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Abstract

We present an efficient key wrapping scheme that uses a single wide permutation and does not
rely on block ciphers. The scheme is capable of wrapping keys up to 1400 bits long and processing
arbitrarily long headers. Our scheme easily delivers the security level of 128 bits or higher with
the master key of the same length. The permutation can be taken from the sponge hash functions
such as SHA-3 (Keccak), Quark, Photon, Spongent.

We also present a simple proof of security within the concept of Deterministic Authenticated
Encryption (DAE) introduced by Rogaway and Shrimpton. We extend the setting by allowing
the adversary to query the permutation and following the indifferentiability setting in the security
proof of the sponge construction.

Keywords: Key wrapping, DAE, sponge, Keccak.

1 Introduction

Key wrapping schemes address the problem of key management in distributed systems. Security
architects often limit the lifespan of keys in order to reduce the risk of the key compromise and
lessen the amount of data encrypted on a single key. Hence keys are regularly updated, and an
update protocol using an insecure channel must be carefully designed. Ideally, it should be simple and
efficient. Practical constraints also limit, if not forbid the use of additional mechanisms such as nonce
or random number generation.

Since the early years of digital cryptography, new keys are encrypted on (wrapped with) a long-term
(master) key shared between a sender and a receiver. Confidentiality of the new key must be ensured
and its integrity must be protected. A key might be binded to a header, which is not encrypted
(e.g., for routing purposes) but authenticated. Therefore, the key wrapping scheme is a special case
of authenticated encryption with associated data (AEAD) schemes [16], where nonces and random
numbers are avoided. Such a scheme may serve not only for key update, but also for a robust and
misuse-resistant general purpose encryption [17].

Traditional AEAD schemes provide confidentiality (e.g., ciphertexts are indistinguishable from
random strings) and data authenticity (ciphertexts constructed by an adversary must decrypt to
error). They employ randomness or nonces and can be almost as efficient as regular encryption
modes [12]. It has been clear that a deterministic scheme would require at least two passes over data
to make each output bit depend on each input bit.

When NIST addressed the key wrapping schemes in the series of recommendations (since at least
2001), its designs, later called AES-KW and AKW [14], were highly inefficient. Moreover, those
schemes carried no formal security claims or proofs. This was natural, as the first formal treatment of
this problem appeared only in 2006 [17] as the concept of the Deterministic Authenticated Encryption
(DAE). Still, only a few key wrapping schemes have been proposed so far in DAE or similar frameworks:
SIV and S2V [17], HBS [11], BTM [10], Hash-then-Encrypt [7, 15].

None of these proposals are universal solutions. AES-KW requires 12-fold as many operations as
to encrypt the same amount of data, SIV needs two keys and is not parallelizable, and the Hash-
then-Encrypt template can not be scaled to a general-purpose encryption mode. Third-party analysis
of these constructions is often difficult because of lengthy and complicated proofs of security. The
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recently found flaw in the security proof of GCM [9] emphasizes the need for clarity and extensive
third-party verification of provably secure schemes.

All these designs employ a block cipher, and the natural choice of AES limits their security level
to 64 bits. To obtain the 128-bit security or higher, one would need a block cipher with a 256-bit
block or larger. Except for Threefish, a component of the Skein hash function [6], no other 256-bit
blockcipher enjoyed significant attention from cryptanalysts.

However, block ciphers are not the only source of good permutations. Quite recently, the hash
function Keccak [3], which employs a 1600-bit permutation, has been selected as the new standard
SHA-3. Since 1600 bits are often sufficient to carry the master key, the new key, and the associated
data, we could restrict the use of a permutation to a single call and obtain a scheme with a reasonably
short proof of security.

Our proposal. We present a new key wrapping scheme with a variable security level and a proof
of security that is easy to verify. We call it KWF, as it is based not on a block cipher but on a fixed
permutation such as those used in sponge hash functions (SHA-3/Keccak, Quark).

A wide permutation (up to 1600 bits in Keccak) easily delivers the security level of 128 bits or
higher when using the key of the same length. Associated data (header) is processed with an unkeyed
cryptographic hash function, possibly the same from which the permutation comes. Apart from the
header processing, the scheme has no overhead over a single permutation call. We limit the message
length to at max 1411 bits, but this must be sufficient for wrapping all symmetric keys and many
asymmetric private keys (e.g., elliptic curve keys).

