
Rethinking Definitions of Security for Session Key Agreement

Wesley George and Charles Rackoff

Department of Computer Science,
University of Toronto,

Toronto, ON, M5S 3G4, Canada,
(wgeorge|rackoff)@cs.toronto.edu

March 7, 2013

Abstract

We consider session key agreement (SKA) protocols operating in a public key infrastructure,
with pre-specified peers, that take no session ID as input, and output only a session key. Despite
much work on SKA, we argue that there is no good definition of security for this (very natural)
protocol syntax. The difficulty is that in this setting the adversary may not be able to tell
which processes share a key, and thus which session keys may be revealed without trivializing
the security condition.

We consider security against adversaries that control all network traffic, can register arbitrary
public keys, and can retrieve session keys. We do not attempt to mitigate damage from hardware
failures, such as session-state compromise, as we aim to improve our understanding of this
simpler setting. We give two natural but substantially different game based definitions of security
and prove that they are equivalent. Such proofs are rare for SKA. The bulk of this proof consists
of showing that, for secure protocols, only compatible processes can be made to share a key.
This property is very natural but surprisingly subtle. For comparison, we give a version of our
definition in which processes output session IDs and we give strong theorems relating these two
types of definitions.

Note: A very similar version of this paper was submitted to and rejected from
TCC 2011 and TCC 2012. We had hoped to quickly create a revised version, but
since we didn’t, we present this version as is.

1

Contents

1 Introduction 1
1.1 Our SKA Setting, Without Session IDs . 1
1.2 Why Not a Simulation Based Definition? . 2
1.3 Defining Security, a Game Based Definition . 2
1.4 Role-Bit Security, and other Kinds of Security . 3
1.5 Our Contributions . 5
1.6 Related Work . 5

2 Definitions 6
2.1 Protocol Syntax . 6
2.2 Security . 7

2.2.1 Partner-Security . 8
2.2.2 Penalty-Security . 8

2.3 An Example Protocol . 9

3 Equivalence of our Definitions 9

4 Relating to Protocols with Session IDs 10
4.1 Definitions . 10
4.2 Transformations . 11

4.2.1 From Secure SKAwSID to Secure SKA . 11
4.2.2 From Secure SKA to Secure SKAwSID . 12

Appendices 13

A An example of a secure SKA protocol 13

B Proof of Theorem 3.3 15

C Proof of Theorem 3.1 18

1 Introduction

The task of session key agreement (SKA) is for two parties to establish a shared random session
key over an insecure network; the intuitive goal of security is that no one but the executing parties
learn anything about the shared key. SKA is important because it is usually followed by a secure
session protocol using the shared secret key.

There has been much work on defining security for SKA ([4, 5, 2, 16, 10, 11]). The (related)
definitions of [10, 11], for example, are strong definitions of security and contain the essential
ingredients of a definition of security for SKA, but they address a different syntactic notion of
protocol than the original setting of [4]; the protocols of [10, 11] take “session IDs” as input. We
argue that there is no satisfactory definition of security for protocols without partnering functions
or session IDs, leaving a (considerable) gap for anyone trying to understand whether a protocol
without these features should be considered secure.

The main contribution of this paper is to present two rather different game based definitions of
security for SKA protocols without session IDs or a partnering function and prove them equivalent.
This turns out to be a surprisingly difficult theorem. One feature of our definition we argue for
below is that the “role bits” the processes are given not only allow for asymmetric protocols, but
also serve an important security property. We also discuss a setting of SKA which has session IDs
as output. Security is easier to define in this setting, and an SKA secure in this sense is also secure
in our previous sense if the session IDs are ignored. In our discussion of session IDs, we explain that
they can be useful sometimes in defining security but they are not necessary, and it is desirable to
be able to discuss security of SKA protocols that do not use them.

1.1 Our SKA Setting, Without Session IDs

We assume a public key infrastructure1 (PKI). Every person registered with the PKI has a name;
associated with each name is a public key. We assume that good users choose a public key and a
secret key using some fixed algorithm, while bad users may choose their public keys any way they
like. The public keys might therefore not be unique, but the authority must make sure that the
names are unique.2 We will assume that everyone somehow has access to everyone else’s public
key; we will not discuss how.

At some point, people (with names) A and B might decide that they want to have a session,
and therefore wish to exchange a session key. Typically, they will consider themselves to have
different roles – for example Client and Server, and we will argue later that they must agree on
different roles. We will abstract out these two roles by thinking of them as bits 0 or 1. How does A
come to decide to launch a process intending to talk with B, in role (say) b? We will not concern
ourselves with this: it happens via some insecure, and perhaps informal, discussion on the internet
or elsewhere. We will say that A launches a process π〈A,B, b〉, where π is a protocol, to denote an
execution of π by A in role b ∈ {0, 1}, intending to share a key with B. The input to this process
will be the names A and B, the bit b, the secret key of A and the public key of B. The output of a
process, it it completes, will be either a session key (of the appropriate length), or a special symbol
indicating failure.

Before we discuss security in the presence of an adversary, we briefly raise the following issue: if
A and B launch processes to talk to each other, and no adversary is present, how do these processes
actually wind up communicating? It’s made more complicated by the fact that A might launch

1A similar development can be done for various shared private key settings, but not password-based settings.
2If the authority is willing to ensure that the public keys are unique, then the names would not be necessary.

These issues are discussed in more detail in [15].

1

more than one process to speak with B at the same time. How does it all work? The short answer
is: don’t know, don’t care. Word on the street is that it has something to do with “IP addresses”
and “port numbers” and “process IDs” and a lot of other things that are very specific to particular
operating systems and to particular internet protocols. All of these things are irrelevant to the
logical level at which we are discussing key exchange. (Some people have suggested that having
some kind of session ID as input or output might help A and B to communicate, but in fact, that
would only make sense if our protocol was happening at a lower level, and if the IDs we used were
specifically tailored to the hardware and software in question.) We just assume that in the absence
of an adversary, A and B have no trouble communicating. The goal of security is to make sure
that in the presence of an adversary that can completely control the internet, nothing “bad” can
happen.

1.2 Why Not a Simulation Based Definition?

We have chosen a game based definition here rather than a simulation based definition such as
UC (universal composability) [9]. We feel the UC setting is enormously complicated when dealing
with key exchange, whereas our discussion here is self-contained, making it much easier to reason
about this very subtle issue. Also the UC setting is in many respects unsuitable here. For one
thing, the “ideal world” model is arbitrary in many respects. Another problem with UC is that
matching “session IDs” are usually assumed as input to the processes. This makes sense when
defining certain kinds of cryptographic primitives (for example, a kind of bit commitment), but it
is not appropriate when establishing something like an “authenticated channel” is part of what the
protocol is supposed to achieve, not assume to begin with. We could some insecure communication
has happened before the protocol begins, establishing proto session IDs, which are then checked
as part of the protocol, however this would constrain protocols to be of a particular (unnatural)
form, and would not allow us to define what security means for more general kinds of protocols.
Actually, if we are going to insist on session IDs, it makes more sense to have them as outputs;
this is a convenience for definitions, but again it unnecessarily constrains the protocols we consider.
Session IDs are discussed more below.

