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AES-like ciphers: are special S-boxes better then random 

ones? (Virtual isomorphisms again) 

 

In [eprint.iacr.org/2012/663] method of virtual isomorphisms of ciphers was 

applied for differential/linear cryptanalysis of AES. It was shown that AES seems to 

be weak against those attacks. That result can be generalized to AES-like ciphers, 

which diffusion map is a block matrix, and its block size is the same as the S-box 

size. S-box is possibly weak if it is affine equivalent to a substitution that has the 

same cycling type as an affine substitution. Class of possibly weak S-boxes is very 

large; we do not know is there an S-box that is not possibly weak. Strength of AES-

like cipher is defined by virtual isomorphism and not by differential/linear properties 

of the S-box. So we can assume that special S-boxes have little or no advantage 

comparatively to random nonlinear S-boxes. The conjecture is verified by 

experiments. If the conjecture is true, then search of the best S-boxes that maximizes 

the cipher strength against differential and linear attacks joined with virtual 

isomorphisms has no sense. 

 

1. Introduction 

In [10] method of virtual isomorphisms of ciphers was proposed for changing 

the probabilities of differentials and linear sums and for amplifying cryptanalytic 

attacks. Ciphers y = C(x, k) and  = (, ) are isomorphic if there exists an 

computable in both directions bijection y  , x  , k  , C  . Usually 

cipher C is the real one. But family of its isomorphic images  is virtual; it exists 

in imagine of cryptanalyst. 

Next theorem was proved in [10] for attacks based on known plaintexts and 

ciphertexts. 

Theorem 1. A cipher is vulnerable to a cryptanalytic attack iff isomorphic 

cipher is vulnerable to the attack.  

Theorem 1 establishes a new approach to cryptanalysis. Usually cryptanalyst 

searches a new cryptanalytic method that allows decreasing the strength of the 

cipher (known attacks are ineffective usually for modern ciphers). But now 

cryptanalyst can apply the known lovely cryptanalytic attack to arbitrary cipher. It 

is sufficient to find suitable virtual isomorphism such that isomorphic cipher 

becomes vulnerable to the cryptanalytic attack. Since the number of virtual 

isomorphisms is extremely large, there is a good chance of success. 

In [11] family of virtual isomorphisms of AES was proposed for amplifying 

differential and linear attacks. AES uses S-box based on finite field inversion T, 



which is (with small error) conjugated to the least bit inversion map  = 
-1

T for 

auxiliary substitution . Let IAES is isomorphic image of AES. In such a way we 

can obtain next properties of IAES: 

1. Isomorphic image  of substitution T is affine. 

2. Images of diffusion map acting on bytes are affine. 

3. The only non-linear map of IAES is IXOR - the image of XOR of 4 bytes of 

text and the key byte. IXOR is weak map comparatively to initial 

substitution S.  

The most popular cryptanalytic methods are linear [7] and differential [2] that 

take a large number of known plaintext/ciphertext pairs, and algebraic methods [4, 

5, 9], based on solving systems of polynomial equations that take only one or few 

plaintext/ciphertext pairs. Combination of these methods is possible also [1]. 

Let n-bit substitution S maps input vector x = (x1, …, xn) to output vector y = 

(y1, …, yn). If xi, yi are independent variables, then linear function 
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    , ai, bi, c  2, is balanced one and probability P(f = 0) is 

0.5. But if xi, yi are algebraically dependent (as inputs/outputs of substitution), then 

probabilities P(f = 0), P(f = 1) can differ from 0.5. Difference P(f = 0)  0,5 is the 

bias of substitution. Diffusion maps are usually affine and do not change absolute 

biases of linear sums. 

Linear cryptanalysis looks for linear sums of plaintext, ciphertext and key (and 

possibly intermediate texts) bits with maximal absolute biases [6]. If there is 

sufficient number of plaintext/ciphertext pairs, then the wanted key can be 

computed as the most likely one.  

Let x, x is a pair of n-bit binary inputs of substitution S, y = S(x), y = S(x). 

Denote x = x + x, y = y + y, where y = 0 iff x = 0. For a substitution S one 

can compute probability of differential (x, y). We can consider the “move” of 

input differential through the cipher. The maps used in the cipher can change the 

current differential and its probability. Probability of current differential equals to 

product of probabilities of corresponding differentials of maps of the cipher. Affine 

operations (XOR and diffusion map) have probabilities only 1 or 0, and hence they 

sometimes do not change probabilities of differentials. Differential cryptanalysis is 

based on property that distribution of probabilities of differentials of nonlinear 

substitution is not uniform. Linear cryptanalysis is similar to differential one. 

Usually nonlinear substitution of a cipher has special properties: its maximal 

probabilities of differentials and absolute biases of linear sums are as small as 

possible.  

Such substitution is used in standard AES. It is composition of finite field 

inversion and affine map. Its maximal probability of differential is 4/256 and 

maximal absolute bias of linear sum is 16/256. Diffusion map of AES (“shift rows” 

and “mix columns”) is linear and can be written as the block matrix. Apparently 

complexity of linear and differential attack exceeds the key enumeration. 



Virtual isomorphisms of AES significantly increase probabilities of most likely 

differentials and biases of linear sums. So the strength of IAES (and hence the 

strength of AES) to differential and linear attacks seems to be about the square root 

of corresponding known strength [11]. 

This is because S-box of AES is weak, and the strength of AES is determined 

by properties of virtual isomorphism but no by differential and linear properties of 

the S-box. 

This result can be generalized to a family of AES-like ciphers. This family has 

very large class of possibly weak substitutions (the strength of the cipher with such 

S-box is determined by proper virtual isomorphism). There is no known algorithm 

that recognizes possibly weak S-boxes and we do not know does there exist S-box 

that is not possibly weak. So we can assume that special S-boxes do not increase 

the strength of such a cipher comparatively to random S-box. 

Number of virtual isomorphisms substantially exceeds the number of different 

keys. This makes the recognition the best of two given S-boxes (or diffusion maps, 

ciphers) practically impossible. 

 

2. Brief consideration of virtual isomorphisms of AES 

This section is based on materials [8, 11].  