Our scheme is about as efficient as the hash function from which the permutation comes. If the
associated data H is processed with the same hash function, wrapping H and M takes roughly the
same time as hashing H||M . We recommend using a narrow-block permutation for shorter inputs.
We also note that the key length can be freely chosen.

We accompany our design with a proof of security in the refined DAE framework, where an
adversary has access to the permutation as well. Here we follow the indifferentiability proof for the
sponge construction [2], where the permutation is randomly chosen. This assumption establishes the
security of our scheme as long as the permutation we eventually fix has no untrivial properties (which
is assumed for Keccak and other sponge functions). We tried to make our proof as simple as possible
to encourage its third-party verification.

Our scheme, as well as other DAE-conformant designs,is also fine for general-purpose encryption
and authenticated encryption of short inputs. To emphasize this opportunity, we use the notion
message for keys and other inputs that are encrypted by our scheme.

Related work. We already mentioned other designs that aim for key wrapping and deterministic
authenticated encryption. NIST has published its first key wrapping scheme around 2001 (see de-
scription in [14]). AES-KW is a sort of generalized Feistel scheme, where the key to and the header
are divided into 64-bit blocks, and the round function is the AES applied to two leftmost blocks.
No analysis of this scheme has been published, though it is believed [17] that the security level is
somewhere between 64 and 128 bits. There are several modifications to this scheme, known as KW
and KWP, and a special version that uses Triple-DES.

Rogaway and Shrimpton proposed the scheme SIV, which computes MAC of the message and
header with a PRF under key K1 and uses it as the IV in an IV-based encryption scheme with key
K2 [17]. The concrete proposal invokes CMAC and CTR. The scheme SIV is provably secure in the
strongest model — DAE — where the adversary can choose plaintexts and ciphertexts but is unable to
distinguish the pair of encryption and decryption oracles from the pair of “random-bits” and “always
error” oracles. Scheme HBS [11] and its refinement BTM [10] by Iwata and Yasuda use polynomial
hash functions for MAC and a modified CTR mode. Similarly to CMAC, secondary keys are derived
out of a single key by encrypting constants. HBS and BTM are provably secure in the DAE setting.

Gennaro and Halevi proposed the general template of Hash-then-Encrypt [7], which may be viewed
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as weakening of SIV. Here a PRF is replaced with a hash function, which might not even be collision
resistant. for instance, they showed that a composition of universal hashing and CTR mode is secure.
However, the performance is gained at the cost of weakening the model. Confidentiality is achieved
in the assumption of random plaintexts (RPA), where the adversary obtains two plaintexts (out of
his control) and one of corresponding ciphertexts, and he has to guess which one. This “left-or-right”
setting is provably weaker than DAE, but is still sufficient for key wrapping schemes where inputs
have enough entropy. Osaki and Iwata [15] continued work in this direction and introduced a special
class of universal hash functions which are fine to use with ECB or CBC.

Outline of the paper. We describe our proposal KWF in Section 2 and also recommend a set of
permutations for various security levels. We immediately proceed with the security proof of KWF in
Section 3. We compare KWF with other key wrapping schemes in Section 4.

2 Our proposal: KWF

2.1 Notation

For two bit strings X and Y of the same length, X ⊕ Y is their xor. For an integer n ≥ 1, {0, 1}n is
the set of all bit strings of n bits, and {0, 1}m..n is the set of strings of m to n bits long. Also Xm..n

denotes the substring of X containing bits with indices from m to n, where the first index is 1. We

write X
$←− X for sampling an element from the set X uniformly at random.

2.2 Description of KWF

Our scheme provides an authenticated encryption of short messages and is based on a fixed n-bit
permutation F . Of the n-bit input, k bits are devoted to the key K, l bits to the associated data H,
and n− k− l to the message M . As the associated data needs only authentication, we map a possibly
long string H to an l-bit value with a cryptographic hash function G.

We define scheme KWF formally as Π = (K, E [F ],D[F ]), where:

1.

K = {0, 1}k — the key space;

H = {0, 1}0..t — the associated data (AD) space with t ≤ 2k;

M = {0, 1}1..(n−k−l−1) — the message space;

C = {0, 1}n — the ciphertext space.

