In the following, we introduce the GLS curves over bi-

nary fields and their endomorphism. Our description

closely follows the one given in [22].

Let q = 2m and let E/Fq : y2 + xy = x3 + ax2 + b,

with a, b ∈ Fq, be a binary elliptic curve. Also, pick a

field element a′ ∈ Fq2 such that Tr(a′) = 1, where Tr is

the trace function from Fq2 to F2 defined as, Tr : c 7→∑2m−1
i=0 c2

i

. Given #E(Fq) = q + 1 − t, it follows that

#E(Fq2) = (q + 1)2 − t2. Let us define

Ẽ/Fq2 : y2 + xy = x3 + a′x2 + b, (3)

2 Notice that the atomic doubling and addition operation is
exclusive of the λ-projective coordinate system. For the sake
of a fair comparison, in the second row and fifth column of
Table 3, the cost of performing a non-atomic point doubling
plus a mixed point addition using LD coordinates is reported.
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Table 3 A cost comparison of the elliptic curve arithmetic on E/Fq2 using López-Dahab (LD) coordinates vs. the λ-projective
coordinate system. The costs are given in terms of field arithmetic operations over Fq2

Coordinate

system
Full addition Mixed addition Doubling

Doubling and

mixed addition

López-
Dahab

13m̃+ 4s̃ 8m̃+ m̃a + 5s̃ 3m̃+ m̃a + m̃b + 5s̃
11m̃+ 2m̃a +
m̃b + 10s̃

Lambda 11m̃+ 2s̃ 8m̃+ 2s̃
4m̃+ m̃a + 4s̃ /

3m̃+ m̃a + m̃b + 4s̃
10m̃+ m̃a + 6s̃

with #Ẽa′,b(Fq2) = (q − 1)2 + t2. It is known that Ẽ is

the quadratic twist of E, which means that both curves

are isomorphic over Fq4 under the endomorphism [22],

φ : E → Ẽ, (x, y) 7→ (x, y + sx),

with s ∈ Fq4\Fq2 satisfying s2 + s = a + a′. It is

also known that the map φ is an involution, i.e., φ =

φ−1. Let π : E → E be the Frobenius map defined as

(x, y) 7→ (x2
m

, y2
m

), and let ψ be the composite endo-

morphism ψ = φπφ−1 given as,

ψ : Ẽ → Ẽ, (x, y) 7→ (x2
m

, y2
m

+ s2
m

x2
m

+ sx2
m

).

In this work, the binary elliptic curve Ẽa′,b(Fq2) was

defined with the parameters a′ = u and b ∈ Fq, where b

was carefully chosen to ensure that #Ẽa′,b(Fq2) = hr,

with h = 2 and where r is a prime of size 2m − 1

bits. Moreover, s2
m

+ s = u, which implies that the

endomorphism ψ acting over the λ-affine point

P = (x0 + x1u, λ0 + λ1u) ∈ Ẽa′,b(Fq2),

can be computed with only three additions in Fq as,

ψ(P ) 7→ ((x0 + x1) + x1u, (λ0 + λ1) + (λ1 + 1)u).

It is worth to remark that in order to prevent the

generalized Gaudry-Hess-Smart (gGHS) attack [20,25],

the constant b of Ẽa′,b(Fq2) must be carefully verified.

Above remark notwithstanding, the probability that a

randomly selected b ∈ Fq is a weak parameter, is negli-

gibly small [22].

4 Scalar Multiplication

Let 〈P 〉 be an additively written subgroup of prime or-

der r defined over Ẽa′,b(Fq2) (see Equation (3)). Let k

be a positive integer such that k ∈ [0, r − 1]. Then, the

scalar multiplication operation, denoted by Q = kP ,

corresponds to adding P to itself k − 1 times. The av-

erage cost of computing kP by a random n-bit scalar k

using the customary double-and-add method is about

nD + n
2A, where D is the cost of doubling a point (i.e.

the operation of computing R = 2S = S + S, with

S ∈ 〈P 〉) and A is the cost of a point addition (i.e. the

operation of computing R = S + T, with S, T ∈ 〈P 〉).
Given a subgroup 〈P 〉 of prime order r and a point

Q ∈ 〈P 〉, the Elliptic Curve Discrete Logarithm Prob-

lem (ECDLP) consists of finding the unique integer

k ∈ [0, r − 1] such that Q = kP holds.

In this section, the most prominent methods for

computing the scalar multiplication on Weierstrass bi-

nary curves are described. Here, we are specifically in-

terested in the problem of computing the elliptic curve

scalar multiplication Q = kP , where P ∈ Ẽa′,b(Fq2) is

a generator of prime order r and k ∈ Zr is a scalar of

bitlength |k| ≈ |r| = 2m− 1.

4.1 The GLV method and the w-NAF representation

Let ψ be a nontrivial efficiently computable endomor-

phism of Ẽ. Also, let us define the integer δ ∈ [2, r− 1]

such that ψ(Q) = δQ, for all Q ∈ Ẽa′,b(Fq2). Comput-

ing kP via the GLV method consists of the following

steps.