It makes sense to ask if there is actually something wrong with the definition of SKA security
presented in this paper. Is there some reason it cannot be used for the typical intended purposes?
We discuss below that there are additional types of “secondary” security properties that might
be desirable, but these are not necessarily covered by a UC style of definition either. In fact, our
definitions raise the question of whether there exists an exactly equivalent definition in a simulation
style, without changing the syntax of SKA.

1.3 Defining Security, a Game Based Definition

An adversary chooses names for good guys (or honest parties) as well as names of bad guys; bad
guys are just different versions of himself, and he chooses their public keys however he likes. He
can launch processes of the form π〈A,M, b〉, where A is honest and M may be good or bad, and
he can read from and write to these processes.

Intuitively, an SKA protocol π is secure if no one other than honest parties A or B can learn
anything about the session key output by a π〈A,B, b〉 process. We model this by asking whether an
adversary can distinguish the key output by the protocol from a key chosen uniformly at random.
However, it is important to note that “unrelated” protocol invocations must generate independently
random session keys. We model this by saying that the adversary should be unable to distinguish
the challenged session key from random even when he is allowed to open (or reveal) other session

2

keys. However, we have to restrict this adversary in some way, for the following reason. We say
two processes are compatible if they are of the forms 〈A,B, b〉 and 〈B,A, b̄〉. An adversary might
create two compatible processes, and have them properly communicate with each other, so that
they will output the same session key; if we allow him to challenge one of the processes and open
the other, he will be able to break every protocol. So how should we constrain the adversary?

We say two processes are partners if they are compatible and output the same session key. One
class of definitions allow the adversary to somehow know when processes are partners. One way
to do this [4, 5, 8] is to assume that whether two completed compatible processes share a key is
efficiently computable from the network transcript. This will not generally be the case, so we would
have to restrict ourselves to certain kinds of protocols. For example, the “matching conversations”
definition of [4] makes processes partners if every message generated by one process was delivered
to the other and vice-versa. While this definition suffices for the analysis of certain protocols, it is
unacceptable in the general case as any protocol can be made insecure by adding an extra bit to a
message where the bit is supposed to be ignored.

One of our definitions in this paper, “partner security”, gives the adversary an oracle which
tells him which of the compatible pairs are partners. This seems to us to be the cleanest form of
this kind of definition.

Another way of making it easy to tell if two processes are partners is to change the syntax
of what we mean by SKA. The cleanest way to do this is have processes output a “session ID”
in addition to a session key, where the adversary automatically sees all the session IDs, and two
compatible processes are considered as partners if they output the same session ID. In order for this
to make sense, the protocol must also satisfy a “session ID security condition” where the adversary
is not able to make two compatible processes output the same session ID unless they have also
output the same session key. [3, 13, 12] are examples of protocols that output a session ID. In
this paper we formalize security for SKA with session ID as output. Furthermore, we prove that
if the session IDs are simply dropped, the result is a secure SKA protocol in our standard syntax,
according to our “partner security” definition. We also show how to “convert” any secure SKA
protocol in the standard syntax to one in the syntax with session ID as output, but this involves
changing and adding to the protocol. This is why we prefer a definition in the standard syntax
without session IDs. We want to understand what it means for such a protocol to be secure.

We lastly discuss one way of defining SKA security in the standard syntax without making
the adversary able to compute partnering. If the adversary winds up opening a partner of the
challenged process (or challenging a partner of an opened process), then we penalize him. This is
a very tricky thing to do right, and one might wind up making the definition too strong or too
weak. The Master’s thesis of Arruda [1] discusses some versions of this style of definition that were
used in some early course notes of Rackoff. In this paper, we present a new version of this style of
definition that we call “penalty security”, and we prove that it is equivalent to partner security.

1.4 Role-Bit Security, and other Kinds of Security

Our security definitions for SKA presented here implicitly associate a security condition with the
role bits. In particular, it is a (highly nontrivial) consequence of our security definitions that an
adversary will not be able to make two processes share a key if they have the same role bit. In
particular, a process of type 〈A,B, b〉 should not be tricked into sharing a key with a process of
type 〈B,A, b〉. For example, if the roles are interpreted as Client and Server, an adversary should
not be able to make two Clients share a key, or make two Servers share a key.

Why do we find this security condition desirable? For one thing, it is easy to achieve. Every
SKA protocol we know of already has this property, or can be easily made to have this property by

3

signing one extra bit in some of the flows. The most important reason to have role-bit security is
because it is natural for people designing a session protocol that uses a shared session key to assume
that the parties start with an asymmetry. For example, often session protocol designers assume
that the party that “initiated” the key exchange will begin the session; but this only makes sense if
the parties agree in a secure way on who initiated the exchange, and this is essentially the purpose
in having a secure role bit. For another example, if session protocol designers think of one party as
a Server and the other as a Client, they would be horrified if it were possible for two Servers or for
two Clients to share a key. Or often one specifies that a shared session key is expanded into two
new keys, one of which is to be used for communication in one direction, and the other of which
is to be used for communication in the other direction. But which party gets which of the two
keys? The danger of having a session where there is no initial (secure) asymmetry between the two
parties is that an otherwise secure protocol can become insecure. For example, both parties may
use the same string (derived from the shared key) as a one-time pad. Of course, there are protocols
for securely establishing a session asymmetry if none initially exists, but it is more common to
assume such an asymmetry exists as a result of the key exchange. Sometimes it is suggested that
the names of the parties be used to supply an asymmetry, with the (lexicographically) lower name
getting (for example) role 0. This doesn’t work, of course, if the two names are the same. But it is
a bad idea even if the two names are different. Since the the designer of the session protocol should
not have to know how the session key was exchanged, the session protocol should no longer have
access to these names; they should be discarded as existing on a lower logical level from the intent
of a person who has shared a session key and now wishes to engage in a session. In fact, a secure
session can take place in a setting where no names exist. For example, the two parties might have
gotten together and flipped some coins to create a session key, or they might have used a long-term
shared private key to exchange a session key.

Some SKA security definitions in the literature do insist on role-bit security, whereas some
others do not. For example, [10, 11] does not have role-bit security while [9] does. Of course, if for
some reason one wants to avoid insisting on role-bit security, one can always adjust our definitions.
The obvious adjustment would be to change the definition of what it means for two processes to be
“compatible”, so that 〈A,B, b〉 would be compatible with 〈B,A, b′〉, even if b = b′. This would by
itself not be adequate, however, since it allows for the following bad situation: imagine that every
honest party A has a special string KA as part of its secret key. Then we could let every process
〈A,A, b〉 output the same session key KA, and this would be consistent with this revised definition
of security3. In order to avoid this, we would also have to add to the definition the rather unnatural
stipulation that an adversary should not be able to make three processes output the same session
key.

