
An MQ/Code Cryptosystem Proposal

Leonard J. Schulman∗

March 6, 2013

Abstract

We describe a new trap-door (and PKC) proposal. The proposal is “multivariate quadratic”
(relies on the hardness of solving systems of quadratic equations); it is also code-based, and uses
the code-scrambling technique of McEliece (1978). However, in the new proposal, the error-
correcting code is not revealed in the public key, which protects against the leading attacks on
McEliece’s method.

Keywords: Multivariate quadratic cryptosystem, MinRank, tensor decomposition, post-
quantum cryptography, code-based cryptography.

1 Introduction

We describe a new trap-door proposal based on elementary methods. The proposal belongs to the
MQ family of cryptosystems, i.e., its security rests on the hardness of solving systems of multivariate
quadratic equations.

The proposal is also code-based, and like McEliece’s well-known method, it relies on a “scrambled”
efficiently-decodable error correcting code. Apart from the adoption of the scrambling technique,
the method is distinct from all previous methods. (In particular contrary to possible casual im-
pression, it does not include McEliece’s method as some kind of special case.)

An advantage of the new method is that the scrambled generator matrix of the code is not public,
thereby reducing the reliance of the cryptosystem on the hardness of decoding random linear
codes [12, 74]. A disadvantage of the new method is that its efficiency is limited by the current
state of the art in coding theory. In the current state, the proposal is considerably less efficient
than competing “post-quantum”-grade cryptosystems: lattice cryptosystems [2, 57, 72, 55, 71,
58, 56, 59] and the closely related subset-sum method in [52], McEliece [54, 63], or other MQ
cryptosystems [70, 24, 29, 48]. It is therefore not the likely replacement for RSA/ECC if quantum
computers materialize without further attacks on these competing systems. This could change
depending on improvements in the error-correcting codes needed for the present proposal, and, of
course, depending on the state of attacks on the various systems, which use trap-doors that are
completely different from the one we introduce.

In Sec. 2 we describe an idealized form of the proposal, using hypothetical codes of a quality that
is combinatorially feasible, but for which no efficiently-decodable code is yet known. In Sec. 4 we
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describe the actual state of the art in coding theory. In Sec. 5 we then show how the cryptosystem
can be implemented (less efficiently than in the ideal proposal) using these state-of-the-art codes.
In Sec. 6 we discuss hypothetical improved implementations.

It will be simplest to directly describe the idea as a PKC encrypting n bits; the underlying trap-door
claim will then be easy to state.

2 The Ideal Proposal

Let X0
∼= (GF2)n; this is the plaintext space of the cryptosystem. The construction relies in

an essential way on a linear error-correcting code over GF2; however, unlike in the McEliece
cryptosystem, X0 is not the message space of the error correcting code. That message space is
U ∼= (GF2)κ; W ∼= (GF2)` is the codeword space, and we let G ∈ Hom(U,W ) be the generator
matrix for the error correcting code. (G encodes κ-bit row vectors by `-bit row vectors.) The code
G is required to have the following properties for δ, d as large as possible.

1. G has an efficient decoding algorithm that can correct almost all patterns of δ` errors for
some 0.25 < δ < 0.5, say δ = 0.3.

2. Every d columns of G are linearly independent; or what is the same, G⊥ (the code spanned
by vectors in the right nullspace of G) has minimum (Hamming) distance d+ 1. No decoding
algorithm is required for the code G⊥.

In addition to κ, `, δ, d the construction also uses two less-critical parameters n1, ρ. All six parame-
ters can be adjusted to optimize the security-efficiency tradeoff, subject to the following constraints
(whose reasons will be apparent later): n1 ≤ n; κc1 < ` for a c1 > 1 which depends on the quality
of error-correcting-code constructions; 0 ≤ ρ ≤ n (ρ is a semantic-security parameter); c2(n+ρ) < `
for some c2 > 4; 2(n+ ρ) < d. As a guideline one should consider κ, `, d linear in n (although little
will change if they are slightly larger, e.g., quasilinear), while n1, ρ are each proportional to nc for
some 0 < c ≤ 1 (not necessarily the same c).

