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Abstract Biclique attack, is a new cryptanalytic technique which brings new 

tools from the area of hash functions to the area of block cipher cryptanalysis. Till 

now, this technique is the only one able to analyze the full-round AES cipher in a 

single key scenario. In this paper, we introduce non-isomorphic biclique attack, a 

modified version of the original biclique attack. In this attack we obtain 

isomorphic groups of bicliques, each group contains several non-isomorphic 

bicliques of different dimensions. Actually, these bicliques are the results of an 

asymmetric key partitioning which is done according to two sets of key 

differences. Using this technique it is possible to get a chance to expand the length 

of bicliques or mount an attack with less data complexity. We found out the 

lightweight block cipher mCrypton is an appropriate candidate to be analyzed 

with this technique and bicliques up to five rounds can be constructed for this 

block cipher. Furthermore, we use two additional minor techniques, including 

pre-computation/re-computation in the bicliques construction and early abort 

technique in the matching stage, as well as a property observed in the diffusion 

layer of mCrypton to obtain more improvements for the complexity of our attacks 

on full-round mCrypton-96 and mCrypton-128. 

Keywords Biclique cryptanalysis, Asymmetric key partitioning, Non-

isomorphic bicliques, Block ciphers, mCrypton 

1. Introduction 

After the introduction of the meet-in-the-middle (MITM) attack by Diffie and 
Hellman in 1977 [6], the area of modern block ciphers cryptanalysis saw another 
milestone in the early 1990s by the invention of differential [2] and liner [16] 
attacks. Then, the advanced encryption standard competition, 1997-2001, 
accelerated the progress of design and cryptanalysis of block ciphers. However, 
this progress is more evident in the field of design than the field of analysis. 
Indeed, most of important cryptanalysis methods for the block ciphers such as 
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impossible differential, differential-linear, square and boomerang attacks have 
been proposed during the period of the AES competition. On the other hand, 
thanks to the SHA-3 competition, cryptanalysis of hash functions has grown faster 
than the block ciphers. This fact has encouraged the adoption of some hash 
cryptanalysis techniques to enrich the field of block cipher cryptanalysis. Biclique 
attack, although may be considered as an extension of the meet-in-the-middle 
attack, is one of these kinds of brilliant techniques which brings new tools from 
the area of hash functions to the area of block cipher cryptanalysis [10]. This 
attack was first introduced by some cryptanalysis results on the AES [3]. The 
authors present two paradigms for key recovery with bicliques, including the 
long-biclique and independent-biclique. The obtained results show the best known 
single-key attacks on the variants of AES. Since its introduction, this technique 
has been applied to many block ciphers such as SQUARE [14], Piccolo [17], 
ARIA-256 [4], HIGHT [7], TWINE [5], Present and LED [1]. After that, the 
notion of narrow-biclique was presented in [9] to analyze the long-lasting block 
cipher IDEA. In fact, they extend the independent-biclique framework to allow 
for lower data complexity requirements by using available degrees of freedom for 
limiting the diffusion in spite of high dimension. 
In this paper, we introduce a modified version of the original biclique attack. In 
this technique we define isomorphic groups of bicliques, each of them consists of 
several non-isomorphic biclques. Based on this fact we call this technique non-
isomorphic bicliquie attack. Our experiments show that this method in 
combination with key schedule properties of some block ciphers like Crypton [11] 
and mCrypton [12] leads to a longer independent bicliques. As it is known, 
mCrypton is derived from Crypton and they have the same top level structure. But 
due to its slightly more complicated key scheduling, we selected mCrypton to 
study the application of non-isomorphic biclique attack. Moreover, two additional 
techniques, one for increasing the speed of biclique construction and the other, 
early abort technique, for reducing the complexity of matching check are 
exploited to reduce the overall time complexity of the attack procedure.  
The designers of mCrypton show that this cipher is secure against differential and 
linear attacks [12]. So far, some attacks have been published on this cipher, 
including a related-key rectangle attack on 8 rounds of mCrypton-128 [8] and 
related-key impossible differential attacks on 9 rounds of mCrypton-96 and 
mCrypton-128 [15]. However, the attack proposed in this paper is the first full-
round attack on this block cipher. Obtained results include two attacks on 
mCrypton-96 using a 4-round and 5-round independent bicliques with the 

computational complexity 94.092  and 93.752  encryptions, respectively. Also, we 
construct a 4-round biclique to mount an attack on mCrypton-128 with the 

computational complexity 126.052  encryptions. As it will be discussed in Section 
4.4, in this paper we have used a stricter criterion for the complexity estimation 
instead of typical criterion which is dependent only to the number of active S-
boxes. Thus, considering the typical criterion these computational complexities 
are decreased at least 0.15 in the exponentials.       
This paper is organized as follows: Section 2 provides a brief description of 
mCrypton and the required preliminaries. A concise review of the biclique attack 
along with a preview of our contribution is given in Section 3. In Subsection 4.1 
we introduce a 4-round biclique for the mCrypton-96. Then Subsection 4.2 
describes the asymmetric key partitioning method. For this purpose, first, we 
define the concept of minimal space generator and a method for its construction. 
Then a general form for the asymmetric key partitioning and the topology of 
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constructed bicliques is introduced. Then we customize this general form for the 
non-overlapping sets. Subsections 4.3 and 4.4 are devoted to the attack procedure 
and its complexity, respectively. Another attack on mCrypton-96 based on a five-
round biclique, is presented in Subsection 4.5. A similar procedure is applied for 
mCrypton-128 in Section 5. Finally, we conclude the paper in Section 6. 

2. Preliminaries and a Brief Description of 

mCrypton 

mCrypton is a 64-bit lightweight block cipher designed for use in low-cost and 
resource-constrained devices such as RFID tags and sensors in wireless sensor 
networks. As it is known, this cipher is a redesigned compact version of the 
Crypton cipher. mCrypton processes 64-bit data block, consisting of 16 nibbles, 
by representing it as a 4 4  matrix of nibbles as follows: 

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

a a a a

a a a a
A

a a a a

a a a a

 
 
 
 
 
 

 

mCrypton encryption/decryption, independent of its key size, has a 12-round 
Substitution-Permutation structure, where each round consists of four 
transformations as follows: 

Non-linear Substitution  : consists of nibble-wise substitution, using four 4-bit S-

boxes , 0,1,2,3iS i  . Thus, the nibble located in row 0 3i   and column 

0 3j   in array A ( 4 i ja   ) is passed through the S-box ( ) mod4i jS  . 

Bit Permutation  : mixes column 0 3i   of array A by bit-wise column 

permutation i . In column 0 3i  , for an input column 0 1 2 3( , , , )ta a a a a  and 

its corresponding output column 0 1 2 3( ) ( , , , )t
ib a b b b b  , we have 

3
0 ( )mod 4( )j k k i j kb a m     , 0 3j  , where 0 1110m  , 1 1101m  , 2 1011m   

and 3 0111m   are masking nibbles and ' ' is the bit-wise AND operation.   

transformation is an involution (i.e. 1  ) and has a differential branch number 
of 4. 

Column-To-Row Transposition  : moves the nibble in the position ( , )i j  to the 

position ( , )j i  . 

Key Addition  : For a round key ( [0], [1], [2], [3])r r r r rK K K K K  , it is a simple 

bit-wise XOR operation. [ ], 0,1,2,3rK i i   is the value of round key in the i-th 

row. 

According to the above transformation, r-th round of mCrypton, 1 12r  , is 
applied to the input intermediate value X by ( )

rK X      . An initial Key 

Addition transformation (
0K  ) and a final operation      are also performed 

before the first round and after last round, respectively. In the r-th round, the 
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intermediate values after application of transformations   ,    ,   and   are 

denoted by rx  , rx  , rx  and rx  , respectively. Also, the input and the output of r-

th round is represented by I
rx  and O

rx  , respectively.  

Key scheduling of mcrypton-96: the 96-bit internal register 
( [0], [1], [2], [3], [4], [5])U U U U U U U  is first initialized with the 96-bit user key, then 

round keys ,0 12rK r   are computed consecutively as follow (in the following 

equations, [ ]C r , 0 12r  , are some constants and S denotes a nibble-wise S-

box operation): 

0 1 2 3

0 1 2 3

( [0]) [ ],

( 0,1, 2,3 , 0 000, 0 0 00, 0 00 0, 0 000 )

( [1] , [2] , [3] , [4] )

( [5], [0] 3, [1], [2], [3] 8, [4])

i i

r

T S U C r T T M

i M xf M x f M x f M x f

K U T U T U T U T

U U U U U U U

   

    

    

  

   

Key scheduling of mcrypton-128: the 128-bit internal register 
( [0], [1], [2], [3], [4], [5], [6], [7])U U U U U U U U U  is first initialized with the user key, 

then round keys ,0 12rK r   are computed consecutively same as the 96-bit 

version, except that the updating stage is performed as follow: 

( [5], [6], [7], [0] 3, [1], [2], [3], [4] 8)U U U U U U U U U   . 

