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Abstract

A long-standing open problem in cryptography is proving the existence of (deterministic)
hard-core predicates for the Diffie-Hellman problem defined over finite fields. In this paper, we
make progress on this problem by defining a very natural variation of the Diffie-Hellman problem
over Fp2 and proving the unpredictability of every single bit of one of the coordinates of the
secret DH value.

To achieve our result, we modify an idea presented at CRYPTO’01 by Boneh and Shparlinski
[4] originally developed to prove that the LSB of the elliptic curve Diffie-Hellman problem is
hard. We extend this idea in two novel ways:

1. We generalize it to the case of finite fields Fp2 ;
2. We prove that any bit, not just the LSB, is hard using the list decoding techniques of

Akavia et al. [1] (FOCS’03) as generalized at CRYPTO’12 by Duc and Jetchev [6].
In the process, we prove several other interesting results:
• Our result also hold for a larger class of predicates, called segment predicates in [1];
• We extend the result of Boneh and Shparlinski to prove that every bit (and every segment

predicate) of the elliptic curve Diffie-Hellman problem is hard-core;
• We define the notion of partial one-way function over finite fields Fp2 and prove that every

bit (and every segment predicate) of one of the input coordinates for these functions is
hard-core.
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1 Introduction
A long-standing open problem in cryptography is proving the existence of (deterministic) hard-core
predicates for the Diffie-Hellman problem defined over finite fields. In this paper we make progress
on this problem by defining a very natural extension of the Diffie-Hellman problem over Fp2 and
proving that a large class of predicates (including every single bit of one of the coordinates) are
unpredictable under the assumption that this problem is hard.

In their seminal paper that introduced public-key cryptography [5] Diffie and Hellman defined
the following key exchange protocol, which works in arbitrary finite cyclic groups. Let G be such
a group, generated by g of order n. Two parties, Alice and Bob, want to establish a secret value.
Alice chooses a random value a ∈ Zn and sends the value A = ga to Bob. Similarly Bob chooses a
random value b ∈ Zn and sends the value B = gb to Alice. At this point they share the common
Diffie-Hellman secret value

K = gab = Ab = Ba.

The Computational Diffie-Hellman Assumption (CDH) over the group G informally states that
no efficient algorithm can compute K = gab when given only g,A = ga, B = gb. The hardness
of computing the entire value K, however does not rule out an efficient way to compute some of
the bits of K, or even just predict them with a probability better than a random guess. This
property is very important because without it, Alice and Bob do not have any guarantee about
the “pseudorandomness” of any bit of the secret value K, and those are the properties needed
by K in order to be used as a secret key in a subsequent cryptographic scheme. This problem is
usually addressed by making a much stronger assumption on the hardness of the Diffie-Hellman
problem: the so-called Decisional Diffie-Hellman Assumption (DDH) states that the value K is
computationally indistinguishable from a random element of G. While the DDH guarantees that
the entire value of K is pseudorandom, there are groups G where the DDH is false, even when the
CDH is still conjectured to be hard.

Ideally, however, one would like to prove that certain bits (or more generally, certain predicates)
of the value K are unpredictable, when given ga and gb, simply under the CDH assumption. Such
results were established quite early for other conjectured hard-problems (e.g., Blum and Micali’s
result on the hardness of discrete log bits [3] and Alexi at al. work on the hardness of the RSA input
bits [2]). However for the case of the Diffie-Hellman problem no such result has been proven (except
for the result by Boneh and Shparlinksi [4] in a slightly different model and which we discuss below).
The only hard-core predicates known for the Diffie-Hellman function are the generic “randomized”
predicates which work over any computationally hard problem (e.g., the Goldreich-Levin and
Näslund hard-core bits [7, 11]).

Hard-Core Predicates. Let π : G→ {±1} be a predicate1 defined over G. To prove that π is
hard-core for the CDH problem one has to construct a reduction from guessing π better than at
random, to solving the CDH problem. More specifically, assume we have an oracle Ω which on input
g, ga, gb outputs the correct π(gab) with probability (taken over the choice of a, b) substantially better
than2 1/2, then there is an efficient algorithm A which invokes Ω and solves the CDH problem.

Note that a crucial step of this reduction is to “correct” the answers of the oracle Ω which are
guaranteed to be right only slightly more than half of the times. This step requires randomizing the

1 For reasons that will become clearer in the technical section of the paper, we adopt the convention that predicates
map a value to ±1 instead of {0, 1}.

2 Let’s assume for now that π is balanced. In the rest of the paper we take into account the possible bias of π.
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queries to Ω while still keeping its answers useful to the solution of the underlying CDH problem.
This proves somewhat difficult, due to the limited random self-reducibility of the Diffie-Hellman
problem.

Randomizing the Problem Representation. Boneh and Shparlinksi in [4] achieved a break-
through for the elliptic curve Diffie-Hellman problem, i.e., the CDH problem defined over the group
G of points of an elliptic curve. They were able to prove that the least significant bit of each
coordinate of the Diffie-Hellman secret value K is hard-core, when the probability space of the
oracle Ω also includes a random choice for the representation of the curve.

More specifically: let p be a prime and let E be an elliptic curve defined over Fp, the finite field
with p elements. To represent E we use a short Weierstrass equation W : y2 = x3 + ax+ b, with
a, b ∈ Fp and 4a3 + 27b2 6= 0. Let W (E) be the set of Weierstrass equations representing E. It is
well known that W (E) is defined by the equations Wλ of the form y2 = x3 + λ4ax+ λ6b for λ ∈ F×p .
If Q = (Qx, Qy) is a point satisfying W then the point Qλ = (Qλ,x = λ2Qx, Qλ,y = λ3Qy) satisfies
Wλ. Furthermore, the points of E form a group under a certain operation, and the mapping

Φλ : E → E defined as Φλ(Q) = Qλ

is an isomorphism with respect to such group operation over E.
Let G be a cyclic subgroup of E generated by a point P . Switching to additive notation for the

group operation, the elliptic curve CDH (EC-CDH) assumption says that given W,P, aP, bP it is
hard to compute abP .

In [4] they prove that if there exists an oracle Ω that works on a random representation of E,
i.e., such that

Pr
λ,a,b

[
Ω(λ, P, aP, bP ) = LSB([Φλ(abP )]x)

]
> 1/2 + ε

for a non-negligible value ε, then it is possible to solve EC-CDH on any curve (a similar result holds
for the y-coordinate of abP ).

1.1 Our results

Our main technical contribution is to show that the Boneh-Shparlinski idea of randomizing the
representation of the underlying group for the CDH problem can be also applied to the case of finite
fields Fp2 .

For a given prime p, there are many different fields Fp2 , but they are all isomorphic to each
other. Let h(x) = x2 + h1x + h0 be a monic irreducible polynomial of degree 2 in Fp. It is well
known that Fp2 is isomorphic to the field Fp[x]/(h), and therefore elements of Fp2 can be written as
linear polynomials: if g ∈ Fp2 then g = g0 + g1x and addition and multiplication are performed as
polynomial operations modulo h. In the following, given g ∈ Fp2 we denote with [g]i the coefficient
of the degree-i term.