Let R0
∼= R1

∼= (GF2)ρ; these are auxiliary random-bit spaces used for semantic security.

Let X = X0 ⊕R0.

Let X1
∼= (GF2)n1 ; let D be a full-rank matrix in Hom(X0, X1). For simplicity one may let n1 = n

and take D to be any fixed full-rank matrix. (But generally D may be chosen randomly as part of
the private key.) Let V = X1 ⊕R1.

Select, uniformly at random, a tensor M ∈ X†⊗V †⊗U . (So, its dimensions are (n+ρ)×(n1+ρ)×κ.)

Let P be a uniformly random `× ` permutation matrix.

The public key of the cryptosystem is a tensor in X† ⊗ V † ⊗W that is the sum of two terms. The
first term, Tmask, is defined by

Tmask = M ·G · P. (1)

Note that G acts on the U component of M . Here · denotes tensor contraction, which of course
specializes to matrix product or inner product. In Einstein notation Eqn. 1 is

(Tmask)ijk = Mij`G
`
mP

m
k .
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Observe that every “row” of Tmask, by which we mean, every vector of the form (x ⊗ v) · Tmask

for x ∈ X, v ∈ V (equivalently xivj(Tmask)ijk), belongs to the “scrambled” error-correcting code
spanned by the rows of G · P .

The second term, Tpure, is constructed as follows. Select, uniformly and independently, vectors
a1, . . . , a` ∈ X† and b1, . . . , b` ∈ V †. Form a tensor Tpure whose k’th “slice” transverse to W is
ak ⊗ bk. (Throughout this paper “slice” will mean a smaller-order tensor, in this case a matrix,
obtained by restricting the full tensor to a single coordinate k in the output space W .) More
formally, with wk being the standard basis for W , let

Tpure =
∑̀
k=1

ak ⊗ bk ⊗ wk (2)

or more explicitly
(Tpure)ijk = (ak)i(bk)j .

Finally, set the public key to be
T = Tmask + Tpure. (3)

Summary. The public key is the tensor T . The private key is M,P,D, a1, . . . , a`, b1, . . . , b`. The
code G is fixed in the specification of the cryptosystem.

2.1 Encryption

In order to encrypt x ∈ X0, pick uniformly at random r0 ∈ R0 and r1 ∈ R1. The encryption is the
following vector in W :

z = ((x+ r0)⊗ (x ·D + r1)) · T
or in Einstein notation,

zk = (x+ r0)i(x ·D + r1)jTijk

2.2 Honest-Party Decryption

Given the encryption z = ((x + r0) ⊗ (x ·D + r1)) · T , apply the decoding algorithm for G to the
vector z · P−1 to decompose z into z = zmask + zpure,

zmask = (x+ r0)⊗ (x ·D + r1) · Tmask = (x+ r0)⊗ (x ·D + r1) ·M ·G · P
zpure = (x+ r0)⊗ (x ·D + r1) · Tpure

The decoding algorithm works because the 1’s in zpure are a random set of density w.h.p. ∼ 1/4,
which is < δ.

Next we obtain x from zpure. Generically this would be a hard problem because it requires solving
a system of quadratic equations. However, the essence of the trap-door is that these equations
are structured to be easy to solve. We obtain x (and r0 which we do not need) from zpure as
follows: find any set K of (n+ρ+ `/4)/2 coordinates k for which (zpure)k = 1. (That this is almost
always possible uses the fact that the set of 1’s in zpure is a random set of size w.h.p. ∼ 1/4, and
also that ` > 4(n + ρ).) Observe that if (zpure)k = 1 then necessarily both (x + r0) · ak = 1 and
(x ·D + r1) · bk = 1.