First, a balanced length-two representation of the

scalar k ≡ k1 + k2δ mod r, must be found, where |k1|,
|k2| ≈ |r|/2. Given k and δ, there exist several methods

to find k1, k2 [23,41,29]. However, with the protected

implementation as the only exception, we decided to

follow the suggestion in [18] which selects two integers

k1, k2 at random, perform the scalar multiplication and

then return k ≡ k1 + k2δ mod r, if required.1 Hav-

ing split the scalar k into two parts, the computation

of kP = k1P + k2ψ(P ) can be performed by simulta-

neous multiple point multiplication techniques [24], in

combination with any of the methods to be described

next. A further acceleration can be achieved by repre-

senting the scalars k1, k2 in the width-w non-adjacent

form (w-NAF). In this representation, kj is written as

an n-bit string kj =
∑n−1

i=0 kj,i2
i, with kj,i ∈ {0,±1,±3,

. . . ,±2w−1 − 1}, for j ∈ {1, 2}. A w-NAF string has a

length n ≤ |kj |+ 1, at most one nonzero bit among any

1 We stress that k can be recovered at a very low compu-
tational effort. From our experiments, the scalar k could be
reconstructed with cost lower than 5m̃.
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w consecutive bits, and its average nonzero-bit density

is approximately 1/(w + 1).

4.2 Left-to-right double-and-add

The computation of the scalar multiplication kP =

k1P + k2ψ(P ) via the traditional left-to-right double-

and-add method, can be achieved by splitting the scalar

k as described above and representing the scalars k1, k2
so obtained in their w-NAF form. The precomputation

step is accomplished by calculating the 2w−2 multiples

Pi = iP for odd i ∈ {1, . . . , 2w−1−1}. For the sake of ef-

ficiency, the multiples must be computed in λ-projective

form, a task that can be accomplished using the atomic

doubling and addition operation described in §3.1. This

is followed by the application of the endomorphism to

each point Pi so that the multiples ψ(Pi) are also pre-

computed and stored. The computational effort associ-

ated with the precomputation is 38m̃ + 2m̃a + 8s̃ + ĩ.

Thereafter, the accumulator Q is initialized at the point

at infinity O, and the digits kj,i are scanned from left to

right, one at a time. The accumulator is doubled at each

iteration of the main loop and in case that kj,i 6= 0, the

corresponding precomputed multiple is added to the ac-

cumulator as, Q = Q ± Pk′i
. Algorithm 3, with t = 0

illustrates the method just described.

4.3 Right-to-left halve-and-add

In the halve-and-add method [32,45], all point dou-

blings are replaced by an operation called point halv-

ing. Given a point P , the halving point operation finds
R such that P = 2R. For the field arithmetic imple-

mentation considered in this paper, the halving oper-

ation is faster than point doubling when applied on

binary curves with Tr(a′) = 1. Halving a point in-

volves computing a field multiplication, a square-root

extraction and solving a quadratic equation of the form

x2 + x = c [17], whose solution can be found by calcu-

lating the half-trace of the field element c, as discussed

in Section 2.

The halve-and-add method is described as follows.

First, let us compute k′ ≡ 2n−1k mod r, with n = |r|.
This implies that, k ≡

∑n−1
i=0 k

′
n−1−i/2

i + 2k′n mod r

and therefore,

kP =

n−1∑
i=0

k′n−1−i(
1

2i
P ) + 2k′nP.

Then, k′ is represented in its w-NAF form, and 2w−2 ac-

cumulators are initialized as, Qi = O, for i ∈ {1, 3, . . .,
2w−1 − 1}. Thereafter, each one of the n bits of k′ are

scanned from right to left. Whenever a digit k′i 6= 0, the

point ±P is added to the accumulator Qk′i
, followed by

P = 1
2P , otherwise, only the halving of P is performed.

In a final post-processing step, all the accumulators

are added as Q =
∑
iQi, for i ∈ {1, 3, . . . , 2w−1 − 1}.

This summation can be efficiently accomplished using

Knuth’s method [33].1 The algorithm outputs the re-

sult as Q = kP . Algorithm 3, with t = n shows a two-

dimensional GLV halve-and-add method.

Table 4 presents the estimated costs of the scalar

multiplication algorithms in terms of point doublings

(D), halvings (H), additions (A), Doubling and addi-

tions (DA) and endomorphisms (ψ) when performing

the scalar multiplication in the curve Ẽa′,b(Fq2).

4.4 Lambda-coordinates aftermath

Besides enjoying a slightly cheaper, but at the same

time noticeable, computational cost when compared to

the LD coordinates, the flexibility of the λ-coordinate

system can improve the customary scalar multiplication

algorithms in other more subtle ways. For instance, in

the case of the double-and-add method, the usage of

the atomic doubling and addition operation saves mul-

tiplications whenever an addition must be performed in

the main loop. The speedup comes from the difference

between the cost of the atomic doubling and addition

(10m̃ + m̃a + 6s̃) shown in Table 3 versus the expense

of naively performing a doubling and then adding the

points in two separate steps (12m̃ + m̃a + 6s̃). To see

the overall impact of this saving in say, the GLV double-

and-add method, one has to calculate the probabilities

of one, two or no additions in a loop iteration (the

details of this calculation can be found in Appendix

B). As mentioned before, it is also possible to apply

the doubling and addition operation to speedup the

calculation of the multiples of P in the precomputa-

tion phase. For that, we modified the original doubling

and addition operation to compute simultaneously the

points, R,S = 2Q ± P , with an associate cost of just

16m̃+ m̃a + 8s̃.