Let I2(p) be the set of monic irreducible polynomials of degree 2 in Fp. For h, ĥ ∈ I2(p) we know
that there exists an (easily computable) isomorphism

φh,ĥ : Fp[x]/(h)→ Fp[x]/(ĥ).

Finally, denote with g a generator of the multiplicative group of Fp2 which is known to be cyclic.
Our first attempt was to use the approach from [4] over Fp2 . That is, we hoped to prove

that given an oracle Ω which, on input random values ga, gb and a random description of Fp2 ,
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outputs LSB
([
gab
]
i

)
, then we can solve the CDH over Fp2 . Unfortunately there are several technical

complications with directly applying the approach of [4] to the finite field case, one of them being
the fact that representations of an elliptic curve are in bijective correspondence with Fp allowing
them to be represented by a single element of Fp. Conversely the representations of Fp2 are in
bijective correspondence with I2(p) which has ≈ p2/2 elements.

A new Diffie-Hellman Problem. To solve these technical problems we had to define the
following variant of the CDH problem over Fp2 : informally we say that the Partial-CDH problem is
hard in Fp2 if no efficient algorithm given g,A = ga, B = gb ∈ Fp2 can compute K =

[
gab
]
1 ∈ Fp

(i.e., the coefficient of the degree 1 term of gab).
We note that the Partial-CDH problem is obviously weaker than the regular CDH problem

over Fp2 , but that it still allows Alice and Bob to agree on a common secret value in Fp, via the
traditional Diffie-Hellman protocol.

Our Main Result. Assuming the hardness of the Partial-CDH problem we prove that for a large
class of predicates π (described below – it includes every individual bit of K), the bit π(K) is
unpredictable given ga, gb and a random representation of Fp2 . More specifically, we prove that if
there exists an oracle Ω such that for any h ∈ I2(p) it holds that

Pr
ĥ,a,b

[
Ω
(
h, ĥ, g, ga, gb

)
= π

([
φh,ĥ

(
gab
)]

1

)]
> 1/2 + ε

for a non-negligible value ε, then it is possible to solve Partial-CDH on Fp[x]/(h).
We may define an analogous problem for the general case of Fpt with any t > 1. The Partial-CDH

problem is defined as outputting the coefficient of the term of degree t− 1. However our hard-core
results hold only for the quadratic (Fp2) case. See the conclusion (Section 6) for a discussion.

Our Techniques. To achieve our result we divert from the techniques used in [4] in another
fundamental way. To prove that the predicate π is hard-core for the Partial-CDH problem in Fp2 we
use the list-decoding approach pioneered by Akavia et al. [1] as extended by Duc and Jetchev in [6]
to the case of prediction oracles which also take as input a random representation of the underlying
group.

We describe the approach in detail in Section 3. For now we just remind the reader that as
defined originally in [1] this approach allows one to prove the security of so-called segment predicates
which include both the most and least significant bits of the input. In [10] the technique was
extended to work for any input bit. So the class of predicates P described above includes every
individual bit of the input and also segment predicates as defined in [1].

Additional Results. Since the list-decoding approach works for a larger class of predicates, we
obtain two additional results:

1. In the elliptic curve scenario, we are able to extend the [4] result for EC-CDH to any predicate
π as above, not just the LSB.

2. For the finite field case we prove that the predicates π are hard-core for a much larger class of
conjectured computationally hard problems. Consider a function f : Fp2 → S for an arbitrary
set S. We say that f is a finite field-based partial one-way function (FFB-POWF) if the
following conditions hold:
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• f is “independent” of the representation used for Fp2 (see Section 5.2 for a precise
definition);
• no efficient algorithm, given f(x) can compute [x]1, i.e., the coefficient of the degree 1

term of x.

Then we can prove that if f is a FFB-POWF then it is hard to predict π([x]1) better than at
random (over a random representation of Fp2) when given only f(x).

Interpretation of Our Results. One way to interpret our results is to think of the group
representation as part of the input to the computational hard problem (be it a one-way function,
or the CDH problem) being used. This means that our results do not apply to the case when the
Diffie-Hellman key exchange protocol is performed over a fixed representation of the finite field (or
the elliptic curve). Rather it is necessary for Alice and Bob to choose a random representation (an
irreducible polynomial for Fp2 or a Weierstrass equation for the curve E) over which to run the
protocol.

1.2 Paper Organization

Section 2 reviews some relevant background, particularly the notion of Fourier transform for codes. In
Section 3, we cover the list-decoding approach to prove hard-core predicates [1] and its generalization
to the case of elliptic curves from [6]. Sections 4 and 5 present our original results. First, as a
warm-up we prove that every bit of the EC-CDH problem is hard-core. Then we present our main
result on the bit security of Partial-CDH over finite fields, and its extension to FFB-POWF. Finally,
we conclude in Section 6 with some discussion about our results and a list of interesting problems
left open by our work.

2 Background

2.1 Fourier Transforms

Let Zn denote the additive group of integers modulo n. For any two functions f, g : Zn → C, their
inner product is defined as 〈f, g〉 = 1

n

∑
x∈Zn f(x)g(x). Let C(Zn) denote the vector space formed by

all functions f : Zn → C. The `2-norm of f on C(Zn) is defined as ‖f‖2 =
√
〈f, f〉. A character of

Zn is a homomorphism χ : Zn → C×, such that ∀x,y∈Znχ(x+ y) = χ(x)χ(y). These characters are
defined by χα(x) = ωαxn , where α ∈ Zn and ωn = e2πi/n. The set of all characters form a group Ẑn.
Since the members of Ẑn are orthogonal and |Ẑn| = |Zn|, they form an orthogonal basis, termed
the Fourier basis, for C(Zn). The Fourier transform f̂ : Ẑn → C of f is defined as f̂(χ) = 〈f, χ〉.
The Fourier expansion of f is written as

∑
χ∈Ẑn

f̂(χ)χ. For Γ ⊂ Ẑn the restriction of f to Γ is
the function f|Γ : Zn → C defined by f|Γ =

∑
χ∈Γ f̂(χ)χ. The Fourier coefficients of f are the

coefficients f̂(χ) in the Fourier basis Ẑn. The weight of a Fourier coefficient is denoted by |f̂(χ)|2.
Definition 2.1 formalizes the notion of heavy characters with respect to f .
Definition 2.1 (τ -heavy characters): Let τ ∈ R+ be a threshold and f : Zn → C be an arbitrary
function. We say a character χ ∈ Ẑn is τ -heavy if the weight of its corresponding Fourier coefficient
is at least τ . The set of all such character is denoted by Heavyτ (f), i.e.,

Heavyτ (f) = {χ ∈ Ẑn : |f̂(χ)|2 ≥ τ}. ♦
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2.2 Codes and their Properties

In what follows, we report a few useful known definitions [6] and lemmata [1] about codes over Zn.
As in [6], we will regard Zn-codes as associating an element x ∈ Zn to a Zn-codeword Cx, which we
will in turn see interchangeably as a function Cx : Zn → {±1} or as a length-n sequence of {±1}.