In the following we introduce a property of bit permutation   transformation in 
mCrypton cipher: 

Property 1 Assume that for column i , 0 3i   and its four-nibbles input/output 

a and b we have ( )ib a . Also for column i , 0 3i   and its four-nibbles 

input/output a  and b  we have ( )ib a 
  . Obviously, there is 0 3f   which 

( ) mod 4i i f   . Thus, if a  is a circular shift of a  by s nibbles, i.e. 

, 0 3a a s s     , then, the nibbles of b  are also a circular shift of nibbles of 

b  such that: 

( ) ( ) 0

( ) ( ) 0

b s f s f
b

b f s s f

   
  

   
 . 

Proof. Suppose ,0 3a a s s      then ( )mod 4 ,0 3k k sa a k
    . Based on   

operation, the value of the j th nibble, 0 3j   of b  is 3
0 ( )mod 4( )j k k i j kb a m     . 

In the same way, the j  th nibble, 0 3j    of b  , where ( )mod 4j j s f    , is: 

3 3
0 ( )mod 4 0 ( )mod 4 (( ) ( ) )mod 4( ) ( )j k k i j k k k s i f j s f kb a m a m           

       .  

Assume ( )mod 4k k s   , then jb  could be rewritten as: 

3 3
0 ( ( ) ( ))mod 4 0 ( )mod 4( ) ( )j k k i j s f k f s k k i j k jb a m a m b               

        . Hence, 

( )mod4j j s fb b  
 . So for the whole column we have: 
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( ) , ( ) 0

( ) , ( ) 0

b s f s f
b

b f s s f

   
  

   
.□ 

As it was mentioned, the   operation is an involution so the above property holds 
for the inverse of   operation. Also,   is linear, so the same property holds for 
the differentials in the input and output of  . 

Notations. Throughout this paper we use the following notations: 

{ }A : means that A is a collection of sets. 

1 2,[ , , ]i j jA  : indicates the bits 1 2, ,j j   of i-th element of A.   

1 2,[ , , ]{ }i j jA  : indicates the elements with indexes 1 2, ,j j   of i-th set of { }A . 

3. Biclique Cryptanalysis and Our Contribution 

In this section, first, we review the concept of biclique cryptanalysis as it was 
introduced in [3] unless we describe biclique construction at the plaintext side 
instead of ciphertext side. Also we describe this method with an emphasis on 
independent bicliques. Then, we introduce our contribution in the biclique 
cryptanalysis.  

Biclique Cryptanalysis. Assume block cipher E is composed of three sub-ciphers 
as ( ) ( )K K K KE P f g h P   . Also the intermediate value ( )Kh P  is denoted by S. 

Suppose h connects 2d  plaintexts iP , 0 2di  , to 2d  intermediate states jS , 

0 2dj  , with 22 d  keys [ , ]K i j . Now, set of iP s, jS s and [ , ]K i j s is called a 

biclique of dimension d if we can write [ , ] ( )j K i j iS h P , 0 2di  , 0 2dj  . 

For performing a biclique attack on the block cipher E, at the first step, the whole 

key space is partitioned into 22k d  groups each of 22 d  keys. Then for each key 
group, according to the definition of a biclique, the biclique attack is performed 
based on the following three major steps: 

- Biclique Construction: Build a structure of 2d  plaintexts and 2d  intermediate 

values such that for each i and j, 0 2di  , 0 2dj  , the relation 

[ , ] ( )j K i j iS h P  is satisfied. 

- Pre-computation: Fix some matching nibbles in the output of sub-cipher g. Ask 
for the encryption of plaintexts iP s to obtain the corresponding ciphertexts iC s. 

Then compute 1
[ ,0] ( )K i if C  and store the intermediate values. Also, for intermediate 

values jS s, compute [0, ] ( )K j jg S  and store the intermediate values. To reduce the 

data complexity, some plaintexts are reused in different groups. 

- Matching check with re-computation: According to the stored values in the 
previous stage, ask for re-computation of the matching nibbles for each jS  under 

[ ,0]K i  and for each iP  under [0, ]K j . If a [ , ]K i j  be the correct user key, then 
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obviously, it maps jS  to iP  in the matching nibbles. So, the adversary checks 

such keys by a trial encryption with a valid plaintext/ciphertext pair. In the other 
hand if a [ , ]K i j  leads to different values in the matching nibbles, then it is 

surely incorrect.  
According to the definition of biclique, a d-dimensional biclique needs to 

establish 22 d  relationships simultaneously. Bogdanov et al. proposes an approach 
to find a d-dimensional biclique from independent related key differentials [3]. 
The result of this technique says that if we have two related key  differential  
and  differential , which share no active non-linear components (S-boxes); 

 differential  maps an input difference i to the output difference 0 under key 

difference K
i , and  differential  maps the input difference 0 to an output 

difference j  under key difference K
j , then an input difference i  maps to an 

output difference j  under key difference K K
i j   for each i and j. 

 
Our contributiuon. The main structure of the non-isomorphic biclique attack is 
the same as original biclique attack. The most notable difference with the previous 
approach is the way we partition the key space. Actually, in the original biclique 
method the key space is partitioned uniformly, so all of the bicliques are of the 
same dimension. While, in the non-isomorphic biclique attack, at first we select 
two arbitrary sets of key differences which could lead to the bicliques with more 
length, then an asymmetric (non-uniform) key partitioning is done according to 
these differences sets. Thus, we obtain isomorphic groups of bicliques, called 
biclique groups, which in each of them there are several non-isomorphic biclques. 
Note that, this does not mean that all of the bicliques in a biclique group are non-
isomorph and it could be some bicliques in a group with the same dimensions. 
Fig. 1 shows the overall topology of a biclique group consists of m non-
isomorphic bicliques which m is smaller or equal to the number of bicliques in the 

biclique group. For a biclique with 1
id  and 1

id  vertices in its two segments, we 

define its dimension with the pair 1 2( , )i id d  and it is expected for such a biclique to 

cover at most 1 2
i id d  new distinct keys of the key space (if two key differences 

sets be non-overlapped then such a biclique covers exact 1 2
i id d  new distinct 

keys). Through this method, depending on the key scheduling algorithm, it is 
possible to get a chance to expand the length of bicliques or less data complexity. 
In Section 4.2 we introduce the asymmetric key partitioning method in its general 
form and also we customize it for non-overlapping key differences sets. 
Moreover, we improve time complexity of the attack by another two minor 
techniques including pre-computation/re-computation in the biclique construction 
and early abort technique in the matching check stage.  

 

Fig. 1. Overall topology of a biclique group consists of m non-isomorphic bicliques.  
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4. Non-isomorphic biclique cryptanalysis of 

mCrypton-96  

In this section, an attack on full-round mCrypton-96 is presented. For this 
purpose, first, we construct a 4-round independent biclique for the initial rounds 
and then we introduce the asymmetric key partitioning approach with more 
details. Next, the attack procedure and complexity analysis are proposed. Finally, 
we introduce another version of the attack using a 5-round biclique. 

4.1. Four round biclique 

To construct an independent biclique, we need a more accurate view of the key 
schedule of mCrypton-96. Table 1 shows the changes of the internal value of 

( [0], [1], [2], [3], [4], [5])U U U U U U U  register through the 12 rounds of the 

encryption process.  
 