More significantly, there is an important multipli-

cation saving in each one of the point additions in the

main loop of the halve-and-add method. This is because

points in the λ-form (x, x + y
x ), are already in the re-

quired format for the λ-mixed addition operation and

therefore, do not need to be reconverted to the regular

affine representation as done in [17].

1 For w = 4, the method is described as follows. Q5 =
Q5 +Q7, Q3 = Q3 +Q5, Q1 = Q1 +Q3, Q7 = Q7 +Q5 +Q3,
Q = 2Q7 + Q1, which requires six point additions and one
point doubling.
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Table 4 Operation counts for selected scalar multiplication methods in Ẽa′,b(Fq2)

Double-and-add Halve-and-add

No-GLV pre/post 1D + (2w−2 − 1)A 1D + (2w−1 − 2)A

(LD) sc. mult. n
w+1

A+ nD n
w+1

(A+ m̃) + nH

2-GLV pre/post 1D + (2w−2 − 1)A+ 2w−2ψ 1D + (2w−1 − 2)A

(LD) sc. mult. n
w+1

A+ n
2
D n

w+1
(A+ m̃) + n

2
H + n

2(w+1)
ψ

2-GLV pre/post 1D + (2w−2 − 1)A+ 2w−2ψ 1D + (2w−1 − 2)A

(λ) sc. mult.
(2w+1)n
2(w+1)2

DA+ w2n
2(w+1)2

D+ n
2(w+1)2

A n
w+1

A+ n
2
H + n

2(w+1)
ψ

The concrete gains obtained from the λ-projective

coordinates can be better appreciated in terms of field

operations. Specifically, using the 4-NAF representa-

tion of a 254-bit scalar yields the following estimated

savings. The double-and-add strategy requires 872m̃ +

889s̃ (considering m̃b = 2
3m̃) and 823m̃ + 610s̃ when

performed with LD and λ-coordinates, respectively. This

amounts for a saving of 31% and 5% in the number

of field squarings and multiplications, respectively. The

halve-and-add requires 772m̃ + 255s̃ and 721m̃ + 101s̃

when using LD and λ-coordinates, respectively. The

savings that the latter coordinate system yields for this

case are 60% and 6% fewer field squarings and multipli-

cations, respectively. Notice that these estimations do

not consider pre/postcomputation costs.

4.5 Parallel scalar multiplication

In this Section, we apply the method given in [2] for

computing a scalar multiplication using two processors.

The main idea is to compute k′′ ≡ 2tk mod r, with

0 < t ≤ n. This produces,

k ≡ k′′n−12n−1−t+. . .+k′′t 20+k′′t−1/2
−1+. . .+k′′02−t mod r,

which can be rewritten as,

kP =

n−1∑
i=t

k′′i (2i−tP ) +

t−1∑
i=0

k′′i

(
1

2−(t−i)
P

)
.

This parallel formulation allows to compute Q = kP

using the double-and-add and halve-and-add concur-

rently, where a portion of k is processed in different

cores. The optimal value for the constant t depends on

the performance of the scalar multiplication methods

and therefore must be found experimentally. The GLV

method combined with the parallel technique just ex-

plained is presented in Algorithm 3.3

3 The pseudo-instruction Barrier refers to an OpenMP syn-
chronization clause that forces each thread to wait until all
the other threads have completed their assigned tasks.

Algorithm 3 Parallel GLV scalar multiplication

Input: P ∈ E(F22m), scalars k1, k2 of bitlength n ≈ |r|/2,
width w, constant t

Output: Q = kP

Calculate w-NAF(ki) for i ∈ {1, 2}

for i ∈ {1, . . . , 2w−1−1} do
Compute Pi = iP and
P̃i = ψ(Pi)

Initialize Q0 ← O

for i = n downto t do
Q0 ← 2Q0

if k1,i > 0 then

Q0 ← Q0 + Pk1,i

if k1,i < 0 then

Q0 ← Q0 − Pk1,i

if k2,i > 0 then

Q0 ← Q0 + P̃k2,i

if k2,i < 0 then
Q0 ← Q0 − P̃k2,i

end for

{Barrier}

for i ∈ {1, . . . , 2w−1 − 1} do

Initialize Qi ← O

for i = t− 1 downto 0 do

if k1,i > 0 then

Qk1,i
← Qk1,i

+ P
if k1,i < 0 then

Qk1,i
← Qk1,i

− P

if k2,i > 0 then

Qk2,i
← Qk2,i

+ ψ(P )
if k2,i < 0 then

Qk2,i
← Qk2,i

− ψ(P )
P ← P/2

end for

Q←
∑

i∈{1,...,2w−1−1} iQi

{Barrier}
Recode k1, k2 → k, if necessary.

return Q← Q+Q0

4.6 Protected scalar multiplication

Regular scalar multiplication algorithms attempt to pre-

vent leakage of information about the (possibly secret)

scalar, obtained from procedures having non-constant

execution times. There are two main approaches to make

a scalar multiplication regular: one is using unified point

doubling and addition formulas [9] and the other is re-

coding the scalar in a predictable pattern [28]. Both

halve-and-add and double-and-add methods can be mod-

ified in the latter manner, with the additional care that

table look-ups to read or write critical data need to

be completed in constant-time. This can be accom-

plished by performing linear passes with conditional

move instructions over the accumulators or precom-

puted points, thus thwarting cache-timing attacks.
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Implementing timing-attack resistance usually im-

pose significant performance penalties. For example,

the non-zero density of regular recodings ( 1
w−1 ) is con-

siderably higher than w-NAF and access to precom-

puted data becomes more expensive due to the lin-

ear passes. Efficiently computing a point halving in

constant time is specially challenging, since the fastest

methods for half-trace computation require consider-

able amounts of memory. This requirement can be re-

laxed if we assume that the base points are public in-

formation and available to the attacker. Notice however

that this is a reasonable assumption in most protocols

based on elliptic curves, but there are exceptions [12].