Standard AES has 10, 12 or 14 rounds, block size is 128 bits, key size is 128, 

192 or 256 bits [8]. Each round has next operations.  

1. Byte substitution S for all 16 bytes of the block. Substitution is defined as 

composition of exponentiation y = x
254

 in field 256 = 2[t]/(t
8
 + t

4
 + t

3
 + t + 1) and 

affine map over 2. Exponent y is presented as 8-bit vector y over 2, and output of 

S is z = Ly + c, where L = 

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
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. Any bit of vector c is the 

trace of corresponding row of matrix L (considered as element of 256). Denote 

M(x) = Lx + c. Substitution M consists of cycles of length 4. Maximal probability 

of differential of S is 4/256, maximal absolute bias of linear sums is 16/256. 

2. Diffusion map (shift rows and mix columns) can be represented by matrix W 

over 256: 



W = 

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 0 0 0 0 1

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 1 1 0 0 0 0 0 0 0 0 1 0
0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 1 0 0
0 0
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0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
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3. XOR addition of the text and the round key. This operation can be joined 

with XOR addition of bytes in diffusion map. 

Matrix W can be considered as block matrix over 2 with block size 8. Elements 

0, 1, t, 1 + t of W over 256 correspond to zero block, identity block E, block  

Lt = 

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 1 0 1 1 0 0 0
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 and block Lt1 = Lt + E. Hence we can consider diffusion 

map as block matrix with four types of blocks. 

Denote T as exponentiation x  x
254

 in 256. Farther we will decompose AES 

substitution S = MT and join affine substitution M to diffusion maps. So blocks of 

matrix W are changed. Zero block stays the zero block, identity block is changed 

by affine map M, block Lt is changed by affine map Mt = LtM, block Lt1 is changed 

by affine map Mt1 = Lt1M. 

Substitution T consists of 127 cycles of length 2 and two cycles of length 1. 

Hence it is a conjugate with affine substitution  defined as the lowest bit 

inversion,  = 
-1

T (there exists small error, but it does not change the strength). 

We can take arbitrary (x0) for given x0 – 256 variants - and compute 
-1

(x0). Then 

take next x1 and arbitrary (x1) – 254 variants - and compute unique 
-1

(x1), etc. 

The number of such  is near to 253256! 3 10  , because for any (xi) there is 

unique 
-1

(xi). 

It is useful to find such  that has many fixed points. Substitution  can be 

easily computed using orbits of elements under action of group T,  so that  

does not change the orbits: T,  = T, , . We can chose the fixed points of  

as odd or even points of the orbit written as the cycle (x, T(x), T(x), TT(x), …). 

Maximal number of fixed points of  is 130. There exist 2
42

 substitutions  with 

130 fixed points. 



Choose virtual isomorphism using three additional auxiliary substitutions , 1, 

2 in such a way that images of byte diffusion maps are the identity maps E
1
: 

1.  = 
-1

T, 

2.  = E = 
-1

M, 

3. t = E = 1
-1 

Mt
-1

, 

4. t1 = E = 2
-1

Mt1
-1

. 

Let IAES is the isomorphic image of AES. If  is known, then wanted 

substitutions , 1, 2 exist and are defined uniquely, and , , 1, 2 are affine 

equivalent each other. Experiments show that if , , t, t1 are changed (but 

three last substitutions stay affine), then probabilities of most likely differentials 

and linear sums of IXOR stay approximately the same. 

IAES has only one nonlinear operation, namely the image IXOR of XOR for 5 

byte summands as the isomorphic image of sum determined by diffusion matrix: 


-1

((x1) + (x2) + 1(x3) + 2(x4) + (k)).  

IXOR seems to be weak operation: probabilities of its byte differentials and linear 

sums are large comparatively to initial substitution S. There exist differentials with 

non-zero input and zero output of probability 1. The probability of most likely 

differential of IXOR considered with respect to one summand 
-1

((x) + y),  


-1

(1(x) + y), 
-1

(2(x) + y) is increased by 8.7 times at average (y is changed from 

0 to 255) comparatively to differentials of S. The absolute bias of linear sums of 

IXOR considered with respect to one summand is increased by 3.1 times at 

average. 

The error determined by small difference of cycling types of T and  can be 

deleted if we use quasi-affine substitution , its lowest bit is given by equation  

y8 = 1 + x8 + (1 + x1)…(1 + x7).  

This correction does not change probabilities of most likely differentials (linear 

sums) of the cipher maps and hence it does not significantly change the strength of 

the cipher. 

We can assume that strength of IAES against differential (linear) attacks does 

not exceed a square root of the known corresponding estimations [11]. Computing 

the “large” differentials and linear sums of IXOR with four byte input and one byte 

output will obviously increment the probabilities of most likely differentials and 

linear sums and hence additionally decrease the strength.  

 

                                           
1
 In [11] isomorphic images of byte diffusion map , t, t1 were the same as in original AES. Changing the 

byte substitutions , t, t1 by identity map gives approximately the same maximal probabilities of differentials 

and linear sums as in [11], but it looks more common for developing algebraic attacks based on virtual isomorphism 

technique, because it minimizes the lengths of corresponding affine polynomials. 



3. Generalization to AES-like ciphers 

The strength of IAES (and hence the strength of original AES) is reduced 

because its S-box S is weak: S is affine equivalent to substitution T that has the 

same cycling type as the affine substitution . The strength of AES is determined 

by the used virtual isomorphism (, , 1, 2), but not by differential and linear 

properties of the S-box. 

Virtual isomorphisms are not equivalences because transitivity does not 

necessary hold. Equivalence partitions the set o cipher into disjoint subsets, but 

virtual isomorphisms partition the set of ciphers into fuzzy subsets. 

Define AES-like cipher as a cipher that uses next operations: XOR of text and 

the round key; fixed nonlinear substitution S; linear diffusion map that is given by 

block matrix, the size of the block of the matrix is a multiple of the size of 

input/output of substitution S. 

Usually special S-boxes are used in block ciphers (including AES-like ciphers). 