Table. 1 Updated register U through the rounds of mCrypton-96 

r = 0  U[0] U[1] U[2] U[3] U[4] U[5] 
r = 1 U[5] U[0] << 3 U[1] U[2] U[3] << 8 U[4] 
r = 2 U[4] U[5] << 3 U[0] << 3 U[1] U[2] << 8 U[3] << 8 
r = 3 U[3] << 8 U[4] << 3 U[5] << 3 U[0] << 3 U[1] << 8 U[2] << 8 
r = 4 U[2] << 8 U[3] << 11 U[4] << 3 U[5] << 3 U[0] << 11 U[1] << 8 
r = 5 U[1] << 8 U[2] << 11 U[3] << 11 U[4] << 3 U[5] << 11 U[0] << 11 
r = 6 U[0] << 11 U[1] << 11 U[2] << 11 U[3] << 11 U[4] << 11 U[5] << 11 
r = 7 U[5] << 11 U[0] << 14 U[1] << 11 U[2] << 11 U[3] << 3 U[4] << 11 
r = 8 U[4] << 11 U[5] << 14 U[0] << 14 U[1] << 11 U[2] << 3 U[3] << 3 
r = 9 U[3] << 3 U[4] << 14 U[5] << 14 U[0] << 14 U[1] << 3 U[2] << 3 
r = 10 U[2] << 3 U[3] << 6 U[4] << 14 U[5] << 14 U[0] << 6 U[1] << 3 
r = 11 U[1] << 3 U[2] << 6 U[3] << 6 U[4] << 14 U[5] << 6 U[0] << 6 
r = 12 U[0] << 6 U[1] << 6 U[2] << 6 U[3] << 6 U[4] << 6 U[5] << 6 

  

Now, we define two sets of key differences K
i  and K

j , which are used to form a 

4-round independent biclique. Both of these sets are directly defined on the user 
key which is the initial value of register U. The first set includes 61 distinct 96-
bits differences as follows: 

0 60 3

[ ] 0, 0,1,3,4,5
:

[2] , ( 8) [0,0,0,0] [0,0,0, ] [0,0, ,0] [0, ,0,0] [ ,0,0,0], 0
K
i

i i i

U k k

U a a or t or t or t or t t 

  
 

    

 

As it can be seen, in each of these differences, [0]U , [1]U , [3]U , [4]U  

and [5]U  are zero and difference [2] 8U   is chosen to have at most one 

active nibble after application of 3 . As it is obvious, we have  (0) 0  and for 

the sake of simplicity, in the above relation we assume 0 0a  . The second set 

includes 16 distinct differences as follows: 

,[2,3,4,5] ,[0,1,6,7,8,9,10,11,12,13,14,15]0 15

[ ] 0, 0,1, 2,3,4
:

[5] , 2 ( ), 0
K
j

j j jj

U k k

U a a dec bin j a 

  
 

   
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Where, 2 ( )dec bin j  corresponds to the binary representation of decimal value j. 

As it can be seen, in each of these differences [0]U , [1]U , [2]U , [3]U  

and [4]U  are zero and the difference [5]U  takes all of the 16 possible values. 

The round-key differences resulted from the two sets of key differences K
i  and 

K
j , are provided in Table 5.a in Appendix B.  

 
 

 

Fig. 2. Differential trails for a four round biclique of mCrypton-96 according to key differences 

K
j  (left) and 

K
i  (right) . 

Fig. 2 shows that 4-round related key differentials  differential  and 

 differential  resulted from K
i  and K

j , share no active S-boxes. So, as it was 

mentioned before, the constructed biclique is correct. 

These differential trails, actually, show the parts of computation of iP  and jS  for 

each i and j which are different from the base computation.  differential  is 
clear and self-explaining. But,  differential  needs some descriptions. 

According to 2K  and the definition of K
i , there are four possible active nibbles 

in the 4-th column of 2x . Also, according to the property 1, it is easy to check 

that 1,[2,6,10,14] 2,[3,7,11,15] 1x x      (Parameters: f=3, s= 2). In Fig. 2 we have 

selected nibble 3 of 2x  to be active, hence nibble 14 of 1x  is also active. Truly, 

there are four possible  differential s, which Fig. 2 shows one of them. By 
examining all of the four possible differential trails, it can be found that the 
difference of plaintexts is one of the differences in Fig. 3. 
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Fig. 3. Possible plaintext differences according to possible 
K
i  related-key differential trails.  

As it can be seen, in three cases we have 5 active nibbles and in one case there is 

only four active nibbles. Also, according to 0K , P  takes at most 61 additional 

possible differences ia s in three nibbles of the second row. So, the number of 

possible plaintext differences is 4 5 4 4 27.5461 (3 2 2 ) 2     .  

Moreover, a sample biclique is constructed by the following four steps: 
 
Step 1: Set an arbitrary 96 bit value for the user key and assume it base key 

[0,0]K .  

Step 2: Encrypt the plaintext 0 0P   under key [0,0]K  to compute the 

intermediate value 4x  . Since 0[0,0] [0,0]KK K  , assume 0S  is equal 

to 4x . This step is considered as the base computation. 

Step 3: For each 1 60i   decrypt 0S  under key [0,0] K
iK   to obtain the 

plaintext iP . Since 0[0,0] [0,0]KK K  , so, as it is expected, the 

plaintext value is 0P  for 0i  . So we have 
[0,0]

0 ,0 60
K
iK

iP S i


   . 

Step 4: For each 0 15j   encrypt 0P  under key [0,0] K
jK   to obtain the 

intermediate value 4x  and assume it jS . So we have 

[0,0]

0 ,0 15

K
jK

jP S j


    . 

 
For such a biclique it is expected that for each 0 60i   and 0 15j  , 

encryption/decryption process 
[0,0] K K

i jK

i jP S
 

  is satisfied. However, the 

constructed biclique is a biclique with the maximum dimension in a biclique 
group. Actually, according to the asymmetric key partitioning, for an arbitrary 
biclique in a biclique group, it is not necessary that all possible keys 

[0,0] K K
i jK   , 0 60i  , 0 15j  , are considered. 

4.2. Asymmetric key partitioning 

According to the key scheduling of mCrypton, we perform the key partitioning 
directly to the main key. However, in the proposed method the key partitioning is 
somewhat different. In the usual method of biclique attacks we construct each 
biclique for a value of base key, which all of the bicliques are from the same 
dimensions and the base keys are the certain values of some bits. However, in the 
proposed method we have the bicliques from different dimensions and also the 
base keys must be pre-computed. In this section we will describe the proposed key 
partitioning method but at first, we must define the space generator. 
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4.2.1 Definition of the minimal space generator  

Assume space S is corresponds to a set of all 2m  binary vectors of length m and  
D is a given subset of S. Now, we define a minimal space generator of S based on 
set D. 

Definition 1 Assume DG  is a subset of S, which for each element of S like 

,0 2 1m
iS i    there is an element D D

kG G , 0 | | 1Dk G    and an element 

jD D , 0 | | 1j D    such that D
i k jS G D   . Then DG  is a space generator of 

S based on set D. Now, the space generator DG  is minimal, if by removing any 

element of DG , the remained DG  is not a space generator any more. 

For clarifying, for any D, DG S  is a trivial space generator of S but may not be 
a minimal one. In general, for an S and a given set D, the minimal space generator 
is not necessarily unique. Note that there are some optimal space generators which 
are minimal space generators with the minimum number of elements. As it can be 
seen later, smaller cardinality of a minimal space generator, could lead to an 
attack with less complexity, but in this work we prefer not to encounter such an 
optimization problem. However, the semi-optimal algorithm in Appendix A is 
proposed to find a minimal space generator of a known S and a given D. Although 

the obtained DG  is not certainly optimal, the algorithm is so fast and the results 
can be easily verified. 

After obtaining a space generator DG , we also want a partitioning of S according 

to the obtained DG . In other words, we want to assign each element of S to a 

unique element of DG . Obviously, the number of elements of such a space 

generator could not be less than 2 / | |m D . Our experiments show that the 

cardinality of obtained DG  is less than 22 / | |m D . Also, except a special case is 

explained later, this cardinality is usually about 12 / | |m D . Hence, for a certain 

value of i there could be more than one pair (k, j) which D
i k jS G D  . In other 

words, there are elements of space S which can be generated by more than one 

element of DG . Hence, to partitioning S, we must consider a mechanism in which 

each element of S is assigned to a unique element of DG . For this purpose, 

according to this fact that in the proposed algorithm elements of DG  are obtained 

sequentially, for a new element of DG  we assign only those elements of S which 
are generated by this new element and have not been assigned to the previous 

selected elements of DG . 

For each element D D
kG G , 0 | | 1Dk G   , the assigned unique elements of S 

are stored in { }D
kA , and their corresponding elements of D are stored in { }D

kB  (for 

each element ,{ } { }D D
k z kA A  we have , ,{ } { }D D D

k z k k zA G B  ). Thus, through the 

algorithm, we obtain a minimal space generator DG  and also we partition the 

space S with respect to the elements of DG . Hence we have 
| | 1

0

{ }

DG
D
k

k

A S




  and 

1 2

1 2

1 2
0 , | | 1

, { } { }
D

D D
k k

k k G

k k A A
  

     . 
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A special case of minimal space generator. Assume a set D which the linear 
combination of each two elements of it is also an element of D, i.e., D is a closed 
set under XOR operation. The elements of such a set D are actually the code-
words of a linear block code of length m over GF(2). Hence, the cardinality of D
is certainly a power of 2 and there is an optimal space generator based on set D 

with the exact cardinality 2 / | |m D . So, if one is encountered with such a case it is 

better to use the certain simple methods in linear block codes for obtaining an 
optimal space generator instead of the proposed algorithm [13]. However, in this 
paper we do not deal with this special case. 