Definition 2.2 (ε-concentrated function): We say a function f : Zn → {±1} is Fourier ε-
concentrated if there exist a size poly(n, 1/ε), ε > 0, set of characters Γ ⊂ Ẑn such that

∥∥f−f|Γ∥∥2 ≤ ε.
We say a function is Fourier concentrated if it is ε-concentrated for every ε > 0. ♦

Definition 2.3 (ε-concentrated code): We say a code C = {Cx : Zn → {±1}} is ε-concentrated
if all its codewords Cx are Fourier ε-concentrated. We say a code is Fourier concentrated if it is
ε-concentrated for every ε > 0. ♦

Definition 2.4 (Code recoverability): We say a code C = {Cx : Zn → {±1}} is recoverable if
there exists an algorithm that, given as input a threshold τ and a character χ ∈ Ẑn, produces a
list of all elements x associated with codewords Cx for which χ is a τ -heavy coefficient, that is,
{x ∈ Zn : χ ∈ Heavyτ (Cx)}, in time polynomial in logn and 1/τ . ♦

The following two results appear in [1]. Lemma 2.5 shows that, in a concentrated code C, any
noisy version C̃x of codeword Cx share at least one heavy coefficient with Cx. Theorem 2.6 shows
that one can efficiently learn all the heavy characters of any function when given query access to
it. Therefore having query access to C̃x (which in our case is obtained by querying the prediction
oracle Ω), one can learn at least one heavy coefficient of Cx, and that if the code is also recoverable,
then one can recover x.

Lemma 2.5 (Lem. 1 of [1]): Let f, g : Zn → {±1} such that f is Fourier concentrated and, for
some ε > 0,

Pr
x∈Zn

f(x) = g(x) ≥ majf + ε,

where majf denotes the bias of the function f , i.e., majf = max{b=±1} Prx∈Zn f(x) = b. Then there
exist a threshold τ such that 1/τ is polynomial in ε and logn, and there exists a character χ 6= 0
heavy for f and g: χ ∈ Heavyτ (f) ∧ Heavyτ (g). �

Theorem 2.6 (Thm. 6 of [1]): There exists a randomized learning algorithm over Zn that, given
query access to a function w : Zn → {±1}, τ > 0 and 0 < δ < 1, returns a list of O(1/τ) characters
containing Heavyτ (w) with probability at least 1− δ. The probability is taken over the random coins
of the algorithm, whose running time is

Õ

(
log(n) ln2 (1/δ)

τ5.5

)
.

�

An overview of the above learning algorithm [1] is provided in Appendix A.

3 Hard-Core Predicates by List Decoding
In this section, we review the work of Akavia et al. [1] on how to prove that certain predicates are
hard-core for a one-way function f using list decoding of a particular error-correcting code. We
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also summarize the extensions by Duc and Jetchev [6] to the case of elliptic-curve based one-way
functions.

Let f : Zn → S be a one-way function and let y = f(x) for x ∈ Zn. Let also π : Zn → {±1}
denote a predicate (with the convention that a 0 bit is encoded as +1). Finally we denote with βπ
the bias of the predicate π, i.e., βπ = max{b=±1} Prx[π(x) = b].

The goal is to prove that π is a hard-core predicate for the function f . The proof goes as usual
by contradiction by assuming that there exists an oracle Ω which, when queried on f(x), returns
a bit b which is equal to π(x) with probability βπ + ε for a non-negligible ε, and then using Ω to
invert f , i.e., find x given y.

To achieve this goal, Akavia et al. in [1] define a multiplication code

C = {Cx : Zn → {±1}}x∈Zn , where Cx(λ) = π(λx).

In order for their proof to work this code needs the following properties:

Accessibility: Given y = f(x), it must be possible to obtain a “noisy” version C̃x of the codeword
Cx, i.e., one that agrees with the correct one with probability βπ + ε for a non-negligible ε.
In [1], this is done by assuming that the one-way function has some homomorphic property,
i.e given y = f(x) and λ ∈ Zn it is possible to compute yλ = f(λx) (modular exponentiation
has this property). Then, by querying Ω on yλ one gets the desired accessibility property;

Concentration: Every codeword Cx must be a Fourier concentrated function. Remember that
according to the definition above this means that for every ε there exists a polynomial (in logn
and ε−1) set Γ of Fourier characters, such that ‖Cx − Cx,Γ‖ ≤ ε (where Cx,Γ is the restriction
of Cx to the Fourier characters in Γ);

Recoverability: There exists an algorithm that on input a Fourier character χ and a threshold
τ , outputs a list Lχ containing all the values x ∈ Zn such that χ is τ -heavy for Cx. The
algorithm runs in polynomial (in logn and τ−1) time, which in particular means that the size
of Lχ is also “small”.

Concentration and recoverability depends on the choice of the predicate π. In [1], the notion of
segment predicates is defined and shown to be sufficient for the purpose. Later Morillo and Rafols
in [10] prove that any individual input bit yields a concentrated and recoverable code (we review
this in Appendix B). We assume π to be one of such predicates in the following.

If the code C has the above properties then it is possible to prove that π is a hard-core predicate.
Assume we have an oracle Ω which when queried on f(x) returns a bit b which is equal to π(x) with
probability βπ + ε where ε = 1/poly(`) (where ` = |n|). We need to show how to use Ω to invert f .

The inversion works as follows. On input y = f(x), the oracle Ω allows us to access a “noisy”
version C̃x of Cx, i.e., such that Prλ[Cx(λ) = C̃x(λ)] > βπ + ε. By applying Lemma 2.5 we know
that there exists a threshold τ which is polynomial in ε and at least one Fourier character χ which
is τ -heavy for both Cx and C̃x. Using the learning algorithm described in Theorem 2.6, we obtain a
list containing all the τ -heavy Fourier characters for C̃x; for each such character we use the recovery
property to create a polynomial size list of possible pre-images for y which because of Lemma 2.5
must necessarily include x. The correct x can be identified by evaluating the OWF f over all the
possible candidates and comparing with y. Details can be found in [1] (in any case, in Sections 4
and 5 we present the details of this algorithm as it applies to our results).
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3.1 Accessibility via Elliptic Curve Isomorphisms

Taking the result of [1] as a starting point, and using techniques first developed in [4], Duc and
Jetchev [6] show how to obtain the accessibility property in a different way, when the one-way
function is defined over the group G of points of an elliptic curve. Their result does not require the
one-way function f to have some homomorphic property; on the other hand it requires the oracle to
work over a random description of the curve.