There are certain other properties that are consequences of our definitions. For example, al-
though we insist that the adversary decides at the moment a new name is chosen whether that
person is good or bad, it would not give him additional power if we allowed him to delay this
decision. This is a useful kind of security against “dynamic corruption”. Note however, it does not
yield the very fine-grained type of dynamic corruption that some UC definitions do.

There are additional security properties for SKA protocols that one might be interested in. Most
interesting are the “secondary” security properties, where we wish to retain some security even when
an adversary has obtained access to keys or other material we normally assume physically secure,
perhaps by breaking into some computer. Examples are “forward security” and “key compromise
impersonation resilience”, or security in the face of “session state compromise”. These properties

3This is because if an adversary challenges one of these processes, it would not be allowed to open any of the
others.

4

are not implied by our definition as we have aimed, with this work, to improve our understanding
of this simpler setting.

1.5 Our Contributions

We give two equivalent game based definitions of security for SKA that resolve the difficulty of
appropriately restricting the adversary in a novel way.

The adversary challenges a completed process, and is given either the session key or a random
string, and he tries to guess which. He is also allowed open other completed processes. For our first
definition, which we dub “partner-security”, we simply allow the adversary to ask if two completed
compatible processes share a key; if so, he is not allowed to open one and challenge the other,
in either order. For our second definition, dubbed “penalty-security”, we do not restrict what
processes may be opened or challenged but instead we “penalize” the adversary for cheating: if
the adversary challenges a process sharing a key with an open compatible process (i.e. challenges
a process partnering with an open process), we ignore the run by replacing the adversary’s output
(i.e. its guess concerning the challenge key) with a random bit (making the adversary win with
probability exactly half); if the adversary opens a partner of the challenged process, he receives
the challenge key. Both these definitions are simpler than the others we have seen, except for some
which gain simplicity by restricting the protocols that can be considered (for example, by insisting
on session IDs or computable partnering functions).

Our main technical contribution is proving that these two definitions are equivalent. While
partner-security easily implies penalty-security, the converse is not so direct. The difficulty is in
showing that penalty-security implies that an adversary cannot (except with negligible probability)
make incompatible processes share a session key. The hard case here is the following. Say that the
adversary constructs two processes of the form 〈B,A, 1〉; we want to prove that he cannot make
them both output the same key, k. At first this seems easy: if the adversary could do this, then he
could challenge one of the 〈B,A, 1〉 processes and open the other one. The problem is that he might
already have opened a 〈A,B, 0〉 process that also outputs k (and in fact this might be necessary in
order to make the other two processes output k), causing him to pay the penalty of outputting a
random bit.

We also give a definition of secure SKA with a syntax that has session IDs as outputs (that the
adversary sees) as well as session keys. We show that a protocol that is secure with this syntax
according to the new definition remains secure according to the old definition when the session IDs
are omitted. We also show how to convert a protocol with session IDs into one without session IDs,
preserving security.

1.6 Related Work

Much work has been done on SKA, some of which has already been surveyed. The first definition
of security for SKA, and the basis for much later work, was given by Bellare and Rogaway [4] for
the setting where each pair of parties shares a long-term private key, and this was adapted to the
setting of public key infrastructure by Menezes, Blake-Wilson and Johnson [6, 7]. These papers use
the notion of “matching conversations” to define which processes are partners (and appropriately
constrain the adversary).

[5] introduced the first explicit notion of partnering function in the setting of server-mediated
key-exchange4. [14] later showed that the function does not work as intended. Partnering functions

4This is also known as the Kerberos setting: all parties share a key with a server that is always online.

5

are also discussed in the simulation based definition of [16]. The notion of session IDs as output
for partnering first appeared in [2], and subsequently in many works (e.g. [3, 13, 12, 8]).

Protocols with session IDs as input were first considered in [10]. Here they give a game based
definition and prove it sufficient for a given notion of secure session. This was later shown in [11] to
be equivalent to a UC definition of SKA with static corruption. This is the only example we know
of where two substantially different definitions of security for SKA are shown to be equivalent.

Organization

We begin, in Section 2, by giving our definitions. In Section 3 we prove that our two definitions of
security are equivalent. Section 4 relates our definitions of security to those involving session IDs.

2 Definitions

2.1 Protocol Syntax

Definition 2.1. A session key agreement protocol, is a pair of polytime ITMs (Gen, π) satisfying
the following conditions:

• Gen on input 1n outputs a pair of keys (pub, pri).

• If an instantiation of π terminates, it either outputs an n-bit string (the intended session key)
or fail.

• Let (pub1, pri1), (pub2, pri2) be in the range of Gen(1n), b ∈ {0, 1}. Let N1, N2 ∈ {0, 1}n; we
think of these as the names of the participants. If the instantiations of π with inputs

P1 = π(1n, N1, pri1, N2, pub2, b)

P2 = π(1n, N2, pri2, N1, pub1, b)

are allowed to compute such that every message generated by one is sent to the other and
vice-versa, both processes terminate and output the same session key.

We refer to the SKA protocol (Gen, π) just as π. For fixed n and when it is understood that A
is the name of an honest party with private key priA and B is the name of a party with public key
pubB, we will write π〈A,B, b〉 to mean an instantiation of π on inputs 1n, A, priA, B, pubB and
b. We call such instantiation a process. When there is no danger of confusion about what protocol
we mean, we will write 〈A,B, b〉 instead of π〈A,B, b〉.

If two processes output the same key, we say that they have shared a key. Of course, arbitrary
pairs of processes should not share keys.

Definition 2.2. Two processes 〈A,B, b〉 and 〈C,D, b′〉 are said to be compatible if A = D, B = C,
b′ = b = 1− b. e.g. 〈A,B, 0〉 and 〈B,A, 1〉 are compatible processes.

When two compatible processes share a key, we call them partners. The definition of compatible
plays an important role in our definition of security. It should be viewed as a bad thing if an
adversary can arrange for non-compatible processes to share a key. While this is not an explicit
requirement of our security definition, we will show in Section 3 that such protocols are insecure.
This is a natural property to ask of a security definition, but it is difficult and subtle proof. An
important corollary is that (except with negligible probability) for secure protocols, at most two
processes can share a key and only if they are compatible. This corollary depends on the fact that

6

the role-bit is included in the definition of compatible; were the role-bit absent from Definition 2.2
our definitions of security would name protocols secure even though we could arrange for three or
more processes to share a key. It is interesting to note that even though the definitions of [10, 11]
permit processes with the same role-bit to share a key, they do not permit three processes to share
a key. This latter feature is a consequence of the way those definitions treat session IDs as inputs.