Such S-boxes satisfy some specific requirements (strict avalanche criterion, 

probabilities of most likely differentials and maximal absolute biases of linear 

sums are to be as small as possible, etc.). 

Define possibly weak substitution (S-box) as substitution S that is affine 

equivalent to some substitution S such that S has the same or near the same 

cycling type as some affine substitution.  

Remember that substitutions S1, S2 are affine equivalent iff there exist affine 

substitutions A, B such that S1 = AS2B [3]. Affine equivalent substitutions have the 

same probabilities of most likely differentials and linear sums.AES substitution is 

affine equivalent to lowest bit inversion and hence it is possibly weak. 

Generally affine equivalence between the affine equivalent nonlinear 

substitutions is defined by few pairs (A, B). The number of such pairs usually is 

small comparatively to the cardinality of the set of affine substitutions. So we can 

briefly estimate the number of substitutions that are affine equivalent to given 

nonlinear substitution, as square of number of affine substitutions. 

Number of different possible cycling types of substitution S coincides with the 

number of partitions of integer 2
n
, where n is the size of input/output of S. 

Wikipedia claims that the number of partitions of an integer is determined 

asymptotically by the subexponent [12]. 

If n = 8, then the number of partitions is 3.710
14

. Number of affine 

substitutions is 1.310
21

, its square is 1.710
42

. If n = 4, then number of partitions is 

257, number of affine substitutions is 3.210
5
, its square is 10

11
. 

Number of affine equivalent substitutions for given initial substitution is much 

more then the number of possible cycling types of substitutions. So we can assume 

that all or almost all substitutions are possibly weak in practice. There is no known 

algorithm that recognizes whether the tested substitution is possibly weak. Also we 

do not know anything on existence of a substitution that is not possibly weak. 



AES-like ciphers possess a large class of possibly weak S-boxes. The strength 

of a cipher with such S-box against differential and linear attacks is defined by 

suitable virtual isomorphism. Notice that differential and linear properties of the S-

box are not used directly in corresponding attack. Maximal probabilities of byte 

differentials and linear sums of IXOR described in previous section and in [11] 

significantly exceed corresponding probabilities of “random” byte substitution. So 

if virtual isomorphism is computed carefully, then the strength of AES-like cipher 

with randomly changed substitution will be approximately the same as the cipher 

strength when special S-box is used. This shows that the strength of the AES-like 

cipher depends on the S-box in a weak form. 

Hence we can assume that next conjectures have large chances to be true for 

AES-like ciphers: 

Conjecture 1. 

1. The strength of a cipher with special S-box is approximately the same as the 

strength of the cipher with random S-box and the same diffusion map and key 

schedule. 

2. Special S-boxes have little or no advantage comparatively to random S-boxes 

at average.
2
 

Of course, we consider only nonlinear random substitutions. 

Virtual isomorphisms depend on the S-box of the cipher indeed. But 

probabilities of differentials, linear sums of non-linear map of isomorphic cipher 

seem to be independent of probabilities of differentials and linear sums of the S-

box. Moreover, experiments show that the strength of isomorphic cipher (with 

special or random S-boxes) is less than the strength of original cipher both for 

special and random S-boxes. 

Those conjectures are verified by experiment. Properties of AES with initial S-

box and with the random S-box are compared in the appendix. It is shown that the 

strengths of isomorphic images of those ciphers (and hence the strengths of the 

ciphers) are approximately the same. Notice that probabilities of most likely 

differentials of nonlinear map of isomorphic image of AES with random S-box 

stay more than probabilities of most likely differentials of the S-box. The similar is 

true for original AES, of course.  

Generally the class of virtual isomorphisms of AES-like ciphers can be 

determined by other equations, different from conjugation. Also virtual 

isomorphisms can change from one round to another. This will increase the set of 

weak isomorphic images of the initial cipher and can decrease its strength. 

Any block cipher has the key-dependent map. Usually it is the XOR of the text 

and the round key. But sometimes that operation is different from XOR, for 

example in GOST and IDEA. 

It is widely known that the designer of the cipher or cryptanalyst gives the most 

attention to properties of its S-box. S-box is considered as the most important 

                                           
2
Hence we can formulate Murphy law for cryptography: any good-looking S-box becomes weak when cipher is 

studied carefully. 



encryption operator and it is selected so that it satisfies some special requirements. 

The practical utility of special S-boxes is based on belief that such S-boxes indeed 

increase the strength of a cipher at least against linear and differential attacks.  

The matter of this report shows that if conjecture 1 is true, then we cannot 

recognize which of two S-boxes (excepting few obviously weak cases) appreciably 

increases the strength against differential and linear attacks joined with virtual 

isomorphisms technique. Hence we need not compute “the best possible S-box”, 

almost all S-boxes provide almost the same strength. The proof of those statements 

follows from next states: the key cardinality is much less then the number of 

virtual isomorphisms; comparing of two virtual isomorphisms has non-zero 

complexity; we cannot recognize whether given nonlinear S-box is not possibly 

weak; almost all nonlinear S-boxes provide the same strength. 

The matter of this report shows also that the diffusion map and the key-

dependent map of the block cipher have at least the same significance as the S-box.  
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Appendix 

 

Comparison of isomorphic images of the original AES and of the 

AES with random S-box 

Let RAES is the AES with random substitution and IRAES is its isomorphic 

image. We choose S-box of RAES so that finite field inversion was changed by 

random substitution that has all cycles of length 2. 

Let T, T are substitutions of AES, RAES that have cycles only of length 2. Let 

, , 1, 2 are auxiliary byte substitutions that define virtual isomorphism of 

RAES with the same equations as the isomorphism of AES described in section 2. 