2.

G : {0, 1}0..t −→ {0, 1}l — collision-resistant hash function for the associated data;

pad : {0, 1}1..(n−k−l−1) −→ {0, 1}n−l — invertible padding function;

F : {0, 1}n −→ {0, 1}n — fixed permutation.

3. E [F ] : K ×H×M −→ C — encryption function (Figure 1):{
EK [F ](H,M) = F (K||G(H)||pad[M ]))⊕

(
K||0n−k

)
, if H 6= ∅;

EK [F ](H,M) = F
(
K||0l||pad[M ]

)
⊕
(
K||0n−k

)
, else.

4. D[F ] : K × H × {0, 1}n −→ M ∪ {⊥} — decryption function. DK [F ](H,C) is computed as
follows:

(a) X ← F−1(C ⊕
(
K||0n−k

)
).

(b) If X1..k 6= K, return ⊥.

(c) If H = ∅ and Xk+1..k+l 6= 0 return ⊥;
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(d) Else if H 6= ∅ and Xk+1..k+l 6= G(H) return ⊥.

(e) Return pad−1(Xk+l+1..n).

k l

G(H) pad[M ]

n− k − l

F

C

K

0

n

H

G

M

pad

Figure 1: Our proposal: KWF.

2.3 Recommended parameters

In Section 3 we prove that the adversary asking at most q encryption and decryption queries has the
maximum advantage of

2q2

2n−k
+

2q

2k
+ P Gcoll(q),

where P Gcoll(q) is the success probability of the collision search for G with computational complexity
equivalent to q queries. Assuming that one query is equivalent to one call of a hash function, a collision
resistant l-bit hash function yields the following approximation.

P Gcoll(q) ≈ q2

2l
.

Then to get the security level of S bits, the following constraints are sufficient:

k ≥ S, l ≥ 2S, n ≥ 2S + k.

Therefore, for 80-bit master keys and 80-bit (padded) plaintexts we need n ≥ 320, and for 128-bit
keys and plaintexts — n ≥ 512.

There are several families of sponge hash functions that provide suitable permutations for KWF.
The Keccak family [3] uses permutations of width n = 25 · 2l, l = 0..6, with n = 1600 chosen for SHA-
3. Keccak permutations are reasonably efficient in software and hardware, and are natural choice
whenever SHA-3 is implemented on the platform. We propose to use n = 400, 800, 1600 and denote
them as Keccak-n. It is natural to use the Keccak hash function also for the associated data. By
Keccak/t we denote the sponge hash function using the 1600-bit Keccak permutation with capacity
2t and rate 1600− 2t. The function Keccak/256 is to be standardized as SHA-3-256.

As far as we know, the key wrapping schemes are also deployed on smart cards. Hence we would
like to offer a portfolio of permutations for KWF that are suitable for resource-constrained platforms.
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Quark [1], Photon [8], and Spongent [5] are recently proposed families of lightweight hash functions
based on the sponge construction. They use permutations from 88 to 768 bits wide and were not shown
any internal weaknesses. Depending on the message length and the security level, permutations from
256 to 768 bits can be recommended for KWF. Some more details are given in Appendix A and the
summary in Table 2.

Whenever SHA-2 is implemented on the platform, it also can be used as the hash function for the
associated data. The most suitable for KWF are SHA-224 and SHA-256.

Some permutations are significantly faster than their inverses, e.g., the Keccak permutations.
Assuming that the receiver in the key wrapping scheme is more resource-constrained, we propose to
use the inverse of such permutation for encryption, and hence the forward call for the decryption.

3 Security of KWF

Rogaway and Shrimpton [17] were the first who introduced a single notion that amalgamates both
privacy and authenticity properties of a key wrapping scheme. They called it Deterministic Authen-
ticated Encryption (DAE). Gennaro and Halevi proposed a weaker notion of security (RPA+INT),
where the plaintexts are randomly chosen and are out of adversary’s control. We prove the security of
KWF in a strengthened version of DAE, so our scheme is secure for general-purpose encryption where
the adversary may control the plaintexts.

