Secure and Constant Cost Public Cloud Storage
Auditing with Deduplication

Jiawei Yuan
Department of Computer Science
University of Arkansas at Little Rock, USA
Email: jxyuan@ualr.edu

Abstract—Data integrity and storage efficiency are two
important requirements for cloud storage. Proof of Retriev-
ability (POR) and Proof of Data Possession (PDP) techniques
assure data integrity for cloud storage. Proof of Ownership
(POW) improves storage efficiency by securely removing
unnecessarily duplicated data on the storage server. However,
trivial combination of the two techniques, in order to achieve
both data integrity and storage efficiency, results in non-trivial
duplication of metadata (i.e., authentication tags), which con-
tradicts the objectives of POW. Recent attempts to this prob-
lem introduce tremendous computational and communication
costs and have also been proven not secure. It calls for a new
solution to support efficient and secure data integrity auditing
with storage deduplication for cloud storage. In this paper
we solve this open problem with a novel scheme based on
techniques including polynomial-based authentication tags
and homomorphic linear authenticators. Our design allows
deduplication of both files and their corresponding authenti-
cation tags. Data integrity auditing and storage deduplication
are achieved simultaneously. Our proposed scheme is also
characterized by constant realtime communication and com-
putational cost on the user side. Public auditing and batch
auditing are both supported. Hence, our proposed scheme
outperforms existing POR and PDP schemes while providing
the additional functionality of deduplication. We prove the
security of our proposed scheme based on the Computational
Diffie-Hellman problem, the Static Diffie-Hellman problem and
the t-Strong Diffie-Hellman problem. Numerical analysis and
experimental results on Amazon AWS show that our scheme
is efficient and scalable.

I. INTRODUCTION

Cloud storage has been increasingly prevalent because
of its advantages [1]. Currently, commercial cloud stor-
age services including Microsoft Skydrive, Amazon S3 and
Google Cloud Storage have attracted millions of users.
Cloud storage stands for not only the massive computing
infrastructure but also the economics of scale. Under such
a trend, it becomes urgent to assure the quality of data
storage services which involves two frequent concerns from
both cloud users and cloud service providers: data integrity
and storage efficiency. On one hand, with the many data
loss and corruption events reported for those best-known
cloud service providers [2], [3], data owners, who are also
cloud users, have the need to periodically audit the integrity
of their outsourced data. On the other hand, for cloud
service providers it is necessary to improve the efficiency

Shucheng Yu
Department of Computer Science
University of Arkansas at Little Rock, USA
Email: sxyul@ualr.edu

of cloud storage to take advantage of the economics of
scale. According to a recent survey by EMC [4], 75% of
today’s digital data are duplicated copies. To reduce the
unnecessarily redundant copies, the cloud storage servers
would deduplicate by keeping only one or few copies for
each file and making a link to the file for every user who
asks to store the file. Cloud users (i.e., data owners) shall
always be able to verify the integrity of the file at any time.
For storage efficiency, it is desirable to deduplicate both the
file and the metadata (e.g., authentication tags) needed for
data integrity check. Taking malicious or misbehavior users
or cloud servers into consideration, the cloud server needs
to verify that the user actually owns the file before creating
a link to this file for him/her; the user also needs to confirm
that the cloud actually has the file in its storage and audit
the integrity of the file throughout its lifetime.

Related Work. Considering only integrity auditing for data
outsourced to cloud servers, a number of POR schemes [5],
[6], [7], [8] and PDP schemes [9], [10], [11], [12] have been
proposed. Among those ref.[5] has the best performance
which achieves public auditing at a constant communication
cost. Similar to other POR or PDP schemes, users in
ref.[5] still need to perform O(k) multiplication and addition
operations over the underlying field, where k is the number
of checking data blocks. Batch auditing for multiple requests
scenarios is not supported in ref.[5].

For secure storage deduplication, Halevi et al. [13] intro-
duced the first POW scheme based on the Merkle hash
tree. Pietro et al. [14] enhanced ref.[13] and proposed a
secure POW scheme which reduces the computational cost
to a constant number of pseudorandom function operations.
Nevertheless, these POW schemes do not consider data
integrity auditing.

To achieve both data integrity auditing and storage dedu-
plication, one ftrivial solution is to directly combine an ex-
isting POR/PDP scheme with a POW scheme. This ftrivial
solution, however, will result in a O(W) storage overhead
for each file, where W is the number of owners of this file.
This is because the data owners, lacking mutual trust, need
to separately store their own authentication tags in cloud
for file integrity auditing. Since these tags are created for
auditing the same file, storing O (W) such copies represents

a type of duplication which contradicts the objective of POW
for saving storage cost. For efficient proof of storage with
deduplication (POSD), Zheng et al. [15] proposed a scheme
aiming at providing both public data integrity auditing and
secure storage deduplication. In ref.[15] the communication
cost and computational cost on the user side are linear
to the number of elements in each data block as well as
the number of checking blocks during the integrity auditing
process. With an increasing population of mobile users,
who access cloud through mobile apps (e.g., IAWS, iCloud,
etc.) and have constrained computational resources and
bandwidth (e.g., mobile phones with limited data plan),
such a communication and computational complexity could
represent a barrier to accessing the cloud storage service.
Preferably, computational cost and communication cost on
the user side shall be constant. Moreover, ref.[15] has been
proven not secure [16]. Specifically, by setting the elements
in secret keys to some special values, a data owner who
outsources data to the cloud server is able to use the server
as a malware distribution platform. Therefore, it still calls for
a new solution to support efficient and secure data integrity
auditing with storage deduplication for cloud storage.