Then solve the (w.h.p. full-rank) system of (n+ ρ+ `/4)/2 linear equations in n+ ρ variables:

(x+ r0) · ak = 1 for k ∈ K. (4)
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2.3 Trap-Door Interpretation

Conjecturally, even fixing ρ = 0 and using a fixed D, the family of encryption functions is trap-door,
one-way, and w.h.p. injective.

3 Security of the Ideal Proposal: Known Attacks

3.1 Message Attacks

A successful adversary must almost certainly use the special structure of the system, because
without it, even if D is public, decrypting a message requires solving a system of ` ∈ O(n) random
quadratic equations in n+2ρ variables. This system is over-determined, but only slightly. Gröbner
(relinearization) algorithms can typically solve in polynomial time highly over-determined quadratic
systems. (This is simple when the number of equations exceeds the number of pairs of variables,
but more interesting below this regime.) The best known approaches are based on Faugère’s F5
algorithm. However the performance of all known algorithms degrades rapidly as the number of
equations decreases. A full theoretical understanding of the rate of degradation does not yet exist,
but all existing studies [49, 25, 40, 27, 26, 95, 93, 5, 9, 60, 39, 13, 35, 87, 3, 8, 88, 86, 89] are
apparently consistent with (and some actually suggest [25, 26]) the following runtime scaling rule
for ` randomly chosen equations in n variables over the field GFq:

qΘ(n/
√
`) poly(`, n) (5)

In our context q = 2 and ` ∈ O(n) which gives an estimate of Θ(
√
n) for the security parameter

for message attacks.

No quantum approaches to solving systems of quadratic equations are known, apart from the generic
Grover search running in time qn/2 (as compared with classical search in time qn).

We conclude that any method that breaks the cryptosystem is likely to have to uncover significant
information about the key.

3.2 Key Attacks

How does the public key T differ from a uniformly random tensor? We note one quantitative
difference (Sec. 3.2.1) and two structural differences (Secs. 3.2.2 and 3.2.3), and discuss to what
extent they may enable key attacks. Finally in Sec. 3.2.4 we discuss an important structural sense
in which T does not share a vulnerability that has been exploited in attacks on the McEliece
cryptosystem.

3.2.1 Quantitative Property: Tensor Rank

The first quantity to look at is tensor rank. (The rank of T is the smallest r such that for some
vectors fi, gi, hi, T =

∑r
i=1 fi ⊗ gi ⊗ hi.) However, for sufficient values of the parameters k and `,

this quantity apparently does not distinguish T from a uniformly random tensor. Actually tensor
rank is poorly understood; e.g., it is known that the maximum rank of any n × n × n tensor is
between (1/3)n2 and (3/4)n2 [47] (a better upper bound of n(n+1)/2 holds for algebraically closed
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fields [64]), but the leading constant is not known; also, the rank of a random tensor is w.h.p. at
least (1/3)n2, but it is not even known whether it is w.h.p. close to the maximum possible rank.

