
Some Fixes To SSH

Xu ZiJie
xuzijiewz@gmail.com

Abstract

To against some known attacks to Secure Shell (SSH), I propose some fixes to
SSH. The fixes include add a key producer function and revise the MAC.

Keywords: Authenticated Encryption, SSH, CBC

1. Introduction
Secure Shell (SSH) is designed to protect the data under an authenticated encryption
scheme. It is an authenticated encryption. The authenticated encryption provides both
privacy and integrity. The basic idea that achieves the goal is use an encryption
function provides secrecy and a hash function provides authenticity. At the same time,
sent data should let receiver know how many bits will be sent, the sent data will be
encode with some conventional format. To know the received data is intact or not, the
receiver will do some checks. The check main include data length and MAC. It is
obvious the basic idea is rational.

People had found some attacks against SSH. I learn some attacks from papers[1,2,3].
These attacks ably uses the SSH packet format, CBC mode format and check response. I
found these attacks have same connotative condition. Then I suggest some fixes to break
these connotative conditions.

Wei Dai’s attack [3] and plaintext-recover attack [1] has the connotative condition all
blocks are encrypted with same key. So I design a key produce function to produce
different keys for blocks. Then it cannot apply Wei Dai’s attack and plaintext-recover
attack.

Replay attack, out-of-order attack and information leakage attack has the connotative
condition it need wait for same counter value. Then I improve the MAC that make MAC
depend on counter, packet and previous MAC. This fix make attacker need wait for same
counter value and same previous MAC value. This will reduce the chance to apply these
attacks. If attacker tries to control the previous MAC value to apply these attacks, he need
find the collision of hash function.

There are some excellent fixes [2] to SSH. To enrich the fixes, I propose some
fixes in this paper. I will glancing SSH and propose some fixes to SSH in section 2. In
section 3, I will explain how these fixes against some attacks [1,2,3].

2. SSH Binary Packet Protocol and Some Fixes
In this section, I will simple expound SSH Binary Packet Protocol and some fixes.

2.1 SSH Binary Packet Protocol
I learn SSH Binary Packet Protocol from [1,2]. In a SSH session, at first, the client
and the server should agree upon something like shared symmetric keys uk, packet
format, encryption function ENC, decoding function DEC, hash function H.

Then sender will encode the message into an encoded packet as follow, suppose packet
length is payloadlen, padding length is padlen, payload message is m, padding is padding.

p= payloadlen || padlen || m || padding
If the encryption use CBC mode, the above encoded packet will be divided into blocks

that the size depend the encryption function ENC as follow:
p=b0||b1||,…||bn

Then these blocks will be encrypted with user key uk. In CBC mode, these blocks
will be encrypted as follow:

cpbi= ENCuk(cpbi-1○+ bi)
Where cpb-1 is initial value. And the ciphertext is as follow:

cp= cpb0|| cpb1||,…,|| cpbn
The MAC as follow:

MAC=H(ctr||p)
Where ctr is a counter hold by sender and receiver. The ctr is the message number.
The resulting ciphertext is the concatenation of cp and MAC as follow:

c=cp||MAC
When receiver receive c, receiver will get cp and MAC, he will decrypts the first packet

to get the payloadlen to know how many data will receive. Then receiver will divided
ciphertext into blocks and decipher the ciphertext as follow:

cp= cpb0|| cpb1||,…,|| cpbn
bi = cpbi-1○+ DECuk(cpbi)

p=b0||b1||,…||bn
And compute MAC’ as follow:

MAC’=H(ctr||p)
Then check MAC equal MAC’ or not to know p is right or not. Because ctr is hold by

sender and receiver, so ctr is not send and receiver will know the correct ctr value.
Receiver will do some checks[1]: Length check, Block Length check, MAC check.

These checks and the packet format let receiver know how many data the message has and the
MAC authenticated the message. And SSH use the mode called encrypt-and-authenticate
mode.