4.2.2 Asymmetric key partitioning and bicliques topology  

The goal of key partitioning in a biclique attack is to determine the values of base 
keys, which the bicliques are constructed based on them. According to the 
definition of minimal space generator in the previous section, it is easy to describe 
how the key partitioning is done in the non-isomorphic biclique attack. In the 
following, without loss of generality we describe it according to key differences 

sets K
i  and K

j  defined in Section 4.1. At first, we define set D as follow:  

16 ,[32, ,47,82, ,85] ,[32, ,47,82, ,85]
0 60,0 15

, K K
i j i j

i j

i j D  
   

          (1) 

As it can be seen, the difference in the other 96 20 76   bits of K K
i j  , 

0 60i  , 0 15j  , is always zero. In the first step of key partitioning, we set a 

user key which has a certain value in these 76 bits and is zero in the other 20 bits. 

This way we have 762  user keys, each of them indicated by bK . Now, for each 
bK  we construct a set of bicliques of different dimensions called biclique group. 

For this purpose, we need the values of base keys for each biclique in a biclique 

group. These base keys are actually the elements of minimal space generator DG  

of space S with dimension 20 based on D. Hence, if bK  is the user key of a 

biclique group then we replace 20 bits [32, , 47,82, ,85]   in bK  with each 
D D
kG G , 0 | |Dk G  to get a new base key. Note that the other 76 bits of all  

base keys in a biclique group are the same as those bits of bK . It is obvious that 

there is no need to re-obtain the minimal space generator DG  for another biclique 

groups (corresponds to a new value of bK ) and it is enough to precompute it only 
once. Thus, the number of all base keys and consequently the number of all 

bicliques is 76| | 2DG  . 

As it was mentioned before, the dimensions of bicliques in a biclique group are 
not the same. However, the topology of these bicliques are dependent to the 

prcomputed sets { }D
kA s (or { }D

kB s), 0 | |Dk G . In the rest of this section, we 

introduce how to determine the topology of bicliques in a biclique group. As it 
will be seen, according to the base keys and the bicliques topology in the biclique 
groups, the whole 96-bit key space is partitioned, definitely.  

Each biclique group must partition 202  values of user key while according to the 
4-round biclique introduced in Section 4.1, each biclique contains at most 
61 16 976   distinct keys. Hence, the whole key space of a biclique group
cannot be covered by a single biclique.  
In other hand, D has 976 elements each of 20 bits length. An important issue is 
that we must check D to ensure that all of the elements are distinct. If there are 
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some repeated elements they must be eliminated from D. Since the two sets   
and   do not have any overlapped nibbles, all of the 976 elements are distinct. 
Now, we call the algorithm in Appendix A, for m = 20 and the D to obtain 

minimal space generator elements ,0 | |D D
kG k G   and their corresponding 

{ }D
kB s. Then for each D

kG , we make a biclique of biclique group. For constructing 

the biclique corresponds to D
kG , we need to define two sets of key differences are 

denoted by { }D
kB  and { }D

kB  both of them are obtained from { }D
kB . Actually, 

{ }D
kB  and { }D

kB  are subsets of K
i  and K

j , respectively. For clarifying, { }D
kB  

is a subset of D, hence according to (1), it is possible to be some elements K
i  or 

K
j  which has no effect on { }D

kB  and can be ignored. For example if there is no 
K
j , 0 15j   , which 

47 16 47,[32, ,47,82, ,85] ,[32, ,47,82, ,85] { }K K D
j j kD B        

 then 47
K  

can be ignored. In a same way if there is no K
i , 0 60i  , which 

16 9 ,[32, ,47,82, ,85] 9,[32, ,47,82, ,85] { }K K D
i i kD B          then 9

K  can be ignored. Hence 

the elements of { }D
kB  and { }D

kB  are those of K
i  , 0 60i  , and K

j , 

0 15j  , which are not ignored.  

At first, { }D
kB  and { }D

kB  are initialized as null sets. If for an i, 0 60i  , there 

be at least one j, 0 15j   which 16 { }D
i j kD B    then we add ,[32, ,47,82, ,85]i    to 

{ }D
kB . In the same way, we examine all 0 15j   and if for an j there be at least 

one i, 0 60i  , which 16 { }D
i j kD B    then we add ,[32, ,47,82, ,85]

K
j    to { }D

kB . 

Considering this fact, we will make the biclique corresponds to D
kG  by { }D

kB  

and { }D
kB  instead all K

i s, 0 60i   and K
j s, 0 15j  .  

As it was mentioned, each D
kG  is the base key of k-th biclique (in biclique group). 

and { }D
kA s are a partitioning of the space S with m = 20. Hence by replacing 

,{ }D
k zA s, 0 { }D

kz A  ,  in bits [32, , 47,82, ,85]   of bK  we obtain the 

corresponding user keys and by examining all base keys D
kG s we obtain all 202  

user keys in biclique group. In the other hand, as it is expected, for each 

,{ } { }D D
k z kB B  there is only one pair 

1,{ }D
k iB  and 

2,{ }D
k iB  which 

1 2, , ,{ } { } { }D D D
k z k i k iB B B   . We store those pairs 1 2( , )i i  in a key index set { }k  as 

follow: 

1 2

1 2

1 2 , , 1 2
0 { } ,0 { }

, { } { } { } ( , ) { }
D D
k k

D D D
k i k i k k

i B i B

i i if B B B Add pair i i to
 

 

   

      

    

We have |{ } | |{ } |D
k kB   , 0 | | 1Dk G   , because for each ,{ } { }D D

k z kB B  there is 

a unique pair 
1 2, ,({ } ,{ } )D D

k i k iB B   which 
1 2, , ,{ } { } { }D D D

k i k i k zB B B   . So, { }k s 

(same as { }D
kB s) are corresponds to a partitioning of 202  user key values in each 

biclique group; hence 
| | 1

20

0

|{ } | 2

DG

k
k





  . Note that, there may be some 
1,{ }D

k iB  and 
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2,{ }D
k iB  which 

1 2, ,{ } { } { }D D D
k i k i kB B B    so |{ } | |{ } | |{ } |D D D

k k kB B B   , 

0 | |Dk G .  

In the case of mCrypton-96 there is a property for the key differences sets K  and 
K  leads to a special case of asymmetric key partitioning which is explained in 

the next section. 
 

4.2.3 Asymmetric key partitioning for non-overlapping K  and K  sets  

As it can be seen, we have no shared active bits between two key differences sets 
K
i  and K

j  defined in Section 4.1, and 4 active bits in K
j s change 

independently of 16 active bits in K
i s. Thus, according to the definition of D in 

(1), [16,17,18,19]D   and [0,1, ,15]D   only depend on K  and K , respectively. In such a 

case, a space generator can be constructed by combining two minimal space 

generators for K  and K  which are obtained independently. For clarifying, 
assume that by recalling the algorithm in Appendix A, we obtain a minimal space 

generator DG   and its corresponding partitioning set { }DB   for ,[32, ,47]
K
iD    , 

0 60i   and m = 16. Also we obtain a minimal space generator DG   and its 

corresponding { }DB   for ,[82, ,85]
K
jD     and m = 4. Now, there is a minimal space 

generator DG  for defined D and m = 20 which has | | | |DDG G    elements and is 

constructed by combining DG   and DG   as follows:  

,[0,1, ,15]

0 | | 1, ,[16,17,18,19]
0 | | 1

, | | ,
D

D

DD
k iD

DD
i G k j
j G

G G
i j k i G j

G G









  

  

 
    




           

This way, for each { }D
kB  and { }D

kB  , 0 | | | |DDk G G    , we have: 

,[0,1, ,15] ,[16,17,18,19]

0 | | 1, ,[0,1, ,15] ,[16,17,18,19]
0 | | 1

{ } { } , { } 0
, | | ,

{ } 0 , { } { }D

D

DD D
k i kD

DD D
i G k k j
j G

B B B
i j k i G j

B B B









 

 
  

  

  
    

 





   

Hence, each { }k , 0 | | | |DDk G G    , contains all possible pairs 1 2( , )i i , 

10 { }D
ki B , 20 { }D

ki B , and so there is no need to compute separately. 

 According to ,[82, ,85]
K
jD    , it is easy to see that the minimal space generator 

DG   consists of only one 4-bit zero vector; so, its corresponding 0{ }DB   takes all 

16 possible values. However, to find a minimal DG   we call the algorithm in 

Appendix A for ,[32, ,47]
K
iD    , 0 60i  , and m = 16. The obtained DG   

contains 11.42688 2  elements of 16-bit length which is less than 18 122 / 61 2 . 