2.2 Security

We begin by formalizing how the network of processes may be controlled by the adversary. Our
security experiments are formulated as an interaction between an adversary and the “ring-master”
who simulates a network of protocol executions by honest players (i.e. players attacked by the
adversary). The ring-master keeps the appropriate private keys secret from the adversary and also
administrates the security experiment.

Definition 2.3. The template ring-master, denoted RMT , is an ITM that, on input 1n, and an
SKA protocol (Gen, π), that accepts the following queries:

• register(A): if A ∈ {0, 1}n is not the name of any registered player, run Gen(1n) to get a
new key pair (pri, pub), record A as the name of the honest player with key pair (pri , pub)
and return pub.

• register(M, pub): ifM ∈ {0, 1}n is not the name of any registered player, recordM ∈ {0, 1}n
as the name of the dishonest player with public key pub.

• initialize(A,B, b): If A is the name of an honest player and B is the name of a (possibly
dishonest) player, start simulating π on (A, priA, B, pubB, b). We associate an index i ∈ N
with this process and subsequently refer to this process as 〈A,B, b〉i. Return i to the adversary
along with any initial message generated by the process.

• send(A,B, b, i,m): simulate 〈A,B, b〉i as having received message m; return any message m′

generated by 〈A,B, b〉i, as well as report if the process terminates or fails.

• challenge(A,B, b, i): If P = 〈A,B, b〉i is a terminated process that has not been challenged,
both A and B are honest players, and no other process has been challenged, do the following:
pick and output b∗ ∈R {0, 1} then report k∗ where k∗ is P ’s key if b∗ = 0 and a uniformly
random element of {0, 1}n otherwise.

• open(A,B, b, i): If P = 〈A,B, b〉i is a terminated process that has not been challenged, return
P ’s session key; otherwise return nothing.

When the parameters in question are clear, we’ll write RMT (1n, Gen, π) as RMT
π or simply

RMT (as well as for the subsequent modified versions of RMT). We will refer to the challenged
process as PCH and to its session key as kCH . Note that if b∗ = 0, kCH = k∗ while if b∗ = 1, then
kCH 6= k∗ except with negligible probability.

Note that RMT only simulates processes executed by honest players. Also note that though
the ring-master assigns an index to each process, this is only used by the adversary to direct the
ring-master in coordinating the network; this index is not available to the process in any form.

7

2.2.1 Partner-Security

Our first definition of security matches the spirit of those involving session IDs: the ring-master will
tell the adversary if two compatible processes share a session key. RMP will not accept challenges
to partners of opened processes or reveal the session key of partners of the challenged process.

Definition 2.4. The ring-master for the partner-game, denoted RMP is an ITM that takes as
input a security parameter 1n and an SKA protocol (Gen, π) and behaves as RMT but with the
following additional query:

• partner(A,B, b, i, j). If processes 〈A,B, b〉i and 〈B,A, b〉j have both terminated, return true
if they have output the same session key and false otherwise.

and with the modifications to open, challenge as follows:

• open(A,B, b, i): return P ’s key as usual unless P is, or partners with, the challenged process.

• challenge(A,B, b, i): Administrate the challenge as usual unless P is, or partners with, an
opened process.

We note that partnering queries concerning PCH are answered based on kCH , the key output
by PCH , and not on k∗, the challenge key. In particular when k∗ 6= kCH (as usual when b∗ = 1), P
and PCH are reported as partners if and only if P ’s session key is kCH . Also note that we could give
the adversary more information (potentially making her stronger) by allowing her to ask if any pair
of processes share a key (rather than any pair of compatible processes). Adding such information
does not increase the power of the adversary (proof to appear in the full version) so we prefer the
simpler formulation above.

The partner-security game played byM against π is the joint-computation ofM and RMP (π);
the game ends when M outputs a bit (her guess at b∗) and halts. If M terminates without
outputting a bit, M’s output is taken to be a random bit; if M terminates without challenging
a process (and thus without RMP

π having chosen b∗), b∗ is also taken to be a random bit. Let
WP
π (M, 1n) denote the event that M correctly guesses b∗.

Definition 2.5. We say that π partner-secure if for all probabilistic polynomial time adversaries
M there is a negligible function ε such that

Pr[WP
π (M, 1n)] < 1/2 + ε(n) (1)

2.2.2 Penalty-Security

For our second definition, rather than restrict any of the adversary’s actions, we allow the adversary
to open or challenge any process, but we may make some changes to the simulation to prevent trivial
session key compromises.

Definition 2.6. The ring-master for the penalty-security game, denoted RM, is an ITM that on
input of 1n and an SKA protocol (Gen, π) behaves as RMT but with the following modifications:

• open(A,B, b, i):

– If 〈A,B, b〉i partners with the challenged process, return k∗. (Recall that k∗ is the
challenge key which the adversary must identify as either a random key or the real key).

– Otherwise, return P ’s key as usual.

• challenge(A,B, b, i): if 〈A,B, b〉i is or partners with an open process, pick and output b∗ ∈R
{0, 1} and halt5.

5As M receives no information about b∗, her guess will be correct with probability exactly 1/2.

8

The penalty game played by an adversaryM against an SKA protocol π is the joint computation
of M and RMπ. The game ends when M outputs a bit b(again, M’s guess for b∗) and halts. If
M terminates without challenging a process and therefore RMπ has not output a bit, b∗ is taken
to be a random bit. Let Wπ(M, 1n) denote the event that M correctly guesses b∗.

Definition 2.7. π is penalty-secure if for all probabilistic polytime adversaries M there exists a
negligible function ε such that

Pr[Wπ(M)] < 1/2 + ε

Other definitions of security consider adversaries that may “corrupt” honest parties; we think
of corruption as giving the adversary the long-term private key and past randomness used by a
party. We do not equip our adversaries with such ability as it adds no extra power in this very
simple setting. Ultimately, if a 〈A,B, b〉 process is challenged, the adversary must not corrupt A
or B. On account of this, an adversary that is not allowed to corrupt parties can easily simulate
an adversary that can by guessing which process will be challenged.

2.3 An Example Protocol

Thus far we have argued that our definitions capture a strong notion of security. Of course defini-
tions that rule all protocols as insecure have similar properties, so it is important to show that our
definitions are non-trivial. In Appendix A we present a standard key transport protocol and proof
of security.

3 Equivalence of our Definitions

We aim to prove the following theorem.

Theorem 3.1. Let (Gen, π) be an SKA protocol.

π is partner-secure ⇐⇒ π is penalty-secure

The forward implication is trivial as an adversary playing the partner-security game can easily
simulate the ring-master for the penalty-security game. The reverse implication requires an adver-
sary playing the penalty-security game simulate knowledge about which processes partner. We will
need two properties concerning penalty-security. We will say a 〈A,B, b〉 process is totally honest if
both A and B are honest players. The first is somewhat specialized and easy to prove.