Let p be a prime and let E be an elliptic curve defined over Fp. To represent E we use a short
Weirstrass equation W : y2 = x3 + ax+ b, with a, b ∈ (Fp) and 4a3 + 27b2 6= 0. Let W (E) be the set
of Weirstrass equations representing E: so W ∈W (E). It is well known that W (E) is defined by
the equations Wλ of the form y2 = x3 +λ4ax+λ6b for λ ∈ F×p . If Q = (Qx, Qy) is a point satisfying
W then the point Qλ = (Qλ,x = λ2Qx, Qλ,y = λ3Qy) satisfies Wλ. It is not hard to see that the
mapping

Φλ : E → E defined as Φλ(Q) = Qλ

is an isomorphism with respect to the group operation over E.
Boneh and Shparlinski were the first to note that this isomorphism gives raise to a natural

extension of the prediction oracle Ω, by requiring that the input distribution for Ω also include λ.
Following this idea, the oracle in [6] takes as input f(Q) where f is a one-way function defined over
the group E, and also a value λ (i.e., a representation Wλ of E). The oracle returns a bit b such
that b = π(Qλ,x) with probability βπ + ε (for a non-negligible ε) where the probability is not only
over the choice of Q (and the internal random coins of Ω) but also over the choice of λ ∈ F×p .

As defined, the prediction oracle Ω gives noisy access to the quadratic codeword CQ(λ) = π(λ2Qx),
which would complicate matters (in particular it makes it hard to prove concentration and recovery,
see [6] for a discussion). To apply the techniques of [1], we need noisy access to the multiplication
code

CQ : Fp → {±1} defined as CQ(λ) = π(λQx).

Following [4] again, Duc and Jetchev defined a modified oracle Ω′ which queries Ω if λ is a
square in F×p , otherwise tosses a βπ-biased coin. It is not hard to see that if Ω had advantage ε,
then Ω′ has advantage ε/2 (see [4]).

Using Ω′, the generic approach on [1] shows that π is a hard-core predicate for any one-way
function f defined over E, provided that the output of f does not depend on the Weirstrass equation
used to describe E (in other words that the function f is defined over the group of points, irrespective
of its representation). Duc and Jetchev call such a function an elliptic curve-based one-way function
(ECB-OWF) and discuss the application of their result to bilinear pairings defined over elliptic
curves, which are indeed a conjectured example of ECB-OWF.

4 Hard-Core Predicates for the Diffie-Hellman Problem
over Elliptic Curves

In this section, we show our first original result: if the Diffie-Hellman problem over elliptic curves is
hard, then every bit (and every segment predicate) of a secret Diffie-Hellman value is unpredictable.
This generalizes the result of Boneh and Shparlinski [4] which holds only for the least significant bit.

For a security parameter `, consider an instance generator E which on input 1` outputs E` an
elliptic curve defined over Fp` where p` is a `-bit prime, such that G` is a cyclic subgroup of E`
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(under the standard group operation defined over the curve points) generated by a point P`. In
the following, we will drop the suffix ` when it is clear from the context. We also use the additive
notation for the group operation over E, therefore every point Q ∈ G can be written as Q = aP for
some a ∈ {1, . . . , |G|}.

Assumption 4.1: We say that the Diffie-Hellman problem over E is hard if for every polynomial
time machine A, we have that the probability

Pr
[
A(E`, P`, aP`, bP`) = abP` | E` ← E

(
1`
)
; a, b← {1, . . . , |G|}

]
is negligible in `. ♦

For every point Q ∈ E we denote with Qx the x-coordinate of Q. As before we denote with
W (E) the set of short Weirstrass equations describing a curve E; recall that each W ∈W (E) can
be uniquely associated with a λ ∈ F×p which gives rise to the isomorphism Φλ defined in the previous
section.

Let Bk : Fp → {±1} denote the k-th bit predicate and let βk be the bias of Bk. We now state our
first main theorem. Intuitively it says that under Assumption 4.1, every bit of the binary expansion
of the x-coordinate of abP is unpredictable (e.g., pseudorandom) for a random representation of the
curve E.

Theorem 4.2: Under Assumption 4.1, for any polynomial time machine Ω,∣∣∣Pr
[
Ω(λ, P, aP, bP ) = Bk([Φλ(abP )]x) | λ← F×p ; a, b← {1, . . . , |G|}

]
− βk

∣∣∣
must be negligible. �

The intuition of the proof is as follows. The crucial observation is that the techniques of Duc and
Jetchev [6] apply not just to ECB-OWFs but to any computation which “respects” the isomorphism
Φλ defined by a change in the Weirstrass representation of the curve. The Diffie-Hellman problem is
one such problem since applying the Diffie-Hellman transform to Φλ(aP ),Φλ(bP ) yields the value
Φλ(abP ) – indeed this is at the basis of the result of [4]. Therefore, an oracle Ω contradicting
Theorem 4.2 on input aP, bP and a curve Wλ defined by a parameter λ ∈ F×p would output a bit
equal to Bk

(
λ2[abP ]x

)
with non-negligible advantage. This allows us to construct a multiplication

code with the required properties and apply the framework of [1] to prove that the predicate is
hard-core.

Remark 4.1. The extension to segment predicates follow from using the concentration and recover-
ability arguments for those predicates as presented in [1].

Proof. Assume that there exists an oracle Ω such that the quantity∣∣∣Pr
[
Ω(λ, P, aP, bP ) = Bk([Φλ(abP )]x) | λ← F×p ; a, b← {1, . . . , |G|}

]
− βk

∣∣∣
is larger than a non-negligible quantity ε.

From this oracle we build a modified oracle Ω′ which queries Ω if λ is a square in F×p , otherwise
tosses a βk-biased coin. It is not hard to see [4] that if Ω had advantage ε, then Ω′ has advantage
ε/2. We now show how to use Ω′ to break Assumption 4.1.
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Let E be an elliptic curve defined by an equation W ∈ W (E) over Fp and let G be a cyclic
subgroup of |E| generated by the point P . Given P, aP, bP we want to compute Q = abP with
non-negligible probability.

Consider the codeword:

CQ : Fp → {±1} defined as CQ(λ) = Bk(λQx).

The following properties hold for CQ.

Accessibility: The oracle Ω′ gives us access to a noisy version C̃Q of this codeword defined as
C̃Q = Ω′(λ, P, aP, bP ). Because Ω′ has advantage ε/2 we know that Prλ[CQ(λ) = C̃Q(λ)] >
βk + ε/2.

Concentration: The codeword CQ is a Fourier concentrated function. Indeed for a threshold τ
the τ -heavy characters of CQ must belong to the set

ΓQ,τ = {χβ : β = αQx mod p for α ∈ Γτ},

where Γτ is a set of size O(τ−2) containing the τ -heavy coefficients of the function Bk. We
refer the reader to [6, 10] for a proof of this statement and also the definition of Γτ which
shows that the elements of Γτ can be easily enumerated. See also Appendix B.