Nonetheless, for κ sufficiently larger than n, it is almost unavoidable that the rank of a random
n×n×κ tensor (our M) is w.h.p. close to that of a random n×n×` tensor (and both approach the
limiting value of (n+ρ)(n1 +ρ)); yet remarkably, these statements do not appear to be established
yet as theorems. The questions are perhaps not easy due to the challenges in obtaining any bounds
on tensor rank, but, as experience with MAX-SAT has shown [19], computational intractability of
the underlying random variable need preclude progress on bounds for the ensemble. In any case,
because of the difficulties in estimating tensor rank, even assuming that the preceding assertions are
correct, it is not clear if κ “a large constant times n” is, for instance, sufficient to make these two
ranks almost the same; the author’s guess is that the answer is yes. If this is indeed the case, then
the rank of T does not distinguish it from that of a random tensor. If on the other hand this fails to
be the case, then there is a slight possibility of attacks based on the tensor decomposition problem:
find an optimal or even nearly-optimal decomposition of T (in terms of the number of rank 1 tensors
used in the sum). This could reveal the terms ak⊗bk and crack the cryptosystem. However it is very
unlikely that there is an efficient algorithm for this problem. H̊astad [46] showed that the problem
“Is rank T ≤ r” is NP-complete over finite fields. There is also empirical evidence for the hardness of
the tensor decomposition problem from work on efficiently computing bilinear problems, including
integer multiplication and, most notably, matrix multiplication. The essential target of that work
has been, indeed, to obtain low rank decompositions of some specific families of tensors. And (just as
for this cracking this cryptosystem), it is not necessary toward that goal to find decompositions that
achieve the exact rank of the tensor; decompositions which are not too much larger are also useful.
It is therefore notable that upper bounds for the matrix multiplication exponent improved only
incrementally despite efforts spanning two decades [83, 65, 11, 66, 67, 76, 68, 75, 22, 84, 85, 23], then
stalled entirely for another two decades, until two small improvements recently with considerable
computational investment [82, 92]. (Perhaps another sign of the hardness of the decomposition
problem is that, after the first few papers, efforts ceased to upper bound the rank directly; progress
on the exponent came through improved upper bounds on the border rank, a number that can
be smaller but still gives an equivalent-exponent algorithm, with some additional constant-factor
overhead.)

Structurally, however, T has two properties that distinguish it from a random tensor, which we
now discuss.

3.2.2 Structural Property: Scrambled Code Structure

There is a permutation of the (known) code G, such that all the rows of T are within relative
Hamming distance ∼ 1/4 of a codeword.

We refer to this as the “scrambled code” structure of the public key. We now discuss the exposure
of the cryptosystem to attacks based on this liability.

It appears to be hard to detect this structure. Sendrier [77, 16, 78] made a breakthrough on the
code equivalence problem, in which a code G and its scrambled version G · P are provided, and
the problem is to find P ; however, there is no evident way to use his ideas here, simply because
G · P is not provided in the clear. What is provided are only noisy versions of (n+ ρ)2 unknown,
randomly chosen codewords in G · P . (Each codeword has added to it a noise vector of fractional
weight ∼ 1/4.) Conceptually one may think of this as “McEliece noise” added permanently in the
public key (as compared with the McEliece cryptosystem where the noise is added per-message).
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3.2.3 Structural Property: Min-Rank Structure

If y is a linear dependence of the columns of the permuted code, i.e., if y ∈ G⊥ ·P , then Tmask ·y = 0
and therefore T · y = Tpure · y.

We refer to this as the “Min-Rank” structure of the public key. We now discuss the exposure of
the cryptosystem to attacks based on this liability.

The linear dependencies among the “slices” of Tmask are w.h.p. identical to those among the columns
of G⊥ · P (the only exception being the exponentially-rare event that M does not have linearly
independent slices). Gaining any information about these dependencies is very useful to the crypt-
analyst; the information can be exploited in two ways:

1. If the cryptanalyst learns a complete set of dependencies, i.e., a basis for the code G⊥ · P ,
then he also gains a basis for the code G · P (although not that same matrix), so that he
is in precisely the situation of an attacker of the McEliece cryptosystem with known error-
correcting code, i.e., in the position of knowing both G and S ·G ·P for some nonsingular S.
He can then employ Sendrier’s attack on the code equivalence problem and obtain Tmask and
Tpure, thus cracking the cryptosystem.

(We note in passing that known quantum algorithms are ill-suited to the code equivalence
problem [30, 31].)

2. If the cryptanalyst learns any particular dependence y then he obtains Tpure ·y =
∑

k:yk=1 ak⊗
bk. If y is a low-weight vector then this is a low-rank matrix and therefore discloses information
about the ak’s and bk’s in the support of y.