Lemma 3.2. Let (Gen, π) be an SKA protocol, M an adversary. Let Eπ(M) be the event that
when M plays the penalty-security game against π that b∗ = 1, and there exists a totally honest
process who outputs k∗ as its key.

π is penalty-secure =⇒ ∀MPr[Eπ(M)] is negligible

Recall that b∗ = 1 means that k∗ is chosen uniformly at random and so k∗ is not PCH ’s
key (except with negligible probability). Lemma 3.2 is easily proved. The second property is of
independent interest, and is natural to ask of a definition of security.

Theorem 3.3. Let (Gen, π) be an SKA protocol. Let M be an adversary that opens every process
as soon as it terminates and does not challenge any process; let Mπ(M) be the event (over network
arrangements by M) that two non-compatible totally honest π processes share a key.

π is penalty-secure =⇒ ∀MPr[Mπ(M)] is negligible

9

A corollary of interest is is that at most two totally honest processes ever output the same
key, and only if they are partners. From here, the proof of Theorem 3.1 is simple thanks to the
mechanics of the penalty-game: the partner of the challenged process is apparent as it is the only
process that outputs k∗, so simulating the partnering oracle is easy. See Appendix C for a complete
proof. Given Theorem 3.1, we subsequently refer to SKA protocol meeting Definitions 2.5 and 2.7
simply as ‘secure’.

Despite the naturalness of the statement Theorem 3.3, the proof is subtle and difficult. Suppose
MM arranges for non-compatible processes Pa and Pb to share a key. If we are guaranteed that
Pb has no earlier partner, then breaking π is simple: simulate MM , open Pa, challenge Pb, and
answer the challenge in the obvious way; we are not penalized for this strategy since Pa and Pb are
(crucially) non-compatible processes. The difficult case is when Pa and Pb are of the same type
(e.g. 〈B,A, 1〉) and there is a third process Pm of compatible type (e.g. 〈A,B, 0〉) partnering with
and terminating before both Pa and Pb, and needs to be opened in order to engineer the mismatch;
in this case neither Pa nor Pb can be challenged. We give a detailed proof in Appendix B. Of course
a definition of security could be augmented to rule out such protocols as insecure; it is a nice fact
that this undesirable situation is already ruled out as a consequence of the existing definition.

4 Relating to Protocols with Session IDs

There are two standard ways that session IDs are incorporated into a protocol: they are either
taken as input as in [10], or they are provided as output as, effectively, in [13] and as formalized in
[12]. We find the later notion more natural as explained in the introduction.

4.1 Definitions

Definition 4.1. A session key and id agreement protocol (SKAwSID protocol), (Gen, θ), is a pair
of algorithms satisfying the following conditions:

• Gen on input 1n outputs a pair of keys (pub, pri).

• If an instantiation of θ terminates then it outputs either a pair of n-bit strings, called a session
key and a session ID, or fail.

• Let (pub1, pri1), (pub2, pri2) be in the range of Gen(1n), b ∈ {0, 1} and N1, N2 ∈ {0, 1}n. If
the instantiations of θ with inputs

P1 = θ(1n, N1, pri1, N2, pub2, b)

P2 = θ(1n, N2, pri2, N1, pub1, b)

are allowed to compute such that every message generated by one is sent to the other and
vice-versa, both processes terminate and output the same session key and session ID.

We use the same conventions when referring to SKAwSID protocols as with SKA protocols (e.g.
refer to (Gen, θ) simply as θ, use θ〈A,B, b〉 to mean an invocation of θ on (1n, A, priA, B, pubB, b),
etc.). We call two compatible processes θ〈A,B, b〉 and θ〈B,A, b〉 partners by session ID if they
output the same session ID.

session keys output by SKAwSID protocols should have the same security properties as session
keys output by SKA protocols. The session ID should give the adversary an explicit way of identi-
fying partners in the network and thus which processes may or may not be opened or challenged.

10

However we also need to ensure that arbitrary restrictions are not imposed on the adversary (e.g. if
every process outputs the same session ID we’ve severely restricted the adversary without providing
any useful information), so we consider an SKAwSID protocol insecure if an adversary can arrange
for two processes to output the same session ID but different session keys.

Definition 4.2. The ring-master for the SKAwSID security game, denoted RMSID is an ITM
that takes a security parameter 1n and an SKAwSID protocol (Gen, θ) as input and behaves as
RMT with the following modifications:

• send(A,B, b, i,m): if 〈A,B, b〉i terminates after receiving m, return its session ID (in addition
to any message generated).

• open(A,B, b, i): if 〈A,B, b〉i has terminated and is not, nor partners by session ID with the
challenged process, return 〈A,B, b〉i’s session key.

• challenge(A,B, b, i): If 〈A,B, b〉i has terminated and is not, nor partners by session ID with
an opened process, administrate the challenge as usual.

For an adversaryM, the session ID security game played by M against θ is the joint computa-
tion ofM and RMSID(θ). We say thatM breaks the session ID if two compatible process output
the same session ID but different session keys and write WSID

θ (M) to denote the event this occurs.
We’ll write Wθ(M) to denote the event that M guesses the challenge bit correctly. θ is said to be
secure if for all probabilistic polynomial time adversaries M there is a negligible function ε such
that

Pr[Wθ(M)] < 1/2 + ε

Pr[WSID
θ (M)] < ε

Definition 4.2 is essentially the definition of [13] without a “session state reveal” query. We note
the following easy lemma:

Lemma 4.3. For a SKAwSID protocol θ and adversary M, let MM,θ be the event that, during the
joint-computation of M and RMSID

θ that two processes share a session key but output different
session IDs. If θ is secure (in the sense of Definition 4.2) then

∀M Pr[MM,θ] is negligible

4.2 Transformations

Since SKAwSID protocols are syntactically different from our SKA protocols, we cannot show
directly compare them Instead, we give a simple transformations from SKA protocols to SKAwSID
protocols and vice-versa that preserve security.

4.2.1 From Secure SKAwSID to Secure SKA

Let θ be a SKAwSID protocol, we define a corresponding SKA protocol πθ which behaves as θ with
the exception that when θ would have terminated outputting both session key k and session ID s,
πθ outputs only k.

Theorem 4.4. If θ is a secure SKAwSID protocol, then πθ is a secure SKA protocol.

11

Proof. Since θ is fixed, we will refer to πθ simply as π. Let Mπ be an adversary breaking the
partner-security of π. Let Mθ be the following adversary attacking the SID-security of θ that
simulates Mπ, creating θ processes in place of π processes, doesn’t report the session IDs to Mπ

but when asked if two compatible processes share a session key, answers yes if and only if their
session IDs match.
Mθ simulates Mπ so long as two θ processes share a session key if and only if they share a

session ID. But if the later is false, then θ is insecure either by definition or by Lemma 4.3.

