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Abstract 

To against some known attacks to Secure Shell (SSH), I propose some fixes to 
SSH. The fixes include add a key producer function and revise the MAC. 
 
Keywords:  Authenticated Encryption,  SSH,  CBC 
 

1. Introduction 
Secure Shell (SSH) is designed to protect the data under an authenticated encryption 
scheme. It is an authenticated encryption. The authenticated encryption provides both 
privacy and integrity. The basic idea that achieves the goal is use an encryption 
function provides secrecy and a hash function provides authenticity. At the same time, 
sent data should let receiver know how many bits will be sent, the sent data will be 
encode with some conventional format. To know the received data is intact or not, the 
receiver will do some checks. The check main include data length and MAC. It is 
obvious the basic idea is rational. 

People had found some attacks against SSH. I learn some attacks from papers[1,2,3]. 
These attacks ably uses the SSH packet format, CBC mode format and check response. I 
found these attacks have same connotative condition. Then I suggest some fixes to break 
these connotative conditions. 

Wei Dai’s attack [3] and plaintext-recover attack [1] has the connotative condition all 
blocks are encrypted with same key. So I design a key produce function to produce 
different keys for blocks. Then it cannot apply Wei Dai’s attack and plaintext-recover 
attack. 

Replay attack, out-of-order attack and information leakage attack has the connotative 
condition it need wait for same counter value. Then I improve the MAC that make MAC 
depend on counter, packet and previous MAC. This fix make attacker need wait for same 
counter value and same previous MAC value. This will reduce the chance to apply these 
attacks. If attacker tries to control the previous MAC value to apply these attacks, he need 
find the collision of hash function. 

There are some excellent fixes [2] to SSH. To enrich the fixes, I propose some 
fixes in this paper. I will glancing SSH and propose some fixes to SSH in section 2. In 
section 3, I will explain how these fixes against some attacks [1,2,3]. 

 

2. SSH Binary Packet Protocol and Some Fixes 
In this section, I will simple expound SSH Binary Packet Protocol and some fixes. 
 



2.1 SSH Binary Packet Protocol 
I learn SSH Binary Packet Protocol from [1,2]. In a SSH session, at first, the client 
and the server should agree upon something like shared symmetric keys uk, packet 
format, encryption function ENC, decoding function DEC, hash function H.  

Then sender will encode the message into an encoded packet as follow, suppose packet 
length is payloadlen, padding length is padlen, payload message is m, padding is padding. 

p= payloadlen || padlen || m || padding 
If the encryption use CBC mode, the above encoded packet will be divided into blocks 

that the size depend the encryption function ENC as follow: 
p=b0||b1||,…||bn 

Then these blocks will be encrypted with user key uk. In CBC mode, these blocks 
will be encrypted as follow: 

cpbi= ENCuk(cpbi-1○+ bi) 
Where cpb-1 is initial value. And the ciphertext is as follow: 

cp= cpb0|| cpb1||,…,|| cpbn 
The MAC as follow: 

MAC=H(ctr||p) 
Where ctr is a counter hold by sender and receiver. The ctr is the message number. 
The resulting ciphertext is the concatenation of cp and MAC as follow: 

c=cp||MAC 
When receiver receive c, receiver will get cp and MAC, he will decrypts the first packet 

to get the payloadlen to know how many data will receive. Then receiver will divided 
ciphertext into blocks and decipher the ciphertext as follow: 

cp= cpb0|| cpb1||,…,|| cpbn 
bi = cpbi-1○+ DECuk(cpbi) 

p=b0||b1||,…||bn 
And compute MAC’ as follow: 

MAC’=H(ctr||p) 
Then check MAC equal MAC’ or not to know p is right or not. Because ctr is hold by 

sender and receiver, so ctr is not send and receiver will know the correct ctr value.  
Receiver will do some checks[1]: Length check, Block Length check, MAC check. 

These checks and the packet format let receiver know how many data the message has and the 
MAC authenticated the message. And SSH use the mode called encrypt-and-authenticate 
mode.  

 

2.2 Fixes 
The fixes include fixes to CBC mode and encrypt-and-authenticate mode. 
 

2.2.1 Fix to CBC Mode 
CBC mode is design to against active attack. [4] shows CBC mode encryption is insecure. I 
deem the main reason is all block is encrypted with same key. So I propose the fix that 



produce different key for every block. 
If there is a key uk, the simple way produce key as follow: 

ki=uk○+ i                                   (2.1) 
ki is key for i-th block. In a SSH session, there are more than one message. Then to 

blocks that have same order will has same key. My goal is make attacker hard to find 
two blocks has same key or not. To achieve this goal, I improve (2.1) as follow: 
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The function KPF(uk,j,i) produce key for i-th block of j-th message. The addition is 
modular 2n addition, where n is bit-length of user key. 

It can look on (2.2) as produce the key for i-th block of j-th message in two steps:  
1.Compute uk+j×step for j-th message. To convenient, call uk+j×step message 

key, noted as mkj= uk+j×step. 
2. Compute the key for i-th block as:    kj,i= mkj○+ i 

There exists follow lemmas. 