Recoverability. Given a Fourier character χβ we want to find a set Lβ containing all the points
Q such that χβ is τ -heavy for CQ. If χβ is τ -heavy for CQ then χβ ∈ ΓQ,τ and therefore
Qx = βα−1 mod p for α ∈ Γτ , therefore

Lβ = {Q : Qx = βα−1 mod p for α ∈ Γτ}.

By applying Lemma 2.5 we know that there exists a threshold τ which is polynomial in ε and at
least one Fourier character χ which is τ -heavy for both CQ and C̃Q.

We then invoke Theorem 2.6 and use the learning algorithm of [1] to learn a polynomial-size
list LQ of all the τ -heavy Fourier characters for C̃Q. For each such character χβ ∈ LQ we use the
recovery property to create a polynomial size list Lβ of possible values for Q. Let L = ∪χβ∈LQLβ;
this is a polynomial-size set and because of Lemma 2.5 it must necessarily include Q.

More specifically, on input E,P, aP, bP and with access to Ω, the following algorithm produces
a polynomial size list of points in E which is guaranteed to contain Q with probability 1− δ:

1. Let τ be the threshold determined by Lemma 2.5 ; note that τ−1 is polynomial in ` = |p|,
since ε−1 is.

2. Learn the polynomial-size set LQ containing all τ -heavy Fourier characters of C̃Q, using the
learning algorithm in [1], which is correct with probability 1− δ. This algorithms uses oracle
Ω′ to obtain the required query access to C̃x. By applying Lemma 2.5, we know that there
exists at least one Fourier character χ which is τ -heavy for CQ and χ ∈ LQ.

3. Use the recovery algorithm to construct a polynomial-size list of candidates values for Q. For
each χβ ∈ LQ let

Lβ = {R ∈ E : χβ is τ -heavy for CR}
= {R ∈ E : Rx = βα−1 mod p for α ∈ Γ}.
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Let L = ∪χβ∈LQLβ. Note that L’s size is polynomial in ` and that Q ∈ L with probability
1− δ.

The algorithm runs in polynomial time, since the learning algorithm of [1] is efficient and all the
enumerations in the algorithm are over polynomial-size lists.

To contradict Assumption 4.1 at this point, it would be sufficient to choose a random point in
L. The probability to select the correct point Q is 1/|L| and therefore the algorithm outputs the
correct Q with probability (1− δ)/|L| which is non-negligible since |L| is of polynomial-size.

Another option is to use the above algorithm as a subroutine in Shoup’s “self-corrector” for the
Diffie-Hellman problem (Theorem 7 in [12]). Shoup shows how an algorithm A that runs in time TA
and produces a list of m points, which contains the correct Diffie-Hellman value with probability
> 7/8 can be easily converted into an algorithm B that output only the correct Diffie-Hellman value
with overwhelming probability and runs in time TA`+ poly(m, `). �

5 Hard-Core Predicates for the Diffie-Hellman Problem
over Finite Fields

In this section, we state and prove our main result: after defining a natural (though weaker) variation
of the Diffie-Hellman problem over finite fields Fpt for t > 1, we prove that in the case of quadratic
extensions (t = 2), this problem admits a large class of hard-core predicates, including every single
bit of one of the coordinates of the secret value.

For a given prime p, there are many different fields Fp2 , but they are all isomorphic to each
other. Let h(x) = x2 + h1x + h0 be a monic irreducible polynomial of degree 2 in Fp. It is well
known that Fp2 is isomorphic to the field Fp[x]/(h), and therefore elements of Fp2 can be written as
linear polynomials: if g ∈ Fp2 then g = g0 + g1x and addition and multiplication are performed as
polynomial operations modulo h. In the following, given g ∈ Fp2 we denote with [g]i the coefficient
of the degree-i term.

Let I2(p) be the set of monic irreducible polynomials of degree 2 in Fp. For h, ĥ ∈ I2(p) we know
that there exists an (easily computable) isomorphism

φh,ĥ : Fp[x]/(h)→ Fp[x]/(ĥ).

Finally, denote with g a generator of the multiplicative group of Fp2 which is known to be cyclic.

A new Diffie-Hellman Problem. Denote with g the generator of the multiplicative group
of Fp2 which is known to be cyclic. We define the following variant of the CDH problem over
Fp2 : informally we say that the Partial-CDH problem is hard in Fp2 if no efficient algorithm given
g,A = ga, B = gb ∈ Fp2 can compute K =

[
gab
]
1 ∈ Fp, for any representation of Fp2 .

More formally, for a security parameter `, consider an instance generator F which on input 1`
outputs p` an `-bit prime. Let g` be a generator of the multiplicative group of the finite field Fp2

`
.

In the following, we will drop the suffix ` when it is clear from the context.

Assumption 5.1: We say that the Partial Diffie-Hellman problem over F is hard if for every
polynomial time machine A, we have that for all h` ∈ I2(p`) the following probability is negligible
in `:

Pr
[
A
(
p`, h`, g`, g

a
` , g

b
`

)
=
[
gab`

]
1
| p` ← F

(
1`
)
; a, b←

{
1, . . . , p2

` − 1
}]
. ♦
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Note that A gets as input a representation h` of the field, and that A’s advantage must be
negligible for all representations.

We now state our second main theorem. We show that, when given an oracle Ω which predicts
the kth bit of the degree-1 coefficient of the Diffie-Hellman secret with non-negligible advantage
(where the probability is taken over the input pair), as well as the representation of the field, then
one can efficiently solve the Partial Diffie-Hellman problem with non-negligible probability.

Theorem 5.2: Under Assumption 5.1, for any polynomial time machine Ω we have that the
following quantity must be negligible for all h ∈ I2(p):∣∣∣Pr

[
Ω
(
h, ĥ, g, ga, gb

)
= Bk

([
φh,ĥ

(
gab
)]

1

)
| ĥ← I2(p); a, b←

{
1, . . . , p2 − 1

}]
− βk

∣∣∣. �

The proof of Theorem 5.2 appears in Section 5.1. Here we give an informal intuition of the proof.
Our goal is to construct a code similar to that of [6], which must be accessible by querying Ω

over many different representation of the field. For an element α ∈ Fp2 , and a fixed h ∈ I2(p), a
natural definition for a codeword is as follows:

Cα
(
ĥ
)

= Bk
([
φh,ĥ(α)

]
1
)
. (1)

This code is accessible using Ω, however it is defined over I2(p), and it is not immediately seen
to be a multiplication code like the ones used in [1, 6]. Note, however, that the predicate Bk is
evaluated only on the first coordinate of φh,ĥ(α). In this case, it holds that

[
φh,ĥ(α)

]
1 = λ[α]1 for

some λ ∈ F×p (see Lemma 5.3 below).
Consider then the following multiplication code over Fp: for α ∈ Fp2 and for λ ∈ F×p , set

Cα(λ) = Bk(λ[α]1)

extended with Cα(0) = −1. We stress that in light of Lemma 5.3, the above code is conceptually
the same as equation (1) in that codewords are obtained by evaluating a predicate over all possible
representations of elements. We’ve simply restricted attention to the degree-1 coordinate. Therefore
the multiplication is accessible via Ω and then the proof follows similarly to the one in [1, 6].