According to the algorithm, it is expected that the cardinality of { }D
kB  s 

, 0 2687k  , be in a descending order. Table. 2 shows the changes of 
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|{ } | |{ } |D D
k kB A   according to k. Also we have 

2687
16

0

|{ } | 2D
k

k

B 



  because { }D
kB  s 

corresponds to a partitioning of a space S with m=16. 
 

 Table. 2 Cardinality of obtained { }D
kB  s  

2432-
2687  

1984-
2431  

1792-
1983  

1280-
1791  

896-
1279  

768-
895  

512-
767  

256-
511  

0-
255 k  

2  3  5  13  33  37  41  49  61  |{ } |D
kB   

 

Now, we construct a DG  by combining DG   and DG  . DG  consists of 2688 

elements while DG   has only one element; so, the number of elements of DG  is 

also 2688. For each D
kG , 0 2687k  , it is enough to set ,[16,17,18,19]

D
kG  to 0

DG   

which is always zero and set ,[0,1, ,15]
D
kG   to D

kG  . Also, for each 0 2687k  , 

,[0,1, ,15]{ }D
kB

  is equal to { }D
kB  , and ,[16,17,18,19]{ }D

kB  is always zero. In a same way, 

for each 0 2687k  , ,[16,17,18,19]{ }D
kB  always contains all of the 16 possible 

values (according to 0{ }DB  ) and ,[0,1, ,15]{ }D
kB

  is always zero. 

As it can be seen, in each biclique group which is constructed based on the 
proposed partitioning we have 2688 bicliques are classified into the 9 non-
isomorph bicliques. Actually, we have 256 bicliques with dimension (61,16), 256 
bicliques with dimension (49,16), …, 448 bicliques with dimension (3,16) and  

256 bicliques with dimension (2,16). As it is expected, 
2687

20

0

|{ } | |{ } | 2D D
k k

k

B B 



   

and these bicliques will cover all 202  distinct keys in each biclique group. 

4.3. Non-isomorphic biclique attack on mCrypton-96 

Using the proposed key partitioning and the method for constructing 4-round 
bicliques, now we propose a biclique attack on full-round mCrypton-96 as 

follows. In this attack the matching positions are two nibbles 0 and 12 of 8x .  

 

Step 1: Two key differences sets K
i  and K

j , has no shared active bits so pre-

compute space generator DG  and its corresponding sets { }DB  and { }DB  

(as it was described in section 4.2.3). For the sake of simplicity, we expand 

obtained D
kG s, 0 2687k  , and their corresponding sets { }D

kB   and 

{ }D
kB   to a 96-bit length version (equal to the length of user key) through 

zero-padding. So, hereinafter, each element of them has its original value 
in 20 bits [32, , 47, 82, , 85]   and is zero in the other 76 bits. 

  
Step 2: Make a new biclique group. For this purpose, at first, take a new value for 

96 bit user key bK  (initial value of register U) in 76 bits which are always 

zero in K K
i j   s. The other 20 bits [32, , 47, 82, , 85]   of bK  are fixed to 

zero.  
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Step 3: For each ,0 2687D
kG k   compute base key [0,0] b D

kK K G   and do 

the following Steps 4 to 7 for [0,0]K .  

 
Step 4: Make a biclique according to the obtained base key [0,0]K . For this 

purpose, do the following sub-steps: 
 

Step 4.1: (base computation): Encrypt the plaintext 0 0P   by [0,0]K  to 

compute the intermediate value 4x  and assume it 0S . 

Step 4.2: For each 1 |{ } |D
ki B  compute the plaintext value by decrypting 

0S  under key ,[ ,0] [0,0] { }D
k iK i K B   and assume it iP . 

Step 4.3: For each 1 |{ } |D
kj B  compute the intermediate value 4x  by 

encrypting 0 0P   under key ,[0, ] [0,0] { }D
k jK j K B   and assume it 

jS  (clearly, for j = 0 we get 0S )  

 

Step 5: (pre-computation) For each iP , 0 |{ } |D
ki B , ask the oracle to encrypt 

iP  and obtains its corresponding ciphertext iC . Then, according to [ ,0]K i  

compute four round keys 9K  to 12K . Also, obtain the values of 16+12=28 

intermediate nibbles (indicated in Fig. 6.a) with decryption iC  under key 

[ ,0]K i . Note that pre-computation is only done for the nibbles which are 

not needed to re-compute in Step 7. As it is shown in Fig. 6.a, totally we 
need to compute and store the values of 28+4=32 S-boxes and 12   

operations for each iP . 

  

Step 6: (pre-computation) For each jS , 0 |{ } |D
kj B , according to [0, ]K j  

compute five round keys 4K  to 8K  and obtain the values of 12 

intermediate nibbles with encryption jS  under key [0, ]K j . As it is shown 

in Fig. 6.b, we need to compute and store the values of 12 S-boxes for each 

jS . 

   

Step 7: (re-computation) For each 0 |{ } |D
ki B , 0 |{ } |D

kj B  re-compute the 

value of two matching nibbles 0 and 12 of 8x  by decryption iC  under key 

[0, ]K j  and re-compute the value of the same nibbles by encryption  jS  

under key [ ,0]K i . Then check if these two values are equal or not. If they 

are not equal then , ,[ , ] [0,0] { } { }D D
k i k jK i j K B B     is certainly 

incorrect. Nonetheless, if they are equal, it is possible for [ , ]K i j  to be the 

correct user key. So, we must check the correctness of [ , ]K i j  with a trial 

full-round encryption. If [ , ]K i j  is the correct user key, terminate the 

procedure and return value of the found user key. Otherwise, if you did not 
have yet checked all base keys [0,0]K , then go to Step 3 to check another 

base key and if all of the base keys has been checked (i.e. k = 2687) then 
go to Step 2 for a new biclique group. 
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The most important issue in the re-computation step, is that actually we do 
not need to re-compute full rounds to obtain the values of the two 
mentioned matching nibbles. As it is shown in Fig. 7.a and Fig. 7.b, for 
each i and j, it is enough to re-compute only the values of 44 S-boxes and 
14   operation in the data encryption direction, 10 S-boxes and 6   
operations in the data decryption direction and 4 S-boxes in the key 
scheduling process. So, for each i and j we need to re-compute the values 
of 58 S-boxes and 20   operations, totally. 

  
A note on the general form of non-isomorphic biclique attack: As it was 

described in Section 4.2.3, for the cases with non-overlapping sets K  and K , 

such as the case of mCrypton-96, each { }k  includes all of the possible ordered 

pairs of indexes. However, in the general form of non-isomorphic biclique attack, 
we must also compute { }k s in Step 1 and revise Step 7 such that the re-

computation is performed for each ( , ) { }ki j   . 

Improvements for the attack procedure: There are some optimizations for Steps 4 
and 7 which reduce the complexity of these steps. In Step 4, for each biclique 
construction, all of iP s are obtained from a single intermediate state 0S , and all 

intermediate states jS s are obtained from a single plaintext 0P . Hence, the 

biclique construction can be performed using a pre-computation and re-

computations. To do this, first we perform a base pre-computation 
[0,0]

0 0

K

P S  and 

store all intermediate states values. Then, equivalent to the Step 4.2, the values of 

iP s are determined by re-computation through 
[ ,0]

0

K i

iP S . One can easily observe 

in Fig. 2 that the re-computation of each iP  needs only computation of 6 S-boxes 

and 3   operations. In a same way, equivalent to the Step 4.3, all jS s are 

determined by re-computation through 
[0, ]

0

K j

jP S . As it can be seen in Fig. 2, re-

computation of each jS  needs only computation of 28 S-boxes (26 S-boxes in 

data processing part and 2 S-boxes in the round keys) and 10   operations. 

Another optimization is in Step 7 where both of matching nibbles 0 and 12 of 8x  

are checked simultaneously. We can reduce the complexity of this step using an 
early abort technique. For this purpose, at first we perform the matching for 

nibble 0 of 8x  and if the matching holds for this nibble with probability 42 , then 

we perform the matching for nibble 12 of 8x . Thus, instead of 58 S-boxes and 20 

  operations for each re-computation, we only re-compute 53 S-boxes and 19   
operations to verify nibble 0 matching and if this matching holds with probability 

42  then the matching of nibble 12 is verified by re-computation of remained 5 S-
boxes and one   operation. 