Our Contribution. In this paper, we solve this open
problem and propose the first Public and Constant cost
storage integrity Auditing scheme with secure Deduplication
(PCAD) based on techniques including polynomial-based
authentication tags and homomorphic linear authenticators.
The proposed PCAD scheme is characterized by following
salient properties: 1) PCAD is able to securely “deduplicate”
the authentication tags by aggregating the tags of the same
file from different owners, and hence make the storage
overhead independent to the number of owners of the file;
2) the communication cost in our PCAD scheme is made
constant thanks to our novel design of polynomial-based
authentication tags and secure data aggregation; 3) the
computational cost on cloud users is also constant because
most computational tasks can be securely offloaded to the
cloud server; 4) PCAD supports public auditing, i.e., the
data integrity auditing operation can be securely performed
by any third party other than the owner(s); 5) PCAD allows
batch auditing, i.e., multiple auditing requests can be se-
curely aggregated, which substantially reduces the auditing
cost for simultaneous requests; 6) in PCAD data integrity
auditing and secure deduplication operations can be per-
formed without the help of existing owners. Noticeably, our
PCAD outperforms existing POR and PDP schemes while
providing an additional functionality of data deduplication.
The main idea of our scheme can be summarized as follows:
The data owner outsources the erasure-coded file to the
cloud server together with the corresponding authentication
tags. To audit the integrity of the outsourced file, a user
(who may not be the owner) challenges the cloud with a
challenging message. On receiving the message, the cloud
generates the proof information based on the public key
and sends it to the user. The user verifies the data integrity
with the proof information, using our verification algorithm.

In order to deduplicate data, when a user wants to upload
a data file that already exists in the cloud, the cloud server
executes a checking algorithm to see whether or not this
user actually possesses the whole file. If the user passes
the checking, he/she can directly use the file existed on
the server without uploading it again. The security of our
proposed scheme is proven under the Computational Diffie-
Hellman (CDH) problem, the Static Diffie-Hellman problem
and the t-Strong Diffie-Hellman (SDH) problem. Thorough
analysis and experimental results on Amazon EC2 Cloud
show that our scheme is efficient and scalable. Our main
contributions can be summarized as below.

« We propose the first public and constant cost storage
integrity auditing scheme with secure deduplication,
which can also efficiently handle multiple auditing re-
quests with batch operations.

« We formally prove the security of PCAD. The advan-
tages of PCAD are validated by both numerical analysis
and real experiments on Amazon AWS Cloud.

o Our design of polynomial based authentication tag can
be used as an independent solution for other related
applications, such as verifiable SQL search, encrypted
key word search, etc.

The rest of this paper is organized as follows: In Section
Il, we introduce the models and goals of our scheme.
Section 1l provides the construction and security proof of
our scheme; Performance evaluations of our scheme are
provided in Section IV; We conclude our paper in Section
V.

I[I. MODELS AND GOALS
A. System Model

In this work, we consider a system consisting of four
major entities: Trust Authority (TA), Data Owner,
Cloud Server and User. The TA in our design is a party
only responsible for generating part of the public keys for the
system and will go off-line after the key generation. The TA
will not participate in any other operations during integrity
auditing and deduplication processes. The data owner has
a number of data files and stores them on the cloud server
together with the authentication tags. Each owner in our
design will also generate its own secret keys and public keys
for authentication tag generation and data integrity verifica-
tion. A user to whom the owner shares the data files can
access and check the integrity of data files using the public
key. A user can also be a Third Party Authority (TPA),
who has capabilities/expertise and can periodically audit the
integrity of data files being stored on the behalf of data
owners. When a user wants to upload data files which are
already stored in the cloud, the cloud server just create a
link to this file, instead of storing another copy, for this user
if the user has been proven a true owner of the file with
our scheme. During the integrity auditing and deduplication
processes, the user and the cloud server only use the public
key and do not need any help from the data owner. While

cloud servers are always equipped with abundant computing
resources, data owners and users may have constrained
computational power or bandwidth (e.g., mobile phones with
limited data plan).

B. Security Model

In our PCAD scheme we consider the following factors
that may impact integrity of data stored on cloud servers: 1)
attackers corrupting data stored on cloud servers; 2) attack-
ers claiming the ownership of file stored on the cloud even
if they do not possess the whole file; 3) hardware/software
failures of cloud servers and operational errors of system
administrator. The cloud server in our scheme is considered
as selfish, which may potentially misbehave in order to save
resources (e.g., deleting data stored on it). This assumption
is consistent with the previous POSD scheme [15]. We
also allow attackers, cloud servers and some data owners
to collude with each other in order to pass the integrity
verification of valid users.

C. Design Goals

To securely and efficiently verify integrity of the shared
data on cloud with deduplication, our PCAD scheme should
achieve the following properties at the same time:

« Efficiency: the communication cost and computational
cost for users to verify the integrity of data stored on
cloud should be constant.

« Functionality: Public data integrity verification and
deduplication should be supported at the same time
without introducing functionally duplicated authentica-
tion tags.

« Correctness: The proposed scheme should accept all
valid secret keys and public keys, all valid authentica-
tion tags, all valid proof information generated based
on valid public keys and all valid data blocks.

e Soundness: Any polynomial-time adversary cannot
forge proof information based on modified data and
pass the verification algorithm in our scheme; any
polynomial-time adversary without the whole data file
cannot pass the ownership checking process; any
polynomial-time adversary who collude with other data
owners and cloud servers cannot forge proof informa-
tion and pass the integrity verification process.

I11. CONSTRUCTION OF PCAD
A. Preliminaries and Notation

Bilinear Map: Let G and G be two multiplicative cyclic
groups of the same prime order g. A bilinear map is a map
that for all g,h € G and z,y & 7x e(g®, hv) = e(g, h)™.
For a bilinear map, there exists a computable algorithm that
can compute e efficiently and e(g, g) # 1.

