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Abstract. We present a runtime environment for executing secure programs via a multi-party computation protocol
in the preprocessing model. The runtime environment is general and allows arbitrary reactive computations to be
performed. A particularly novel aspect is that it automatically determines the minimum number of rounds needed
for a computation, given a specific instruction sequence, and it then uses this to minimize the overall cost of the
computation. Various experiments are reported on, on various non-trivial functionalities. We show how, by utilizing
the ability of modern processors to execute multiple threads at a time, one can obtain various tradeoffs between
latency and throughput.

1 Introduction

Recent years have seen great advances in practical variants of protocols for secure Multi Party Computation
(MPC). Initially these practical instantiations came in the restricted security model of dealing with passive
(semi-honest) adversaries [3, 6, 25, 32, 9]. However, more recent work has focused on the case of full active
security [5, 11, 15, 26, 27], or sometimes covert security [13].

MPC protocols come in two flavours: one flavour based on Yao circuits and one flavour based on secret
sharing. In those based on Yao circuits (which are predominantly focused on the two party case) a function
to be evaluated is expressed first as a boolean circuit. The boolean circuit is then “encrypted” by one party
in a process known as garbling. The encryptor then passes the encrypted circuit over to the other player,
who then evaluates the circuit on their own input. The input of the evaluating player is obtained from the
encryptor via an oblivious transfer protocol.

The first implementation of the Yao approach in the semi-honest setting was the FairPlay system [25],
which was followed by an implementation in the active security case [24]. Following the work in [28] it has
been common to benchmark such Yao based implementations against evaluating the AES circuit, see for
example [16, 17, 23, 31]. The state-of-the-art in terms of Yao based computation would currently appear to
be the system in [20].

In the secret sharing based approach initial practical work focused mainly on the case of three parties
with only one allowed semi-honest adversary [6, 32]. Systems such as [11, 32] could cope with larger num-
bers of players, and more powerful adversaries, but only with a significant degradation in performance.
Recent practical MPC work in the secret sharing tradition has focused on full active security against a dis-
honest majority, utilizing a form of “shared MAC” to provide security [5, 13, 15, 26]. It is in this area that
our work is focused. Whilst secret sharing based approaches are not as well tailored to evaluate functions
such as AES, the AES functionality is still used as an important benchmark in this area [12, 13, 21, 22].

Another aspect of modern practical work on secret sharing based MPC protocols is the fact that they are
often presented in a “preprocessing model”. In this model one is allowed to perform in an “offline phase”
the generation of random data, which will be consumed in the “online phase”. The key aspect is that the
data produced in the offline phase must be generic and not depend on the inputs to the function (which are
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unknown until the online phase), nor too tied to the specific function being evaluated (which again may not
be known until the online phase commences).

The final consideration is whether the protocol supports fully reactive computation. By this we mean
that, after a function result has been determined, one can execute another function; with the precise choice
of the new function depending on the output of the first computation. A fully reactive computation allows this
process to be continued ad infinitum, including possibly executing the offline phase again if the preprocessed
data runs out.

Previous implementation work, in the secret sharing setting, has mainly focused on the underlying MPC
protocol and how to perform specific pre-defined functionalities; for example, the AES circuit above. The
traditional approach is to express the function to be evaluated is described as an arithmetic circuit and then
this circuit is evaluated by executing a sequence of addition and multiplication “gates”. This is a throw back
to the origins of MPC in the theoretical community; where functions are always represented as arithmetic
circuits.

In this work we focus on modern secret sharing based MPC protocols in the pre-processing model
whose online phase is actively secure, for example the SPDZ protocol [13–15] or the Tiny-OT protocol
[26], or even the earlier information theoretic based protocols such as VIFF [11]. In practice such protocols
do not execute arithmetic circuits; they can evaluate far more elaborate basic operations since they have the
ability to selectively “open” secret data. In fact if the pre-processed data is so called “Beaver Multiplication
Triples”, then a multiplication gate is actually implemented as a sequence of local additions and selective
openings; and of course consuming some pre-processed data.

Shifting ones viewpoint to treating the three operations of local additions, “open” and consuming pre-
processed data as the basic operations enables far more expressive operations. This viewpoint is indeed
implicit in the work of [10] which examines protocols for comparison, bit-extraction and exponentiation
amongst others. The key ability utilized, in its most basic form, is to enable a secret value to be masked, and
then the masked value to be opened. Whilst this might seem a small additional functionality, it turns out in
practice that such an operation allows one to perform highly complex tasks without needing to resort to their
description as an arithmetic circuit.

Shifting ones view point in this way is also important from a practical perspective as the main bottle-
neck in implementations is the scheduling of the open instructions. By focusing on “open”, as opposed to
multiplication, as the key operation to optimize one can achieve significant performance improvements.

In this work we present the design of an efficient runtime execution environment for the protocols in the
SPDZ family [13–15], much of our work will extend to other protocols such as Tiny-OT [26]. This protocol
family supports fully malicious (active) or covert security, is in the preprocessing model and can (using the
techniques of [14]) support fully reactive computation. Unlike prior work we concentrate only on the online
phase and show how to design efficient compilers and a runtime environment to enable high level operations.
Prior implementation work on the SPDZ family has either concentrated on the specific functionalities over
small finite fields, such as evaluating AES [13], or has focused on the more mathematically complex offline
phase [14, 15].

Our focus is on more general purpose computation, and in particular how to enable a general purpose
high level function description, which is then translated into low level operations, which are then executed
by an MPC runtime engine. In particular we present experimental results for an actively secure online phase
for various high level functionalities such as integer multiplication and comparison, fixed point and floating
point operations as well as runtimes for AES. Our AES runtimes are significantly better than prior runtimes
for AES using other actively secure MPC implementations.
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Our prime motivation is to understand how to engineer the overall runtime environment, rather than the
design of specific protocols. We therefore utilize prior work of others for our higher level functions, i.e. for
integer comparison we use [7], for fixed point numbers we use [8], for floating point numbers we use [1], for
AES we use the techniques of [13]. Whilst much of our design is biased towards the SPDZ protocol, many
aspects can be directly extended to other MPC protocols that only involve broadcasting shares to all parties
for communication. This is true for all protocols based on Beaver’s technique [2]. However, the basic idea of
automatically optimizing the communication pattern is also applicable to protocols based on Shamir secret
sharing such as [4]. Other work, e.g. [19, 29], on optimization for MPC compilers has focused on issues
related to what information is leaked when values are revealed to enable branching; this is an orthogonal
question to those that we consider.