4.4. Complexity of the attack 

Data complexity: According to Fig. 3 the number of possible plaintext differences 

is about 4 5 4 4 27.5461 (3 2 2 ) 2     . In the other hand, we always assume starting 

plaintext 0 0P   for all bicliques. Hence, we need at most 27.542  plaintexts and 

their corresponding ciphertexts. 
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Time Complexity: The most significant part of time complexity in the attack 
procedure, is the re-computation complexity in Step 7. In a re-computation 
process it is needed to compute only a partial encryption or decryption. Thus, we 
need a criterion to determine its complexity. As it was mentioned in [3], S-boxes 
are the major contributor to the practical complexity of AES 
encryption/decryption both in hardware and software implementation. The same 
situation is acceptable for the most of block ciphers especially for the AES-like 
ciphers. So, it seems reasonable to determine the complexity of re-computation 
with respect to the number of S-boxes which must be re-computed. However, in 
this paper we get a stricter criterion. Thus the complexity of each S-box 
computation and also each binary bit permutation   is considered as a single 
memory access. According to this criterion, the complexity of one full-round 
encryption/decryption of mCrypton-96 is about 296 memory accesses including 
(12 16) (13 4) 244     memory accesses for S-boxes (in both of data processing 

part and key scheduling) and 13 4 52   memory accesses for   operations. Note 
that, the complexity of key-addition and other linear operations, compared with S-
boxes and   operations is absolutely negligible. Thus, the complexity of re-
computation is determined as the relative number of needed S-boxes and   
operations to all 296 memory accesses.  
As it can be seen in the attack procedure, all of the biclique groups have the same 
process. So, for overall time complexity computation, it is enough to consider the 
complexity for a single biclique group. For this purpose, the complexity of steps 3 
to 7 is determined as follows: 
 
Step 3: consists of 2688 XOR operation which is negligible. 

Step 4: for k-th element of minimal space generator DG , this step is performed 
through one 4-round encryption (base computation) , 28+10=38 memory 

accesses to compute each jS , 1 |{ } |D
kj B , and 6+3=9 memory 

accesses to compute each iP , 1 |{ } |D
ki B . So, the complexity of this 

step for a biclique group is totally equivalent to 
2687 2687

0 0

4 38 9
2688 (|{ } | 1) (|{ } | 1)

12 296 296
D D
k k

k k

B B 

 

   
         

   
   full-round 

encryptions. |{ } |D
kB  is equal to 16 for each k and 

2687

0

|{ } |D
k

k

B 


  is equal to 

162 . Hence, the time complexity of this step is equivalent to 

16 12.964 38 9
2688 (16 1) 2688 (2 2688) 2

12 296 296
          full-round 

encryptions. 
 

Step 5: for k-th element of  DG , this step is performed through |{ } |D
kB  times 

32+12=44 memory accesses. So, the overall complexity of this step for a 

biclique group is equivalent to 
2687

16 13.24

0

44 44
|{ } | 2 2

296 296
D
k

k

B



     full-

round encryptions. 
 



18 

Step 6: for k-th element DG , this step is performed through |{ } | 16D
kB   times of 

12 memory accesses. So, the overall complexity of this step for a biclique 

group is equivalent to 
2687

10.76

0

12
|{ } | 2

296
D
k

k

B



   full-round encryptions. 

 
Step 7: Time complexity of this step is consists of two parts. First part is the 

complexity of re-computations for determining the values of two matching 
nibbles and the other one is the complexity to filter out the false positives. 
For each re-computation we need to re-compute the values of 58 S-boxes 
and 20   operations, totally. According to the early abort technique, 53 S-
boxes and 19   operations must be re-computed for the first matching 
nibble and another 5 S-boxes and one   operation is re-computed with 

probability 42 . Hence, for k-th element of DG , the time complexity is 

about  4 6.18|{ } | |{ } | (53 19) 2 (5 1) |{ } | |{ } | 2D D D D
k k k kB B B B              

memory accesses, on average. So, the overall time complexity of this step 

is equivalent to 
2687

6.18 2.03 20 17.97

0

1
2 |{ } | |{ } | 2 2 2

296
D D
k k

k

B B  



       full-

round encryptions for a biclique group.   
Note that, in the general form of non-isomorphic biclique attack, re-

computation must be done for each ( , ) { }ki j   . So, this complexity is 

equal to 
2687

6.18

0

1
2 |{ } |

296
k

k

    . As it was mentioned in Section 4.2.2, 

{ }k s are corresponds to a partitioning of whole space S with m=20. 

Hence 
2687

20

0

|{ } | 2k
k

   and the type of differences sets (to be overlapped or 

non-overlapped) has no any effect on the complexity of this step.   

For the second part, the chance of getting a false positive is about 82 , so 

for each biclique group we obtain about 20 8 122 2 2   user key values 
must be checked by a trial encryption. Thus, the time complexity of this 

part is about 122  full-round encryptions for a biclique group. 
 
Totally, the time complexity for each biclique groups is about 

12.96 13.24 10.76 17.97 12 18.092 2 2 2 2 2      full-round encryption. Hence, the overall 

time complexity is about 76 18.09 94.092 2 2   full-round encryptions. Note that, if 
the complexity is determined based on the number of active S-boxes (typical 

criterion), then complexity of this attack is estimated about 93.932  full-round 
encryptions. 

Memory Complexity: We need less than 202  bytes of memory to store the pre-
computed tables in Step 1. The online stage of the attack (Steps 2 to 7) is also 
needs negligible bytes of memory to keep intermediate states values. 

4.5. Another attack on mCrypton-96 based on a 5-round biclique 

The proposed attack in the previous sections can be improved by expanding the 
biclique of mCrypton-96 to a five round version. For this purpose, we define two 

sets of key differences K
i  and K

j  on the user key (U register) as follows: 
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0 30 3

( [ ]) 0, 0,2,3,4,5
:

( [1]) , ( 8) [0,0,0,0] [0,0,0, ] [0,0, ,0], 0
K
i

i i i

U k k

U a a or t or t t 

  
 

    
 

,[2,3,4,5] ,[0,1,6,7,8,9,10,11,12,13,14,15]0 15

[ ] 0, 0,1, 2,3,4
:

[5] , 2 ( ) , 0
K
j

j j jj

U k k

U a a dec bin j a 

  
 

   
 

Table 5.b in Appendix B shows the round sub-key differences rK , 0 12r  , 

according to each of these two key differences sets. Also, Fig. 4 shows that the 
corresponding 5-round  differential  and  differential  share no active 
components. Thus, a 5-round biclique of at most 31 16 496   keys can be 
constructed by 1 15 30 46    5-round encryptions.  
 

 

Fig. 4. Differential trails for a five round biclique of mCrypton-96 according to key differences K
j  

(left) and 
K
i  (right) . 

Depends to the place of active nibble after 3( 8)ia  , there is two possible 

 differential s where only one of them is shown in Fig. 4. In another one, each  

possible differences 2x  is non-zero in 3-th column and zero in the others. It 

seems that the number of possible differences for the input plaintexts is almost 
equal to the whole codebook. However, we must consider this fact that for each 
non-zero difference in the input of mCrypton S-boxes there is only 7 possible 
differences in its output. Also, there is only 30 possible non-zero differences in 
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the first column and the same number of non-zero differences in the last column 

of 1x  (15 non-zero difference for each  differential ). Hence, we expect that 

about 

304
16 16 1.62 14.38

16

7
2 1 2 2 2

2
 

     
 

 differences don’t occur in the first and 

also in the last columns of 1
Ix . An exact evaluation reveals that the number of 

such differences in each of these columns is 14.8329033 2 . Finally, according to 

the 31 possible differences of 0K , an exact evaluation reveals the number of 

impossible plaintext differences in the first and last columns are 13.3810694 2  and 
13.3910735 2  differences, respectively. Hence, the exact number of possible 

plaintext differences is about 32 32 13.39 2 63.42 (2 2 ) 2   . Thus, data complexity is 

slightly less than the whole codebook. 

Same as the previous attack on mCrypton-96, K  and K  sets has no overlap. 

Hence, it is enough to construct two space generators DG   for ,[82, ,85]
K
jD    , 

m=4 and DG   for ,[16, ,31]
K
iD    , m=16, separately. As the previous attack DG   is 

only a 4-bit zero vector; so, its corresponding 0{ }DB   always takes all of 16 

possible values. Also, to find a minimal DG   we recall the algorithm in Appendix 

A for ,[16, ,31],0 31K
iD i      and m = 16. The obtained DG   contains exactly 

124096 2  elements of 16-bit length. Table 3 shows the cardinality of obtained 

{ }D
kB   for each 0 4095k  . Thus, as it was discussed in Section 4.2.3, { }D

kB s 

and { }D
kB s are constructed same as the previous attack.  