Notation: Let H(-) be the one-way hash function, G be
a multiplicative cyclic group of prime order ¢, g be the
generator of G and u & G. F' is the erasure coded file to
be outsourced and is split into n blocks, each of which has s

elements: {m;;},1 <i<n,0<j<s—1. fz,) is denoted
as a polynomial with coefficient vector @ = (ag, a1, -,
as,l).

B. Our Construction

In this section, we describe the construction of our PCAD
scheme as below.

KeyGen: The TA chooses a random number « ¥id Zy

and generates the public keys for the system as {g“j }jié

« is the master key of the system only known to the TA.
The T A will go off-line after publishing its public keys.
Given a security parameter A, the data owner generates
a signing key-pair ((spk, ssk) & Sign()) [17]. The owner
also chooses a random number ¢ & Zy; and computes
Kk < g%, v = g°°. Then the public key, secret key and master
key are:

PK = {q,r,v,spk,u, {g™ 135
SK = {e,ssk} MK ={a}

Setup: To outsource a file F, the data owner first ob-
tains F’ by applying erasure code (e.g., Reed-Solomon
code [18]), where F’ consists of n data blocks and each
block has s elements: {m;;},1 < i < n,0 < j <
s — 1. The owner then randomly chooses a file name
name € Z; and generates the file tag 7 under ssk as
T « name||n||Signssk(name||ln). For each data block
m;, 1 < i < n, the owner produces an authentication tag
as:

s—1

o = (uH(nameHi) . Hgmija-j+2)e _ (uH(nameHi) . gfg7 (O/))e
=0

where §; = {0,0,m;0,m;1,---,mis_1}. The data owner

stores F, file tag 7 and corresponding authentication tags
o; on the cloud server.

Challenge: To verify the integrity of F’, a user first gets
the file tag 7 from the cloud server and verifies the signature
on 7 with ssk. If the signature is not valid, the user rejects
and halts; otherwise, the user recovers file name name and
n. Then the user randomly chooses a k— elements subset
K of [1,n] and two random numbers r il Zy. Finally, the
user produces the challenging message CM = {K,r} and
sends it to the cloud server.

Prove: Based on the challenging message
CM = {K,r}, the cloud server firsts generates {p; =
r* mod ¢},i € K. The cloud then generates y = f;(r),
where A = 0,0, c e Pimio, -+ D i PiMii,s—1}- As
polynomials f(z) € Z[x] have the algebraic property that
(x—r) perfectly divides the polynomial f(z)— f(r),r ¥id Zy.
The server divides the polynomial f;(x) — fz(r) with
(z — r) using polynomial long division, and denotes the
coefficients vector of the resulting quotient polynomial as
W= (wo,wl, s ,w5+1), that is, fﬂ;(ﬂ?) = M. The

r—r

cloud server generates

s+1

o= 16"y = gt

Jj=2

The cloud server finally computes o = [[,.x i oP" and
sends the proof information Prf = {o,,y} to the user.

Verify: On receiving the Prf, the user first computes
¥ =", x piH (namel|i) and n = u”. Based on), the user
verifies the integrity of F’ together with Prf = {o,¢,y} as:

e(n, k) - e(, v 57") = e(o,9) - eV, 9) (1)

If Eq.1 holds, then the user outputs AuditRst as accept;
otherwise, outputs AuditRst as reject.

Deduplication: In the Deduplication algorithm, a user
claims that he has a file F’ and wants to store it on the
cloud server, where F’ is an existing file on the server. To
check whether or not the user actually owns the whole F”,
the cloud server randomly chooses a d— elements subset D
of [1,n] (we discuss the size of D in Section IlI-E) and sends
D to the user. On receiving the set D, the user responds
with the corresponding data block m;,: € D. The cloud
server computes

0,/ — H o 77/ — H uH(nameHi)

i€D ieD
s+1)

Y = e(H(gaJ)Bj, k) = e(g/8(®) k)
=2

where B = (0,0, ,cp™Mi0,- 5> ;ep Mi,s—1)- Then the
cloud server checks the integrity of uploaded data blocks
m;,1 € D as:

?
e(n/a [i) : 1// = 6(0/79) (2)
If Eq.2 holds, the cloud server trusts that the user has the
whole F’.

Correctness: We analyze the correctness of our con-
struction based on Eqg.1 and Eq.2 as:

Eq.1:
e(n. k) -e(¥,v-x"") (3)
_ e(u)E(Z cK pi H(namell|i)) e(gfm(a)7ge(a—r))
= e(u) Z piH(nameHi)) A 6(979)W'6(0‘*”)
_ 6(e(zlerLH(namEH 1)) _gefg(a)yg) . e(li_y7g)
=e(o,g)-e(s?,9g)
Eq.2
e(a’,9) 4)
= o(u e HOamellD) | pefs(@) gy
_ e(u,g)e(z'iED H(namel|i)) . e(g7g)efé(a)
=e(n' k)

The correctness of our scheme is obvious by Eq.3 and Eq.4.

C. Auditing After Deduplication

In this section, we describe the auditing of file owned by
multiple owners after the deduplication process and show
how to aggregate authentication tags for the same file.

After the deduplication process for F” on the cloud server,
the user who passes ownership checking also becomes a
new owner of I’. We define this new owner as owner,,,
where 1 < w < W, ownery as the original owner who
uploads F’ and W is the total number of owner,,. Since
owners have no mutual trust in each other, they need to
assure the integrity of F’ separately. Specifically, after dedu-
plication, a new owner owner,,,w # 0 runs the KeyGen
algorithm and generates the public key and the private key
as:

PK, {Qa K, Vi, $Pkw, U, {g e+1
SKy = {€w, sk}

where K, = g, Vy = gv%, €y £ Zj;. Then, by running
the Setup algorithm, the owner,, generates the file tag 7.,
as T, « namel||n||Signssk, (name||n) and authentication
tags for each block m; in F’ as

s—1
namel|i mijad T2 ey
owi = (uT el T gmoe™) (5)
Jj=0
— (uH(nam,eHi) . ng“L (a))éw

where @ = {0,0,m;0,mi1, -, Mmis—1}. The file tag 7,
and corresponding authentication tags o,,; are outsourced
to the cloud server.