We present our experimental results in the following way. We show how one can trade, for the different
high level functionalities, latency for throughput. In many previous works on MPC the focus has been on
throughput or latency alone. This however is not realistic; in a given application scenario one is likely to
have a specific latency and a specific throughput one has to meet for the MPC solution to be applicable.
We show how, by batching different numbers of operations together, and by running in different numbers of
threads, one is able to trade throughput for latency. This allows one to reach a specific sweet spot for a given
application.

In summary, existing MPC implementations do not provide active security against a dishonest majority,
do not scale (efficiently) to any number of parties, require knowledge of (and manual optimizations for)
the underlying MPC protocol, or are generally not very efficient. To our knowledge, we present the first
MPC implementation that achieves the highest level of security in the online phase, efficiently scales to at
least five parties, provides a high-level language that does not require a detailed understanding of MPC, and
is competitive with previous implementations achieving the same level of security. To accomplish this, we
use the SPDZ protocol for the desired security and scalability, and we have implemented a compiler for
a Python-like language that optimizes the communication pattern of the program. The compiler outputs a
bytecode that can be interpreted by a virtual machine. For efficiency, this virtual machine is implemented
in C++ and kept relatively simple. We believe that our approach optimally combines usability with the
efficiency gains of using machine code and avoiding idle time caused by the multi-round nature of MPC
based on arithmetic circuits.

2 Overview of the SPDZ protocol

At the core of our work is a multiparty computation protocol in the preprocessing model, with specific
properties. In particular we assume the preprocessing produces so-called Beaver Multiplication Triples.
These are triples of secret shared random values, such that the third random value is the product of the first
two. In addition we assume the ability to produce other forms of pre-processed data. For more details see
below.

There are a number of modern protocols in this family, and we will focus on those in the SPDZ
(”Speedz”) family, [14, 15]. This family is an extension of a protocol first introduced by by Bendlin et al. [5].
The advantage of this approach is that expensive, public-key machinery can be offloaded into the prepro-
cessing phase. The online phase uses (essentially) only cheap, information-theoretically secure primitives
and can therefore be extremely efficient. Moreover, the technique comes with extremely strong security
guarantees: the online phase is actively secure against a dishonest majority of corrupted players, irrespective
of the security of the offline phase. Thus we obtain a protocol which is actively (resp. covertly) secure if
we combine our online phase with an offline phase which is actively (resp. covertly) secure as in [15] (resp.
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[14]). In addition our online phase can evaluate reactive functionalities (i.e. multiple sequential programs)
and not just execute secure function evaluation.

Throughout this exposition we assume a number of players n and a finite field Fq over which computa-
tions will be performed have been fixed. The basic data type used is a secret sharing scheme over the field
Fq. Each party in the protocol Pi has a uniform share αi ∈ Fq of a secret value α = α1+· · ·+αn, thought of
as a fixed MAC key. We say that a data item a ∈ Fp is 〈·〉-shared if Pi holds a tuple (ai, γ(a)i), where ai is
an additive secret sharing of a, i.e. a = a1+ · · ·+an, and γ(a)i is an additive secret sharing of γ(a) := α ·a,
i.e.

γ(a) = γ(a)1 + · · ·+ γ(a)n.

2.1 Offline Phase

In this section we summarize the data produced during the offline phase of the SPDZ protocol that is required
by our runtime. The main purpose of the preprocessing phase is to generate multiplication triples, namely
shares of random values 〈a〉 , 〈b〉 , 〈c〉 satisfying a · b = c, which are used to multiply secret shared values
during the online phase using a technique of Beaver [2].

Whilst multiplication triples are the only data theoretically needed for the online phase, we can also use
the offline phase from [14, 15] to create additional raw data that improves the efficiency of certain operations.
In Table 1 we detail all data that is used during the online phase in our various higher level functions. The
input data is used to enable parties to input values into the computation, see [15], we shall not discuss this
further in this paper. The square data is used to perform squaring of shared values more efficiently than
general multiplications; this is useful in general computation but does not feature in our specific examples
later in the paper. The inv tuples are used for constant round protocols for integer comparison; we shall see
later that the logarithmic round protocols are actually more efficient in practice for the data types we are
interested in.

Command Outputs Properties

triple 〈a〉 , 〈b〉 , 〈c〉 a, b $← Fp, c = a · b
square 〈a〉 , 〈b〉 a

$← Fp, b = a2

bit 〈b〉 b
$← {0, 1}

input 〈r〉 r
$← Fp

inv 〈a〉 , 〈a′〉 a
$← Fp, a′ = a−1

Table 1. Data Prepared During the Offline Phase

The offline phase is assumed to produce five files of pre-processed data for each player. Each file con-
taining the relevant shares of the above data. Exactly how much of each type of data one needs to compute in
the offline phase is of course unknown until the exact function one is computing is known. However, one can
make a heuristic over estimate of this number. In addition as soon as data produced in the offline phase has
been exhausted one can return to the offline phase to compute some more (note this option is only available
if one is using the MAC checking strategy described in [14]).
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2.2 Online phase

During the online phase the parties compute on open values (i.e. values which are not secret shared) and
secret values (i.e. values which are secret shared). All standard arithmetic (+, ×, /, %) and bitwise boolean
(∨, ∧, ⊕) operations can be performed on open values; where for the latter boolean operations we assume a
fixed binary representation of values within the finite field Fq. The arithmetic operations can also be applied
to one value which is shared and one value which is opened, resulting in a new value which is shared.
Finally, in terms of arithmetic operations, two shared values can be added together to result in a shared
value. Another set of operations deal with loading data from the files precomputed in the offline phase.
These are all shared random values, subject to the constraints given in Table 1.