In any case, performing linear passes to read and store

each one of the 2w−2 accumulators used in the halve-

and-add procedure discussed in §4.3, imposes a signifi-

cant impact performance at every point addition.

Because of the above rationale, doubling-based meth-

ods seem to be a more promising option for protected

implementations. Somewhat surprisingly, the regular

recoding method combined with λ-coordinates admits

an atomic formula for computing mixed addition plus

doubling-and-addition as, 2Q + Pi + Pj with a cost of

17m̃+ m̃a + 8s̃, saving one multiplication compared to

performing the additions separately. Reading the points

Pi, Pj can also be optimized by performing a single lin-

ear pass over the precomputed table. These optimiza-

tions alone are enough to compensate the performance

gap between point doubling and point halving compu-

tations to be presented in the next section.

The approach for protected scalar multiplication is

shown in Algorithm 4. In this procedure, the scalar k

is decomposed into subscalars k1, k2 before the main

loop. Because the regular recoding requires the input

scalar to be odd, we modified slightly the GLV recod-

ing algorithm to produce k2 always odd, with at most

one extra point addition needed to correct the result at

the end. This is actually faster than generating random

and possibly even k1, k2 for reconstructing k, because

otherwise two point additions would be needed for cor-

rection. These extra point additions must always be

performed for satisfying constant-time execution, but

conditional move instructions can be used to eliminate

incorrect results.

5 Results and discussion

Our library targets the Intel Sandy Bridge processor

family. This multi-core micro-architecture supports carry-

less multiplications, the SSE set of instructions [26]

that operates on 128-bit registers and the AVX ex-

tension [16], which provides SIMD instructions in a

three-operand format. However, our code can be easily

Algorithm 4 Protected scalar multiplication

Input: P ∈ E(F22m), k ∈ Z, width w

Output: Q = kP

Decompose k into k1, k2, with k2 always odd.
c← 1− (k1 mod 2)
k1 ← k1 + c

Compute width-w length-l regular recodings of k1, k2.

for i ∈ {1, . . . , 2w−1 − 1} do

Compute Pi = iP

Q← Pk1,l−1
+ ψ(Pk2,l−1

)
for i = l − 2 downto 0 do
Q← 2w−2Q

Perform a linear pass to recover Pk1,i
, Pk2,i

.

Q← 2Q+ Pk1,i
+ ψ(Pk2,i

)
end for

return Q← Q− cP

adapted to any architecture that supports the afore-

mentioned features. The benchmarking was run on an

Intel Xeon E31270 3.4GHz and on an Intel Core i5 3570

3.4GHz with the TurboBoost and the HyperThread-

ing technologies disabled. The code was implemented

in the C programming language with intrinsics for vec-

tor instructions, compiled with GCC 4.8.1 and executed

on 64-bit Linux. Experiments with the ICC 13.0 were

also carried out and generated similar results. Portions

of the code critical for timing-attack resistance (lin-

ear passes over precomputed tables, for example), were

implemented in Assembly language to prevent undue

manipulation by a code-optimizing compiler. For that

reason, we abstain from presenting timings for that

compiler. The main parameters of the GLS curve im-

plemented in this work (elliptic curve constants, base

point, order of the curve) are given in Appendix C.

In the rest of this section, performance results for

our software implementation of field arithmetic, elliptic

point arithmetic and elliptic curve scalar multiplication

are presented.

5.1 Field and elliptic curve arithmetic timings

Table 5 shows that the quadratic field arithmetic can

handle the base field elements with a considerable ef-

ficiency. Field inversion, squaring and square-root, as

well as the half-trace computational costs are just 1.27,

1.44, 1.87 and 1.43 times higher than their correspond-

ing base field operations, respectively. Field multiplica-

tion in the quadratic field can be accomplished at a cost

of about 2.23 times base field multiplications, which is

significantly better than the theoretical Karatsuba ratio

of three.
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Table 5 Timings (in clock cycles) for the field arithmetic and elliptic curve operations in the Intel Sandy Brige platform.

Field

operation

F2127 F2254 Elliptic curve

operation

GLS E/F2254

cycles op/M1 cycles op/M cycles op/M

Multiplication 42 1.00 94 1.00 Doubling 450 4.79

Mod. Reduction2 6 0.14 11 0.12 Full addition 1102 11.72

Square root 8 0.19 15 0.16 Mixed addition 812 8.64

Squaring 9 0.21 13 0.14 Doubling and add. 1063 11.30

Multi-Squaring 55 1.31 n/a3 n/a Halving 233 2.48

Inversion 765 18.21 969 10.30 No-GLV 4-NAF rec. 1540 16.38

Half-Trace 42 1.00 60 0.64 2-GLV-4-NAF rec. 918 9.76

Trace ≈ 0 0 ≈ 0 0 Reverse recoding 396 4.21
1 Ratio to multiplication.
2 This cost is included in the timings of all operations that require modular reduction.
3 Multi-Squaring is used for the inversion algorithm, which is computed only in F2127 .