Remark 5.1 (List of candidate solutions). The list-decoding algorithm of [1] applied to the code
above returns a polynomial size list of possible candidates for [α]1. In our reduction α = gab and
therefore it will be sufficient to output a random element of the list to contradict Assumption 5.1.
In contrast to Theorem 4.2, we will not be able to apply Shoup’s “self-corrector” in this case to
identify the correct solution with high probability, as we have only a single coordinate for gab.

Remark 5.2 (Segment Predicates). While Theorem 5.2 is stated only for the predicate Bk, it holds
for any predicate π such that the corresponding code Cα can be proven to be concentrated and
recoverable; in particular, it holds for the segment predicates defined in [1].

5.1 Proof of Theorem 5.2

We start with a lemma that gives a simple characterization of the isomorphisms between two
different representations of the field Fp2 . When describing such maps, it will be convenient for us to
view them as matrices in GL2(Fp).
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Lemma 5.3: For any h ∈ I2(p) there exists a unique function Lh : Fp × F×p → I2(p) which takes
a pair (a, b) to the polynomial ĥ = Lh(a, b) such that the matrix

( 1 a
0 b

)
defines an isomorphism

Fp[x]/(h) → Fp[x]/(ĥ). Moreover, for any ĥ ∈ I2(p), L−1
h (ĥ) represents the complete set of

isomorphisms from Fp[x]/(h)→ Fp[x]/(ĥ) using the above matrix identification. �

Proof. First note that any isomorphism of fields must send the unit element to itself (and thus
fix the entire base field Fp). Thus, when viewing such an isomorphism as a linear transformation,
the first basis element

( 1
0
)
must be fixed, which determines the first column of the matrix as

( 1
0
)
.

Since clearly we must have b 6= 0 if the map is to represent an isomorphism, the completeness would
follow immediately, once we establish the existence and uniqueness of the map Lh. We define Lh as
follows. For a, b ∈ Fp with b 6= 0, let Lh(a, b)(x) = h(a+bx)

b2 . To make the notation less cumbersome,
we’ll fix a, b in what follows, and refer to this polynomial more simply as Lh(x). To see that this
definition is as desired, note that to specify a homomorphism φ from Fp[x]/(h) to another field K of
characteristic p it is both necessary and sufficient to choose φ(x) = x ∈ K such that h(x) = 0 in K.
The matrix corresponding to (a, b) sends x 7→ a+ bx, and indeed, a+ bx is a root of h in the ring
Fp[x]/(Lh) by construction. However, it remains to show that Lh ∈ I2(p), as well as the uniqueness
of Lh. Towards the first goal: it is an elementary fact that since h was irreducible over Fp, so is
h(a+ bx), and hence Lh. It is easy to verify additionally that Lh is monic, and has degree 2, so that
Lh ∈ I2(p). Thus, by the above remarks, the mapping defined by x 7→ a+ bx is an isomorphism
Fp[x]/(h)→ Fp[x]/(Lh) as desired. The fact that Lh so constructed is unique (within I2(p)) follows
easily as well, since if h(a + bx), and hence Lh(x), are elements of an ideal (h′) for some other
h′ ∈ I2(p), then Lh, h′ are associates, and thus Lh = h′ since both are monic. �

Remark 5.3. We actually know a little more about the distribution; in particular, we have
∣∣L−1
h (ĥ)

∣∣ =
2 for any ĥ ∈ I2(Fp). This follows at once from the fact that every isomorphism has a (unique) matrix
representation as above, and that Gal(Fp2/Fp) ∼= Z2 (so that there are precisely two isomorphisms
between any two representations Fp[x]/(h),Fp[x]/(ĥ)).

Proof Sketch (Theorem 5.2). Suppose that the theorem were false, and that an oracle Ω with an
advantage that is not negligible exists. Now consider another oracle Ω′ that takes as input a base
representation h ∈ I2(p), a Diffie-Hellman triple g, ga, gb as well as an element of λ ∈ Fp (instead of
ĥ ∈ I2(p)), which works as follows. The oracle selects a← Fp uniformly at random, and constructs
an isomorphism ĥ from the matrix

( 1 a
0 λ
)
as described in Lemma 5.3. Ω′ then returns the output of

Ω(h, ĥ, g, ga, gb). One can then show that∣∣∣∣ Pr
λ,a,b

[
Ω′
(
h, λ, g, ga, gb

)
= Bk

(
λ
[
gab
]

1

)]
− βk

∣∣∣∣
is also not a negligible function. At this point, the proof follows closely to that of Theorem 4.2. To
begin, observe that we can, for any element α ∈ Fp2 , construct the following encoding of [α]1 in its
base polynomial representation as an element of Fp[x]/(h):

Cα : Fp → {±1} defined as Cα(λ) = Bk(λ[α]1),

where [α]1 is taken under the representation determined by h. The fact that this code is concentrated
and recoverable follows immediately from the proof of Theorem 4.2. The argument for accessibility
is the same, but with the added simplification that we no longer need to restrict to squares in Fp.
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As in Theorem 4.2, we will be able to efficiently construct a list of candidates for
[
gab
]
1. As

mentioned, we unfortunately will not be able to apply Shoup’s “self-corrector” in this case as we
have only a single coordinate. Nevertheless, we still obtain a contradiction by guessing a random
element of the list as the value of

[
gab
]
1, since the list is of polynomial size. �

5.2 Finite Field-Based One-Way Functions

The work of [6] introduces “elliptic curve-based one-way functions”, and goes on to prove interesting
hardness results for this entire class of functions. Loosely speaking, elliptic curve-based OWF’s
are one-way functions which are well defined on isomorphism classes of curves, and do not depend
on any specific representation. Similarly, we consider finite field-based OWF’s, which are those
that do not depend on the isomorphism class. When considering only prime-order fields Fp, this
concept is somewhat trivial, since once one fix a bit representation for integers, there are no non-
trivial isomorphisms. However, the situation becomes far more interesting when one considers field
extensions. Even with a fixed representation for integers, there are many different representations of
even a quadratic extension (see Lemma 5.3). As demonstrated in [6] for the case of elliptic curves,
having a one-way function which is well defined on many different representations may give rise to
a number of hardness results that apply to the entire class of functions. We demonstrate similar
results, showing that for quadratic extensions, an efficient oracle that predicts the k-th bit of the
input over a random representation of the field will imply an efficient procedure that can “partially”
invert the function (i.e., if f is the one-way function, given f(α), it computes [α]1).

In order to define a function f on a finite field, we first define the function on a particular “base”
representation F . Then, to define f on any other isomorphic copy F ′, we wish to simply compute
f ◦ ψ, where ψ : F ′ → F is an isomorphism. The following definition guarantees that f is well
defined on isomorphism classes of finite fields.