2.2 Fixes
The fixes include fixes to CBC mode and encrypt-and-authenticate mode.

2.2.1 Fix to CBC Mode
CBC mode is design to against active attack. [4] shows CBC mode encryption is insecure. I
deem the main reason is all block is encrypted with same key. So I propose the fix that

produce different key for every block.
If there is a key uk, the simple way produce key as follow:

ki=uk○+ i (2.1)
ki is key for i-th block. In a SSH session, there are more than one message. Then to

blocks that have same order will has same key. My goal is make attacker hard to find
two blocks has same key or not. To achieve this goal, I improve (2.1) as follow:

)2.2())((),,(
10

, ijstepukijukKPFk
xukstep

ij ⊕×+==
∨=

The function KPF(uk,j,i) produce key for i-th block of j-th message. The addition is
modular 2n addition, where n is bit-length of user key.

It can look on (2.2) as produce the key for i-th block of j-th message in two steps:
1.Compute uk+j×step for j-th message. To convenient, call uk+j×step message

key, noted as mkj= uk+j×step.
2. Compute the key for i-th block as: kj,i= mkj○+ i

There exists follow lemmas.

Lemma 2.1: if there exists: step=uk∨0x1

 There exists: uk+j×step∈{0,…,2
n
-1}.

n is bit-length of user key uk, j∈{0,…,2
n
-1}

Proof:
Because: step=uk∨0x1
So there exists: step≡1 mod 2
So step and 2n are relatively-prime. Therefore there exists: uk+j×step∈{0,…,2

n
-1}. □

So to j-th message, where j∈{0,…,2

n
-1}, message key is unique. But if the user key has

been used to encrypt more than 2n messages, there will exists same message key. The
main size of block cipher are 56, 126,192,256.

By above discuss, this fix is use a key producer function as (2.2) produce key for blocks.
Then the i-th block of j-th packet will be encrypted as follow:

kj,i=(uk+j×step)○+ i

)(,1,, , ijijkij bcpbENCcpb
ij

⊕= − (2.3)

To two key kj,i and kj1,i1, if there exists kj,i=kj1,i1, then there exists:
kj,i=kj1,i1

(uk+j×step)○+ i= (uk+j1×step)○+ i1
i○+ i1=(uk+j1×step)○+ (uk+j×step) (2.3.a)

If attacker do not know the user key uk, it is hard to know which two keys kj,i and kj1,i1
are same.

2.2.2 Fixes to Encrypt-and-Authenticate Mode
[5,6] summarize that encrypt-and-authenticate mode is insecure. I deem one reason is the

MAC depends on current message and counter value. When attacker applies replay attack, he
just need wait the same counter value. We can make the MAC not only depends on current
message and counter value but also previous data. In this paper, I use previous MAC. This fix
will make the MACs like a chain. If the receiver checks the MAC, the result will depend on
the message and the previous MAC. Then attacker applies the attacks that use MAC check
need wait same previous MAC and same message number.

Let MACi is i-th MAC, then let the MAC computed as follow
MACi=H(ctr||p||MACi-1) (2.4)

And let the initial value MAC-1 is 0.
Let pro(x) is probability of x. Then there exists:

Lemma 2.2: To two pairs (ctr1,p1) and (ctr2,p2), if the corresponding previous MAC is

MAC1 and MAC2. If MAC1 and MAC2 are independent, there exists:
Pro(H(ctr1||p1||MAC1)= H(ctr2||p2||MAC2))= 2-hl

The hash value has hl bits.
Proof:
To a given hash value hv, there exists:

Pro(H(ctr1||p1||MAC1)=hv)=2-hl
Pro(H(ctr2||p2||MAC2)=hv)= 2-hl

There exists 2hl hash values. So there exists:

hl

hlhlhl
i

hl

o

o

−

−−

=

=

××=

==∑
−

2
222

)iMAC2)||p2||H(ctr2 =MAC1)||p1||H(ctr1(Pr

)MAC2)||p2||H(ctr2 =MAC1)||p1||H(ctr1(Pr
12

0

So there exists:
Pro(H(ctr1||p1||MAC1)= H(ctr2||p2||MAC2))= 2-hl □

3. Some Attacks
In this section, I will explain some attacks I learn from [1,2,3]. These attacks have some
common characteristic skillfully use packet format and check response. When apply these
attacks, it need some conditions. In this section, I will explain how the fixes expounded in
section 2 against these attacks.