The security of a DAE scheme is defined as the inability to distinguish between the two worlds,
where an adversary has access to two oracles [17]. One world consists of the encryption oracle E(·, ·)
and decryption oracle D(·, ·), where the secret key is randomly chosen. The second world consists of
the “random-bits” oracle $(·, ·) and the “always-error” oracle ⊥ (·, ·) (Figure 2).

The DAE-advantage of adversary A is defined as follows:

Advdae
Π (A) = Pr

[
K

$←− K : AEK(·,·),DK(·,·) ⇒ 1
]
− Pr

[
A$(·,·),⊥(·,·) ⇒ 1

]
.

E D

A

$ ⊥

?

Figure 2: Indistinguishability setting for DAE.

This definition is best suitable for encryption schemes based on secure PRPs and authentication
schemes based on secure PRFs. However, our concept is not based on a secure PRP, as we work with
a single permutation. The provable security framework for schemes employing a single permutation
typically follows [2,4] the indifferentiability framework [13]. Assuming no non-trivial properties of the
permutation, the designers replace it with a randomly chosen permutation and prove indistinguisha-
bility from the random oracle even though the adversary can query the randomly chosen permutation
as well.

We modify the indistinguishability setting of DAE accordingly, so that the adversary has access to
the permutation F , which is randomly selected, in both worlds. We call the new notion Deterministic
Authenticated Encryption with a Fixed Permutation (DAE-FP).
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We also slightly refine the definition of the “random-bit” oracle $(·, ·) with the following motivation.
Since the encryption is invertible, an ideal encryption scheme with a fixed key and associated data
should be a permutation. Hence it is natural to model the oracle $(·, ·) as an ideal cipher — a set of
randomly chosen permutations indexed by a key. Here the associated data serves as a key. This model
allows for an increased security level and a tighter bound, since a traditional proof of security for an
encryption mode invokes a PRF and then applies the PRF-to-PRP switching lemma. This lemma
limits the security level with the birthday bound, which we would like to avoid.

Definition 1. Let Π = (K, E [F ],D[F ]) be a DAE scheme based on permutation F . The DAE-FP
advantage of adversary A in breaking Π is computed as follows:

Advdae-fp
Π (A) = Pr

[
K

$←− K, F(·) $←− Perm(n) : AEK [F ](·,·),F(·),DK [F ](·,·) ⇒ 1
]
−

− Pr
[
F(·) $←− Perm(n) : A$(·,·),F(·),⊥(·,·) ⇒ 1

]
.

E D

A

$ ⊥

?

F F

Figure 3: Indistinguishability framework for DAE-FP.

On query (H,X) the oracle $(·, ·) returns a random string of length n so that it is a permutation
(bijective function) for every H. The set of all permutations over {0, 1}n is denoted by Perm(n). The
⊥ (·, ·) oracle always returns ⊥ (error). We exclude trivial wins: the adversary shall not ask (H,Y ) of
its right oracle if some previous left oracle query of (H,X) returned Y and vice versa. Without loss
of generality, the adversary does not repeat a query and does not ask left queries outside of H×M.
Here and in the further text we implicitly assume that F−1 is available together with F .

Let us express the maximum advantage as a function of the number of allowed queries:

Advdae-fp
Π (q)

def
= maxAAdvdae-fp

Π (A),

where we take maximum over all adversaries asking at maximum q queries.

Theorem 1. The DAE-FP advantage of an adversary attacking KWF and asking the total of at most
q queries to all oracles is bounded as follows:

Advdae-fpΠ (q) ≤ 2q2

2n−k
+

2q

2k
+ P Gcoll(q),

where PG
coll(q) is the probability of obtaining a collision for the hash function G after q queries or their

computational equivalent.

Proof. We split this expression in two following the approach in [17]:

Pr
[
K

$←− K, F(·) $←− Perm(n) : AEK [F ],F ,DK [F ] ⇒ 1
]
− Pr

[
F(·) $←− Perm(n) : A$,F ,⊥ ⇒ 1

]
=

= Pr
[
AEK [F ],F ,DK [F ] ⇒ 1

]
− Pr

[
AEK ,F ,⊥ ⇒ 1

]
︸ ︷︷ ︸

p1

+ Pr
[
AEK ,F ,⊥ ⇒ 1

]
− Pr

[
A$,F ,⊥ ⇒ 1

]
︸ ︷︷ ︸

p2

.
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3.1 Bounding p1 (authenticity proof)

Consider
p1 = Pr

[
AEK [F ],F ,DK [F ] ⇒ 1

]
− Pr

[
AEK ,F ,⊥ ⇒ 1

]
,

where K and F are randomly chosen.
We assume without loss of generality that A halts and outputs 1 whenever the right oracle returns

M 6=⊥. Prior to this event, both oracle triplets behave identically as (EK ,F ,⊥). Therefore, p1 is
bounded by the probability that A asks a right-oracle query (H,Y ) so that DK(H,Y ) 6=⊥.