Of course, the cryptanalyst is not provided with dependences y’s. However, he does have a
means of gaining access to such y’s precisely in the case that they are most useful—namely in
the case that they are of low weight. This is because if y is a dependence of weight r, then the
matrix T ·y = Tpure ·y is of rank ≤ r. The Min-Rank problem with input (T, r) is the problem
of finding linear combinations of the slices of T that form matrices of rank at most r. (Or as a
decision problem, whether such linear combinations exist.) Although this problem is hard for
general r, as well as for the particular setting r = n− 1, and although the least r is even NP-
hard to approximate to within factor 527/520 [14], the problem is nonetheless easy for small
r. Indeed, Min-Rank attacks have been successful against previous MQ cryptosystems [49].
There are two known forms of this attack. One, the “kernel attack” [20, 21, 49, 40] finds
all rank-r linear combinations in time 2`r/npoly(`n). (Actually n in this expression is more
properly n+ρ but this does not affect the asymptotics because ρ ≤ n.) The other is the “small
minors” attack which solves the system of equations consisting of setting the determinants
of all (r + 1) × (r + 1) minors (of a general linear combination of the slices) equal to 0.
By a Gröbner/relinearization approach (see, e.g., [36]) this can usually be solved in time
poly(

(
n
r+1

)
).

The second of these items is the more imminent threat to the cryptosystem since, first, it can obtain
some information about the private key without necessarily having to crack the key entirely; and
second, because it imposes a clear design constraint, namely, that low-weight codewords in G⊥ leak
information. That is why we have designed the “ideal” cryptosystem with the requirement that
G⊥ have no codewords of weight ≤ d for d > 2(n+ ρ). This is a conservative design: it is not clear
that having a small number of low-weight vectors is a significant security threat.
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We note that if the small-minors attack is indeed the best attack on this system then d is, up to a
constant factor, the security parameter (log of the attack time) for attacks on the key. (As discussed
in Sec. 3.1, the security parameter for message attacks appears to be lower, approximately

√
n.)

The setting of d at d > 2(n+ρ) is not made only in order to set this as the key security parameter.
This threshold has another attractive property, which we will show in Sec. 7: the sum of 2(n+ ρ)
random rank 1 matrices of dimensions (n + ρ) × (n + ρ) over GF2 (i.e., the matrices ak ⊗ bk in a
linear dependence) has a distribution that is exponentially close to the uniform distribution. There
is therefore exponentially little information released about the private key from any such sum, even
if the linear dependence is known.

3.2.4 An Absent Structural Property: Basis for the Code

The leading attacks on the McEliece cryptosystem are not based on uncovering the scrambling
permutation as in [77, 78], but on decoding noisy codewords in a random linear code. This attack
is performed by reducing to the problem of finding a low-weight vector in the linear space that
is spanned by the scrambled code (which is public) and the ciphertext. For more information
see [81, 15, 16, 10]. There is no obvious way to conduct this attack in our system for the simple
reason that the generator matrix is not public.

4 Known Codes

Our requirements in Sec. 2 for the code G demand that both the code and its dual be “good” codes,
and there is tension between these two requirements. Nonetheless, it is not hard to see that for
sufficiently large constant c, we can satisfy the requirements by letting ` = cκ = c2n and choosing
G to be a random linear code.

In spite of this existence proof, no construction is known of a code G which has these properties and
is also efficiently decodable. The difficulty lies in the small (i.e., binary) alphabet. Requiring δ to
lie in the range δ > 1/4 precludes (because of the Plotkin bound) G from being a minimum-distance
code, which is what one obtains from all algebraic constructions. Even below the Plotkin threshold
of 1/4 the problem remains challenging.

The best current construction is due to Guruswami (see the appendix of [80]) which produces a
family of codes G satisfying our requirements with the parameters

rate of G: κ/` = 1/2, (6)

fractional minimum distance of G: δ = 1/60, (7)

fractional minimum distance of G⊥: d/` = 1/18. (8)

The implicit trade-off in these parameters is not ideal for us. The efficiency of the cryptosystem
degrades only moderately as κ/` and d/` decrease; by contrast, the public key has to increase in
size drastically in to accommodate primal distance 1/60, as we describe in the next section.