Definition 5.4: Let F ∼= Fpt be a concrete representation of a finite field. A function f : F → Y is
said to be finite field-based if for any F ′ ∼= F and any two isomorphisms ψ,ψ′ : F ′ → F , we have
f ◦ ψ = f ◦ ψ′. ♦

Remark 5.4. Note that any function f satisfying Definition 5.4 is actually defined on a quotient space,
F/ ∼, where α ∼ α′ if and only if α, α′ have the same minimal polynomial over Fp. Furthermore,
any function which is well defined on F/ ∼ will satisfy the definition. Thus, an equivalent definition
would be to require that f(α) depends only on the minimal polynomial of α. (This follows from the
fact that the Galois group acts transitively on the roots of irreducible polynomials.)

We now define a natural relaxation of the notion of one-way functions over finite fields, where it
is assumed to be hard to output the maximal degree coordinate of the input. While this definition
makes sense for the general case pt for t > 1, we only consider the case of quadratic extensions.

Consider the instance generator F which on input a security parameter 1`, outputs p` (an `-bit
prime), and a function f` : Fp2

`
→ S`, where S` is an arbitrary set. We drop the suffix ` when it is

clear from the context.

Definition 5.5: We say that F is partial one-way if for any efficient algorithm A the following
probability is negligible in ` for all h` ∈ I2(p`):

Pr
[
A(h`, f`(α)) = [α]1 | p`, f` ← F

(
1`
)
; α← Fp` [x]/(h`)

]
. ♦
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Again, note that A takes as input a representation of the field, but the probability must be
negligible for all representations.

In the case of quadratic extensions, we can obtain results similar to what was shown in [6]
for elliptic-curve based OWF. In particular, the existence of a noisy oracle which works with
non-negligible probability over the point, as well as the representation of the field, will give rise to
an efficient procedure which “partially” inverts f contradicting Definition 5.5. More formally, we
have the following.

Theorem 5.6: Suppose that f is a finite field-based partial one-way function, and fix a base
representation Fp2 = Fp[x]/(h) for some h ∈ I2(p). Then, for any probabilistic polynomial time
machine Ω, it must be that the following quantity is negligible:∣∣∣Pr

[
Ω
(
h, ĥ, f(α)

)
= Bk

([
φh,ĥ(α)

]
1

)
| ĥ← I2(p); α← Fp[x]/(h)

]
− βk

∣∣∣. �

The proof is a combination of the proofs of Theorems 4.2 and 5.2 and will be presented in the
final version.

Remark 5.5. We note that the Diffie-Hellman problem does not satisfy the above definition: apart
from the fact that the domain is actually two (or three) field elements, the value gab is not independent
of the representation. However, if one modifies the usual Diffie-Hellman problem to report the
minimal polynomial of gab instead, then the definition is satisfied (with the caveat regarding the
input coming from a product space). We also remark that the minimal polynomial is efficiently
computable; see for example the work of [13]. Finally, we note that for Fpt , each of the equivalence
classes under ∼ has size t. Since t is usually a small constant (in our case, it is 2), the aforementioned
conversion in which one “throws away” some information by only considering the minimal polynomial
will not affect the problem’s computational character.

6 Conclusion and Future Work
We presented a relaxed variant of the Diffie-Hellman problem over finite fields of the form Fpt for
t > 1 and proved that for the case of quadratic extensions Fp2 , this problem admits several hard-core
predicates (including every single bit of one coordinate of the secret Diffie-Hellman value) over a
random representation of the field. These are the first results known for hard-core predicates for
the CDH problem over finite fields. We extended this result to a larger class of computationally
hard problems (which we called finite field-based partial one-way functions) over such finite fields.

We also proved that the same class of predicates is hard-core for the elliptic curve Diffie-
Hellman, over a random representation of the underlying elliptic curve, thereby extending the
Boneh-Shparlinski result [4] which worked only for the least significant bit.

Our results can be interpreted as “augmenting” the input to the computational hard problem
(being it a one-way function, or the CDH problem) with a random description of the underlying
group being used.

Our work leaves several open questions. Perhaps the most natural is to extend the results to
Fpt for t > 2. In the case of t = 2, the isomorphisms from one representation to another amounted,
in some sense, to a linear change of variables: x 7→ a + bx. This made the set of isomorphisms
between representations easy to analyze, and enabled us to show that when restricting attention to
the coefficient of x, each of these maps acts by translation for some λ ∈ F×p . For t > 2, this is not
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the case, and thus our original techniques must be augmented somehow. Perhaps one can find a
large (enough) number of representations for which the isomorphisms have the required properties
as a linear map.

Other natural questions include the study of the hardness of the Partial-CDH problem in Fpt for
t > 1. While it seems quite a reasonable assumption to make, the ultimate goal would be to reduce
it to the “full” CDH over another platform. In particular, is it possible to reduce the Partial-CDH
over Fpt to the regular CDH problem over Fp? A related question is if we can use the hardness of
Partial-CDH over, say Fp2 , to prove the unpredictability of a predicate for the traditional CDH
problem over Fp.

Finally it is our hope that the techniques presented in this paper could eventually lead to the
proof that CDH over Fp does have a (deterministic) hard-core predicate.
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A Learning Heavy Fourier Coefficients
In [8], Kushilevitz and Mansour presented an algorithm to compute the heavy Fourier coefficients of
any given function f : {0, 1}k → {±1}. Their algorithm proceeds in k stages, where each stage i
maintains a list of prefixes αi = α1 . . . αi that can be extended into elements α whose associated
character χα is heavy. To progress from a stage to the next, the algorithm employs a test to
determine for which choice of αi+1 ∈ {0, 1} it is the case that αiαi+1 can still be extended into a
heavy character. This approach clearly would not work for functions over Zn (even for k = 1), since
in that case iterating through all the possible α1 ∈ Zn would require time exponential in logn. For
the case when n is a power of 2, Mansour [9] proposed an extension to the techniques of [8] that,
given query access to a polynomial P , computes the heavy coefficients of P .

A solution for boolean Zn-functions for arbitrary n was devised in [1]. We report below a short
overview of this algorithm, and refer the reader to [1] for the full details and proof of correctness.
Say that a contiguous interval J ⊂ Zn is “far from heavy” if even stretching J by a small extent,
the aggregate weight of the covered coefficients falls below the threshold τ . At a high level, the
algorithm of [1] results from three main ingredients: (1) a binary search-like splitting algorithm
that, starting from a partition of Zn into contiguous intervals, proceeds iteratively by splitting
each interval in two halves and discarding those that are far from heavy, and eventually outputs
a “small” collection of singleton that contains (with high probability) all the heavy coefficients of
f ; (2) an efficient distinguishing procedure that efficiently determines (with high probability) if a
given interval in the collection is far from heavy; and (3) a sieving process that, given in input
the (somewhat short) list of singletons produced by the splitting algorithm, singles out (with high
probability) the heavy coefficients in the list.