The lazy reduction technique was employed to op-

timize the λ-coordinate formulas. Nevertheless, exper-

imental results showed us that this method should be

used with caution. Extra savings were obtained by con-

sidering the separate case of performing mixed addi-

tion where the two points have their Z coordinate equal

to one. In this case, mixed addition can be performed

with just five multiplications and two squarings. This

observation helped us to save more than 1000 cycles

in the halve-and-add algorithm computation. The re-

verse recoding calculation, that is, given k1, k2 return

k ≡ k1 + k2δ mod r can be omitted if not required.

However, in our scalar multiplication timings, this op-

eration was included in all the cases.

5.2 Scalar multiplication timings

From both algorithmic analysis and experimental re-

sults considerations, we decided to use w = 4 for the

w-NAF scalar recoding and w = 5 for the regular re-

coding from [28]. In the case of our parallel implemen-

tation (see Algorithm 3), the parameter t = 72 was se-

lected, which is consistent with the 1.29 ratio between

the double-and-add and halve-and-add computational

costs. Notice that in the scalar multiplication proce-

dure, it was assumed that the points are given and re-

turned in the λ-affine form. If the input and output

points must be represented in conventional affine coor-

dinates, it is necessary to add about 1000 cycles (2m̃+ĩ)

to convert from conventional affine coordinates to the

λ ones at the beginning and at the end of the scalar

multiplication procedure. Furthermore, we observed an

average 2% speedup when executing our code in the

newer Ivy Bridge platform. Our scalar multiplication

timings, along with the state-of-the-art implementa-

tions, are presented in Table 6.

5.2.1 Comparison to related work

Our single-core 4-NAF 2-dimensional GLV implemen-

tation achieves 69,500 clock cycles with the halve-and-

add method. This result is 20% and 30% faster than

the best implementations of point multiplication at the

128-bit security level over prime [15] and binary curves

[4], respectively. Furthermore, our two-core parallel im-

plementation using the GLV technique combined with

the halve-and-add and double-and-add methods takes

47,900 clock cycles, thus outperforming by 21% the tim-

ings reported in [36] for a four-core parallel implemen-

tation. Also, the single and multi-core implementations

at the 112-bit security level using Koblitz binary curves

reported in [46] outperforms our code by just 2% and

3%, respectively. Finally, our single-core protected mul-

tiplication is 16% faster than [36], 4% faster than [11]

and 16% slower than the current speed record on prime

curves [15], but sets a new speed record for binary

curves with an improvement of 49% compared to the

previous one [46].

5.2.2 A field multiplication comparative

Trying to have a fair comparison that attenuates the

diversity of curves, methods and technologies, Table 7

compares the estimated number of field multiplications

required by implementations that represent the state-

of-the-art of unprotected implementations of scalar mul-

tiplication computations.

The scalar multiplications on Koblitz curves reported

in [46] and [4] require 13% and 20% less number of

field multiplications than our work (2-GLV halve-and-

add with λ-coordinates), respectively. However, since

our field multiplication cost is 6% and 34% faster, our

computational timings outperforms [4] and are com-

petitive with [46], as seen in Table 6. This leads us to

conclude that the τ -and-add method is more efficient
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Table 6 Timings (in clock cycles) for scalar multiplication with or without timing-attack resistance (TAR) in the Intel Sandy
Bridge platform. For λ-coordinates, the input and output points are provided in λ-affine coordinates.

Scalar
multiplication

Curve Security Method TAR Cycles

Taverne et al. [46]2 NIST-K233 112 No-GLV (τ -and-add) no 67,800

Bos et al. [11]1 BK/FKT 128 4-GLV (double-and-add) no 156,000

Aranha et al. [4]2 NIST-K283 128 2-GLV (τ -and-add) no 99,200

Longa and Sica [36]2 GLV-GLS 128 4-GLV (double-and-add) no 91,000

Faz-H. et al. [15]2 GLV-GLS 128 4-GLV, (double-and-add) no 87,000

Taverne et al. [46]2 NIST-K233 112 No-GLV, parallel (2 cores) no 46,500

Longa and Sica [36]2 GLV-GLS 128 4-GLV, parallel (4 cores) no 61,000

Taverne et al. [46]2 Curve2251 128 Montgomery ladder yes 225,000

Bernstein [7,8]2 Curve25519 128 Montgomery ladder yes 194,000

Hamburg [21]3 Montgomery 128 Montgomery ladder yes 153,000

Longa and Sica [36]2 GLV-GLS 128 4-GLV (double-and-add) yes 137,000

Bos et al. [11]1 Kummer 128 Montgomery ladder yes 117,000

Faz-H. et al. [15]2 GLV-GLS 128 4-GLV, (double-and-add) yes 96,000

This work GLS 127

2-GLV (double-and-add) (LD) no 116,700

2-GLV (double-and-add) (λ) no 92,800

2-GLV (halve-and-add) (LD) no 82,800

2-GLV (halve-and-add) (λ) no 69,500

2-GLV, parallel (2 cores) (λ) no 47,900

2-GLV (double-and-add) (λ) yes 114,800
1 Intel Core i7-3520M 2.89GHz (Ivy Bridge).
2 Intel Core i7-2600 3.4GHz (Sandy Bridge).
3 Intel Core i7-2720QM 2.2GHz (Sandy Bridge).

than the halve-and-add, but the former technique suf-

fers from the relatively limited extension fields available

for Koblitz curves, which at least for the 128-bit secu-

rity level case, forces to have larger field elements and

thus more expensive field multiplications.