Instead of storing all the tags from different owner,, for
the same F’ separately, the cloud server aggregates tags
for each data block as:

w
g; = HO’wi =Uu
w=0

When a user helps an owner, say owner,t € [0, W], to
audit the integrity of F”, it runs the Challenge algorithm
to generate the challenging message CM = {K,r} and
sends it to the cloud server. The server runs the Prove
algorithm to generate o = [, 04,4 and y. After that, the
server outputs k' = [[kw,w € W/t and v/ = [J vy, w €
W/t. The proof information is Prf = {o,v,y,x’,v'}. To
verify the integrity of F’, the user runs the Verify algorithm
and checks

6(777’%) : (’i_yvg) (6)

Where k = k' - k; If EQ.6 holds, then the user outputs
Audit Rst as accept; otherwise, outputs Audit Rst as reject.

Correctness: The correctness of our auditing construction
after deduplication can be easily verified by expending
Eq.6 similar as the correctness of Eq.1, due to the space
limitation, we will not give details here.

H (namel|7) Z:;O €w | gfg‘l (“)‘23/:0 Cw

(' v wT) L (o, g) -

/

D. Batch Auditing

As the TPA has expertise and capabilities that many data
owners not have, it can help owners to audit the integrity of
their stored files on the cloud periodically. However, when
multiple owners delegate their integrity auditing requests at
the same time, it is inefficient for the TPA to process these
requests one by one. Specifically, given L integrity auditing
requests for L different encoded files F} = {my; ;},1 <1<
L1 <i<n,0<j < s —1 from T different owners
(some files may from the same owner), it is desirable for
the TPA to handle these requests in batch to reduce both
communication cost and computational cost, where n; is the
number of data blocks in encoded file F] and s; (s; < s) is
the number of elements in each data block. For this purpose,
we design the batch auditing algorithm based on our single
request construction as below.

T data owners run KeyGen algorithm separately. The
public keys and private keys are

PKt = {q7"€t73pkt>u7 {gaJ }ji(l)
SKt = {Et, SSkt}7 1 S t S T

where k; = g%, vy = g%°, € vid Z,. To audit the integrity of
these L files, the TPA runs Challenge algorithm and sends
the challenging message C M = {r, K} to the cloud server.

On receiving the C'M, the cloud server first runs Prove
algorithm for L files and generates Prf; = {4y, 01, y1},1 <
I < L and aggregates the files from same data owner as

Yy = Hwtl = gfw‘” (@) Ye = Zytl

The authentication tags of all files will be aggregated as ¢ =
Hle oy, where o; = HZ.GK oy;- The final proof information
Prf = {{¢:},0,{y:}} is sent to the TPA.

Based on the received Prf, the TPA first runs Verify to
getny = u ter 2icx PiH (namer|ltls) for each files from the
same owner. Then the TPA checks the integrity of these L
files together as

T T

[L(etn.me) - etnv - r77) = elo,g) [T el ™ 9) - (@)
t=1 t=1

If Eq.7 holds, the TPA outputs AuditRst as accept; other-
wise, outputs AuditRst as reject. Correctness:

The correctness of our batch auditing construction can be
easily verified by expending Eq.7 similar as the correctness
of Eqg.1, due to the space limitation, we will not give details
here.

E. Discussion

In this section, we discuss the error detection proba-
bility of our PCAD scheme, the selection of set K in
our Challenge algorithm and the selection of set D in
our Deduplication algorithm. As we mentioned in our
Setup algorithm, we adopt Reed-Solomon code to encode
the outsourcing file. For an ¢ Reed-Solomon encoded file
(0 < £ < 1), the original file can be recovered from any ¢

fraction of encoded data blocks. Thus, if an ¢ Reed-Solomon
encoded file cannot be recovered, the probability of getting
an uncorrupted encoded data block will be less than /. In
this case, when a user randomly chooses & independently
encoded data blocks to challenge, the probability that all
these blocks are uncorrupted is less than ¢%. When we
set £ = 0.98 as previous POR schemes [5], [19] do, the
user can achieve at least 99.999% error detection probability
when he challenges 600 data blocks for an encoded file.

With regard to the Deduplication algorithm, the cloud
server can choose a small set D to check whether the user
actually owns the file for storage. Specifically, suppose the
user missing 1% blocks of the file F’, as proved in [9], the
cloud server can have 99% or 95% confidence to detect
that the user does not owning the whole file F’ only by
challenging 460 blocks or 300 blocks (total blocks in F’ is
larger than 460).

F. Security Proof

In this section, we give the assumptions used in our
scheme and then prove the security of the scheme based
on these assumptions.

Definition Illl.1. Computational Diffie-Hellman (CDH)
Problem [20]

Let z,y & Zy. Given (g,g%,g"), it is computationally
intractable to compute the value of g*Y, where G is a cyclic
group of order q and g is a generator of G.

Definition lll.2. Static Diffie-Hellman Problem [21]
Leta & Z;. Given input as (g,g%) and h € G, where

g is a generator of a cyclic group G of order q. It is

computationally intractable to compute the value h®.

Definition lll.3. t-Strong Diffie-Hellman (t-SDH) Problem
17
Let o & Zy. Given input as a (t + 1) — tuple
(9,9%---,9*) € G', where g is the generator of a
cyclic group G of order q. For any probabilistic polynomial
time adversary (Adv), the probability Pr[Adv(g,g®,---,
t 1 . ..
g%) = (c,g°+<)] is negligible for any value of a € Z; /—a.