Splitting algorithm. Given a threshold τ , this algorithm initially splits Zn into a collection
Coll0 of intervals of size s0 = n/`0, where `0 = O(1/τ). At each round i, the splitting algorithm
starts with a collection Colli of intervals, each of size si = n/`i (with `i = 2`i−1 for i ≥ 1) and
produces a collection Colli+1 of length-si+1 intervals. In particular, each interval J `ij ∈ Colli is
split into two sub-intervals, and the distinguishing procedure is run on each of them to determine
whether it is “far from” containing a heavy coefficient and can thus be safely discarded, or it may
plausibly contain a heavy coefficient, and should therefore be inserted in the next-round collection
Colli+1. After O(log(n/`0)) rounds, the resulting collection will consist of a “somewhat short” list
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of singletons, which is the output of the splitting algorithm. By the property of the distinguishing
procedure, this list will include, with high probability, all the heavy coefficients for f .

Distinguishing procedure. This procedure receives in input an interval J ⊂ Zn, and seeks to
estimate the aggregate weight of the coefficients that fall within J , i.e., wt(J) .=

∑
α∈J |f̂(χα)|2.

Since computing this exactly is inefficient, one settles for computing est(J) .=
∑
α∈Zn cα|f̂(χα)|2 for

some “J-decaying” coefficients cα that are close to 0 for α 6∈ J and close to 1 for α ∈ J . Next, one
seeks a function h whose Fourier coefficients’ weight match the cα coefficients, i.e., |ĥ(χα)|2 = cα.
In this way, one can compute est(J) as

∑
α∈Zn |ĥ(χα)f̂(χα)|2 =

∑
α∈Zn |ĥ ? f(χα)|2 = ‖ĥ ? f‖2,

where ? is the convolution operator. Since ‖ĥ ? f‖2 = ‖h ? f‖2 by Parseval’s identity, we see that
est(J) = ‖h ? f‖2, for a suitable choice of h, which turns out to be the character χ−midJ opposite
to the midpoint midJ of the interval J . At this point, one can get a handle on est(J) based on the
identity ‖h ? f‖2 = Ex∈Zn [Ey∈Zn [h(y)f(x− y)], which can be efficiently estimated via Chernoff-like
bounds. (Refer to §7.2.3 in [1] for more details.)

Sieving process. This process receives in input a good collection of singletons output by the
splitting algorithm. To further reduce the size of this list, the sieving process estimates (up to
an error of τ/4) the weight of each singleton, and discards all those of estimated weight is less
than 3τ/4. This produces a shorter list (of length O(1/τ)) that contains all heavy characters with
probability at least 1− δ.

Below we report the pseudocode description of the splitting algorithm (Algorithm 1) and the
distinguish procedure (Algorithm 2) as reported in [6].

Algorithm 1: Splitting algorithm
Input: A noisy codeword f ∈ Zn → {±1}, τ > 0 and < δ < 1
Output: A list L of singletons such that |L| = O(1/τ) and Heavyτ (f) ⊂ L with probability 1− δ over

the random coin of the algorithm
1 `0 = 1/

√
τ

2 Coll0 = {[0, bn/`0c − 1], [bn/`0c, 2bn/`0c − 1], . . . , [(`0 − 1)bn/`0c, `0bn/`0c − 1], [`0bn/`0c, n− 1]}
3 for i = 1, . . . , log2 n− 1 do
4 Colli = ∅; `i = 2`i−1

5 for J`i
j ∈ Colli do

6 Parse J`i
j as [a, b]

7 Run the distinguishing procedure on [a, a+b
2 − 1]

8 If the decision is yes, Colli+1 ← Colli+1 ∪ [a, a+b
2 − 1]

9 Run the distinguishing procedure on [a+b
2 , b]

10 If the decision is yes, Colli+1 ← Colli+1 ∪ [a+b
2 , b]

11 end
12 end
13 return α : [α, α] ∈ Collblog2 nc
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Algorithm 2: Distinguishing procedure
Input: A function f ∈ Zn → {±1} and J`j = [a, b] with b− a = n/2`
Output: yes or no determining whether J`j should be kept or discarded (all intervals containing

τ -heavy Fourier coefficients should be kept)
1 Let ε← δτ1.5/ logn
2 Let m2 ← Θ(ln(1/ε)/τ2) and m1 ← Θ(ln(m2/ε)/τ2)
3 Select x1, . . . , xm2 at random from Zn
4 for r = 1, . . . ,m2 do
5 Choose y(r)

1 , . . . , y
(r)
m1 ∈U {0, . . . , `− 1} (independently and uniformly at random)

6 end
7 Compute est(J`j )← 1

m2

∑m2
r=1

1
m1

∑m1
s=1 χ−midJ(y(r)

s )f(xr − y(r)
s ), where midJ = ba+b

2 c
8 return yes if est(J`j ) ≥ τ/8 or no otherwise

B Fourier Concentration of CQ(λ) for Linear λ
It is difficult to prove the Fourier concentration of the elliptic curve multiplication code CQ(λ) =
Bk(λQx) when λ is quadratic. However, when λ is linear, the Fourier concentration of CQ can easily
be proven as Duc and Jetchev shows in [6]. We provide the intuition of this proof in this section.

First, the authors note that if CQ is ε-concentrated in Γ = {χα}, where α ∈ Fp, then Bk is
ε-concentrated in the set ΓQ = {χβ : β ≡ α ·Qx mod p}. This follows from the fact that CQ is a
multiplicative code. Therefore, proving the the Fourier concentration of CQ translates to proving
the Fourier concentration of Bk. So, they analyze the Fourier coefficients of Bk : Fp → {±1}.

In order to simplify the computation, the Duc and Jetchev borrow an important result from
Morillo and Ràfols [10]. In [10], the authors notice that if x is an integer then Bk(x) +Bk(x+ 2k) is
a constant function. Although this fails when x is an integer mod p, one can still have reasonable
control over the coefficients. Formally, let g(x) be defined as

g(x) = Bk(x) +Bk(x+ 2k)
2 .

Then, the Fourier transform of Bk(x) relates to the Fourier transform of g(x) as

ĝ(α) =
ω2kα
p + 1

2 B̂k(α), α ∈ Zp.

Next, by using the computations from [10], Duc and Jetchev obtain the following characterization
of the asymptotic upper-bound of |B̂k(α)|. We refer the reader to [6] for the detailed analysis.

|B̂k(α)|2 < O

(
1

λ2
α,kµ

2
α,k

)
.

Now, one can easily pick the heavy Fourier coefficients and hence show that Bk is Fourier concentrated
as follows: 1) pick (λα,k, µα,k) in the box [0, 1/τ ] × [0, 1/τ ] for some 0 < τ < 1 such that 1/τ =
poly(log p), 2) show that the function fu(λ) = Bk(λu mod p) is τ -concentrated for all u ∈ F×p .
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