We hope developments in coding theory will produce different parameter trade-offs, and thereby im-
prove the efficiency of our design. There is no in-principle obstacle to obtaining efficiently-decodable
codes with the parameters we have specified; and even restricting to algebraic constructions which
produce minimal-distance guarantees, one may hope for δ > 1/8.
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5 Best Current Implementation: Higher Order Tensors

The only way that we know to realize our proposal with currently-available codes is by applying
Guruswami’s construction. Of course this will not work with the ideal proposal as described in
Sec. 2, which requires δ > 1/4. However, a very simple modification suffices. Rather than using
“order-3 tensors” in the construction we use “order-7 tensors”. Unfortunately this requires that
the public key of size O(n3) of the ideal proposal, be replaced with a public key of size O(n7). But
it is an in-principle realization with current technology of the cryptosystem/trap-door.

To be specific, let X0 be as in Sec. 2, but now define:

Auxiliary randomization spaces R0
∼= . . . ∼= R5

∼= (GF2)ρ.

“Input image” spaces X1
∼= . . . ∼= X5

∼= (GF2)n1 .

X = X0 ⊕R0 and Vi = Xi ⊕Ri for 1 ≤ i ≤ 5.

Select M uniformly in X† ⊗ V †1 ⊗ . . .⊗ V
†

5 ⊗W .

As before, P is a random `× ` permutation matrix, and Tmask = M ·G · P .

Tpure is constructed by selecting, uniformly, a1, . . . , a` ∈ X†, and bi,1, . . . , bi,` ∈ V †i for 1 ≤ i ≤ 5.

Then Tpure =
∑`

k=1 ak ⊗ b1,k ⊗ . . .⊗ b5,k.
Di (1 ≤ i ≤ 5) are chosen in respectively Hom(X0, Xi).

As before the encryption of x ∈ X0 is (with randomly chosen ri ∈ Ri), is the following vector in
W :

z = ((x+ r0)⊗ (x ·D1 + r1)⊗ . . .⊗ (x ·D5 + r5)) · T
or in Einstein notation,

zk = (x+ r0)i0(x ·D1 + r1)i1 · · · (x ·D5 + r5)i5Ti1...i5k

z is a codeword plus a noise vector whose weight is concentrated around `/64. Guruswami’s code
is powerful enough to efficiently identify the noise vector, i.e., zpure. Now, provided ` > 64(n+ ρ),
we can w.h.p. find in zpure a set K of (n + ρ + `/64)/2 coordinates k for which (zpure)k = 1, and
then solve the linear system

(x+ r0) · ak = 1 for k ∈ K
to obtain x.

As noted above, the public key in this implementation is large enough that it is not at present
competitive with other post-quantum cryptosystems. Nevertheless it is still gives honest users
“exponential advantage” over attackers, by which we mean that the following ratio is bounded
away from 0:

“Advantage” of cryptosystem = lim inf
n

A(n)

H(n)
(9)

where, on inputs of length n,

H(n) = log[honest player’s work] (10)

A(n) = log log[adversary’s work with best known (incl. quantum) methods] (11)

The question remains whether this “advantage” measure of asymptotic quality of the cryptosystem
(which we have adapted from a discussion in [51]) can be further improved to make the system
competitive. The most obvious attack is to revisit Guruswami’s construction. Two more speculative
suggestions will be discussed in the next section.
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6 Potential Variations of the Proposal

6.1 Larger Alphabet

It is not entirely essential that the construction be performed over GF2; one may substitute larger
fields of characteristic 2, provided the “pure” vectors ak ⊗ bk now become αkak ⊗ bk for αk’s which
may be chosen randomly in the extension field, and ak, bk’s which are vectors of 0’s and 1’s in the
extension field. Also the input x remains a vector of 0’s and 1’s in the extension field.