T = {0, 1, 141, 246, 203, 82, 123, 209, 232, 79, 41, 192, 176, 225, 229, 199, 116, 180, 170, 75, 153, 43, 96, 95, 

88, 63, 253, 204, 255, 64, 238, 178, 58, 110, 90, 241, 85, 77, 168, 201, 193, 10, 152, 21, 48, 68, 162, 194, 44, 69, 

146, 108, 243, 57, 102, 66, 242, 53, 32, 111, 119, 187, 89, 25, 29, 254, 55, 103, 45, 49, 245, 105, 167, 100, 171, 19, 

84, 37, 233, 9, 237, 92, 5, 202, 76, 36, 135, 191, 24, 62, 34, 240, 81, 236, 97, 23, 22, 94, 175, 211, 73, 166, 54, 67, 

244, 71, 145, 223, 51, 147, 33, 59, 121, 183, 151, 133, 16, 181, 186, 60, 182, 112, 208, 6, 161, 250, 129, 130, 131, 

126, 127, 128, 150, 115, 190, 86, 155, 158, 149, 217, 247, 2, 185, 164, 222, 106, 50, 109, 216, 138, 132, 114, 42, 20, 

159, 136, 249, 220, 137, 154, 251, 124, 46, 195, 143, 184, 101, 72, 38, 200, 18, 74, 206, 231, 210, 98, 12, 224, 31, 

239, 17, 117, 120, 113, 165, 142, 118, 61, 189, 188, 134, 87, 11, 40, 47, 163, 218, 212, 228, 15, 169, 39, 83, 4, 27, 

252, 172, 230, 122, 7, 174, 99, 197, 219, 226, 234, 148, 139, 196, 213, 157, 248, 144, 107, 177, 13, 214, 235, 198, 

14, 207, 173, 8, 78, 215, 227, 93, 80, 30, 179, 91, 35, 56, 52, 104, 70, 3, 140, 221, 156, 125, 160, 205, 26, 65, 28}. 

T = {218, 202, 92, 30, 235, 245, 211, 247, 18, 169, 33, 95, 148, 194, 45, 237, 93, 184, 8, 214, 129, 225, 139, 

243, 188, 220, 175, 150, 73, 198, 3, 116, 248, 10, 190, 58, 210, 39, 67, 37, 43, 223, 182, 40, 231, 14, 74, 104, 159, 

86, 119, 174, 98, 65, 201, 124, 115, 200, 35, 251, 69, 170, 206, 192, 96, 53, 163, 38, 101, 60, 180, 136, 195, 28, 46, 

193, 87, 213, 172, 152, 81, 80, 191, 147, 255, 222, 49, 76, 209, 105, 100, 217, 2, 16, 177, 11, 64, 185, 52, 196, 90, 

68, 158, 109, 47, 89, 132, 239, 120, 103, 215, 249, 230, 203, 212, 56, 31, 233, 228, 50, 108, 128, 125, 219, 55, 122, 

173, 241, 121, 20, 240, 140, 106, 236, 151, 199, 71, 232, 227, 22, 131, 178, 183, 242, 164, 252, 168, 83, 12, 234, 27, 

134, 79, 224, 167, 162, 244, 205, 102, 48, 186, 250, 155, 66, 144, 254, 208, 154, 146, 9, 61, 197, 78, 126, 51, 26, 

181, 94, 141, 189, 70, 176, 42, 142, 17, 97, 160, 226, 24, 179, 34, 82, 63, 75, 13, 72, 99, 171, 29, 135, 57, 54, 1, 113, 

216, 157, 62, 229, 166, 88, 36, 6, 114, 77, 19, 110, 204, 91, 0, 123, 25, 238, 85, 41, 153, 21, 187, 138, 118, 207, 112, 

44, 137, 117, 149, 4, 133, 15, 221, 107, 130, 127, 143, 23, 156, 5, 253, 7, 32, 111, 161, 59, 145, 246, 165, 84}. 

Non-zero most likely differentials of T have probability 4/256. The most likely 

differentials of substitution T for non-zero inputs 0, 1, 2, …, 255 have next 

probabilities (multiplied by 256): 

{256, 6, 6, 8, 6, 6, 10, 10, 8, 8, 10, 6, 6, 6, 6, 10, 6, 6, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 6, 8, 10, 6, 6, 8, 6, 6, 6, 6, 

6, 8, 8, 10, 6, 6, 6, 8, 8, 8, 6, 8, 6, 6, 6, 6, 6, 8, 6, 6, 6, 6, 8, 6, 6, 12, 6, 10, 6, 6, 6, 6, 10, 6, 6, 8, 8, 6, 10, 6, 8, 6, 6, 8, 

10, 6, 6, 6, 6, 6, 8, 8, 8, 6, 6, 8, 10, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 8, 10, 8, 6, 8, 8, 10, 6, 6, 10, 6, 6, 8, 6, 8, 6, 6, 8, 8, 6, 6, 

8, 8, 8, 8, 6, 8, 6, 6, 8, 6, 8, 6, 6, 6, 8, 4, 6, 10, 8, 6, 6, 8, 8, 6, 8, 6, 8, 6, 8, 6, 6, 6, 8, 6, 6, 6, 6, 10, 6, 6, 8, 6, 6, 10, 6, 

6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 8, 4, 8, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 10, 6, 6, 6, 6, 6, 12, 6, 6, 6, 8, 6, 8, 6, 8, 8, 10, 6, 6, 8, 6, 

8, 8, 6, 6, 6, 8, 6, 8, 6, 6, 8, 8, 6, 6, 10, 6, 6, 6, 6, 6, 10, 10, 6, 10, 8, 8, 6, 6, 8, 6, 6, 10, 6, 6, 6, 8, 6, 6}. 