All of the prior operations are “local”, i.e. they do not require any interaction between the parties. As
these local operations which produce shared values are performed, the parties can locally update the value
of their shares of the associated MAC value. The power of the online phase comes from the ability to
interactively “open” shared values so as to produce opened values. In such an operation a shared value 〈a〉
is opened to reveal a to all parties, but the associated shared MAC values, a · α, are kept secret.

To protect the parties against malicious parties the shared MACs of all such opened values need to be
checked for correctness, and this must be done in a way so that neither the MAC key nor the MAC value
itself is revealed. This is done using the protocol described in [14]. We execute this protocol so that batches
of MAC values are checked all at once; in particular we batch up to 100,000 such MAC values to be checked
into one operation. Thus the MAC checking protocol is executed after every 100,000 such openings, and
once at the end of the computation to check any remaining values.

In [15] the following O(n) protocol is suggested for performing the opening operation on the shared
value 〈a〉.

– The players pick an arbitrary “nominated player”, say P1.
– Players Pi for i = 2, · · · , n send P1 the value ai.
– P1 computes a = a1 + · · ·+ an and sends a to all other players.

It is readily seen that the communication complexity of the above protocol is that each player (on average)
sends a total of three field elements per opening. However, in practice we have found the following naive
protocol to be more efficient.

– Pi sends ai to all other players.
– Each player locally computes a = a1 + · · ·+ an.

Here the parties need to each send n − 1 field elements per opening, which will be worse than the prior
method as soon as n > 3. However, in practice we found that the naive method performs better than the
O(n) method for n ≤ 5. This is because it is a one round protocol as opposed to a two round protocol. This
dependence of efficiency on rounds will be a feature of our work and we will take a great deal of trouble in
later sections in minimizing the round complexity of the entire computation in an automatic manner. Clearly
to minimize rounds across a computation many different values to be opened can be opened at once in either
of the methods above.

From the above description of the basic functionalities of the online phase it is not clear whether such
a runtime is universal, i.e. can compute any arbitrary function. Since every function can be expressed as
an arithmetic circuit over Fq and addition of shared values is a local operation, all that remains to show
universality is to demonstrate that multiplication can be performed. Given two shared values 〈x〉 , 〈y〉, to
multiply them we take a precomputed multiplication triple {〈a〉 , 〈b〉 , 〈c〉} and then the parties open the
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values α = x+ a and β = y + b. The shared value 〈x · y〉 can then be computed from the local operation

〈x · y〉 = (α− 〈a〉) · (β − 〈b〉) = α · β − β · 〈a〉 − α · 〈b〉+ 〈c〉 .

Thus multiplication is itself composed of our three primitive operations of local additions, open and con-
suming pre-processed data.

3 Virtual machine

To implement the online protocol we took a ‘ground up’ approach to architecture, starting with a very simple
register-based virtual machine that can be run on an ordinary desktop computer by each party. By focussing
initially on the low level design details we have obtained a high performance implementation with minimal
overhead, leaving decisions for optimization and compilation to a higher level. Our virtual machine could
be used to run code from a variety of language descriptions, given a cross-compiler to output the appropriate
bytecode. To demonstrate this we use a simple language based on Python for all our programs. Details of the
compilation process and special-purpose optimizations that we developed to reduce communication costs
are given in Section 4.

Programs to be run by the virtual machine must be encoded into bytecode as assembly-like instructions
(generally produced by a higher level compiler), which are then parsed and executed. To make the most
of modern multi-core processors, we allow a number of such precomputed bytecode files to run simulta-
neously, each in a separate thread of the runtime virtual machine. This then leads to an additional level of
complication in relation to how the bytecode files consume data from the offline phase, how the bytecode
files are scheduled across a large computation and communicate with each other, and how branching and
looping are to be performed. In this section we describe the low level design decisions which we have made
to solve these problems. To ease exposition we shall refer to a single sequence of bytecode instructions as a
tape in the following presentation.

The virtual machine consists of a memory holding a fixed number of clear and secret shared values.
This memory is long term, and as the virtual machine starts up/shuts down the memory is read from/written
to the player’s local disk. In addition the virtual machine runs a series of t + 1 threads; one thread acts
as a control thread while the other t threads have the task of executing (or not) a tape of bytecode. The
t tape-running threads open pairwise point-to-point communication channels with the associated threads
in the other players’ runtime environments. There is no limit to the number of concurrent tapes, t, but in
practice one will be restricted by the number of cores. For our test machines with eight cores, we found best
performance when t is limited to seven or fewer.

The control thread executes the main program, or schedule. This is a program which specifies exactly
which tape should be run at which point. The schedule also specifies which, and how many, tapes are
executed in parallel; with up to t such tapes may be executed in parallel. The control thread takes the tapes
to be executed at a given step in the program, passes them to the execution threads, and then waits for the
threads to finish their execution, at which point the control thread processes the next stage of the program.
Communication between tapes is done via reading and writing to the virtual machine’s long term memory. To
avoid unnecessary stalls there is no locking mechanism provided to this memory. So if two simultaneously
running threads execute a read and a write, or two writes, to the same memory location then the result is
undefined since it is unspecified as to which order the associated instructions will be performed in. Thus in
this respect we have traded speed for safety at the lowest level; it is the task of the compiler or programmer
to ensure the safe behaviour of concurrently running bytecode.
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We now turn to discussing the execution threads and the associated bytecode instructions within each
tape. Each execution thread has its own local shared and clear memory. To avoid confusion with the long
term memory we shall call this local memory a register file, referring to the values as shared or clear registers.
The values of a register are not assumed to be maintained between an execution thread running one tape and
the next tape, so all passing of values between two sequential tape executions must be done by reading and
writing to the main virtual machine memory. Again, whilst this may seem like a very primitive approach to
take, we are ensuring that there is no unnecessary overhead and bloat in the virtual machine, leaving more
complex elements to the next level up.