This approach allows considerable additional latitude in the code design. It remains unknown
whether this helps to obtain the dual code properties (which must still hold over the base field
GF2).

6.2 Dual Code with Relaxed Properties

The “advantage” of the cryptosystem (as defined in Sec. 5) will remain positive even if we reduce
d, the minimum weight of the dual code, to d = nc for some c < 1. This weakening of the security
parameter may make it possible to obtain better error correcting codes. However, it does eliminate
the statistical-security guarantee coming from Sec. 7, and now, a Min-Rank attack identifying linear
combinations of slices having matrix rank ≤ d, will also be able (at least information-theoretically
although perhaps not efficiently) to obtain some information about the terms ak ⊗ bk contributing
to the linear combination.

Alternatively—and more hypothetically than the previous suggestion—it may be possible to relax
the requirement that the dual code has minimum weight d, in favor of the requirement that it have
very few codewords of weight less than d. This makes many more codes possible. There will now
be a relatively small number of small sets K for which we learn the sum

∑
k∈K ak ⊗ bk. If this

is the total extent of compromise to the cryptosystem, then message security may still be easy to
ensure merely by a preprocessing hash (e.g., padding x with a small number of random bits and
then applying a random, but fixed and public, linear transformation).

7 Convergence of Sums of Random Rank 1 Matrices to Uniform

In this section we justify our statement at the end of Sec. 3.2.3.

Proposition 1. Form an n × n GF2 matrix by summing m matrices ak ⊗ bk, each chosen by
selecting ak, bk uniformly at random. For m = cn, c > 2, the distribution of the resulting matrix is
within variation distance 21−(c−2)n of the uniform distribution on n× n matrices.

Proof. Consider the group of n × n GF2-matrices under addition; this is isomorphic to (Z/2)n
2
.

The characters of the group are in bijective correspondence with matrices M ,

χM (N) = (−1)
∑

1≤i,j≤nMijNij .

We are implementing a random walk on this group: a single step is an addition of u ⊗ v for u, v
uniformly distributed. Letting P be this single-step distribution on the group, we are to show that
P convolved with itself m times is close to uniform. Write

χM (P ) = 2−2n
∑
u,v

(−1)
∑

1≤i,j≤nMijuivj .
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For nonzero M , fix any nonzero row i of M . For any v such that
∑
Mijvj = 1 mod 2 (which is

true of half the vectors v), the involution u → u + ei (flipping the i’th bit) is a bijection between
pairs (u, v) with

∑
1≤i,j≤nMijuivj = 0 mod 2 and pairs (u, v) with

∑
1≤i,j≤nMijuivj = 1 mod 2.

Consequently,
−1/2 ≤ χM (P ) ≤ 1/2.

A more careful version of this argument is to consider v according to whether or not its dot product
with every row of M is 0. If this is the case, then for every u,

∑
1≤i,j≤nMijuivj = 0 mod 2. If this

is not the case, then the same involution argument may be applied to the first row of M for which
the dot product is 1. Therefore,

χM (P ) = 2− rankM .

Taking m steps of this walk gives a distribution P ∗m whose Fourier coefficients are

χM (P ∗m) = 2−m rankM .

The Fourier coefficient of the uniform distribution is also 1 at M = 0, and is 0 elsewhere, so the
variation distance of our distribution from uniform is equal to

2−n
2
∑
N

∣∣∣∣∣∣
∑
M 6=0

2−m rankM (−1)
∑

1≤i,j≤nMijNij

∣∣∣∣∣∣ .
The number of matrices M of rank r is bounded by 22nr (this is a wasteful estimate for large r but
no matter), so the variation distance is

≤2−n
2
∑
N

∣∣∣∣∣
n∑
r=1

22nr2−mr

∣∣∣∣∣
=

n∑
r=1

2(2−c)nr

≤21−(c−2)n

(Incidentally, observe that almost all of the contribution comes from the rank-one Fourier coeffi-
cients.) 2

8 Discussion

Like many other cryptosystems, we have no proofs of security. This is an obvious but challenging
goal for future work. Indeed, we have provided no proofs of anything apart from an information-
theoretic bound in Sec. 7.