4.2.2 From Secure SKA to Secure SKAwSID

Let π be an SKA protocol. We define a corresponding SKAwSID protocol θπ which, operating in
the same infrastructure as π, behaves as follows: θπ on security parameter n, runs π on security
parameter 2n; when π terminates outputting a 2n-bit session key, θπ outputs the first half as the
session key, and the second half as the session ID.

Theorem 4.5. If π is a secure SKA protocol then θπ is a secure SKAwSID protocol.

The proof is a straightforward hybrid argument and will appear in the full version of the paper.

References

[1] Nelson Arruda. Formal definitions of key exchange models and the effects of restrictions
on adversaries. Master’s thesis, University of Toronto, 2005. http://proquest.umi.com/

pqdlink?did=974469881&Fmt=7&clientId=12520&RQT=309&VName=PQD.

[2] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. A modular approach to the design and
analysis of authentication and key exchange protocols (extended abstract). In STOC, pages
419–428, 1998.

[3] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key exchange secure
against dictionary attack. In EUROCRYPT, pages 139–155, 2000.

[4] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In CRYPTO,
pages 232–249, 1993.

[5] Mihir Bellare and Phillip Rogaway. Provably secure session key distribution: the three party
case. In STOC, pages 57–66, 1995.

[6] Simon Blake-Wilson, Don Johnson, and Alfred Menezes. Key agreement protocols and their
security analysis. In IMA International Conference on Cryptography and Coding, pages 30–45,
1997.

[7] Simon Blake-Wilson and Alfred Menezes. Entity authentication and authenticated key trans-
port protocols employing asymmetric techniques. In Security Protocols Workshop, pages 137–
158, 1997.

[8] Christina Brzuska, Marc Fischlin, Bogdan Warinschi, and Steven C. Williams. Composability
of bellare-rogaway key exchange protocols. In CCS, 2011.

[9] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
Cryptology ePrint Archive, Report 2000/067 v20051214:064128, December 2005. http://

eprint.iacr.org/.

12

[10] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use for building
secure channels. In EUROCRYPT, pages 453–474, 2001.

[11] Ran Canetti and Hugo Krawczyk. Universally composable notions of key exchange and secure
channels. In EUROCRYPT, pages 337–351, 2002.

[12] Vladimir Kolesnikov and Charles Rackoff. Key exchange using passwords and long keys. In
TCC, pages 100–119, 2006.

[13] Hugo Krawczyk. Hmqv: A high-performance secure diffie-hellman protocol. In CRYPTO,
pages 546–566, 2005.

[14] Kim kwang Raymond Choo, Colin Boyd, Yvonne Hitchcock, and Greg Maitland. On session
identifiers in provably secure protocols - the bellare-rogaway three-party key distribution pro-
tocol revisited. In Conference on Security in Communication Networks (SCN), pages 351–366,
2004.

[15] Charles Rackoff. On “identities”, “names”, “names”, “roles” and security: A manifesto. Cryp-
tology ePrint Archive, Report 2011/214, 2011. http://eprint.iacr.org/.

[16] Victor Shoup. On formal models for secure key exchange. Technical Report RZ 3120, IBM,
1999. http://www.shoup.net/papers.

Appendices

A An example of a secure SKA protocol

Let ΠS = (GenS , Sign, V er) be a public-key signature scheme and ΠE = (GenE , Enc,Dec) be
a public-key encryption scheme; we suppose that for security parameter n, ΠE encrypts 2n bit
strings. We define protocol πT as follows:

Protocol πT :

• Gen: on input (1n), run GenS(1n) and GenE(1n) to get (sign, ver) and (enc, dec);
return (pub = (ver, enc), pri = (sign, dec)).

• πT 〈A,B, 0〉:
1. Pick r ∈R {0, 1}n. Send r.

2. Upon receipt of α, σ, if V erB(αr, σ) 6= 1, fail. Otherwise let (k,N) = DecA(α).
If N 6= B, fail. Otherwise output k and terminate

• πT 〈C,D, 1〉: Upon receipt of r ∈ {0, 1}n, pick k ∈R {0, 1}n. Compute α ←
EncD(kC), σ ← SignC(αr). Send ασ and halt, outputting k.

Proposition A.1. If ΠS is a secure public-key signature scheme and ΠE is a CCA2-secure public-
key encryption scheme then πT is a secure SKA protocol.

Proof. Given the equivalence of our two definitions of security, it suffices to show how to use an
adversary breaking either the penalty-security or the partner-security of πT to compromise one of
our assumptions. We choose to show how an adversary breaking the penalty-security since this
definition is more novel. So suppose M is an adversary that breaks the penalty-security of πT .

13

Let ES be the event that, during the security game of M against πT , the adversary forges a
message. More specifically, let ES be the event that there exists an i and honest players A,B,
such that 〈A,B, 0〉i sent r as its first message and received ασ, V erB(αr, σ) = 1, and no 〈B,M, 1〉
process received r and sent ασ′ for some σ′ and M .

If should be clear that if Pr[ES] is significant, then we can arrange to break the security of the
signature scheme by simulating M playing the penalty-security game. So suppose otherwise. We
will argue that M is effectively breaking the (CCA2-)security of ΠE , and that we can exploit this
fact to simulate M and break ΠE ourselves.

Let P0 be a role-0 process that sent r as its first message and receives ασ. Now if P0 terminates
and outputs a session-key (rather than failing), we know that σ is a valid signature over αr. Since
Pr[ES] is negligible, we know that there is a role-1 process P1 that received r as its first message
and output ασ, and these two processes are partners. Now P1 chose it session-key uniformly at
random, so we know that, except with negligible probability, no other role-1 process will output
the same session-key, so P1 is P0’s unique partner. Further, a role-0 process will only accept the
ασ sent by P1 if this process sent r in the first round; but the first message sent by a role-0 process
is chosen uniformly at random, so if no signature’s are forged, then P0 is P1’s unique partner.

Given the preceding discussion, we suppose that in any play of the penalty-security game byM,
there is a unique role-1 process that is either challenged or partners with the challenged process.
Suppose that process is 〈B,A, 1〉i, and that we know this fact. We can break ΠE on A’s key pair
as follows: we generate a signing and encryption key pair for each party, with the exception that
rather than generating an encryption key pair for A, we will use the inputted public key pub as A’s
public key (and we do not know A’s private key); our challenge messages will be k0B and k1B for
independent and uniformly chosen k0, k1; when M sends 〈B,A, 1〉i a message r, we respond with
α∗σ where α∗ is the challenge ciphertext (i.e. either an encryption of k0B or k1B under A’s private
key) and σ is B’s signature of α∗r; when M challenges 〈B,A, 1〉i or its partner, we give k0 as the
challenge key and continue simulatingM to completion; since we have argued that we know which
processes are partners, it is easy to recognize ifM is cheating and we can flip a coin (as our guess for
the message encrypted by the challenge ciphertext) when this happens; most processes are easy to
simulate as we have the private keys of all parties - the difficulty is in simulating 〈A,M, 0〉 processes
(for dishonest players M) which requires A’s decryption key, however since we have access to the
decryption oracle for A’s decryption key, we can simulate these processes as well; ifM guesses that
k0 was the real key, we guess that α∗ is an encryption of k0B, whereas if M guesses that k0 is a
random key, we guess that α∗ is an encryption of k1B. It should be easy to see that this simulation
correctly guesses the plaintext of α∗ whenever M wins the penalty game.