The bytecode instructions within a tape are influenced by the RISC design strategy, coming in only
three basic types; corresponding to the operations described in Section 2.2. The first of these most closely
resembles traditional assembly code instructions, consisting of load and store operations for moving regis-
ters to and from the long term memory, and instructions for executing local arithmetic and bitwise logical
operations described in Section 2.2, that can be performed without interaction. All of this class of bytecode
instructions are of the simple one output, one or two input variety found in modern processors, where the
inputs may be registers or immediate values and the output register type depends on the input types as spec-
ified earlier. The other two types of instructions are data access instructions, which serve to load data from
the preprocessing phase, and a special instruction to open shared register values into clear registers. Note
that this last instruction is the only one requiring interaction between players. We now turn to discussing
each of these special MPC instruction types in turn.

The instructions for loading data from the preprocessing phase are denoted triple, square, bit, input and
inv, and they take as argument three, two, one, one and two shared registers respectively. The associated
data is loaded from the precomputed data and loaded into the registers given as arguments. This leads to the
problem that multiple concurrent tapes could read the same data from the precomputed global store. Thus
the control thread on passing a tape to an execution thread for execution first calculates a (reasonable) upper
bound on the amount of pre-processing data it will consume before it is executed. This can be easily done
in the case of programs with no loops by simply counting the number of such instructions in the tape. Then
the control thread allocates a specific portion of the unused precomputed data to the thread for use within
this tape. This solution avoids complexity in the offline phase (by not requiring it to produce separate data
for each thread) or added complexity to the online phase (by not requiring a locking mechanism to access
the precomputed data), both of which would negatively affect program complexity and/or performance. The
cost for this simple solution comes when executing tapes containing branching instructions, an issue we
return to in Appendix A.

The process of opening secret values is covered by two instructions. The startopen instruction takes
as input a set of m shared registers, and stopopen an associated set of m clear registers, where m can be
an arbitrary integer. They then execute the protocol from Section 2.2 to open the shared registers and place
the results into the designated clear registers. The fact that we can perform m of these operations in parallel
is vital in improving the throughput and latency of applications run on the virtual machine. Furthermore,
splitting the process in two steps allows one to execute local instructions while the runtime is waiting for
data from other parties to arrive.

4 The compilation process

To produce the bytecode tapes required by our virtual machine, we developed a compiler for a simple
high-level language derived from Python. The compiler takes a Python-like program description, extracts
individual threads from this and breaks each thread down into basic blocks. The individual basic blocks are
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then optimized and each thread used to produce a bytecode tape for the virtual machine. Our optimization
guarantees that, within a basic block, the program will be compiled with the minimum possible number of
rounds of communication. This, coupled with the familiarity to many of the Python programming language,
ensures that the workload of implementing complex MPC functionalities is eased considerably.

Instead of the traditional approach of using parsing and lexing tools for compilation, we chose to imple-
ment the core language features as a Python library, so that programs can be executed by Python itself, which
then produces the relevant bytecode. This allows for (compile-time) access to many of Python’s powerful
features such as list comprehensions, classes and functions with relatively little effort. The library consists
of a set of functions for creating, storing and loading clear and secret shared data types; loading prepro-
cessed data and more complex features such as threading and branching. We then use operator overloading
to provide transparent support for arithmetic functions on our data types.

Upon execution, the Python code creates bytecode instructions from our library functions and the over-
loaded arithmetic operators, whilst keeping track of the appropriate threading and basic block information.
Complex functions such as secret multiplication and comparison are expanded into sequences of the basic
RISC-like instructions described in Section 3. Note that at this stage the open instructions will only have
one shared and one clear register as arguments.

So despite our RISC instructions not supporting complex operations such as the multiplication of two
shared values in Fq, we can easily implement this using the compiler. This abstraction is key to our approach;
we do not at the low level execute a program corresponding to an arithmetic circuit over Fq as in other
approaches. We instead execute only a sequence of operations which are linear operations on the shared
values, open instructions, or load precomputed data. All high level operations can be built up from these
instructions; and indeed more efficient high level operations can be built which do not involve reduction to
arithmetic circuits.

Using the above ideas we arrive at a point where we have produced a set of bytecode tapes in static single
assignment (SSA) form, with an unbounded number of clear and shared registers, and standard compiler
optimizations such as common subexpression elimination can be performed if required. We then optimize
the communication complexity of each tape by reordering and merging the open instructions, as follows:

– Calculate the program dependency graph G = (V,E), whose vertices correspond to instructions in the
bytecode, and directed edges represent dependencies between instructions.

– Let T ⊆ V denote the set of startopen vertices and let S be the subset of T with no preceding nodes
in T .

– Since all nodes in S are independent of each other, we now merge them together into a single source
node (and instruction) s, and do the same with associated stopopens.

– To compute the remaining merges that can be done, assign weights to edges as follows:

wi,j =

{
−1 if vj ∈ T \ S
0 otherwise

This ensures that the length of a path between any two nodes is exactly −1 times the number of
startopen nodes lying on the path, excluding the first node and any source startopen nodes.

– For each vertex v, compute distv, the shortest distance from the merged source s to v. SinceG is a DAG,
this can be done in linear time with a standard shortest paths algorithm using dynamic programming.

– Merge all startopens (and their associated stopopens) that are the same distance from s (by the
shortest path property, these must all be independent).
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After this step, all independent startopen and stopopen instructions in the original program have been
merged together. We can now compute a topological ordering of G to produce a program with the minimal
number of rounds of communication for the given instruction sequence.

To illustrate the benefit of this, we implemented a standard polynomial approximation for the floating
point sin(x) function. If this is compiled without merging open instructions (bar those merges which are
automatically encoded in the lower level constituent operations) one would obtain a round complexity of
5874. On application of our optimizer the number of rounds reduces to 759.

When computing the topological ordering, we calculate which round of openings each instruction de-
pends on and which round of openings depends on the instruction. This can be done similarly to the shortest
paths method above, traversing G in reverse order. Instructions that do not have a dependency in both di-
rections, like memory operations, are placed close to the remaining dependency or close to the beginning if
there is no dependency at all. This reduces the memory usage of the virtual machine because it reduces the
lifetime of registers.