The GLS elliptic curve over a prime field reported

in [36] requires 33% more field multiplications than our

code. Nevertheless, it benefits from a highly efficient na-

tive multiplication with carry instruction (MUL), which

allows to generate a fast scalar multiplication. The same

observation can be extended to protected implementa-

tions when comparing between prime and binary curves.

5.2.3 Faster native multiplication

The Haswell family of processors was launched in 2013,

including among other features, the AVX2 set of vec-

tor instructions and a faster carry-less multiplier la-

tency and throughput. The latency of this multiplier,

compared to previous micro-architectures, was reduced

from between 12 and 14 cycles to only 7 cycles, while

the reciprocal throughput was reduced from between

7 and 8 cycles to only 2 cycles [14]. In Table 8 we re-

port our timings in this platform, specifically in an Intel

Core i7 4770K 3.50GHz machine with HyperThreading

and TurboBoost disabled.

When compared with the Sandy Bridge results (see

Table 6), the Haswell timings are about 39% faster for

the halve-and-add method and about 48% and 50%

faster for the protected and unprotected double-and-

add implementations, respectively. Note that the faster

carry-less multiplication plays the main role in the new

results. As a consequence, methods that use more field

multiplications, which is the case of the double-and-

add, benefit the most. The competitiveness between the

double-and-add and halve-and-add methods favors the

parallel version, which can almost achieve a two-factor

speed-up. When executed in the Haswell platform, the

two-core 2-GLV method is 43% faster than the Sandy

Bridge timings.

5.2.4 Memory requirements

The library presented in this work is intended for its ap-

plication in high-end platforms where, typically, mem-

ory is an abundant resource. Accordingly, several arith-

metic operations aggressively use precomputed tables

with the aim of achieving a faster computation than

what could be obtained by a direct calculation (See §2
for a detailed discussion).

In particular, the base field implementation of the

half-trace operation, uses a precomputed table of size

28 · dm8 e field elements. Using m = 128, this translates

to a 216-byte table. The faster field inverse implemen-

tation invokes four multi-squaring operations, but the

constant-time implementations uses slower consecutive

squarings. Each one of these multi-squaring operations

requires to precompute a table of size 24 · dm4 e field el-
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Table 7 A comparison of several elliptic curve libraries by their required number of field multiplications. The minimum number
in each column is marked: field multiplications for pre/post-computation and the main loop in scalar multiplication; lowest
latency for an implementation of field multiplication.

Implementation Field Method
Estimated Mult. Field Mult.

cost (cc)pre/post main loop

Taverne et al. [46] F2233 No-GLV 92 638 100

Aranha et al. [4] F2283 2-GLV 100 572 142

Longa and Sica [36] Fp2 4-GLV 113 1004 80

This work F2254 2-GLV 86 752 94

Table 8 Timings and memory requirements for scalar multiplication in the Haswell platform, assuming that the input and
output points are provided in λ-affine coordinates.

Scalar
multiplication

Curve Security Method TAR Cycles Memory (bytes)

This work GLS 127

2-GLV (double-and-add) (λ) no 46,700 215 + 4× 64

2-GLV (halve-and-add) (λ) no 42,100 216 + 215 + 4× 96

2-GLV, parallel (2 cores) (λ) no 27,300 216+215+4×(96+64)

2-GLV (double-and-add) (λ) yes 60,000 8× 64

ements, that translates to a table with a size of 213

bytes. Therefore, the memory cost associated to the

faster field inversion computation in our library is of

215 Bytes. Finally, the halve-and-add scalar multiplica-

tion requires the storage of 4 accumulators in projective

coordinates; and the double-and-add scalar multiplica-

tion requires the storage of 4 and 8 multiples of the

base point for the unprotected and protected versions,

respectively. A summary of the memory costs associ-

ated to the scalar multiplication algorithms presented

in this work are reported in the last column of Table 8.

6 Conclusion

In this work, a new projective coordinate system that

leads to fast elliptic curve operations, was presented.

The use of the λ-projective coordinates in combination

with an optimized implementation of quadratic field

arithmetic and the endomorphisms available in the GLS

curves, allowed us to achieve record timings in the scalar

multiplication computation for different point configu-

rations, including the fastest protected/unprotected re-

ported computation of kP at 127 bits of security.