This sketch suppresses many details, but is the essence of the attack on ΠE . We don’t know
the names A,B or the process number i, but we can simply guess these at the start of the run. Our
guesses will be correct with significant probability6. If our guess is wrong, this fact will be revealed
when M tries to open or challenges a process other than 〈B,A, 1〉i or its partner (if it exists),
and we ‘abort’ and guess randomly about the challenge ciphertext. Since we win with probability
exactly half whenever our guesses are wrong, and with significant probability, win with the same
probability that M does against π. Combining these facts gives us that the outlined adversary
breaks the CCA2-security of ΠE .

6Clearly i comes from a set of polynomial size. We guess the names A and B by guessing their indices in the list
of honest players, which also has polynomial size.

14

B Proof of Theorem 3.3

Suppose π is an SKA protocol and that an adversaryMM can arrange, with significant probability,
for two totally honest non-compatible π processes to share a key. Recall that we suppose, without
loss of generality, thatMM opens every terminated process and stops as soon as she sees a pair of
non-compatible processes sharing a key.

Fix the randomness of the network such that a mismatch occurs. Let Pb be the first (totally
honest) process that shares a key with an earlier non-compatible (totally honest) process; let Pa
be the latest non-compatible process to terminate that Pb shares a key with7. Now if Pb does not
share a key with any other process, we can easily break π: simulateMM , opening every process but
challenge Pb and answer the challenge by comparing k∗ with the session key output by Pa. The fact
that we do not know whether a mismatch will occur (on this run) and, if so, which processes are Pa
and Pb is not a problem: we simply choose two processes uniformly at random at the start of the
simulation8 and treat them as if they will be incompatible and share a session key. We guess the
challenge bit correctly either {em whenever }k∗ is a random key (regardless if a mismatch occurs
or whether the process indices were chosen correctly), or when k∗ is the real key, MM engineers a
mismatch, and we’ve guessed Pa and Pb correctly. The first event (that k∗ is random) happens with
probability half, whereas the second happens with significant probability (Pa and Pb are two of at
most polynomially many processes, so our random draw will be correct with significant probability).

Of course this does not work when Pb partners with an earlier process, say Pm: simulatingMM

requires that we open Pm, but we can not do so and also challenge Pb (as we would be challenging
a partner of an opened process and our guess would be forced to the output of a random coin toss).
Note that Pm also partners with Pa (or else Pm and Pa would have been an earlier pair of (totally
honest) non-compatible processes sharing key, contradicting the choice of Pb). This means that Pa
and Pb are of the same type (e.g. 〈A,B, 0〉) and Pm is of compatible type (e.g. 〈B,A, 1〉).

If Pa terminates before Pm, we can still easily break π: we do not need to open Pm to learn
its key as we already learned the key by opening Pa; this would allow us to challenge Pb and guess
based on if k∗ matches Pa’s session key. Again, while we do not know which processes are Pa,Pm
and Pb, drawing three processes uniformly at random and treating these processes as correct works
for the same reason as in the preceding case.

The most difficult and subtle case is when Pm terminates before both Pa and Pb. We cannot
open Pm if we want to challenge either Pa or Pb. Intuitively, if MM needs to see the key output
by Pm in order to arrange for both Pa and Pb to output the same key, then we can use this fact to
distinguish Pm’s output from a random key.

Specifically, we consider a sequence of hybrid experiments where, at each stage, exchanged keys
are replaced with genuinely random keys (while preserving partnering). If there is a significant
difference in the probability of a triple occurring between hybrids, we have a means of distinguishing
between real and random keys. On the other hand, if MM can still engineer a triple involving Pm
when given a random key in place of Pm’s key, then we can simulate MM to completion without
opening Pm, which enables us to open Pa and challenge Pb.

Now let us be precise. Let M1
π(M) be the event that M engineers a triple where Pb does not

partner with any earlier process, M2
π(M) be the event that Pa and Pb partner with Pm, but that

Pm terminates after Pa, and M3
π(M) the event that Pa and Pb partner with Pm and that Pm is the

first of these processes to terminate.

7We only need the condition “latest” to avoid ambiguity in the (easy) case that processes 〈A,B, 0〉 and 〈B,A, 1〉
share a key which is later also shared with, say, a 〈C,D, 0〉 process

8the polynomial upperbound on MM ’s runtime gives us a polynomial upperbound on the maximum number of
processes in the network

15

Lemma B.1. π is penalty-secure =⇒ ∀M Pr[M1
π(M)] is negligible

Lemma B.2. π is penalty-secure =⇒ ∀M Pr[M2
π(M)] is negligible

Lemma B.3. π is penalty-secure =⇒ ∀M Pr[M3
π(M)] is negligible

Lemmas B.1 and B.2 are straightforward and their proofs are omitted. We give a complete
proof of Lemma B.3.

Proof. Consider the following modified network ring-master, RMi. The only modification of RMi

is how it computes the key it returns in response to an open query. RMi begins by setting a
counter, counter to zero. When a process P terminates, RMi calculates it’s key as follows:

• if it partners with an earlier process, RMi responds with whatever key was output by that
process;

• otherwise

– if counter < i, RMi draws k ∈R {0, 1}n, stores this alongside P and reports k as P ’s
keys

– otherwise, RMi returns whatever key P actually output

Now suppose MM is an adversary for which Pr[M3
π(MM)] is significant. Let Ei denote the

event that MM engineers a mismatch of type 3 to occur while interacting with RMi. Note that
E0 is simply M3

π(MM). Let p(n) be a polynomial upper-bounding MM ’s runtime; note that p(n)
upper bounds the number of processes started by MM . Consider the following value:

Case B.3.1: |Pr[E0]− Pr[Ep(n)]| is significant

Since we have a polynomially long sequence of hybrids, there exists an i such that

Pr[Ei]− Pr[Ei+1] is significant (2)

We will assume that Pr[Ei] − Pr[Ei+1] > 0 (if this is not the case, invert the bit output by the
following adversary).