Theorem lIL4. If g74(®) can be forged by an existed proba-
bilistic polynomial time adversary Adv, we can construct an
algorithm B to efficiently compute the solution to the t-SDH
problem based on the Adv.

Using the similar idea of ref.[22], we prove Theorem.lll.4
as:

Proof: Suppose there exists a probabilistic polynomial
time adversity Adv that can generate f; () such that
g1 () = gfx(@) where f;(z) and f x, () are known to the
Adv. The Adv can construct another polynomial f ;. (x) =
fi(@) = fz (x). Therefore, g/ = gfa(@) jghal®) =
gfa@ =t (o) ¢ Zylz]. As fi (o) = fz(a) and fz (a) =
0, a becomes a root of polynomial f . (x). By factoring
Iz, (z)[23], B can find « and easily find a number ¢ to get

(c,ga%c) as solution to the instance of the t-SDH problem
given by the system parameters. []

Theorem III.5. If there exists a probabilistic polynomial
time adversary Adv that can pass the verification in our
proposed scheme with invalid proof information Pr f', where
Prf’ # Prf and Prf is the honest proof information, we
can construct an algorithm B that uses Adv to solve the
CDH problem, the Static Diffie-Hellman problem or the t-
SDH problem.

Proof: Suppose a probabilistic polynomial time adver-
sity Adv can generate a Prf’ = (¢',0',y), (W', 0", y") #
(v, 0,y) and pass the verification in our proposed scheme,
we can get the following two equations:

e(n, k) -e(,v k") Ze(o,9)-e(kV,g) (8)

e(n.r) et v-K57") Z (o', g) e(x g) (9)
Dividing Eq.8 with Eq.9, we obtain:

e(,v-k")
e(¥ v -KkTT)

Now we do a case analysis for Prf’.
Case 1: 0 # o'. We rewrite Eq.10 as

= ¢(0,9) (kYY) g)

e(a’, 9) (10)

e(o,9) = M e(kVY) g) - e(0”, 9)
_e(wY.,g) el g)

6(7775) - (:’(w/,V'K_T)

clnr) =) (1)

where 1 = uaiex PHmOmED o kaown to the Adv. We
denote v’ as ¢, n as g°, o’ as g™, based on Eq.11 we
can get

e(g”, k) =
!

=+ —fa—7)
€

p

O (a—r)+ple=—ye+n (12)

In this case, the Adv can output ¢(¢ (@=m+p)e — =" . 5/,

Now, if the Adv knows the value of ¢, it can get (v-x~")?"-

n¢ =k~Y -o’. That is, given g and g¢, where ¢ is unknown,

the Adv solve the Static Diflfie-HeIIman problem instance
Y .o

with u¢ = (52520 eI the Adu does not
know the value of #’, the TA can give the Adv ¢'(*~") .
=g (@=1+e) and k = ¢, where € and (6'(a — r) + p)
are not known to the Adwv, the Adv solve the CDH problem
instance with k=¥ - o’. Therefore, o’ = o.

Case 2: y # y/. Here, we denote ¢ as ¢? and ¢’ as ¢".
If ' # y, the Adv divides Eq.8 with Eq.9 with ¢/ = o and

outputs

(ew,) ><a"” _elgn)

e(y’, k) e(g, k)Y

0 —r)+y=0"("—7r)+y

(9/— ") __ 1 (13)
y—y o —r

Note that the operations in Eq.13 are modular operations
with module q. In this case, the Adv can compute

VA _
(w/)y -y :ga*‘V'

and outputs (—r,gﬁ) as a solution for t-SDH problem by
given system parameters. Therefore, 3/ = v.

Case 3: ¢) # ¢'. The Adv divides Eq.8 with Eq.9 with ¢/ =
o,y =y and outputs

(des) -

As o' # 1), the Adv can infer o/ = r balsed on Eq.15. In
this case, the Adv can also output (r,g~"+=) as a solution
of the t-SDH problem by given the system parameters.
Therefore, ¢y’ =). In addition, as we proved in Theorem
1.4, 1 = gf4(®) cannot be forged. That is, when the Adv
output ¢’ = 1), it have to computed based on actual data
blocks according to our PCAD scheme.

Based on the our above analysis, we proved that there
is no Adv that can use invalid proof information and pass
the verification in our PCAD scheme with non-negligible
probability. Theorem.lll.5 is proved. ||

Now, we prove the security of the data integrity verification
after deduplication.

(14)

(15)

Theorem lIl.6. /f there exists a probabilistic polynomial time
adversary Adv that can collude with W —1 owners and pass
owner;’s integrity verification after deduplication with invalid
proof information Prf’, where Prf' # Prf and Prf is the
honest proof information, we can construct an algorithm B
that uses Adv to solve the Static Diffie-Hellman problem,
the CDH problem or the t-SDH problem.

Proof: As the proof of Theorem 1.6 is similar to the
proof of Theorem l1I.5, we just give the idea and key
differences here due to the space limitation. We leave the
detail proof in the full version of this paper.

Suppose a probabilistic polynomial time adversity Adv
can generate a Prf’ and pass the integrity auditing, we
can divide the two equations generated based on Prf
and Prf’ as in the proof of Theorem Ill.5. The difference
between Theorem .5 and Theorem Il.6 is the known
knowledge of the Adw. In this scenario, the Adv can get
€w,w € W/t besides the information it can get in Theorem
[11.5. However, the information in original authentication tags
of owner; remains the same as in Theorem |11.5. To prove
the security of Theorem 11I.6, we can do case analysis of
o' # 0,y # yand ' # 1 first similar to Theorem lII.5.