3.1Plaintext-recover Attack
In [1], plaintext-recover attack had been detailed described. The attacker will collects i-th
ciphertext block and (i-1)-th ciphertext block of j-th message ci,i’ and cj,i-1’. Suppose the
plaintext is p’ and key is k. Then there exists:

p’=DECk(ci,i’)○+ cj,i-1’ (3.1)
Then attacker injecting ci,i’ as the first block of a new packet[1]. Let the initial value of CBC
mode is IV. Then there exists:

P*=DECk(ci,i’)○+ IV (3.2)
If p* pass then check, by the first packet format, some bits of p* are fixed value.

Combining (3.1) and (3.2), there exists:
p’○+ P*= cj,i-1’○+ IV (3.3)

Then it can recover some bits of p’. In (3.1) and (3.2), the block ci,i’ is decrypted with
same key k. This make let attacker can use (3.3) to bypass the key. If use (2.2) produce key
for blocks, suppose attacker will injecting ci,i’ as the first block of j1-th packet. This exists:

 step=k∨0x1
k1=(k+(step×j))○+ I
k2=(k+(step×j1))○+ 0
p’=DECk1(ci,i’)○+ cj,i-1’ (3.4)
P*=DECk2(ci,i’)○+ IV (3.5)

If combining (3.4) and (3.5), there exists:
p’○+ P*= cj,i-1’○+ IV ○+ DECk1(ci,i’)○+ DECk2(ci,i’) (3.6)

Then the attacker cannot apply this attack. To apply this attack, it need k1=k2, then there
exists two pairs (i,j) and (0,j1). There exists:

k1=k2
(uk+j×step)○+ i= (uk+j1×step)○+ 0

i=(uk+j1×step)○+ (uk+j×step) (3.6a)
If i≠0, without user key uk, attacker cannot know how to choice i, j, j1 to make (3.6a)

tenable. Then it cannot find two blocks decrypted with same key and apply this attack.

3.2 Wei Dai’s Attack

W. Dai had reported an attack in [3]. And the attack is represented as follow: If the attacker
guesses that plaintext block Pi might be x, and wants to test whether that's the case, he would
choose the next plaintext block Pj to be x○+ Ci-1○+ Cj-1. If his guess is correct, then Cj =
ENCk(Pj○+ Cj-1) = ENCk(Pi○+ Ci-1) = Ci, and so he can confirm his guess by looking at whether
Cj = Ci.

W. Dai mentioned a fix [3] that switch to RC4 for encryption to against this attack. And
RC4 is a stream cipher.

If the encryption is block cipher and CBC mode, it can use the fix in section 2.2.1 to
against this attack. If the attacker guesses that i-th plaintext block pi,j of j-th message might be
x, and then choose i1-th plaintext block pi1,j1 of j1-th message to be x○+ Ci-1,j○+ Ci1-1,j1. Then
there exists:

step=k∨0x1
k1=(k+(step×j))○+ i
k2=(k+(step×j1))○+ i1
Ci-1,j= ENCk1(pi,j○+ Ci-1,j)= ENCk1(x○+ Ci-1,j) (3.7)

Ci1-1,j1= ENCk2(pi1,j1○+ Ci1-1,j1)= ENCk2(x○+ Ci-1,j) (3.8)
To apply this attack, it need k1=k2. Then there exists:

k1=k2
(uk+j×step)○+ i= (uk+j1×step)○+ i1
i○+ i1=(uk+j1×step)○+ (uk+j×step)

Without user key uk, attacker cannot know how to choice i, j, i1, j1 to make k1=k2. Then
it cannot find two blocks decrypted with same key and apply this attack.

3.3 Replay and Out-Of-Order Delivery Attack
I learn replay and out-of-order delivery attack from [2]. In SSH, the MAC is compute as
follow:

MAC=H(ctr||p) (3.9)
Where ctr is a 32-bits counter of message number, and p is encoded packet. The MAC
depends on counter and present message.

For replay attacks, attacker get a ciphertext c, then the receiver will decipher the
ciphertext and get the packet p and MAC. Suppose the message number counter value is ctr.
There exists:

MAC=H(ctr||p)
Then attacker will wait for more 232-1 messages. Then the message number counter

value will be ctr again. Then attacker can send the ciphertext c to receiver again. And receiver
deciphers ciphertext c and get same packet p and MAC again. It is undoubtedly that p will
pass check again.