Finally, there are instructions that have dependencies in both ways, i.e. those that depend on some open-
ing round i, while at the same time opening round i+1 depends on them, clearly have to be placed between
the two rounds. However, instructions that only depend on rounds up to i and are independent of round i+1
can be placed between the startopen and stopopen of round i+1. This utilizes the time used for waiting
for data from other parties for performing local computations.

To complete compilation, the compiler allocates registers. Since all programs are in SSA form at this
point, the allocation is straightforward. The compiler processes the program backwards, allocates a register
whenever a register is read for the last time, and deallocates it whenever a register is written to. This ensures
that a minimal numbers of registers are used, which minimizes memory usage of the virtual machine.

x = a * b + c * d
y = a * x
z = reveal(e)

Fig. 1. A sample program.

For way of illustration, Figure 1 shows a possible high-level program, and Figure 2 shows the corre-
sponding output of the compiler. The semantics are as follows: Registers starting with s hold secret values,
registers starting with c clear values. adds, addm, subs, mulc, and mulm denote addition, subtraction,
and multiplication, respectively. The result is assigned to the first register, with the last letter of the instruc-
tion denoting the type of the inputs: s for secret, c for clear, and m for mixed. The instruction triple loads
a multiplication triple into the given registers. Finally, startopen opens any number of secret registers,
and stopopen assigns the results of the last startopen to the clear registers. The compiler mapped a-e
to s0-s4, x to s5, y to s6, and z to c0. Note that the openings required for the multiplications a*b and
c*d and the opening of e are all merged together in the first startopen/stopopen pair. Furthermore,
the triple needed for the multiplication a*x is loaded only after that. This allows for the registers s6-s8 to
be used for something else prior to that, thus reducing the register usage.

Vector operations The virtual machine also supports vector instructions like adding two vectors of registers
and storing the result in a vector of registers. This does not significantly improve the performance of the run-
time (in that one could obtain the same effect using multiple copies of the non-vectorized instructions), but
vectorized instructions reduces memory and time needed for the compilation. Vector instructions are based
on the basic instructions and take the size of the vector as an additional parameter. The further parameters
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triple s13, s10, s14
triple s11, s12, s5
subs s9, s3, s10
subs s7, s2, s13
subs s6, s1, s12
subs s8, s0, s11
startopen s8, s6, s7, s9, s4
stopopen c1, c3, c4, c5, c0
triple s7, s8, s6
subs s9, s0, s7
mulc c2, c4, c5
mulm s13, s13, c5
mulm s10, s10, c4
adds s10, s14, s10
adds s10, s10, s13
addm s10, s10, c2
mulc c2, c1, c3
mulm s11, s11, c3
mulm s12, s12, c1
adds s5, s5, s12
adds s5, s5, s11
addm s5, s5, c2
adds s5, s5, s10
subs s10, s5, s8
startopen s9, s10
stopopen c1, c2
mulm s8, s8, c1
adds s6, s6, s8
mulm s7, s7, c2
adds s6, s6, s7
mulc c1, c1, c2
addm s6, s6, c1

Fig. 2. Compiled sample program.

have the same format as for basic instruction. Register and memory addresses are interpreted as the base
address of the vector, and constants as constants. Furthermore, the high-level language allows to declare
vectors of secret and clear values. Operations on those are compiled into vector instructions.

The key reason for enabling such vector instructions is to enable SIMD processing of multiple programs
in the same thread. By introducing vectorized processing we can obtain high SIMD parallelism without
compromising the speed of the compiler. We shall see later that the SIMD execution of higher level op-
erations, such as floating point operations and AES evaluations, allow one to obtain a higher throughput
without sacrificing latency too much. Thus the vectorized instructions give us a another way of obtaining
higher throughput via parallelism, in addition to the execution of multiple tapes in multiple threads.

5 Run Time Arithmetic

The runtime comes in two variants. One for working with finite fields Fq where q is a “large” prime, say q ≈
2128. This runtime variant is more suited to general purpose computations; it supports integer operations and
working on fixed and floating point numbers as we shall describe later. Here we assume a statistical security
parameter of 40, i.e. we allow deviations in the statistical distributions of the various shared value output of
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2−40. The second runtime is for working with functionalities more related to binary circuit descriptions, and
it works in the finite field F240 . The choice of this specific finite field is to obtain a probability of an active
adversary cheating of 2−40, as well as to enable the efficient evaluation of the AES functionality using the
field embedding technique described in [13]. We now discuss each variant in turn:

5.1 The Large Prime Variant

Here we represent a signed t-bit integer value, where t < 128, by its value modulo the 128-bit prime q.
Using the basic embedding of the range [−2t−1, 2t−1 − 1] into [0, q − 1], we can then provide standard
integer operations such as addition, multiplication and comparison. Note however that “wrap around” will
only occur in the range [0, q − 1] and not in [−2t−1, 2t−1 − 1] unless special code is produced to do so.

For some computations, we may wish to decompose a secret shared integer into bits and then perform
bitwise operations on the resulting shared bits. This can be done using fairly standard bit decomposition
techniques [7], but we achieve further efficiency gains through use of shared bits from the preprocessing.
In particular the following bit decomposition technique is used in the floating point addition protocol of [1]
which we use. We pause to overview how a bit decomposition is performed using the precomputed shared
random bits: Given a shared value 〈x〉 which is known to represent an integer which is m < 128− 40 = 88
bits long, we use a set of m + 40 shared bits {〈bi〉}m+39

i=0 (loaded via the bit operation) to obtain t sharings
of the t least significant bits of x. The shared masking value 〈y〉 =

∑m+39
i=0 2i 〈bi〉 is first computed, and

applied to 〈x〉 to obtain 〈c〉 = 2m+40 + 2m + 〈x〉 − 〈y〉. The value 〈c〉 is then opened and the result taken
modulo 2m to obtain r = x− y mod 2m. We then take the m least significant bits of r, and the shared bits
{〈bi〉}m−1

i=0 , and execute the circuit for binary addition on these to compute the result. Since 〈x〉 is known to
be m bits long, the length of 〈y〉 provides 40 bits of statistical security when revealing x− y.