In the near future, we expect to use the Haswell

AVX2 256-bit extension set along with the bit manip-

ulation instructions for optimizing the quadratic field

arithmetic and the scalar multiplication functions even

further.
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40. López, J., Dahab, R.: New Point Compression Algo-

rithms for Binary Curves. In: IEEE Information Theory
Workshop (ITW 2006), pp. 126–130, IEEE Press, New
York (2006)

41. Park, Y.H., Jeong, S., Kim, C., Lim, J.: An Alternate De-
composition of an Integer for Faster Point Multiplication
on Certain Elliptic Curves. In: Naccache, D., Paillier, P.
(eds.) PKC 2002, LNCS, vol. 2274, pp. 323–334. Springer
(2002)
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A Proofs

Proof of Theorem 1. Let P = (xP , λP ) be an elliptic point in
Ea,b(F2m). Then a formula for 2P = (x2P , λ2P ) is given by

x2P = λ2P + λP + a

λ2P =
x2P
x2P

+ λ2P + a+ 1.
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From [23], page 81, we have the formulas: x2P = λ2P + λP + a
and y2P = x2P + λP x2P + x2P . Then, a formula for λ2P can be

obtained as follows:

λ2P =
y2P + x22P

x2P
=

(x2P + λP · x2P + x2P ) + x22P
x2P

=
x2P
x2P

+ λP + 1 + x2P =
x2P
x2P

+ λP + 1 + (λ2P + λP + a)

=
x2P
x2P

+ λ2P + a+ 1.

In affine coordinates, the doubling formula requires one division

and two squarings. Given the point P = (XP , LP , ZP ) in the

λ-projective representation, an efficient projective doubling al-
gorithm can be derived by applying the doubling formula to the

affine point (XP
ZP

, LP
ZP

). For x2P we have:

x2P =
L2
P

Z2
P

+
LP

ZP
+ a =

L2
P + LP · ZP + a · Z2

P

Z2
P

=
T

Z2
P

=
T2

T · Z2
P

.

For λ2P we have:

λ2P =

X2
P

Z2
P

T
Z2

P

+
L2
P

Z2
P

+ a+ 1

=
X2

P · Z
2
P + T · (L2

P + (a+ 1) · Z2
P )

T · Z2
P

.

From the λ-projective equation, we have the relation T · X2
P =

X4
P + b · Z4

P . Then the numerator w of λ2P can also be written
as follows,

w = X2
P · Z

2
P + T · (L2

P + (a+ 1) · Z2
P )

= X2
P · Z

2
P + T · L2

P + T2 + T2 + (a+ 1) · Z2P

= X2
P · Z

2
P + T · L2

P + L4
P + L2

P · Z
2
P + a2 · Z4

P + T2

+ (a+ 1) · Z2P

= X2
P · Z

2
P + T · (L2

P +X2
P ) +X4

P + b · Z4
P + L4

P

+ L2
P · Z

2
P + a2 · Z4

P + T2 + (a+ 1) · Z2P

= (L2
P +X2

P ) · ((L2
P +X2

P ) + T + Z2
P ) + T2

+ (a2 + b) · Z4
P + (a+ 1) · Z2P .

This completes the proof.

Proof of Theorem 2. Let P = (xP , λP ) and Q = (xQ, λQ)
be elliptic points in Ea,b(F2m). Then a formula for P + Q =
(xP+Q, λP+Q) is given by

xP+Q =
xP · xQ

(xP + xQ)2
(λP + λQ)

λP+Q =
xQ · (xP+Q + xP )2

xP+Q · xP
+ λP + 1.

Since P and Q are elliptic points on a non-supersingular curve,

we have the following relation: y2P +xP · yP +x3P + a ·x2P = b =
y2Q +xQ ·yQ +x3Q +a ·x2Q. The known formula for computing the

x-coordinate of P +Q is given by xP+Q = s2 +s+xP +xQ +a,

where s =
yP+yQ
xP+xQ

. Then one can derive the new formula as

follows,

xP+Q =
(yP + yQ)2 + (yP + yQ) · (xP + yQ)

(xP + xQ)2

+
(xP + xQ)3 + a · (xP + xQ)2

(xP + xQ)2

=
b+ b+ xQ · (x2P + yP ) + xP · (x2Q + yQ)

(xP + xQ)2

=
xP · xQ · (λP + λQ)

(xP + xQ)2
.

For computing λP+Q, we use the observation that the x-coordinate
of (P + Q) − P is xQ. We also know that for −P we have

λ−P = λP + 1 and x−P = xP . By applying the formula for

the x-coordinate of (P +Q) + (−P ) we have

xQ = x(P+Q)+(−P ) =
xP+Q · x−P

(xP+Q + x−P )2
· (λP+Q + λ−P )

=
xP+Q · xP

(xP+Q + xP )2
· (λP+Q + λP + 1).

Then λP+Q =
xQ·(xP+Q+xP )2

xP+Q·xP
+ λP + 1.

To obtain a λ-projective addition formula, we apply the for-

mulas above to the affine points (XP
ZP

, LP
ZP

) and (
XQ

ZQ
,
LQ

ZQ
). Then,

the xP+Q coordinate of P +Q can be computed as:

xP+Q =

XP
ZP
· XQ

ZQ
· (LP

ZP
+

LQ

ZQ
)

(XP
ZP

+
XQ

ZQ
)2

=
XP ·XQ · (LP · ZQ + LQ · ZP )

(XP · ZQ +XQ · ZP )2
= XP ·XQ ·

A

B
.