 

Table. 3 Cardinality of obtained { }D
kB  s  

1792-

2047 

1536-

1791 

1280-

1535 

1024-

1279 

768-

1023 

512-767 256-511 0-255 K  

17 19 21 23 25 27 29 31 |{ } |D
kB  

3840-3584-

4095 

3328-

3839 

3072-

3583 

2816-

3327 

2560-

3071 

2304-

2815 

2048-

2559 2303 
K  

1 3 5 7 9 11 13 15 |{ } |D
kB  

 
The attack procedure is very similar to the attack procedure described in Section 
4.3 with the same matching nibbles. The most important differences are listed 
below: 

- The pre-computed space generator DG  and its corresponding sets { }DB  and 

{ }DB , have 4096  elements instead of 2688. Thus, for each biclique group, we 

construct 4096 bicliques by 4096 base keys. 
- In Step 4 after the five round base computation, as it can be seen in Fig. 4, we 
need 42+14+2=58 memory accesses to re-compute each jS  and 22+7=29 

memory accesses to re-compute each iP . So the complexity of this step is 

equivalent to 16 14.275 58 29
4096 (16 1) 4096 (2 4096) 2

12 296 296
          full-round 

encryptions for each biclique group. 
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- According to Fig. 8.a and Fig. 8.b Complexity of steps 5 and 6 are equivalent to 

16 13.2532 11
2 2

296


   and 11.3712

16 4096 2
296

   , respectively. 

- In Step 7 for re-computing the value of matching nibbles, as it can be seen in 
Fig. 9.a and Fig. 9.b, we need (24+9+4)+(9+6) = 52 memory accesses to re-

compute nibble 0 of 8x  and (4+1)+1=6 additional memory access to re-compute 

another nibble 12. So this step’s complexity for each biclique group is equivalent 

to  4 20 2.5 20 17.51
52 2 6 2 2 2 2

296
         full-round encryptions. 

As it can be seen, the total time complexity of this attack is about 

 76 14.27 13.25 11.37 17.5 12 76 17.75 93.752 2 2 2 2 2 2 2 2         full-round encryptions. 

Considering the typical criterion (number of active S-boxes) the complexity 

estimation is reduced to about 93.552  full-round encryptions.  

5. Non-isomorphic Biclique Cryptanalysis of 

mCrypton-128  

Non-isomorphic biclique attacks can also perform on the other versions of 
mCrypton. In this section we study such a attack for mCrypton-128. Table 4 
shows how the internal register U changes through the rounds. 

Table 4. Updated register U through the rounds of mCrypton-128 

r = 0  U[0] U[1] U[2] U[3] U[4] U[5] U[6] U[7] 

r = 1 U[5] U[6] U[7] U[0] << 3 U[1] U[2] U[3] U[4] << 8 

r = 2 U[2] U[3] U[4] << 8 U[5] << 3 U[6] U[7] U[0] << 3 U[1] << 8 

r = 3 U[7] U[0] << 3 U[1] << 8 U[2] << 3 U[3] U[4] << 8 U[5] << 3 U[6] << 8 

r = 4 U[4] << 8 U[5] << 3 U[6] << 8 U[7] << 3 U[0] << 3 U[1] << 8 U[2] << 3 U[3] << 8 

r = 5 U[1] << 8 U[2] << 3 U[3] << 8 U[4] << 11 U[5] << 3 U[6] << 8 U[7] << 3 U[0] << 11 

r = 6 U[6] << 8 U[7] << 3 U[0] << 11 U[1] << 11 U[2] << 3 U[3] << 8 U[4] << 11 U[5] << 11 

r = 7 U[3] << 8 U[4] << 11 U[5] << 11 U[6] << 11 U[7] << 3 U[0] << 11 U[1] << 11 U[2] << 11 

r = 8 U[0] << 11 U[1] << 11 U[2] << 11 U[3] << 11 U[4] << 11 U[5] << 11 U[6] << 11 U[7] << 11 

r = 9 U[5] << 11 U[6] << 11 U[7] << 11 U[0] << 14 U[1] << 11 U[2] << 11 U[3] << 11 U[4] << 3 

r = 10 U[2] << 11 U[3] << 11 U[4] << 3 U[5] << 14 U[6] << 11 U[7] << 11 U[0] << 14 U[1] << 3 

r = 11 U[7] << 11 U[0] << 14 U[1] << 3 U[2] << 14 U[3] << 11 U[4] << 3 U[5] << 14 U[6] << 3 

r = 12 U[4] << 3 U[5] << 14 U[6] << 3 U[7] << 14 U[0] << 14 U[1] << 3 U[2] << 14 U[3] << 3 

 
Considering the key-scheduling of mCrypton-128 we construct a 4-round 
independent biclique for the intial rounds. For this purpose, we define two sets of 

key differences K
i  and K

j as follow: 

0 30 3

( [ ]) 0, 0,1,2,3,4,5,7
:

( [6]) , ( ) [0,0,0,0] [ ,0,0,0] [0, ,0,0], 0
K
i

i i i

U k k

U a a or t or t t 

  
 

   
 

,[11,12,13,14] ,[0,1,2,3,4,5,6,7,8,9,10,15]0 15

( [ ]) 0, 0,1,2,4,5,6,7
:

( [3]) , 2 ( ), 0
K
j

j j jj

U k k

U a a dec bin j a 

  
 

   
 

Table 6 in Appendix B shows the round sub-key differences rK , 0 12r  , 

according to each of these key differences sets. Fig. 5 indicates that according to 
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these two key differential sets there is a 4-round independent biclique in the initial 
rounds of mCrypton-128. According to the property 1 we have 

1,[0,4,8,12] 2,[3,7,11,15] 1x x      for  -differential trail (Parameters: f = 1, s = 0). 

Hence, dependent to which nibble is active in the output of ( )ia , there are two 

possible  -differentials, one of them is indicated in Fig. 5. For another one, 
possible plaintexts differences are non-zero in the first column and zero in the 

others. Hence, there are totally about 20 16 20.12 2 2   possible plaintext 

differences. Thus, according to this fact that 0P  is a fixed value ( 0 0P  ) for all 

bicliques, the data complexity of this attack is also equal to about 20.12  known 
plaintext/ciphertexts. 
 

 

Fig. 5. Differential trails for a four round biclique of mCrypton-128 according to key differences 

K
j  (left) and 

K
i  (right).  

Same as the previous attacks, K  and K  has no overlap. Also, DG   same as the 

attack described in Section 4.5 has exactly 124096 2  elements.  Similarly, 

cardinality of obtained { }D
kB   for each 0 4095k   are the same as Table 3. DG   

is also consists of only one 4-bit zero vector. The attack procedure is similar to the 

previous attacks except that the matching nibbles are nibbles 7 and 11 of 6x . Also 

we have 128 20 1082 / 2 2  biclique groups in this attack. 
As it can be seen in Fig. 5, after a 4-round base computation, we need 42+14=56 

memory accesses to compute each jS  and at most 6+3=9 memory accesses to 

compute each iP . So the complexity of step 4 for each biclique group is 

equivalent to 16 13.854 56 9
4096 (16 1) 4096 (2 4096) 2

12 296 296
          full-round 

encryptions. For pre-computation steps 5 and 6, as it can be seen in Fig. 10.a and 
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Fig. 10.b, complexities are equivalent to 16 13.0728 11
2 2

296


   and 

11.3712
16 4096 2

296
    for each biclique group, respectively. For re-computing 

the value of matching nibbles in step 7, as it can be seen in Fig. 11.a and Fig. 11.b, 

we need (8+5)+(41+14) = 68 memory accesses to re-compute nibble 7 of 6x  and 

(4+1)+1=6 additional memory access to re-compute another nibble 12. So this 

step’s complexity is equivalent to  4 20 17.891
68 2 6 2 2

296
      full-round 

encryptions for each biclique group. Hence, the total time complexity of this 

attack is about  108 13.85 13.07 11.37 17.89 12 108 18.05 126.052 2 2 2 2 2 2 2 2         full-

round encryptions.  It can be easily checked that if the time complexity is 
computed according to the typical criterion then the estimation of complexity is 

reduced to 125.842  full-round encryptions.   