For out-of-order delivery attacks, if sender had the sender has encrypted more than 232
messages. If there exists two pair (ctr1,c1) and (ctr2,c2), suppose the corresponding packets
of c1 and c2 are p1 and p2. And there exists:

⎪⎩

⎪
⎨
⎧

=

≡

)2||2mod2()1||2mod1(
2mod21

3232

32

pctrHpctrH
ctrctr

Attack can modify the order that swap c1 and c2.

Mihir Bellare [2] mentioned that if the counter is allowed to repeat, it is easy apply replay
and out-of-order delivery attack. For fix in section 2.2.1, by lemma 2.1, the key produce
function will produce same key after 2n messages. And the main key size of block cipher
are 56, 126,192,256. The circle of message key is bigger than 232. If receiver receives
the ciphertext after 232 messages, the ciphertext will be deciphered with different key.

By lemma 2.1, the circle of message key is 2n, 2n is integer multiple of 232. So to apply
replay and out-of-order delivery attack, attacker need wait for more than 2n messages to wait
key produce function produce same key.

By (3.9), we will know that attacker can wait for more 232 messages for the same counter and
apply reply and out-of-order delivery attack. The fix in section 2.2.2 will make the MAC
depend on current message, counter and previous MAC. Fix in section 2.2.2 will make
attacker not only wait for same counter value but also same previous MAC. Let MAC is
(i-1)-th MAC, MAC’ is (i-1+232)-th MAC. The probability of MAC=MAC’:

hl

hlhlhl
i

hl

o

o

−

−−

=

=

××=

==∑
−

2
222

)iMAC' =MAC(Pr

)MAC' =MAC(Pr
12

0

If the previous MACs are not same, by lemma 2.2, if ciphertexts are replayed or
reordered, the probability that pass MAC check is 2-hl.

3.4 Information Leakage

Information leakage attack is mentioned in [2]. Suppose that an attacker get a ciphertext with
a MAC tag t. The attacker can guess the underlying payload is M. He will wait for the sender
to encrypt 232 − 1 more packets and then requests the sender to encrypt the payload M. Then
the attacker gets the new MAC tagt t’. If the guess is right, there exists t’=t.

In encrypt-and-authenticate mode the MAC is not encrypted, so attacker just checks the MAC.
The fix in section 2.2.1 is not help for against this attack.

The fix in section 2.2.2 will make the MAC depend on current message, counter and previous
MAC. After wait for the sender to encrypt 232 − 1 more packets, if the MAC is not the same
MAC, even attacker’s guess is right, the probability of t’=t is is 2-hl by lemma 2.2.

4. Improvement
The fixes in section 2 are base ideas. There are some improvements for these fixes.

4.1 Improvement to Fix in Section 2.2.2

The fix in section 2.2.2 makes the i-th MAC computed as follow
MACi=H(ctr||p||MACi-1)

In same situation, the packet is not arriving in order. Then it cannot get the previous MAC
immediately. There are some ways to solve this problem. I provide a simple resolvent here. It
is change (2.4) as follow:

⎪⎩

⎪
⎨
⎧

≤−−

<−
=

iii
i

iind
323232

32

2)2mod(2
21

)(

MACi=H(ctr||p||MACind(i)) (4.1)
(4.1) is use a steady value in a period of time. Then it just need hold some MACs, it will solve
this problem. In this paper, I do not discuss it in details.

4.2 Improvement to Fix in Section 2.2.1

In section 3.3, we can find that the circle of message is 2n. 2n is an integer multiple of 232. So

attacker can wait for more 2n messages. If circle of key produce function is 2n-1, 2n-1 and 232
are relatively-prime, then attacker will wait for more 2n+32-232 messages to wait for same
counter value and same key. There is a simple way to do this. The key of i-th block of j-th
message as follow:

imkk

elsestepmk

ukstepmkstepuk
juk

mk

xukstep

jij

j

jj

⊕=

⎪
⎩

⎪
⎨

⎧

+

=++
=

=

∨=

−

−

,

1

1

0

10

When j>0, there exists mkj≠uk. So the circle of mk is 2n-1.

4.3 Improvement to Fix in Section 2.2.1

The fix in section 3.3 has a problem. If attacker can find two blocks that have same initial
value, same plaintext and same ciphertext block, he will know the two blocks are encrypted
with same key. Then attacker will get the equation (2.3.a).