Maximal absolute biases of T are 16/256. Maximal positive and negative biases 

of T for input linear sums 0, 1, …, 255 are 

{128, 22, 22, 22, 24, 20, 22, 22, 24, 32, 20, 20, 22, 22, 24, 24, 22, 22, 24, 24, 24, 22, 20, 22, 20, 22, 24, 24, 22, 

22, 22, 22, 28, 20, 22, 22, 18, 24, 20, 20, 24, 18, 24, 26, 18, 28, 22, 24, 22, 22, 26, 22, 24, 24, 22, 22, 22, 24, 22, 22, 

20, 34, 24, 24, 24, 24, 22, 20, 22, 20, 22, 26, 28, 20, 22, 28, 24, 26, 22, 22, 22, 22, 22, 20, 24, 24, 22, 20, 38, 26, 22, 

22, 20, 24, 30, 22, 20, 22, 22, 24, 22, 16, 22, 24, 24, 20, 18, 28, 24, 28, 22, 24, 18, 28, 20, 22, 24, 20, 22, 22, 26, 22, 

22, 28, 24, 22, 24, 20, 24, 26, 20, 26, 20, 22, 20, 24, 26, 22, 22, 24, 24, 22, 26, 18, 22, 24, 20, 22, 22, 28, 24, 20, 22, 

20, 22, 22, 22, 22, 18, 20, 18, 20, 24, 28, 24, 20, 20, 24, 22, 22, 20, 28, 24, 26, 22, 34, 22, 28, 22, 24, 22, 20, 22, 22, 

26, 28, 24, 20, 20, 24, 22, 28, 24, 20, 26, 18, 20, 18, 22, 20, 22, 26, 24, 22, 24, 22, 28, 22, 18, 22, 24, 20, 24, 30, 22, 

24, 24, 18, 22, 24, 22, 22, 22, 20, 28, 24, 20, 18, 22, 22, 22, 24, 20, 22, 24, 18, 24, 22, 24, 26, 24, 20, 24, 22, 22, 18, 

24, 22, 24, 24, 20, 22, 24, 24, 38, 18}; 



{0, -20, -22, -24, -20, -18, -26, -26, -22, -22, -28, -22, -16, -22, -22, -22, -26, -20, -22, -22, -24, -28, -20, -20, -

22, -32, -22, -22, -22, -18, -20, -20, -24, -24, -28, -18, -22, -24, -28, -24, -22, -20, -22, -22, -20, -24, -22, -28, -24, -

24, -26, -20, -26, -22, -18, -32, -22, -20, -26, -22, -22, -20, -22, -20, -22, -18, -24, -18, -24, -26, -26, -26, -20, -22, -

30, -22, -22, -20, -22, -24, -26, -22, -26, -22, -20, -22, -24, -26, -20, -22, -20, -20, -22, -24, -20, -28, -20, -24, -26, -

22, -26, -24, -24, -24, -20, -20, -22, -28, -22, -20, -24, -20, -26, -22, -20, -22, -18, -20, -22, -24, -20, -28, -24, -26, -

20, -22, -26, -20, -22, -20, -24, -24, -24, -22, -22, -18, -22, -22, -30, -24, -22, -22, -26, -28, -20, -26, -22, -24, -20, -

24, -22, -28, -22, -36, -22, -24, -22, -20, -20, -22, -22, -18, -28, -18, -24, -22, -22, -24, -16, -20, -22, -22, -20, -20, -

28, -20, -22, -32, -26, -28, -20, -18, -22, -22, -20, -18, -28, -22, -24, -20, -20, -18, -18, -18, -22, -22, -20, -22, -26, -

18, -24, -20, -18, -28, -22, -24, -18, -22, -22, -24, -26, -26, -20, -26, -24, -20, -22, -22, -28, -26, -24, -20, -28, -28, -

18, -18, -28, -22, -22, -20, -20, -26, -22, -24, -26, -20, -24, -22, -20, -20, -20, -20, -22, -24, -26, -22, -20, -28, -32, -

20, -24, -18, -22, -20, -28, -22}. 

 =  are the lowest bit inversion substitutions. Orbits of group T,  have 

length 2 (2 orbits) or 6 (42 orbits). Orbits of group T,  have length 2 (1 orbit), 

78 (1 orbit), 176 (1 orbit). Auxiliary substitution  has 130 fixed points. Auxiliary 

substitution  of RAES has 129 fixed points. Next auxiliary substitutions were 

used. 

 = {0, 1, 246, 3, 82, 5, 209, 7, 79, 9, 192, 11, 225, 13, 199, 15, 180, 17, 75, 19, 43, 21, 95, 23, 63, 25, 204, 27, 

64, 29, 178, 31, 110, 33, 241, 35, 77, 37, 201, 39, 10, 41, 42, 152, 68, 45, 194, 47, 48, 44, 108, 51, 57, 53, 66, 55, 56, 

242, 58, 32, 187, 61, 62, 89, 254, 65, 103, 67, 49, 69, 105, 71, 100, 73, 74, 171, 76, 84, 78, 233, 92, 81, 202, 83,  36, 

85, 191, 87, 88, 24, 90, 34, 236, 93, 94, 97, 96, 22, 211, 99, 166, 101, 102, 54, 104, 244, 223, 107, 147, 109, 59, 111, 

183, 113, 133, 115, 116, 16, 60, 119, 112, 121, 6, 123, 250, 125, 130, 127, 126, 129, 128, 131, 132, 150, 86, 135, 

158, 137, 217, 139, 2, 141, 164, 143, 106, 145, 146, 50, 138, 149, 114, 151, 20, 153, 136, 155, 220, 157, 154, 159, 

124, 161, 162, 46, 184, 165, 72, 167, 168, 38, 170, 18, 231, 173, 98, 175, 176, 12, 239, 179, 117, 181, 182, 120, 142, 

185, 186, 118, 188, 189, 190, 134, 40, 193, 163, 195, 212, 197, 198, 228, 200, 169, 4, 203, 252, 205, 206, 172, 208, 

122, 210, 174, 219, 213, 234, 215, 216, 148, 218, 196, 248, 221, 222, 144, 224, 177, 226, 214, 14, 229, 230, 207, 

232, 8, 227, 235, 80, 237, 238, 30, 240, 91, 52, 243, 70, 245, 140, 247, 156, 249, 160, 251, 26, 253, 28, 255}. 