Then we can do further analysis for v’ # ' and v" # /.
|

IV. PERFORMANCE EVALUATION
A. Numerical Analysis

In this section, we numerically analyze our PCAD scheme
and compare it with ref.[15], [5], [14]. For simplicity, in the
rest of this paper, we use MUL and EXP' to denote
the complexity of one multiplication operation and one
exponentiation operation on Group G respectively. Pairing
is a bilinear pairing operation.

1) Communication: In our PCAD scheme, the communi-
cation cost of the auditing process is caused by the chal-
lenging message CM = {K,r} and the proof information
Prf ={v,0,y}. The CM consists of a set K with k block
ids and a random number r. As we discussed in Section
IlI-E, the user can randomly challenge k& = 600 data blocks
to assure at least 99.999% error detection probability. If an
error detection probability a fixed parameter, the size of
K can be considered as constant and the complexity of
challenging message CM is O(1). The proof information
is composed a polynomial y and two group elements
and o. Therefore, the total communication complexity of
auditing process in our PCAD scheme is also O(1). In the
Deduplication process of our scheme, the user only needs
to send d encoded data blocks to the cloud server to prove
that it actually owns the whole file. As we discussed in Sec-
tion lll-E, the cloud server only needs challenging 300 blocks
or 460 blocks to achieve 95% or 99% confidence whether the
user actually owns the whole data file. Therefore, the size of
D can be bounded and the total communication complexity
of the Deduplication process in our scheme is O(1).

Now, we compare our PCAD scheme with existing
schemes [15], [5], [14] and show the result in Table.1. In
ref.[15], the Auditing process requires the cloud server
to send k authentication tags of the challenging blocks
and s aggregated data blocks to the user, where s is
the number of elements in an encoded block. Thus, its
communication complexity during the Auditing process is
O(s + k). To perform the Deduplication process, the user
needs to sends 2s aggregated data blocks to the cloud
server and thus introduces the communication complex-
ity as O(s). Differently, the aggregation of communication
information in our design enables our scheme to achieve
O(1) communication complexity for both Auditing and
Deduplication processes. The POR schemes proposed by
Yuan et al. [5] achieves constant communication complexity
for the Auditing process same as our PCAD scheme.
However, their scheme does not support the Deduplication
process and batch auditing, and introduces much higher
computational cost on the user side (Discuss later in Section
IV-A2). Considering the deduplication process only, ref.[14]
also requires O(1) communication cost, but their scheme
cannot support the data integrity auditing.

"When the operation is on the elliptic curve, EXP means scalar multiplication
operation and MUL means one point addition operation.

2) Computation: As shown in Section IlI-B, our PCAD
scheme consists of 6 algorithms: KeyGen, Setup,
Challenge, Prove, Verify and Deduplication. Among
these algorithms, KeyGen and Setup are prepossessing
procedures, which are performed by the data owner off-
line. To produce authentication tags for a encoded file with
n blocks, each of which has s elements, the data owner
needs (s +2)n EXP and sn MUL operations. Note that the
cost in the prepossessing of our scheme is one-time cost
for the data owner. After these prepossessing procedures,
the data owner can go off-line. During the data integrity
auditing process, the user performs Challenge algorithm to
generate the challenging message C'M by choosing a con-
stant number of random numbers with negligible cost. On
receiving the C'M, the cloud server needs (k+s— 1) MUL
and (s+k) EXP operations to produce the proof information.
To verify the integrity of the auditing file, the user performs
3 EXP, 3 MUL and 4 Pairing operations. Therefore, the
computational cost for the user to audit the data integrity of
a single file is O(1)MUL+O(1)EXP+O(1)Pairing. To perform
the Deduplication algorithm in our scheme, no computation
cost is required for the user. The cloud server needs to
perform O(s + d)MUL+O(s)EXP+O(1)Pairing.

We now compare our PCAD scheme with existing
schemes [15], [5], [14] and summarize the result in Table.1.
In ref.[15], the data integrity auditing process costs a user
O(ks)MUL+O(k)EXP operations, and the deduplication pro-
cesses introduces O(sk)MUL computational complexity to
the user, where k is the number of challenging blocks
and s is the number of element in a data block. Dif-
ferently, by outsourcing most computational tasks of both
auditing and deduplication processes to the cloud server,
our PCAD scheme achieves constant computational cost
on users and thus significantly outperforms ref.[15]. Com-
pared with ref.[5] that only supports data integrity audit-
ing, our PCAD scheme reduces the computational com-
plexity on the user from O(k)MUL+O(k)EXP+O(1)Pairing
to O(1)MUL+O(1)EXP+O(1)Pairing as shown in Table.1.
Considering only the deduplication process, ref.[14] requires
O(1)PRF operation on the user side that is comparable
to our PCAD scheme, where PRF is one pseudorandom
function operation.

3) Auditing After Deduplication: In this section, we dis-
cuss the storage overhead saved by aggregation of authen-
tication tags in our proposed scheme. Suppose W owners
ownery,1 < w < W pass the deduplication checking of the
file F’ existed on the cloud server. As these owners have no
mutual trust with each other, each owner,, needs to store
n authentication tags on the cloud server separately for
future public integrity auditing of F’, where n is the number
of encoded data blocks in F’. If the cloud server directly
store these authentication tags, a O(Wn) storage overhead
complexity is introduced to it. Differently, by aggregating
the tags for the same data block, the cloud server in our
scheme can reduce the storage overhead complexity to
O(n). With regard to the computational complexity and