Let us denote the set of ciphertexts obtained prior to this query by C, the set of F responses and
F−1 queries by Fo, and of F queries and F−1 responses by Fi.

By definition, the adversary is unable to use a pair (H,Y ) where Y has been a response Y =
EK(H,X) for some X. Hence either Y /∈ C, or Y = EK(H ′, X), H ′ 6= H. In the latter case the
ciphertext decrypts to G(H ′)||X, so the decryption returns error unless H and H ′ form a collision pair
for G. We denote the success rate of the collision search for G given the computational equivalent of
q queries1 by P Gcoll(q).

If either of headers is empty, authenticity is violated if the other header is mapped by G to zero.
We assume that such an input is infeasible to find with the complexity lower than the collision search.

If Y /∈ C, then

Pr [DK(H,Y ) 6=⊥] ≤ Pr [DK(H,Y ) 6=⊥ | (Y ⊕K) /∈ Fo] +

+ Pr [DK(H,Y ) 6=⊥ | (Y ⊕K) ∈ Fo] .

• (Y ⊕K) /∈ Fo. Then the permutation F−1 is asked with a fresh query, so its output is uniformly
distributed along previously unallocated values. The decryption returns error if

F−1(Y ⊕K)1..k+l 6= K||G(H).

Hence at maximum 2n−k−l values pass this condition. As at minimum 2n − q values remain
unassigned, we obtain

Pr [DK(H,Y ) 6=⊥ | (Y ⊕K) /∈ Fo] ≤
2n−k−l

2n − q
. (1)

• (Y ⊕K) ∈ Fo. Hence the decryption oracle ask the permutation with a query that is not fresh.
Then the decryption returns ⊥ if

F−1(Y ⊕K) 6= K||Z

for any Z. We say that the input clash (IC) occurs, if (K||Z) ∈ Fi for some Z. Hence without
the input clash the decryption error is guaranteed:

Pr [DK(H,Y ) 6=⊥ | (Y ⊕K) ∈ Fo, no IC occurred] = 0.

Finally,

Pr [DK(H,Y ) 6=⊥ | no IC occurred] ≤ 2n−k−l

2n − q
.

and

p1 = P Gcoll(q) +

[
1−

(
1− 2n−k−l

2n − q

)q]
+ Pr(IC; q) ≤ P Gcoll(q) +

q

2k+l−1
+ Pr(IC; q).

1We could introduce a separate resource unit, e.g., time t, to evaluate the probability of getting a collision. However,
we assume that in practice it is easy to convert the number of queries to the encryption/decryption functions to the
resources needed for the collision search.
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It remains to bound the probability Pr(IC; q) of getting the input clash after q queries. Here either
the adversary tries to guess the key in F queries or hopes to obtain it as a prefix in F−1 responses.
In the worst case, when all the q prefixes are different, the probability of having K among them is
bounded by q/2k, so we have the following bound on the input clash:

Pr(IC; q) ≤ q

2k
. (2)

This gives the final bound on p1:

p1 ≤ P Gcoll(q) +
q

2k+l−1
+

q

2k
≈ P Gcoll(q) +

q

2k
.

3.2 Bounding p2 (privacy proof)

Recall that
p2 = Pr

[
AEK [F ],F ,⊥ ⇒ 1

]
− Pr

[
A$,F ,⊥ ⇒ 1

]
,

where K and F are chosen randomly.
We can drop the oracle ⊥ simply by considering the adversary B that has access to the left and

center oracles only and runs A. She transfers queries of A directly to the oracles and returns ⊥ to all
queries by A to the right oracle. Hence

p2 ≤ Pr
[
BEK [F ],F ⇒ 1

]
− Pr

[
B$,F ⇒ 1

]
.