 = {0, 218, 2, 92, 4, 235, 247, 7, 8, 18, 95, 11, 194, 13, 14, 45, 184, 17, 214, 19, 225, 21, 22, 139, 220, 25, 26, 

175, 198, 29, 30, 3, 10, 33, 34, 190, 36, 210, 37, 39, 40, 43, 42, 182, 44, 231, 104, 47, 48, 159, 50, 119, 52, 98, 54, 

201, 56, 115, 58, 35, 60, 69, 192, 63, 53, 65, 38, 67, 68, 101, 136, 71, 28, 73, 74, 46, 76, 87, 78, 172, 80, 81, 147, 83, 

222, 85, 86, 49, 88, 209, 217, 91, 16, 93, 94, 177, 96, 64, 196, 99, 100, 90, 109, 103, 89, 105, 106, 132, 108, 120, 

249, 111, 203, 113, 114, 212, 116, 31, 118, 228, 128, 121, 122, 125, 124, 55, 241, 127, 20, 129, 140, 131, 236, 133, 

134, 151, 232, 137, 138, 227, 178, 141, 242, 143, 144, 164, 146, 168, 148, 12, 150, 27, 152, 79, 162, 155, 156, 244, 

158, 102, 250, 161, 66, 163, 254, 165, 154, 167, 9, 169, 170, 61, 126, 173, 174, 51, 176, 181, 189, 179, 180, 70, 142, 

183, 97, 185, 186, 160, 188, 24, 82, 191, 75, 193, 72, 195, 171, 197, 135, 199, 200, 57, 202, 1, 157, 205, 206, 62, 

208, 166, 6, 211, 77, 213, 110, 215, 216, 204, 123, 219, 238, 221, 41, 223, 224, 153, 226, 187, 207, 229, 230, 112, 

117, 233, 234, 149, 15, 237, 107, 239, 240, 130, 23, 243, 5, 245, 246, 253, 248, 32, 59, 251, 252, 145, 84, 255}. 

 = {99, 124, 123, 66, 107, 0, 197, 62, 1, 132, 43, 186, 215, 248, 118, 198, 130, 141, 125, 179, 89, 241, 240, 

207, 212, 117, 175, 75, 164, 9, 192, 55, 253, 159, 38, 161, 63, 227, 204, 221, 165, 103, 70, 229, 216, 27, 21, 37, 113, 

4, 195, 80, 150, 18, 154, 44, 137, 7, 183, 128, 39, 234, 203, 178, 131, 187, 26, 133, 110, 199, 160, 249, 59, 67, 98, 

214, 32, 41, 30, 47, 209, 74, 237, 116, 252, 54, 91, 8, 173, 106, 147, 190, 76, 206, 239, 88, 71, 208, 251, 102, 77, 36, 

5, 51, 191, 69, 127, 158, 60, 220, 168, 226, 163, 169, 143, 151, 202, 146, 245, 235, 182, 81, 33, 111, 255, 45, 210, 

19, 12, 243, 236, 205, 144, 95, 23, 177, 167, 11, 61, 53, 93, 119, 115, 73, 129, 2, 35, 79, 42, 126, 136, 64, 238, 250, 

20, 196, 94, 134, 219, 184, 50, 16, 49, 58, 6, 108, 92, 82, 247, 194, 201, 172, 149, 148, 121, 170, 254, 231, 109, 223, 

213, 157, 188, 78, 86, 25, 56, 244, 122, 101, 68, 174, 120, 52, 46, 10, 166, 72, 105, 180, 211, 232, 31, 242, 189, 176, 

145, 139, 218, 112, 228, 181, 3, 185, 14, 135, 34, 97, 28, 87, 193, 65, 96, 29, 200, 225, 246, 152, 217, 171, 138, 142, 

48, 155, 233, 17, 85, 83, 114, 40, 57, 140, 13, 24, 230, 90, 104, 100, 153, 222, 15, 224, 84, 162, 22, 156}. 

 = {99, 28, 93, 209, 31, 17, 100, 62, 155, 172, 240, 186, 21, 248, 217, 27, 6, 141, 152, 179, 215, 241, 208, 53, 

94, 117, 84, 170, 105, 9, 40, 66, 165, 159, 190, 68, 252, 228, 227, 221, 120, 89, 70, 188, 4, 149, 191, 37, 113, 184, 

79, 235, 13, 121, 51, 204, 137, 151, 183, 161, 245, 199, 43, 212, 18, 187, 194, 133, 216, 36, 20, 249, 22, 67, 98, 58, 

32, 8, 30, 139, 85, 74, 60, 116, 96, 54, 23, 110, 173, 197, 61, 140, 146, 206, 239, 225, 71, 164, 87, 102, 59, 147, 220, 

26, 178, 160, 129, 144, 195, 78, 222, 226, 242, 169, 136, 166, 202, 55, 244, 180, 236, 81, 112, 45, 50, 44, 38, 19, 

238, 243, 104, 205, 76, 143, 174, 64, 48, 11, 42, 233, 192, 119, 7, 73, 29, 115, 35, 247, 97, 231, 95, 75, 229, 1, 49, 

196, 153, 69, 167, 5, 255, 16, 154, 46, 131, 108, 219, 82, 132, 232, 201, 234, 12, 148, 181, 80, 254, 157, 101, 223, 

130, 230, 86, 163, 88, 25, 56, 15, 122, 106, 107, 91, 125, 52, 92, 10, 214, 72, 177, 118, 211, 150, 237, 124, 134, 176, 

145, 203, 218, 77, 33, 251, 63, 185, 253, 135, 34, 175, 111, 3, 114, 65, 103, 127, 200, 250, 246, 39, 142, 171, 138, 

182, 213, 47, 14, 126, 198, 83, 158, 109, 57, 210, 207, 24, 0, 90, 123, 162, 193, 128, 168, 224, 189, 2, 41, 156}. 