Ref.[5] (POR) Ref.[14] (POW) Ref.[15] (POSD) Our PCAD
Public Auditing Yes No Yes Yes
Deduplication No Yes Yes Yes
Secure Yes Yes No Yes
Batch Auditing No No No Yes
Prepossessing O(sn)MUL4+O(sn)EXP O(n)PRF O(sn)MUL+O(n)EXP O(sn)MULHO(sn)EXP
Auditing Comp.Cost O(s + k)MUL+O(s + k)EXP N/A O(ks)MUL+O(K)EXP | O(k + s)MUL+O(s + k)EXP
(Cloud)
Auditing Comp.Cost O(k)MUL+O(k)EXP N/A O(ks)MULFO(k)EXP O(1)MUL+O(1)EXP
(User) +O(1)Pairing +O(1)Pairing
Auditing Comm.Cost O(1) N/A O(s+ k) o(1)
Deduplication Comp.Cost N/A O(n)PRF O(sk)MUL+O(k)EXP O(s + d)MUL+-O(s)EXP
(Cloud) +0(1)Pairing
Deduplication Comp.Cost N/A O(1)PRF O(sk)MUL 0
(User)
Deduplication Comm.Cost N/A O(1) O(s) O(1)

Table.1 Complexity Summary: in this table, n is number of encoded blocks for the file, s is the number of elements in each block and k is number of
blocks selected for challenging; PRF is one pseudorandom function operation, EXP and MUL are one multiplication operation and one exponentiation

operation on Group G respectively

communication complexity on an auditing user, it remains
the same as the constant level of auditing before deduplica-
tion, i.e., O(1)MUL+O(1)EXP+O(1)Pairing computational
complexity and O(1) communication complexity.

4) Batch Auditing: In this section, we discuss the com-
munication cost and computational cost saved by our batch
auditing design for multiple requests scenarios. Suppose
a TPA is hired by T data owners to help them audit
the integrity of L outsourced files on the cloud server
periodically. If the TPA processes these L auditing requests
one by one, it needs 3L EXP, 3L MUL and 4L Pairing oper-
ations for computation, and 2L group elements, L random
numbers and L polynomials for communication. With our
batch auditing design, the cloud server can aggregate L
o; into one group element and use one random number,
one polynomial instead of L ones. Thus, compared with
processing requests sequentially, our batch auditing design
can help the TPA and the cloud server to save about 50%
communication cost. From the perspective of computational
cost, our batch auditing design enables the TPA to reduce
number of Pairing operations from 4L to 3L, which is much
more expensive compared with MUL and EXP operations.
Therefore, about 25% computational tasks are saved for the
TPA with our batch auditing design. Assume c¢% files are
from same data owners, our batch auditing design can save
additional ¢% communication cost and ¢% computational
cost.

B. Experimental Result

To show that our proposed PCAD scheme is efficient and
scalable, we conducted experiments on Amazon EC2 Cloud
Platform using JAVA with Java Pairing-Based Cryptography
library (jPBC) [24]. The machine we used for the TPA is a
laptop running Mint Linux 13 with 2.50GHz Intel i5-2520M
CPU and 8GB memory. For the cloud server, we utilize
nodes that run Red Hat Enterprise Linux 6.3 with 8 Cores
CPU and 16GB memory. We set the security parameter
A = 160, which achieves 1024-bits RAS equivalent security
on Group. All experimental results represent the mean of
10 trials.

To verify our PCAD scheme’s constant communication
cost and computational cost on the user side, we vary the
number of data blocks stored on the cloud server from 1000
to 10000. As shown in Fig.1 (a), the computational cost of
users for performing an integrity auditing task almost keeps
around 420 ms when the number of data blocks in the
auditing files increases. With regard to the communication
cost, it also remains stable as about 622 Bytes when the
number of data blocks in the auditing files increases as
shown in Fig.1 (b). Note that, although we do not perform
experiment on more large files, it is easy to obtain that both
computational cost and communication cost of our scheme
are constant from the analysis in Section 1V-A2 and Section
IV-A1.

480, '~ 850,
B
> 800
o
—~ 460 < 750
0
£ 5 o
£ a0 =
= Z p—=a PO — a—=a
? o —— e, £ o0
% 8 550
= 2 5o
3 s
2
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of Blocks Number of Blocks
(a) (b)
Fig. 1. (a) Auditing Time on Users (b) Auditing Communication Cost on
Users

—+— Audit One by One
—8&— Batch Auditing

—+— Audit One by One
—&— Batch Auditing

200|

150
100
50,

10 200 00 400 500 600 700 800 900 1000
Number of Tasks
(@)

(a) Auditing Time on TPA (b) Auditing Communication Cost on

Batch Auditing Communication(KB)

100 200 300 400 500 600 700 800 900 1000
Number of Tasks
(b)

Fig. 2.
TPA

To show the benefits of our batch auditing design for
multiple auditing tasks scenarios, we change the number
of tasks a TPA needs to perform from 100 to 1000. Among

#Tasks = 500
Auditing One by One
Batch Auditing

Average Comp.Cost
423 ms
181 ms

Average Comm.Cost
626 Bytes
259 Bytes

Table.2. Average Computational Cost and Communication Cost for Batch
Auditing and Single Auditing

these files, 20% files are from same data owners. As we
demonstrated above, the number of data blocks in each
file does not influence the performance of our scheme, we
set the number of data blocks to 5000 in each auditing
task. Compared with performing these auditing tasks one
by one, Fig.2 (a) shows that the TPA can save about 55%
auditing time with batch auditing. From the perspective of
communication cost, Fig.2 (b) shows our batch auditing
saves about 60% bandwidth for the TPA. Considering the
average cost per task, which is computed by dividing total
auditing time and total auditing bandwidth cost by the
number of tasks respectively, Table.2 shows that our batch
reduce the computation cost per task on the TPA from 423
ms to 181 ms and the bandwidth cost per task from 626
Bytes to 259 Bytes.