To get the equation (2.3.a), attacker just need force sender encrypt lots same plaintext
blocks. Select and hold i1-th block of j1-th message, let the block is c1. Then for a same
ciphertext block that has same initial value. Suppose i2-th block of j2-th message is c2. If
c1=c2, attacker get an equation as (2.3.a) as follow:

step=uk∨0x1
kj1,i1=kj2,i2

(uk+j1×step)○+ i1= (uk+j2×step)○+ i2
i1○+ i2=(uk+j1×step)○+ (uk+j2×step) (4.2)

In (4.2), step and key uk is unknown. Then attacker can compute key uk by (4.2).
Because attacker needs two blocks that have same initial value and same key. The probability
of same initial value is 2-cl, where cl is block size. The probability of same key is 2-kl, where kl
is key size. Then the probability of attacker get the equation (4.2) is 2-(kl+cl).

Here I assume if two same ciphertext blocks that have same initial value, same plaintext
are encrypted with same key. In same case, this is not established. For example, AES with
256-bits key. But the hypothesis will not reduce the probability of attacker get the equation
(4.2).

To against above attack, I try to find a way to fix it. In the above attack, attacker exact
know the initial value of two block is same or not, and then he can know it can apply the
attack or not. So my strategy is use user key to change the initial value. I find a simply way.
We can change encrypt as follow:

step=uk∨0x1

imkk

elsestepmk
ukstepmkstepuk

juk
mk

jij

j

jj

⊕=

⎪
⎩

⎪
⎨

⎧

+

=++
=

=

−

−

,

1

1

0

cpbi= ENCuk(cpbi-1○+ （step×i）○+ bi)
To exact know the initial value of two block is same, it need the condition i1≡i2 mod 2cl. I
do not deep discuss it here.

5. Countermeasures
In this paper, I study some attacks [1,2,3] on SSH. I find the condition that these attacks need.
And I propose some fixes to SSH in section 2. And these fixes are easy and simple.

The fix in section 2.2.1 produce difference key for blocks with a key produce function.
The fix can make it hard to use CBC mode format to apply attack. And I notice that the fix
maybe can be applied to ECB mode.

The fix in section 2.2.2 improve encrypt-and-authenticate mode. It makes MACs like a
chain. The fix makes it hard to use MAC check applies attacks.

From the attacks that mentioned in [1,2,3], we can find that against attack is a
complicated task. It need consider some different attacks and the limit by some environment.
In this paper, I propose fixes that can against the attacks that I know. These fixes are base
ideas. In some severe environment, it need revise these fixes to fit the environment. However
I find some simple ways to against these attacks. These ways have their specialty. If we
combined these ways, we can design some different function. For example use previous MAC,
user key and block index to produce key. In this paper I just propose some fixes. To design an
excellent function; it need build a model to study it.

References

1. Martin R. Albrecht, Kenneth G. Paterson, Gaven J. Watson: Plaintext Recovery Attacks against
SSH. IEEE Symposium on Security and Privacy 2009: 16-26

2. M. Bellare, T. Kohno, and C. Namprempre. Breaking and Provably Repairing the SSH
Authenticated Encryption Scheme: A Case Study of the Encode-then-Encrypt-and-MAC
Paradigm. ACM Transactions on Information and Systems Security, 7(2):206–241, 2004.

3. W. Dai. An Attack Against SSH2 Protocol. Email to the SECSH Working Group available from
ftp://ftp.ietf.org/ietf-mail-archive/secsh/2002-02.mail, 6th Feb. 2002.

4. P. Rogaway. Problems with proposed IP cryptography, 1995. Available at http://www.cs.
ucdavis.edu/~rogaway/papers/draft-rogaway-ipsec-comments-00.txt.

5. M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and
analysis of the generic composition paradigm. In T. Okamoto, editor, Advances in Cryptology
– ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer Science, pages 531–545.
Springer-Verlag, Berlin Germany, Dec. 2000.

6. H. Krawczyk. The order of encryption and authentication for protecting communications
(or:How secure is SSL?). In J. Kilian, editor, Advances in Cryptology – CRYPTO 2001,

volume 2139 of Lecture Notes in Computer Science, pages 310–331. Springer-Verlag, Berlin
Germany, Aug. 2001.