1 = {177, 62, 61, 161, 181, 0, 226, 159, 128, 66, 149, 221, 235, 124, 187, 227, 193, 198, 190, 89, 44, 248, 120, 

103, 234, 186, 215, 37, 210, 132, 96, 27, 254, 207, 19, 80, 31, 241, 102, 110, 82, 179, 163, 114, 236, 141, 10, 18, 

184, 2, 97, 168, 75, 9, 77, 150, 196, 3, 91, 64, 147, 117, 101, 217, 65, 93, 13, 194, 55, 99, 208, 252, 29, 33, 49, 107, 

144, 20, 15, 151, 104, 165, 118, 58, 126, 155, 173, 4, 86, 53, 201, 223, 38, 231, 247, 172, 35, 232, 125, 51, 166, 146, 

130, 25, 95, 162, 63, 79, 30, 238, 212, 113, 209, 84, 71, 203, 229, 73, 250, 245, 219, 40, 16, 183, 127, 22, 105, 137, 

6, 121, 246, 230, 200, 175, 139, 216, 211, 5, 158, 154, 46, 59, 57, 164, 192, 129, 145, 39, 21, 191, 68, 32, 119, 253, 

138, 98, 47, 195, 237, 92, 153, 136, 152, 157, 131, 182, 174, 41, 123, 225, 228, 214, 74, 202, 188, 85, 255, 243, 54, 

239, 106, 78, 94, 167, 43, 12, 28, 122, 189, 50, 34, 87, 60, 26, 23, 133, 83, 36, 52, 90, 233, 244, 143, 249, 222, 88, 

72, 69, 109, 56, 242, 218, 1, 220, 135, 67, 17, 48, 142, 171, 224, 160, 176, 14, 100, 112, 251, 204, 108, 213, 197, 

199, 24, 205, 116, 8, 42, 169, 185, 148, 156, 70, 134, 140, 115, 45, 180, 178, 76, 111, 7, 240, 170, 81, 11, 206}. 

1 = {177, 142, 46, 104, 143, 8, 178, 159, 205, 214, 120, 221, 10, 124, 108, 141, 131, 198, 204, 89, 235, 248, 

232, 154, 47, 186, 170, 85, 52, 132, 148, 161, 82, 207, 223, 34, 126, 242, 241, 110, 60, 44, 163, 94, 2, 74, 95, 18, 

184, 92, 39, 245, 134, 188, 25, 102, 196, 203, 91, 80, 250, 99, 149, 234, 9, 93, 225, 194, 236, 146, 138, 252, 11, 33, 

49, 157, 144, 4, 15, 69, 42, 165, 30, 58, 176, 155, 139, 55, 86, 226, 158, 70, 73, 231, 247, 112, 35, 210, 171, 51, 29, 

201, 238, 13, 217, 208, 192, 200, 97, 167, 111, 113, 249, 84, 68, 83, 229, 27, 122, 90, 246, 40, 56, 22, 153, 150, 19, 

137, 119, 121, 180, 230, 38, 71, 87, 32, 24, 5, 21, 116, 96, 59, 3, 164, 14, 57, 145, 123, 48, 243, 175, 37, 114, 128, 

152, 98, 76, 162, 211, 130, 127, 136, 77, 23, 65, 182, 237, 41, 66, 244, 228, 117, 6, 202, 218, 168, 255, 78, 50, 239, 

193, 115, 43, 209, 172, 12, 28, 7, 189, 53, 181, 173, 190, 26, 174, 133, 107, 36, 216, 187, 233, 75, 118, 62, 195, 88, 

72, 101, 109, 166, 16, 125, 31, 220, 254, 67, 17, 215, 183, 1, 185, 160, 179, 63, 100, 253, 251, 147, 199, 213, 197, 

219, 106, 151, 135, 191, 227, 169, 79, 54, 156, 105, 103, 140, 0, 45, 61, 81, 224, 64, 212, 240, 222, 129, 20, 206}. 

2 = {210, 66, 70, 227, 222, 0, 39, 161, 129, 198, 190, 103, 60, 132, 205, 37, 67, 75, 195, 234, 117, 9, 136, 168, 

62, 207, 120, 110, 118, 141, 160, 44, 3, 80, 53, 241, 32, 18, 170, 179, 247, 212, 229, 151, 52, 150, 31, 55, 201, 6, 

162, 248, 221, 27, 215, 186, 77, 4, 236, 192, 180, 159, 174, 107, 194, 230, 23, 71, 89, 164, 112, 5, 38, 98, 83, 189, 

176, 61, 17, 184, 185, 239, 155, 78, 130, 173, 246, 12, 251, 95, 90, 97, 106, 41, 24, 244, 100, 56, 134, 85, 235, 182, 

135, 42, 224, 231, 64, 209, 34, 50, 124, 147, 114, 253, 200, 92, 47, 219, 15, 30, 109, 121, 49, 216, 128, 59, 187, 154, 

10, 138, 26, 43, 88, 240, 156, 105, 116, 14, 163, 175, 115, 76, 74, 237, 65, 131, 178, 104, 63, 193, 204, 96, 153, 7, 

158, 166, 113, 69, 54, 228, 171, 152, 169, 167, 133, 218, 242, 123, 140, 35, 45, 122, 223, 94, 197, 255, 1, 20, 91, 48, 

191, 211, 226, 233, 125, 21, 36, 142, 199, 87, 102, 249, 68, 46, 57, 143, 245, 108, 93, 238, 58, 28, 144, 11, 99, 232, 

217, 206, 183, 72, 22, 111, 2, 101, 137, 196, 51, 81, 146, 252, 33, 225, 208, 19, 172, 145, 13, 84, 181, 126, 79, 73, 

40, 86, 157, 25, 127, 250, 203, 188, 165, 202, 139, 148, 149, 119, 220, 214, 213, 177, 8, 16, 254, 243, 29, 82}. 

2 = {210, 146, 115, 185, 144, 25, 214, 161, 86, 122, 136, 103, 31, 132, 181, 150, 133, 75, 84, 234, 60, 9, 56, 

175, 113, 207, 254, 255, 93, 141, 188, 227, 247, 80, 97, 102, 130, 22, 18, 179, 68, 117, 229, 226, 6, 223, 224, 55, 

201, 228, 104, 30, 139, 197, 42, 170, 77, 92, 236, 241, 15, 164, 190, 62, 27, 230, 35, 71, 52, 182, 158, 5, 29, 98, 83, 

167, 176, 12, 17, 206, 127, 239, 34, 78, 208, 173, 156, 89, 251, 39, 163, 202, 219, 41, 24, 145, 100, 118, 252, 85, 38, 

90, 50, 23, 107, 112, 65, 88, 162, 233, 177, 147, 11, 253, 204, 245, 47, 44, 142, 238, 26, 121, 72, 59, 171, 186, 53, 