V. CONCLUSION

To securely fulfill the two important requirements of cloud
storage: data integrity and storage efficiency, a number
of schemes have been proposed based on the concepts
of POR, PDP, POW and POSD. However, most existing
schemes only focus on one aspect, because trivial com-
bination of existing POR/PDP schemes with POW schemes
can contradict the objects of POW. The only one that simul-
taneously emphasized both aspects based on the concept
of POSD suffers from tremendous computation and compu-
tational costs and has been proven not secure. In this work,
we filled the gap between POR and POW and proposed
a constant cost scheme that achieves secure public data
integrity auditing and storage deduplication at the same
time. Our proposed scheme enables the deduplication of
both files and their corresponding authentication tags. In
addition, we extend our design to support batch integrity
auditing, and thus substantially save computational cost
and communication cost for multiple requests scenarios.
The security of our PCAD scheme is proved based on the
CDH problem, the Static Diffie-Hellman problem and the t-
SDH problem. We validate the efficiency and scalability of
our scheme through numerical analysis and experimental
results on Amazon EC2 Cloud. Our proposed polynomial
based authentication tag can also be used as an indepen-
dent solution for other related applications, such as verifiable
SQL search, encrypted key word search, etc.

REFERENCES

[1] G. Timothy and M. M. Peter, “The nist definition of cloud computing,”
vol. NIST SP - 800-145, September 2011.

[2] “Amazon forum. major outage for amazon s3 and
ec2,” https://forums.aws.amazon.com/thread.jspa?threadlD
=19714&start=15&tstart=0.

“Business insider. amazon’s cloud crash
ter permanently destroyed many customers’
http://www.businessinsider.com/amazon-lost-data-2011-4.

[3 disas-

data,”

[4]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

J. Gantz and D. Reinsel, “The digital universe decade - are
you ready?” http://www.emc.com/collateral/analyst-reports/idc-digital-
universe-are-you-ready.pdf, May 2010.

J. Yuan and S. Yu, “Proofs of retrievability with public verifiability
and constant communication cost in cloud,” Proceedings of the ACM
ASIACCS-SCC’13, 2013.

H. Shacham and B. Waters, “Compact proofs of retrievability,” in
Proceedings of the 14th International Conference on the Theory and
Application of Cryptology and Information Security, ser. ASIACRYPT
'08, Berlin, Heidelberg, May 2008, pp. 90-107.

A. Juels and B. S. Kaliski, Jr., “Pors: proofs of retrievability for large
files,” in Proceedings of the 14th ACM conference on Computer and
communications security, ser. CCS '07. New York, NY, USA: ACM,
2007, pp. 584-597.

Y. Dodis, S. Vadhan, and D. Wichs, “Proofs of retrievability via
hardness amplification,” in Proceedings of the 6th Theory of Cryptog-
raphy Conference on Theory of Cryptography, ser. TCC '09, Berlin,
Heidelberg, 2009, pp. 109-127.

G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peter-
son, and D. Song, “Provable data possession at untrusted stores,”
in Proceedings of the 14th ACM conference on Computer and
communications security, ser. CCS '07. New York, NY, USA: ACM,
2007, pp. 598-609.

G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik, “Scalable
and efficient provable data possession,” in Proceedings of the 4th
international conference on Security and privacy in communication
netowrks, ser. SecureComm ’'08. New York, NY, USA: ACM, 2008.
C. Erway, A. Kipgl, C. Papamanthou, and R. Tamassia, “Dynamic
provable data possession,” in Proceedings of the 16th ACM confer-
ence on Computer and communications security, ser. CCS '09. New
York, NY, USA: ACM, 2009, pp. 213-222.

Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, “Enabling public au-
ditability and data dynamics for storage security in cloud computing,”
IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 5, pp. 847-859, 2011.
S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Proofs of
ownership in remote storage systems,” in Proceedings of the 18th
ACM conference on Computer and communications security, ser.
CCS ’11. New York, NY, USA: ACM, 2011, pp. 491-500.

R. Di Pietro and A. Sorniotti, “Boosting efficiency and security in
proof of ownership for deduplication,” in Proceedings of the 7th ACM
Symposium on Information, Computer and Communications Security,
ser. ASIACCS ’12. New York, NY, USA: ACM, 2012, pp. 81-82.

Q. Zheng and S. Xu, “Secure and efficient proof of storage with
deduplication,” in Proceedings of the second ACM conference on Data
and Application Security and Privacy, ser. CODASPY ’12. New York,
NY, USA: ACM, 2012, pp. 1-12.

K. K. Youngjoo Shin, Junbeom Hur, “Security weakness in the proof
of storage with deduplication,” Cryptology ePrint Archive, Report
2012/554, 2012, http://eprint.iacr.org/.

D. Boneh and X. Boyen, “Short signatures without random oracles,’
in EUROCRYPT, 2004, pp. 56-73.

I. S. Reed and G. Solomon, “Polynomial Codes Over Certain Finite
Fields,” Journal of the Society for Industrial and Applied Mathematics,
vol. 8, no. 2, pp. 300-304, 1960.

X. Jia and C. Ee-Chien, “Towards efficient provable data possession,”
in Proceedings of the 7th ACM Symposium on Information, Computer
and Communications Security, ser. ASIACCS ’12, Seoul, Korea, 2012.
W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
Trans. Inf. Theor., vol. 22, no. 6, pp. 644—654, Sep. 1976.

D. R. L. Brown and R. P. Gallant, “The static diffie-hellman
problem,” Cryptology ePrint Archive, Report 2004/306, 2004,
http://eprint.iacr.org/.

A. Kate, G. M. Zaverucha, and |. Goldberg, “Constant-size commit-
ments to polynomials and their applications,” in ASIACRYPT, 2010,
pp. 177-194.

V. Shoup, A computational introduction to number theory and algebra.
New York, NY, USA: Cambridge University Press, 2005.

jPBC, “http://gas.dia.unisa.it/projects/jpbc/.”