For the λP+Q coordinate of P +Q we have:

λP+Q =

XQ

ZQ
· (XP ·XQ·A

B
+ XP

ZP
)2

XP ·XQ·A
B

· XP
ZP

+
LP + ZP

ZP

=
(A ·XQ · ZP +B)2 + (A ·B · ZQ)(LP + ZP )

A ·B · ZP · ZQ
.

In order that both xP+Q and λP+Q have the same denominator,
the formula for xP+Q can be written as

XP+Q =
XP ·XQ ·A

B
=
A · (XP · ZQ) · (XQ · ZP ) ·A

A ·B · ZP · ZQ
.

Therefore, xP+Q =
XP+Q

ZP+Q
and λP+Q =

LP+Q

ZP+Q
. This completes

the proof.

Proof of Theorem 3. The λ-projective formula is obtained by

adding the λ-affine points 2Q = (
X2Q

Z2Q
,
L2Q

Z2Q
) and P = (xP , λP )

with the formula of Theorem 2. Then, the x coordinate of 2Q+P

is given by

x2Q+P =
x2Q · xP

(x2Q + xP )2
(λ2Q + λP )

=
X2Q · xP (L2Q + λP · Z2Q)

(X2Q + xP · Z2Q)2

=
xP · (X2

Q · Z
2
Q + T · (L2

Q + (a+ 1 + λP ) · Z2
Q))

(T + xP · Z2
Q)2

= xP ·
A

B
.
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The λ2Q+P coordinate of 2Q+ P is computed as

λ2Q+P =

X2Q

Z2Q
· (xP · AB + xP )2

xP · AB · xP
+ λP + 1

=
T · (A+B)2 + (λP + 1) · (A ·B · Z2

Q)

A ·B · Z2
Q

.

The formula for x2Q+P can be written with denominator Z2Q+P

as follows,

x2Q+P =
xP ·A
B

=
xP · Z2

Q ·A
2

A ·B · Z2
Q

.

Therefore, x2Q+P =
X2Q+P

Z2Q+P
and λ2Q+P =

L2Q+P

Z2Q+P
. This com-

pletes the proof.

B Operation count for 2-GLV double-and-add

using λ-coordinates

Basically, three cases can occur in the 2-GLV double-and-
add main loop. The first one, when the digits of both scalars
k1, k2 equal zero, we just perform a point doubling (D) in the
accumulator. The second one, when both scalar digits are
different from zero, we have to double the accumulator and
sum two points. In this case, we perform one doubling and
addition (DA) followed by a mixed addition (A). Finally, it is
possible that just one scalar has its digit different from zero.
Here, we double the accumulator and add a point, which can
be done with only one doubling-and-addition operation.

Then, as the nonzero bit distributions in the scalars rep-
resented by the w-NAF are independent, we have for the first
case,

Pr[k1,i = 0 ∧ k2,i = 0] =
w2

(w + 1)2
, for i ∈ [0, n− 1].

For the second case,

Pr[k1,i 6= 0 ∧ k2,i 6= 0] =
1

(w + 1)2
, for i ∈ [0, n− 1].

And for the third case,

Pr[(k1,i 6= 0 ∧ k2,i = 0) ∨ (k1,i = 0 ∧ k2,i 6= 0)] =
2w

(w + 1)2
.

Consequently, the operation count can be written as

n

2

(
w2

(w + 1)2
D +

1

(w + 1)2
(DA+A) +

2w

(w + 1)2
DA

)

=
(2w + 1)n

2(w + 1)2
DA+

w2n

2(w + 1)2
D +

n

2(w + 1)2
A.

C Parameters used for the Galbraith-Lin-Scott

elliptic curve

Using the notation given in §4, let q = 2m, with m = 127.
The towering of the fields Fq and its quadratic extension
Fq2
∼= Fq[u]/(g(u)) are constructed by means of the irreducible

trinomials f(x) = x127 + x63 + 1 and g(u) = u2 + u + 1, re-
spectively. Let E/Fq : y2 + xy = x3 + ax2 + b, with a, b ∈ Fq,

be a binary elliptic curve. and define the quadratic twist of
E as the Galbraith-Lin-Scott elliptic curve

Ẽ/Fq2 : y2 + xy = x3 + a′x2 + b,

with a′ ∈ Fq2 such that Tr(a′) = 1. Given #E(Fq) = q+1− t,
it follows that #Ẽa′,b(Fq2) = (q − 1)2 + t2 = h · r, where t is
the trace of Frobenius of the curve E, h = 2 and r is 253-bit
prime number.

In this work, the binary GLS elliptic curve Ẽa′,b(Fq2) was
defined with the following parameters

– a′ = u

– b ∈ Fq is a degree 126 binary polynomial that can be
represented in hexadecimal format as,
b = 0x59C8202CB9E6E0AE2E6D944FA54DE7E5

– The 253-bit prime order r of the main subgroup of Ẽa′,b(Fq2)
is,

r =0x1FFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFDAC40D1195270779877DABA2A44750A5;

– The base point P = (xp, λp) of order r specified in λ−affine
coordinates is,

xp = 0x203B6A93395E0432344038B63FBA32DE

+ 0x78E51FD0C310696D5396E0681AA10E0D · u
λp = 0x5BD7653482085F55DEB59C6137074B50

+ 0x7F90D98B1589A17F24568FA5A1033946 · u.