This last step requires us to efficiently evaluate binary circuits for shared bit values over a large finite
field. The usual approach is to execute a squaring for every XOR operation, since a⊕ b = (a− b)2 over the
integers for binary a and b. This is relatively expensive; so we instead adopt one of two different approaches.

– For the bitwise addition circuit used in bit decomposition above, we use the technique from [30]. In
this circuit for every XOR of two bit values we also need to compute their AND. If a, b ∈ {0, 1} then
computing a ∧ b is the same as computing their integer product; and compute a ⊕ b is the the integer
calculation a+ b− 2 · a · b, and so comes at no additional cost (since a ∧ b is also needed).

– For more general binary circuits, the overhead of multiplying at every XOR gate can be costly, so we
propose an alternative method for avoiding this. We simply execute an addition operation instead of
XOR, and keep track of the maximum size of the resulting shared integer. When the result may exceed
2128−40, or we need to return the final bit value, we can reduce the integer modulo two by applying the
bit decomposition procedure (with m = 1) to output the least significant bit. This allows us to emulate
binary circuits of reasonable depth at very little extra cost, bar the unavoidable overhead of arithmetic
modulo q.

Fixed and floating point arithmetic: In addition to integer types, our compiler supports fixed and floating
point arithmetic. Our fixed point arithmetic type consists of a secret shared integer of size up to 64 bits,
with the point fixed at 32 binary places. Our secure floating point representation is based on the IEEE single
precision format, where the significand has 24 bits of precision and the exponent 8 bits. This allows both
significands and exponents to be stored as 128-bit field elements, leaving plenty of room for expansion after
addition and multiplication with a 40-bit statistical security parameter.
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The results of floating point operations are compliant to the IEEE standard, except we do not currently
handle errors for overflow or invalid operations. Clearly any error handling performed must be secret to
preserve privacy; we could use secret shared bits to handle error flags (as described in [1]) but chose to omit
this for simplicity.

Note that we always use deterministic truncation in our protocols, and not the probabilistic rounding
method of [8]. Whilst more efficient, the probabilistic method leads to lower accuracy and more complex
analysis of errors, and is impractical for operations like comparison, where a deterministic result is required.

5.2 The F240 Variant

We also present results for a runtime based on secret sharing over the field F240 . This field size is chosen
to enable us to upper bound the probability of an active adversary going undetected by of 2−40, which is
a common value in previous work on actively secure MPC protocols. In addition the field F240 enables
us to efficiently embed a copy of F28 within it; this was shown to be useful in [13] in evaluating an AES
functionality. In a similar way we embed the binary field F2 into F240 thus enabling the evaluation of binary
circuits.

Unlike the case of the large prime characteristic field, for the characteristic two fields, our offline phase
only produces triples, bits and input sharings. We shall see in Section 6.2 that our runtime is able to evaluate
the AES functionality rather efficiently. In particular one can obtain a factor of 100 improvement in either
latency of throughput on the previous best runtimes for AES evaluation with active security [13]. In addition
in trading throughput for latency one can always obtain a factor of 10 improvement in either of these values
(and a factor of 100 improvement in the other) over the results in [13]. However, we shall see that the runtime
is less efficient at evaluating complex general binary circuits.

6 Experimental Results

Our basic experimental setup was as follows. We used two machines with Intel i7-2600S CPU’s running
at 2.8 GHz with 4GB of RAM, connected by a local area network. Each machine represents a party to the
computation. Our experimental setup could have been performed with more than two parties with only a
marginal decrease in performance.

Each program was written using our system and then compiled to bytecode tapes. Each tape was run `
times (with ` at least 50, the precise value depending on the experiment being carried out) sequentially in
a single thread, and then the experiment repeated using tapes which had been vectorized with our SIMD
instructions. For the SIMD experiments, a tape executed n versions of the algorithm in parallel with all of
the communication batched together, for values of n in {1, 2, 3, 4, 5, 10, 16, 32, 64, 128}. Finally the same
set of experiments were carried out running in t threads instead of one, for t ∈ {1, 4, 7}. The upper bound
of seven was chosen since our processors had eight cores and one thread was acting as the controller thread.

For all experiments we measured performance using throughput and latency. Latency is simply the
average execution time for n · t operations (obtained by dividing the total runtime by `), whilst throughput
is the number of operations executed per second. We plot these measures against other in the graphs that
follow, showing tradeoffs that are possible depending on the application. Reading the graphs from left-to-
right, the number n of operations in parallel is increased; note that the first data point always corresponds
to n = 1, for purely sequential operations. Higher values of n result is higher latency as more data needs
to be passed across the network in each communication. However, we can also see for most functionalities
that at a certain point increasing n no longer buys us any extra throughput, and indeed it can decrease the
throughput in some cases.
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The reason for focusing on the trade-off between throughput and latency is as follows. Whilst many
previous works on MPC focus on throughput only (i.e. number of AES operations per second), they often
hide the high latency needed to achieve such high throughputs. In a real application one will have a specific
latency one is trying to achieve, with throughput often being a secondary consideration. By presenting
graphs which show the trade-off between throughput and latency, one can more accurately see the kind of
performance characteristics a real world application would enjoy.

6.1 Arithmetic Circuits in Large Characteristic

Protocol Rounds Triples Bits Inverses
Multiplication 1 1 0 0
32-Bit Comparison (Constant Rounds) 4 61 143 31
32-Bit Comparison (Logarithmic Rounds) 5 52 72 0
64-Bit Comparison (Constant Rounds) 4 125 207 63
64-Bit Comparison (Logarithmic Rounds) 6 114 104 0
Fixed Point Mult. 7 63 168 0
Floating Point Mult. 15 95 218 0
Floating Point Add 47 483 2185 32
Fixed Point Comp. 10 73 159 0
Floating Point Comp. 7 124 104 0

Table 2. Round and communication complexities of the large prime field protocols.