In the further text we show that in the absence of two events, so called the output clash and the
oracle repetition, oracles EK [F ] and $ produce identically distributed results and hence are indistin-
guishable. The clashes and some remarks on how they can be exploited are depicted in Figure 4.

F

K X

C′

EK

X

C′

Input clash

F

X

C′

EK

Y

C′

Output clash

6= K if X 6= Y

Figure 4: Detection and exploit of the clashes. In case of input clash we encrypt (n− k)-bit suffix X
of the permutation query K||X and detect suffix collision in outputs. In case of output clash some
ciphertext prefixes are forbidden, which allow to distinguish the encryption from the ideal cipher.

Let us go to the details. Consider the query (H,X) to the encryption oracle E or $. Denote by C
the set of encryption oracle responses obtained beforehand. We are also interested in the last (n− k)
bits of ciphertext, which are unaffected by the key addition. We denote C|k+1..n by Ĉ and use the

same notation for (n− k)-bit suffixes of Fo denoted by F̂o.

Let us say that the encryption oracle response C = EK(H,X) causes the output clash if Ĉ ∈ F̂o,
i.e. the ciphertext collides with one of stored permutation outputs on the last n − k bits. Let V be
the set of the ciphertexts that did not occur in previous responses and do not cause the output clash:

V def
=
[
{0, 1}k ×

(
{0, 1}n−k \ F̂o

)]
\ E.
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Lemma 1. If the input clash did not occur, then all responses EK(H,X) ∈ V are equiprobable.

Proof. Since there was no input clash, the input K||G(H)||pad[X] has not been queried to the permu-
tation. Hence, it is fresh, and its output is uniformly taken from {0, 1}n \C. It remains to remove from

this set the values that cause the output clash, i.e. the set {0, 1}k ×
(
{0, 1}n−k \ F̂o

)
. This concludes

the proof.

The ideal cipher has a different distribution, as its outputs may collide for distinct H. Let us say
that the oracle repetition (OR) occurs if $(H,X) = $(H ′, X ′) for some previously queried (H ′, X ′). If
we exclude the oracle repetition and output clash events, the distribution will be the same:

$(H,X)
$ | no OR, no OC←−−−−−−−−−− V.

Combining with Lemma 1, we conclude that if no input clash, no output clash, and no oracle repetition
occurs, the encryption oracles produce identically distributed responses and are indistinguishable.
Therefore,

p2 ≤ Pr(IC; q) + Pr(OC for E | no IC; q) + Pr(OC for $(·, ·); q) + Pr(OR). (3)

Output clash bound. Provided no input clash, a query E(H,X) yields a fresh query to F . Hence
the output is uniformly distributed among at least 2n − q previously unassigned values, of which at
maximum q × 2k cause the output clash. Therefore, assuming q ≤ 2k

Pr
( ̂E(H,X) ∈ F̂o

)
≤ q2k

2n − q
≈ q

2n−k
.

Thus we have the following bound:

Pr(OC for E | no IC; q) ≤ 1−
(

1− q

2n−k

)q
≈ q2

2n−k
. (4)

The bound for the ideal cipher is the same:

Pr
( ̂$(H,X) ∈ F̂o

)
≤ q · 2k

2n − q
=⇒ Pr(OC for $(·, ·); q) ≤ q2

2n−k
. (5)

Oracle repetition bound. We calculate the probability of the event that during q queries to the
PRP-oracle $ there is no collision in outputs. Consider i-th query. The oracle chooses its output
uniformly out of at least (2n − q) possibilities, of which at maximum q cause a collision. Hence

Pr(OR; q) = 1−
q∏

i=1

(
2n − 2q

2n − q

)
= 1−

(
1− q

2n − q

)q

≤ 1− e−
2q2

2n ≈ 2q2

2n
� q2

2n−k
(6)

We substitute Equations (2), (4), (5), and (6) to Equation (3) and obtain the final bound

p2 ≤
2q2

2n−k
+

q

2k
.