However, we feel the proposal is worthy of serious consideration on the basis of its resistance to
known or envisaged algorithmic developments (especially focusing on post-quantum security):

1. First, the new proposal is not apparently vulnerable to defeat of the McEliece cryptosystem.
While that system appears so far secure when used with randomly-chosen Goppa codes, the
originally-proposed parameters have been shown to be insufficient (see [10], based on an attack
in [81]); also, a recent attack [37] has been effective, in a certain parameter range, against the
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problem of distinguishing a random Goppa code generator matrix from a random matrix; the
hardness of this problem had been regarded as one of the bases for security of the McEliece
cryptosystem. So it seems quite desirable to have a code-based cryptosystem in which the
generator matrix of the scrambled code is not provided as part of the public key.

2. Second, the post-quantum security of lattice cryptosystems is not as convincing as their
classical security. Lattice cryptosystems are particularly attractive due to the fact they have
worst-case rather than average-case security reductions [1]. However their quantum security
rests on the hardness of the hidden subgroup problem (HSP) in dihedral groups [72]. This
hardness assumption is in question because two positive results are known about dihedral
HSP:

(a) Single-register coset measurements are information-theoretically sufficient to solve the
problem [33]. By contrast this is known to be false for more general HSP problems (e.g.,
in Sn) [45, 42, 61, 44]. Proposed multi-register measurements [34, 6, 7] do not seem to
lead toward an efficient algorithm.

(b) An elegant and nontrivial algorithm is known for the problem [50] (and see [73]), running
in time ∼ 2

√
n on groups of size 2n. By contrast it is known that this algorithm does

not work in the symmetric group Sn [62].

3. Third, the trap-door is completely different from that offered in Patarin’s MQ cryptosystem
HFEv−, and this offers at least diversity in the sources of hardness within MQ cryptography.
HFEv− is in all likelihood secure, being the survivor of a series of attacks, but at the same time
it is of course possible that that history is not at its end. To briefly recap the relevant sequence
of MQ proposals (for a survey through 2005 see [94]): [53] was cracked by Patarin [69], who
then replaced that method by a more flexible generalization [70] called HFE; the most basic
form of HFE has been cracked [49, 28, 38, 41], as have some variants [32], but the variant
HFEv− (used in Quartz) appears to remain viable with appropriate parameters [24, 29],
although perhaps not as efficient as one might wish [90].

As discussed earlier in the paper, all MQ cryptosystems are subject to attack by Gröbner
basis algorithms for solving systems of polynomial equations, the leading method currently
being Faugère’s F5 algorithm; the question is whether the systems of polynomials generated
by the cryptosystem have features that enable such an algorithm to run in sub-exponential
time.

Quantum algorithms have not been shown to possess any advantage over classical algorithms
in solving systems of polynomial equations (other than the slight Grover search advan-
tage [43]), despite a few successful attacks (see [17, 18] for some representatives) on problems
that lack obvious linear, abelian, or normal group structure. For this reason, MQ cryptosys-
tems are particularly promising for post-quantum cryptography.

Finally, we hope our proposal refocuses attention on some long-standing questions:

1. What is the hardness of approximating tensor rank? Although H̊astad [46] showed that exact
rank computation is hard, it is not even known, say, that the rank is hard to approximate
within ± log n. Such additive hardness might be attempted without necessarily having to
explicitly produce proofs of high rank for tensors, which is the key barrier for attempts
to prove that multiplicative factors of approximation are hard [4]. (This is an imprecise
discussion; it is possible to envision hardness results operating within the regime of rank
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below 3n, where explicit tensor constructions are already known [79, 4, 91]. An additive
hardness of approximation could then be translated into a, perhaps small, multiplicative
hardness of approximation.)

2. What is the distribution of the rank of random tensors?
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