In this section we detail the performance of our runtime when working in Fq, for q a 128-bit prime.
The most basic operation interactive operation is multiplication of secret shared values, for which we give
timings below. We then discuss integer comparison, where we assume the input values are guaranteed to
be 32 bit or 64 bit signed integers. Integer comparison is, unlike for standard processors, more expensive
than multiplication. Having integer comparison allows us to implement sorting of lists with sorting net-
works. From comparison we move onto computing on approximations to real number computations using
fixed point and floating point arithmetic. Table 6.1 summarizes the various costs and complexities of the
algorithms discussed in this section.

Integer Multiplication The basic non-local operation performed by the run time is executing an integer
multiplication in the field Fq. This requires a single round of communication, with each player needing to
send two elements in Fq to each other player. In Figure 3 we present the how the latency and throughput
varies depending on how many threads are used, and how many multiplications per thread are executed in a
SIMD like manner per thread.

Integer Comparison Comparison of secret shared integers is a fundamental operation in secure compu-
tation, used extensively throughout our fixed and floating point arithmetic below. The protocols we use all
subtract one input from the other and compare the result to zero by extracting the most significant bit without
doing bitwise decomposition.

For the comparison operation we implemented two protocols described by Catrina and de Hoogh [7],
one with logarithmic round complexity and one in constant rounds but with slightly higher communication
costs. The logarithmic rounds solution evaluates a binary circuit for computing the carry bit from binary
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Fig. 3. Integer multiplication

addition, using this to obtain the comparison result. The constant rounds variant takes a different approach,
using an efficient prefix multiplication protocol to compute the prefix products pi =

∏k
j=i(dj + 1) =

2
∑k

j=i dj , where di = ai ⊕ bi, from which the comparison bit can be derived. The prefix multiplication
by Damgård et al. [10] works as follows: Given non-zero inputs x0, x1, x2, . . . opening the masked values
x0a

−1
0 , a0x1a

−1
1 , a1x1a

−1
2 , . . . for random non-zero a0, a1, . . . allows to compute a0a1, a0a1a2, . . . in a

constant number of rounds. Catrina and de Hoogh also gave a second constant rounds protocol with better
communication complexity, however this exploits properties of Shamir secret sharing which we cannot use.
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Fig. 4. Integer comparison (logarithmic rounds protocol).
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For 32-bit comparison (resp. 64-bit comparison) operations with a 40-bit statistical security parameter,
the logarithmic rounds solution requires six (resp. seven) rounds of communication, compared with four
for the constant rounds protocol. However, the amount of data transmitted is 20% smaller; 121 (resp. 249)
required openings for the logarithmic round version as opposed to 155 (resp. 315) for the constant round
version (32-bit). Our experiments indicate that the saving of one round in the constant variant is dominated
by the communication cost of sending more data in each round. The resulting performance is around 20%
slower for the constant round method compared to the logarithmic round method. Therefore we used the
logarithmic rounds protocol for all comparison and higher-level operations. Note that our implementations
have slightly differing round and communication complexities to those stated in [7], firstly because we can
generate shared bits without interaction using our preprocessing, and also as their constant rounds solution
uses a special public output multiplication protocol, which cannot be applied to our setting.

Sorting Based on integer comparison, we implemented odd-even merge sorting networks similarly to
Jónsson et al. [18]. Our results are shown in Figure 5. For the implemented sizes they are similar to the
results by Jónsson et al. Note that the figures are based on only one sequential sorting operation, using
one thread for shorter lists and seven threads for longer lists. The latter improves the performance because
sorting networks are highly parallelizable by design.
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Fig. 5. Sorting.

Sorting networks are the most efficient known method for fully private sorting because the most sorting
algorithms rely on branching, which is not possible in multi-party computation if the condition is supposed
to stay secret. Sorting networks only use compare-and-swap operations, which guarantee that the first output
is the minimum of the two inputs. It is straightforward to implement this operation using comparison. Odd-
even merge sorting networks have complexity O(n · log2 n). While this is not optimal, there is no known
sorting network with complexity O(n · log n) that is efficient for practical parameters.

Fixed and Floating Point Arithmetic As explained earlier fixed point arithmetic is implemented using a
secret shared integer of size up to 64 bits, with the point fixed at 32 binary places. Here addition is simply
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a local operation (as with integer arithmetic) and multiplication consists of multiplying the two integers
and truncating the result by 32 bits. This is essentially the same cost as a 32-bit comparison operation. The
relevant performance is presented in Figures 7 and 8.
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Fig. 6. Floating point addition
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Fig. 7. Fixed and floating point multiplication

We use the floating point protocols from [1] for addition, multiplication and comparison (see Figures
6, 7, 8). From these operations other more complex floating computations can be built up. As was also the
case with integer comparison earlier, the complexities of our protocols improve upon those stated in [1]
due to the preprocessing we use. Floating point protocols make extensive use of comparison and bitwise
addition protocols, for which using precomputed shared bits improves performance considerably. Recall
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that our floating point operations are almost compliant to the IEEE standard for single precision floating
point numbers; the only deviation being how we handle errors for overflow and invalid operations.

As can be seen in Figure 7, the difference in performance between fixed and floating point multiplication
is not huge; floating point is only a factor of two slower. It is in addition, however, where floating point
operations really suffer. This is due to the need to obliviously align the exponents of both inputs, whereas
fixed point addition is a simple local operation (as with integers). With the comparison operation, floating
point is slightly faster due to the smaller lengths of integers involved, despite the protocol being more
complex.

Our throughput results compare favourably with those for a passively secure, three-party protocol based
on Shamir secret sharing from [1]. They had a similar setup to ours, also running on a local network, and
our operations are roughly an order of magnitude faster when maximum parallelism is used, probably due
to our sophisticated implementation techniques described earlier.
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Fig. 8. Fixed and floating point comparison operation (less than)

6.2 Circuits in Characteristic Two

For our experiments in characteristic two we settled on the following six functionalities as exemplars: AES
(with and without the key schedule included), DES (again with and without the key schedule included),
MD5, SHA-1 and SHA-256. The reason for selecting these was firstly, as has already been mentioned,
AES is the standard example in the field and secondly, the circuits for DES, MD5, SHA-1 and SHA-256
are readily available. In addition if one is using AES as a prototypical PRF in an application it is interest-
ing to compare just how much more efficient it is compared to other PRF’s used in various cryptographic
operations.