This concludes the proof of Theorem 1.
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4 Conclusion

We have described a new key wrapping scheme — KWF. It is based on a single fixed permutation,
with a lot of candidate permutations available in sponge designs: Keccak/SHA-3, Quark, Spongent,
Photon. Though keys to be wrapped are limited to the length of 1411 bits, our scheme still provides a
simple and efficient key update protocol for most of symmetric and several asymmetric cryptosystems.
It can also bind the associated data to the message, and is able to preprocess it without the master
key. The ciphertext length is equal to the permutation width n, while the master key length k can
vary.

The scheme is provably secure in the refined concept of DAE, where we add the adversarial access
to the permutation. Assuming no weakness in the permutation and a collision resistant hash function
for the associated data, the violation of DAE property is unlikely for the number of queries q ≤ 2k.
Hence the security level of 128 bits is easy to deliver, which is not the case for other key wrapping
schemes using AES.

A scalable version of our scheme, which would process arbitrarily long messages and remain simple
and secure, is an object for the future work.

We compare KWF to other key wrapping schemes in Table 1. The overhead is usually defined
as the ratio of extra blockcipher calls compared to the sole encryption of the same data; we simply
divide the permutation width by the message length. The expansion is the the number of extra bits
compared to the ciphertext of the same data. We also compare the need of block cipher or a hash
function, the ability to preprocess the header in advance, and the ability to deliver 128-bit security
with recommended parameters (usually AES for other schemes).

We conclude that KWF has moderate overhead and expansion, enjoys the security proof in the
strongest model, and use only a hash function or its part whereas the others need a blockcipher. KWF
is the only scheme that offers 128-bit security by default, while the other schemes need a block cipher
with at least 256-bit block for this purpose.

KWF HBS AES-KW SIV Hash-then-E

Message length 0..1411 Arbitrary

Overhead 1.2–1.5 2 12 2 1+ε

Expansion 192–384 128 |H|+ 64 128 128

Security proof DAE-FP DAE No DAE RPA

Block cipher No Yes Yes Yes Yes

Hash function Yes Maybe No Yes Yes

Preprocess header Yes No No Yes Yes

128-bit security Yes Not with AES No Not with AES

Table 1: Comparison of KWF with other key wrapping schemes
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A Lightweight permutations for KWF

Here we recommend for KWF some particular permutations taken from the lightweight hash function
families: Quark, Photon, Spongent.

The Quark family [1] offers compact and low-power hash functions best suitable for RFID tech-
nology and other resource-constrained platforms. It uses permutations of width n = 136, 176, 256.
Here n = 256 (s-Quark) is a good candidate for KWF operating on 64-bit keys and plaintexts, and u-
and d-Quark (n = 136, 176) can be chosen as the hash function G with the 64-bit and 80-bit level of
collision resistance, respectively. We denote Quark permutations of width n by Quark-n.

The Photon family [8] is an AES-based lightweight hash function design with permutations of
width 100, 144, 196, 256, 288. We denote its permutations of width n by Photon-n and recommend
using Photon-288 for applications with 64-bit level security. The hash functions Photon/n offer n/2-bit
of security for collision resistance and are suitable for processing associated data.

The Spongent family [5] is another lightweight hash function design with permutations of width
from 88 to 768 bits, with all widths multiple of 4 bits available. Its permutations Spongent-n can be
used for all security levels, with a particular choice optimized for the input length.

Hash function for AD Message length Permutation

Security level and key length: 64

Keccak/128, u-Quark, Photon/128 0..63 Keccak-400, Quark-256, Photon-288, Spongent-256
Keccak/128, u-Quark, Photon/128 64..212 Keccak-400, Spongent-400
Keccak/128, u-Quark, Photon/128 213..612 Keccak-800
Keccak/128, u-Quark, Photon/128 613..1412 Keccak-1600

Security level and key length: 80

Keccak/160, d-Quark, Photon/160 0..160 Keccak-400, Spongent-400
Keccak/160, d-Quark, Photon/160 161..560 Keccak-800
Keccak/160, d-Quark, Photon/160 561..1360 Keccak-1600

Security level and key length: 112

SHA-224, Keccak/224, s-Quark 0..464 Keccak-800
SHA-224, Keccak/224, s-Quark 465..1264 Keccak-1600

Security level and key length: 128

SHA-256, Keccak/256 0..415 Keccak-800
SHA-256, Keccak/256 416..1215 Keccak-1600

Table 2: Recommended parameters for scheme KWF. All the numbers are bit lengths.
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