Let A′i be the adversary that behaves as follows: Draw j ∈R [p(n)], set counter = 0; we
simulate MM by forwarding all queries but open(A,B, b, `) to RM; simulate open(A,B, b, l) by
transforming some of the keys. M′i we define a key transform map T : {0, 1}n → {0, 1}n throughout
the simulation as follows:

• if counter < j,

1. issue open(A,B, b, l) to RM, receiving k

2. if T (k) is defined, return this value

3. otherwise, increment counter, draw k′ ∈R {0, 1}n, set T (k) = k′, and return k′.

• if counter = j

– if strictly less or strictly more than i distinct keys have been returned in the j open

queries issued so far, abort by outputting a random bit

– challenge(A,B, b, l), returning k∗ as 〈A,B, b〉l’s keys

• if counter > j,

16

1. forward open(A,B, b, l) to RM receiving k

2. if T is defined on k, return T (k); otherwise return k unmodified.

WhenM terminates,M′i guesses the challenge bit based on whether a mismatch of type 3 appeared;
if such a mismatch occurred, guess that k∗ was the real key, otherwise guess that k∗ was a random
key.

If should be clear that wheneverM′i simulates the interaction ofMM with RMi perfectly,M′i
wins with 1/2 plus the quantity of (2), which is significantly more than 1/2.
M′i’s simulation is perfect when the jth process to terminate just so happens to be the ith

process to output a distinct key, and deviating otherwise. If strictly less or strictly more than i
distinct keys have been returned,M′i knows this and aborts; the question is what happens if process
j’s key is not different from the i keys output so far. Note that if Pr[M1

π(M′i)] (resp. Pr[M2
π(M′i)])

is significant, then π is insecure by Lemma B.1 (resp. Lemma B.2). Thus we can assume that if the
jth process outputs a key that matches one of the earlier i distinct keys, it partners with an earlier
process and M′i is penalized for challenging the jth process, its output is forced to be a random
coin-flip, and we are in the same situation as if M′i had explicitly aborted.

Of course in any play of MM in the full-information game, there is a unique process that is
the first to output the ith distinct key; since the choice of j is made obliviously of any of MM ’s
choices, then j is correct with significant probability. The result follows.

Case B.3.2: |Pr[E0]− Pr[Ep(n)]| is negligible

Let M′ be the following adversary: Draw i1, i2, i3 ∈R [p(n)], letting i1 < i2 < i3. We will
refer to the i1st (resp. i2nd, i3rd) process to terminate as P1 (resp. P2, P3). Fix k ∈R {0, 1}n Set
counter = 0. Simulate M, forwarding all queries but open(A,B, b, i) to the adversary, which we
simulate as follows:

• increment counter.

• if counter = i3, halt

• if counter = {i1, i2}, return k

If P1,P2,P3 are not processes of types that would form a mismatch of type 3 (i.e. it is not
the case that (id(P1), id(P2), id(P3)) 6= ((A,B, b, i), (B,A, b, j), (B,A, b, k)) for some names A,B,
some bit b and some indices i, j, k ∈ [p(n)], abort by outputting a random bit. If we haven’t aborted,
complete the penalty-security game as follows: open P2 receiving k2, challengeP3 receiving k∗,
output “real” if k∗ = k2 and “random” if otherwise.

Let E be the event that a triple would occur if MM is simulated correctly, and the processes
P1, P2, P3 were correctly chosen to be the three processes involved in the triple. It is clear to see
that when E occurs, M′ wins the penalty security game with probability negligibly far from 1.
It is also straightforward to see that when E occurs, M′ wins the penalty security game with
probability negligibly close to 1/2: ifM′ is not penalized, these processes will have output different
keys, and so M′ will output “random” with probability negligibly close to 1. Finally, given that
the choices of i1, i2, i3 are drawn uniformly at random and independently of any of M or RM’s
actions, P1, P2, P3 are the correct processes with probability 1/p3(n), and so the probability that
E occurs is significant.

17

C Proof of Theorem 3.1

Proof of Theorem 3.1(⇐): Suppose MP breaks the partner-security of π; our goal is to break the
penalty-security of π. By Theorem 3.3 we can assume, except with negligible probability, that
in all networks arranged by MP at most two totally honest processes output the same key, and
when this occurs, these processes are compatible. In any play of the partner-security game there
is a unique process, say PCH , that is challenged by MP. Since MP can ask whether compatible
processes partner, we assume, without loss of generality, that no totally honest process terminating
before PCH has output the same session key as PCH.

Now if we knew in advance which process is PCH , we could simulateMP as follows: to answer
partnering queries, we compute an “effective session key” for each process and report processes as
partners if they are compatible and have the same effective key. The effective session key of PCH is
computed as soon as PCH terminates, and is the result of challenging PCH ; for all other processes,
the effective session key is whatever is session key is returned from the ring-master when we ask to
open that process. WhenMP challenges PCH we give k∗ as the challenge, continue simulatingMP
until completion and echo MP’s guess. If MP asks to open a process, we return that process’s
effective session key.

The correctness of this simulation relies on us reporting partnering correctly. Clearly all part-
nering queries concerning effective keys different from k∗ are answered correctly, and even those
concerning k∗ are answered correctly when k∗ is the real session key (output by PCH). So suppose
b∗ = 1, and k∗ is a uniformly random key (different from the one output by PCH). Thanks to
Theorem 3.3, we know that at most one other totally honest process shares a key with PCH , and if
this process exists, it is a compatible process. When we ask to open this process, by the definition
of the penalty-security game, we are given k∗, so we correctly report this process as the partner of
PCH . Further, Lemma 3.2 guarantees that no totally honest process actually outputs k∗, and so
the only time we see k∗ is if it has been substituted as the process’s key by the ring-master.

It remains to show that we can effectively do this simulation without knowing (a priori) which
process is PCH . We will choose a process uniformly at random at the start of the simulation, say
PR, and treat this process as if it is PCH . Now when PR happens to be PCH , we simulate MP to
completion, breaking the penalty-security of π with the same success probability ofMP attacking
the partner-security. Probably PR will not be this desired process.

It is bad if PR partners with a process that terminated earlier (recall that, as an adversary
playing the penalty game, we have no way of knowing this fact). If, when we challenge PR, we get
a random k∗, we will subsequently incorrectly answer some partnering queries (specifically, if MP
asks if PR partners with an earlier process, we would incorrectly answer no). However, according to
the rules of the penalty-security game, by challenging PR, which partners with an earlier process,
we are forced to stop the security experiment flip a coin as our guess, stopping us from otherwise
giving a wrong simulation of MP.

So suppose otherwise (i.e. that PR does not partner with an earlier process). IfMP challenges
a process other than PR we ‘abort’ our simulation by outputting a random bit. If, before MP
challenges a process, MP asks to open a process compatible with PR and whose effective session
key is k∗, then again we abort, because we know that MP could not later challenged PR.

Since PR is chosen from a set of polynomial size, PR will be the right process with significant
probability; in all other cases, we win with probability exactly 1/2. Taken together, these facts
imply that that π is not penalty-secure.

18