In Table 6.2 we present various statistics associated with these functionalities; how many multiplication
triples they consume, how many bits, and how many rounds of communication are required, all for a sin-
gle invocation of the functionality. Note, this latter figure is determined automatically by our compilation
strategy to be the minimum necessary given the algorithm used to compute the function. The DES, MD5,
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Functionality Rounds Triples Bits
AES (incl. Key Schedule) 50 1200 3200
AES (excl. Key Schedule) 50 960 2560
DES (incl. Key Schedule) 263 18124 0
DES (excl. Key Schedule) 261 18175 0
MD5 2972 29084 0
SHA-1 5503 37300 0
SHA-256 3976 90825 0

Table 3. Round and required pre-processed data for the various functionalities in characteristic two.

SHA-1 and SHA-256 functionalities were computed via their standard binary circuit description whereas the
AES functionality made use of arithmetic description over F28 and the efficient bit-decomposition method
to compute the S-Box from [12, 13].
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Fig. 9. AES runtimes

AES In this functionality we assume a single AES secret key k, which has been shared between the parties.
The goal of the functionality is to evaluate the AES function on a single block of public data, producing
a shared output ciphertext block. From Figure 9 we can see that having a pre-expanded secret key shared
between the parties makes very little difference in the execution times. We also see that with either four or
seven threads a throughput of roughly 1000 blocks per second is easily obtainable; with a latency of around
100ms. The smallest latency comes when using a single thread and only batching up a single AES execution
at a time; here we obtain a latency of around 12ms, but only a throughput of 83 blocks per second. To see the
low latency values more explicitly we in Figure 10 zoom in on the lower left hand corner of Figure 9. Note,
that the performance we obtain with our runtime is at least an order of magnitude better than that obtained
in [13], without introducing any algorithmic improvements. Our improvement is purely down to a deeper
understanding of how to schedule and execute MPC instructions.
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Fig. 11. DES runtimes

DES In Figure 11 we present a similar experiment for the DES cipher. Notice, just as for AES there is little
difference between evaluating the cipher with a pre-expanded key and having to evaluate the key schedule
using MPC. Except in the case of running seven threads, in which case having to execute the key schedule
significantly reduces the throughput. The latency and throughput are about ten times worse than what was
obtained from AES. This however is not (directly) because we are evaluating a binary circuit over F2 as
opposed to working with bytes in F28 , it is more a function of the number of rounds of communication
needed and the amount of data communicated in those rounds.

MD5, SHA-1 and SHA-256 When applying the runtime to the MD5, SHA-1 and SHA-256 circuits one
sees that the number of multiplications/rounds has an even more dramatic effect. The latency increases and
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Fig. 12. MD5 runtimes

the throughput decreases as the number of rounds increases, and the number of triples consumed increases.
See Figures 12, 13 and 14 for details.
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Fig. 13. SHA-1 runtimes
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5. R. Bendlin, I. Damgård, C. Orlandi, and S. Zakarias. Semi-homomorphic encryption and multiparty computation. In EURO-
CRYPT, volume 6632 of Lecture Notes in Computer Science, pages 169–188, 2011.

6. D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A framework for fast privacy-preserving computations. In ESORICS,
volume 5283 of Lecture Notes in Computer Science, pages 192–206. Springer, 2008.

7. O. Catrina and S. de Hoogh. Improved primitives for secure multiparty integer computation. In J. A. Garay and R. D. Prisco,
editors, SCN, volume 6280 of Lecture Notes in Computer Science, pages 182–199. Springer, 2010.

8. O. Catrina and A. Saxena. Secure computation with fixed-point numbers. In Financial Cryptography, volume 6052 of Lecture
Notes in Computer Science, pages 35–50. Springer, 2010.

9. S. G. Choi, K.-W. Hwang, J. Katz, T. Malkin, and D. Rubenstein. Secure multi-party computation of boolean circuits with
applications to privacy in on-line marketplaces. In O. Dunkelman, editor, CT-RSA, volume 7178 of Lecture Notes in Computer
Science, pages 416–432. Springer, 2012.
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A Branching/Looping

Due to the way the precomputed data is processed the runtime needs to know before executing a specific
bytecode tape within a thread how much precomputed data will be consumed. This produces a particular
issue in relation to branching and looping. We distinguish three cases:

– Loops where the number of iterations are known at compile time.
– Conditional branches forwards (as in if-then-else constructions).
– Conditional branches backwards (as in do-while loops).

We note that conditional branching can only be executed on opened values; we do not allow branching on
shared values. We now discuss each of the above three cases in turn.

For loops where the number of iterations is known at compile time, we can determine the amount of
precomputed data used within the loop by simply counting each instruction which loads data by the requisite
number of times the loop is executed; with a suitable modification for nested loops. Forward conditional
branches essentially allow one to conditionally skip code portions; thus by simply counting the total number

22



of instructions which load precomputed data we will obtain an upper bound on the amount of precomputed
data; this will be enough for the runtime to allocate different portions of the precomputed data to each
bytecode tape within each thread.

The main issue occurs with conditional branches backwards; these arise for loop constructions where
the number of iterations cannot be determined at compile time. Here a design decision has to be made, either
we install logic to cope with this case (which would incur a large performance penalty) or we restrict the
use of such constructs in some way. We decided to come up with the following constraint, after considering
various use-cases. The main problem arises from not being able to allocate portions of the existing pool of
precomputed data to each thread. Thus we impose a constraint on the main control thread in that it cannot
execute any bytecode tape containing a conditional backward branch with any other thread at the same time.
This means that tapes which could in theory be executed concurrently will be executed serially. Then the
actual amount of precomputed data consumed during the execution can be determined; rather than estimated
ahead of time. We found this compromise provided a suitable balance between efficiency and applicability;
we can process the single tape very fast, at the expense of not being able to execute multiple tapes in parallel
for such situations.
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