154, 153, 138, 220, 43, 106, 200, 249, 96, 40, 14, 63, 157, 160, 76, 4, 237, 19, 74, 178, 140, 81, 20, 240, 110, 151, 

129, 169, 166, 213, 231, 116, 135, 128, 152, 215, 57, 194, 218, 54, 123, 198, 28, 45, 159, 10, 94, 111, 248, 1, 211, 

87, 48, 67, 149, 125, 114, 244, 21, 36, 8, 199, 95, 222, 246, 195, 46, 242, 143, 189, 108, 105, 205, 58, 221, 155, 66, 

69, 232, 217, 174, 183, 235, 49, 134, 32, 101, 3, 196, 51, 120, 216, 2, 203, 225, 212, 64, 172, 7, 13, 180, 73, 126, 79, 

109, 191, 184, 137, 193, 37, 250, 209, 91, 165, 187, 168, 148, 0, 119, 70, 243, 33, 192, 124, 16, 99, 131, 61, 82}. 

Probabilities of most likely differentials of non-linear map of IAES of kind  


-1

((x) + y) for y = 0, 1, …, 255 are (after multiplying by 256): 

{30, 32, 32, 38, 32, 38, 34, 34, 30, 38, 36, 32, 28, 36, 28, 32, 32, 40, 32, 34, 34, 32, 26, 40, 36, 32, 30, 36, 34, 

32, 30, 40, 34, 38, 36, 32, 32, 38, 40, 32, 28, 38, 32, 34, 36, 38, 34, 34, 36, 36, 34, 32, 36, 32, 32, 42, 32, 34, 32, 34, 

34, 38, 34, 36, 32, 36, 32, 36, 42, 34, 38, 38, 30, 38, 36, 36, 32, 40, 28, 38, 34, 40, 38, 34, 34, 36, 32, 32, 28, 42, 32, 

32, 32, 36, 32, 34, 32, 34, 30, 40, 38, 36, 32, 42, 32, 38, 30, 30, 34, 32, 28, 42, 28, 36, 36, 38, 36, 36, 36, 34, 28, 38, 

32, 38, 32, 38, 34, 32, 30, 36, 34, 32, 36, 34, 28, 36, 38, 34, 34, 34, 34, 40, 36, 34, 32, 34, 38, 34, 34, 30, 30, 36, 32, 

38, 38, 28, 40, 32, 38, 42, 34, 38, 36, 38, 34, 34, 32, 36, 32, 36, 36, 32, 36, 36, 38, 38, 36, 36, 34, 34, 38, 32, 38, 42, 

34, 36, 38, 30, 34, 32, 32, 34, 32, 36, 30, 34, 38, 30, 36, 40, 32, 38, 34, 38, 30, 36, 34, 34, 34, 32, 32, 36, 34, 38, 36, 

34, 34, 32, 34, 32, 36, 38, 34, 34, 36, 34, 30, 36, 32, 30, 30, 36, 36, 36, 30, 40, 36, 32, 36, 36, 34, 32, 34, 34, 34, 36, 

32, 38, 34, 38, 38, 36, 34, 34, 34, 34}. 

Probabilities of most likely differentials of non-linear map of IRAES of kind  


-1

((x) + y) for y = 0, 1, …, 255 are (after multiplying by 256): 

{38, 28, 30, 32, 42, 30, 28, 36, 22, 36, 40, 28, 30, 34, 30, 28, 30, 30, 30, 32, 36, 30, 30, 40, 30, 38, 38, 28, 34, 

28, 38, 28, 32, 36, 32, 32, 30, 38, 32, 30, 40, 24, 24, 38, 34, 30, 32, 34, 32, 34, 38, 32, 26, 40, 42, 28, 34, 30, 24, 42, 

30, 30, 30, 30, 32, 36, 36, 30, 34, 28, 34, 34, 36, 32, 30, 34, 40, 26, 28, 36, 30, 36, 36, 28, 34, 38, 30, 34, 30, 38, 34, 

30, 36, 28, 28, 44, 34, 32, 30, 40, 30, 34, 34, 36, 28, 34, 32, 30, 30, 36, 34, 28, 36, 36, 26, 34, 38, 34, 30, 34, 32, 34, 



36, 34, 28, 36, 36, 26, 30, 34, 38, 28, 34, 36, 28, 36, 32, 32, 32, 28, 36, 28, 26, 36, 28, 40, 36, 30, 30, 34, 30, 32, 30, 

38, 34, 30, 40, 26, 26, 38, 40, 24, 28, 40, 32, 30, 32, 34, 30, 34, 32, 34, 28, 36, 38, 26, 34, 28, 30, 34, 32, 34, 30, 34, 

30, 30, 32, 34, 28, 38, 40, 28, 32, 32, 30, 32, 36, 30, 28, 40, 28, 40, 36, 26, 36, 28, 32, 34, 34, 32, 40, 34, 42, 28, 36, 

36, 24, 36, 36, 30, 32, 32, 30, 34, 38, 28, 32, 32, 28, 36, 40, 28, 34, 28, 24, 42, 30, 38, 32, 32, 32, 30, 26, 36, 24, 40, 

38, 28, 38, 26, 26, 36, 32, 30, 40, 30}. 

At average maximal probabilities of most likely differentials for random y are 

approximately equal both for AES and RAES (0.134 for IAES and 0.127 for 

IRAES). Similar is true for other byte differences 
-1

(1(x) + y), 
-1

(2(x) + y) for 

AES and RAES. 

Similarly maximal absolute biases of nonlinear byte maps of IAES and of 

IRAES are approximately the same at average for random y (0.194 for IRAES and 

0.191 for IAES). 

If we change the random substitution T of RAES, then probabilities of 

differentials and linear sums of T obviously change too, but maximal probabilities 

of differentials and linear sums of IXOR for IRAES are almost the same as for 

IAES. Hence the strengths of AES and RAES against differential (linear) attack 

using virtual isomorphism technique are near the same, and special S-box of AES 

is not better than random S-box of RAES with respect to differential (linear) 

attack. 