6. Conclusion 

In this paper, we introduced a modified version of biclique attack, called non-
isomorphic biclique attack. In the proposed attack, at first, we defined two key 

differences sets K  and K  which their corresponding related key differential 
trails satisfy the necessary condition for an independent biclique. Then according 
to these key differences sets, we performed an asymmetric key partitioning as it 
was described in Section 4.2. Then this non-uniform partitioning is mapped to the 
biclique structure. Due to the asymmetry of key partitions, we could have 
bicliques of different dimensions and so non-isomorph. In the other hand we can 
choose key difference sets in a way which leads to the longer independent 
bicliques (as well as data complexity reduction). Through this method we showed 
that there are independent bicliques up to 5-rounds for the mCrypton cipher. 
Moreover, two additional minor techniques, one for increasing the speed of 
biclique construction and the other, early abort technique, for reducing the 
complexity of matching check have been exploited to reduce the overall time 
complexity of the attack procedure. Also, we have presented a property of the 
diffusion layer of mCrypton which can lead to a more reduction of data 
complexity. 
In this paper, we have introduced the general form of asymmetric key partitioning. 
Moreover, we customized it form for the cases, in which the indicated key 
differences sets has no shared (overlapped) active bits. Attacks proposed in this 
paper have used this customization. 
As it was mentioned in the introduction of the paper, the proposed method is also 
applicable to the Crypton cipher. Property 1 described in Section 2 is also 
compatible with the diffusion layer of Crypton. Hence, the non-isomorphic 
biclique cryptanalysis of Crypton will be considered as a future work.          
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Appendix 

A. An algorithm for finding a minimal space generator for a known space 

dimension m and a given difference set D. 

 
 

Inputs: space dimension m, difference set D 

Outputs: minimal space generator 
DG , Partitioning { }DA  and its corresponding  { }DB       

 

provide binary vector R of 2m
 bits and initialize them with zero. %% zero bits of vector R

indicate those elements of space S which have not yet been generated by 
DG . On the 

other hand we set a bit of R to one if its corresponding element is generated by 
DG %%   

1: 

set | |Nk_max D ; 0k  . 

while there is at least one zero element in R, 

2: 

3: 

     provide vector E of 2m
 elements and initialize them with zero. 4: 

     set 0ind   .   5: 

6:      for i = 0, 1, …., 2m-1 

         if i is not currently an element of 
DG  then , 7: 

               provide vector T of | |D  elements. 8: 

               for each 0 | | 1j D    set [ ] jT j i D  .   %% T indicates those elements 

of space S which are generated by i based on set D%% 
9: 

               set 

| | 1

0

[ ] | | [ [ ]]
D

k

E i D R T k




  .     %% E[i] keeps the number of elements of 

space S which are generated by i and their corresponding indexes are zero in 

vector R (and so they cannot generate with the current elements of 
DG )%% 

10: 

               if [ ]E i  is greater than or equal to Nk_max  then 11: 

                    set Z i  . 12: 

                     set 1ind  , break and goto line 20.  %%  we have found an i which its E[i] is 

not smaller than current Nk_max so we choose it as a new element of 
DG %%      

13: 

              end if 14: 

        end if 15 

    end for 16: 

17:     if ind is zero then 
          assume that q is the first element of E which E[q] is maximum, set Z q  .  %% we 

have examined all i values and there weren’t i which its E[i] is equal or greater than 

current Nk_max so we choose i with the greatest E[i] as a new element of 
DG  %% 

18: 

    end if 19: 

     for 0 | | 1j D    , if  [ ]jR Z D  is zero then add jZ D  to { }D
kA  and add jD  

to { }D
kB . 

20: 

    return the value of Z as a new element of 
DG  indexed by k, 

D
kG  ; for each 

0 | | 1j D    set [ ] 1jR Z D  .   %% elements of space S which can be 

generated by 
D
kG Z  are set to one in vector R %%    

21: 

    set [ ]Nk_max E Z ; 1k k  .  %% Z is the new element of 
DG  and we set its 

corresponding E[Z] as a new value for Nk_max %%   
end while 

22: 

23: 
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B.  Tables of round key differences for the attacks 

Key differences for each of proposed attacks are provided in the three following 
tables. For example (0,0, ,0)ia is corresponds to a 64-bit key difference which its 

value is a 16-bit value ia  in the 3th row and is zero in the other three rows. For 

more clarity, the difference of some rows is indicated for each 4-bit nibble. In 
such a case "s" is an unknown value specifies the output of S-box. 

Table 5.a. (left), 5.b. (right) difference in round keys according to key differences 
K
i  and K

j  

for the attacks on mCrypton-96 in Sections 4.3 and 4.5, respectively. 

 Difference according to key 

difference 
K
i  

Difference according to 

key difference 
K
j  

  Difference according to key 

difference 
K
i  

Difference according to 

key difference 
K
j  

0K  (0, ,0,0)ia  (0,0,0,0)  
0K  ( ,0,0,0)ia  (0,0,0,0)  

1K  (0,0, ,0)ia  ( 000,0 00,0,0)s s  
1K  (0, ,0,0)ia  ( 000,0 00,0,0)s s  

2K  (0,0,0, 8)ia   ( 3,0,0,0)ja   2K  (0,0, ,0)ia  ( 3,0,0,0)ja   

3K  (0,0,0,0)  (0, 3,0,0)ja   3K  (0,0,0, 8)ia   (0, 3,0,0)ja   

4K  ( 000,0 00,00 0,000 )s s s s  (0,0, 3,0)ja   4K  (0,0,0,0)  (0,0, 3,0)ja   

5K  ( 11,0,0,0)ia   (0,0,0, 11)ja   5K  ( 000,0 00,00 0,000 )s s s s  (0,0,0, 11)ja   

6K  (0, 11,0,0)ia   (0,0,0,0)  
6K  ( 11,0,0,0)ia   (0,0,0,0)  

7K  (0,0, 11,0)ia   (0,0 00,00 0,0)s s  
7K  (0, 11,0,0)ia   (0,0 00,00 0,0)s s  

8K  (0,0,0, 3)ia   ( 14,0,0,0)ja   8K  (0,0, 11,0)ia   ( 14,0,0,0)ja   

9K  (0,0,0,0)  (0, 14,0,0)ja   9K  (0,0,0, 3)ia   (0, 14,0,0)ja   

10K  ( 000,0 00,00 0,000 )s s s s  (0,0, 14,0)ja   10K  (0,0,0,0)  (0,0, 14,0)ja   

11K  ( 6,0,0,0)ia   (0,0,0, 6)ja   11K  ( 000,0 00,00 0,000 )s s s s  (0,0,0, 6)ja   

12K  (0, 6,0,0)ia   (0,0,0,0)  
12K  (0, 6,0,0)ia   (0,0,0,0)  

Table 6. Difference in round keys according to key differences 
K
i  and K

j  for the attack on 

mCrypton-128 in Section 5 

 Difference according to key 

difference 
K
i  

Difference according to 

key difference 
K
j  

  Difference according to 

key difference 
K
i  

Difference according to 

key difference 
K
j  

0K  (0,0,0,0)  (0,0, ,0)ja  7K  (0,0, 11,0)ia   ( 000,0 00,0,0)s s  

1K  (0, ,0,0)ia  (0,0,0,0)  
8K  (0,0,0,0)  (0,0, 11,0)ja   

2K  (0,0,0, )ia  ( ,0,0,0)ja  9K  ( 11,0,0,0)ia   (0,0,0,0)  

3K  (0,0,0,0)  (0,0,0, )ja  10K  (0,0,0, 11)ia   ( 11,0,0,0)ja   

4K  (0, 8,0,0)ia   (0,0,0,0)  
11K  (0,0,0,0)  (0,0,0, 11)ja   

5K  (0,0,0,0)  (0, 8,0,0)ja   12K  (0, 3,0,0)ia   (0,0,0,0)  

6K  ( 000,0 00,00 0,000 )s s s s  (0,0,0,0)  
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C.  Computation and Re-computation stages in the added rounds of 

proposed attacks  

The following figures show the nibbles which their values is changed in the 

computation/re-computation process of the proposed attacks. Solid boxes ( ) 

corresponds to the nibbles which are affected by S-box operation. Hashed boxes ( ) 

corresponds to the nibbles which are affected by a linear or shift operation. White boxes 

with a circle within ( ) are the nibbles which their values are changed but are not 

interested. White boxes are the nibbles we don’t care about their values.  

 
 

 

 

 

 

Fig. 6.a. (left), 6.b. (right) pre-computation 

stage for the attack in Section 4.3 according to 

key differences 
K
i  and K

j , respectively 

Fig. 7.a. (left), 7.b. (right) re-computation 

stage for the attack in Section 4.3 according to 

key differences K
j  and 

K
i  , respectively 
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Fig. 8.a. (left), 8.b. (right) Computation stage for 

the attack in Section 4.5 according to key 

differences 
K
i  and K

j , respectively 

Fig. 9.a. (left), 9.b. (right) Re-computation 

stage for the attack in Section 4.5 according 

to key differences K
j  and 

K
i , respectively 

 

 
 

 
 

Fig. 10.a. (left), 10.b (right) Computation stage 

for the attack in Section 5 according to key 

differences 
K
i  and K

j , respectively 

Fig. 11.a. (left), 11.b. (right) Re-computation 

stage for the attack in Section 5 according to 

key differences K
j  and 

K
i  , respectively 

 
 