Lemma 2.1: if there exists:    step=uk∨0x1 

  There exists:   uk+j×step∈{0,…,2
n
-1}. 

n is bit-length of user key uk, j∈{0,…,2
n
-1} 

Proof: 
Because:       step=uk∨0x1 
So there exists:  step≡1 mod 2 
So step and 2n are relatively-prime. Therefore there exists:  uk+j×step∈{0,…,2

n
-1}.  □ 

 
So to j-th message, where j∈{0,…,2

n
-1}, message key is unique. But if the user key has 

been used to encrypt more than 2n messages, there will exists same message key. The 
main size of block cipher are 56, 126,192,256.  
 
By above discuss, this fix is use a key producer function as (2.2) produce key for blocks. 
Then the i-th block of j-th packet will be encrypted as follow: 

kj,i=(uk+j×step)○+ i 
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To two key kj,i and kj1,i1, if there exists kj,i=kj1,i1, then there exists: 
kj,i=kj1,i1 

(uk+j×step)○+ i= (uk+j1×step)○+ i1 
i○+ i1=(uk+j1×step)○+ (uk+j×step)              (2.3.a) 

If attacker do not know the user key uk, it is hard to know which two keys kj,i and kj1,i1 
are same. 
 

2.2.2 Fixes to Encrypt-and-Authenticate Mode 
[5,6] summarize that encrypt-and-authenticate mode is insecure. I deem one reason is the 



MAC depends on current message and counter value. When attacker applies replay attack, he 
just need wait the same counter value. We can make the MAC not only depends on current 
message and counter value but also previous data. In this paper, I use previous MAC. This fix 
will make the MACs like a chain. If the receiver checks the MAC, the result will depend on 
the message and the previous MAC. Then attacker applies the attacks that use MAC check 
need wait same previous MAC and same message number. 

Let MACi is i-th MAC, then let the MAC computed as follow 
MACi=H(ctr||p||MACi-1)                             (2.4) 

And let the initial value MAC-1 is 0.  
Let pro(x) is probability of x. Then there exists: 

Lemma 2.2: To two pairs (ctr1,p1) and (ctr2,p2), if the corresponding previous MAC is 

MAC1 and MAC2. If MAC1 and MAC2 are independent, there exists: 
Pro(H(ctr1||p1||MAC1)= H(ctr2||p2||MAC2))= 2-hl 

The hash value has hl bits. 
Proof: 
To a given hash value hv, there exists: 

Pro(H(ctr1||p1||MAC1)=hv)=2-hl 
Pro(H(ctr2||p2||MAC2)=hv)= 2-hl 

There exists 2hl hash values. So there exists: 
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So there exists: 
Pro(H(ctr1||p1||MAC1)= H(ctr2||p2||MAC2))= 2-hl                  □ 

 

3. Some Attacks 
In this section, I will explain some attacks I learn from [1,2,3]. These attacks have some 
common characteristic skillfully use packet format and check response. When apply these 
attacks, it need some conditions. In this section, I will explain how the fixes expounded in 
section 2 against these attacks. 

 

3.1Plaintext-recover Attack 
In [1], plaintext-recover attack had been detailed described. The attacker will collects i-th 
ciphertext block and (i-1)-th ciphertext block of j-th message ci,i’ and cj,i-1’. Suppose the 
plaintext is p’ and key is k. Then there exists: 

p’=DECk(ci,i’)○+ cj,i-1’                           (3.1) 
Then attacker injecting ci,i’ as the first block of a new packet[1]. Let the initial value of CBC 
mode is IV. Then there exists: 



P*=DECk(ci,i’)○+ IV                            (3.2) 
If p* pass then check, by the first packet format, some bits of p* are fixed value. 

Combining (3.1) and (3.2), there exists: 
p’○+ P*= cj,i-1’○+ IV                          (3.3) 

Then it can recover some bits of p’. In (3.1) and (3.2), the block ci,i’ is decrypted with 
same key k. This make let attacker can use (3.3) to bypass the key. If use (2.2) produce key 
for blocks, suppose attacker will injecting ci,i’ as the first block of j1-th packet. This exists: 

 step=k∨0x1                                      
k1=(k+(step×j))○+ I                                
k2=(k+(step×j1))○+ 0                               
p’=DECk1(ci,i’)○+  cj,i-1’                          (3.4) 
P*=DECk2(ci,i’)○+ IV                            (3.5) 

If combining (3.4) and (3.5), there exists: 
p’○+ P*= cj,i-1’○+ IV ○+ DECk1(ci,i’)○+ DECk2(ci,i’)           (3.6) 

Then the attacker cannot apply this attack. To apply this attack, it need k1=k2, then there 
exists two pairs (i,j) and (0,j1). There exists: 

k1=k2 
(uk+j×step)○+ i= (uk+j1×step)○+ 0 

i=(uk+j1×step)○+ (uk+j×step)                  (3.6a) 
If i≠0, without user key uk, attacker cannot know how to choice i, j, j1 to make (3.6a) 

tenable. Then it cannot find two blocks decrypted with same key and apply this attack. 
 

3.2 Wei Dai’s Attack 

W. Dai had reported an attack in [3]. And the attack is represented as follow: If the attacker 
guesses that plaintext block Pi might be x, and wants to test whether that's the case, he would 
choose the next plaintext block Pj to be x○+ Ci-1○+ Cj-1. If his guess is correct, then Cj = 
ENCk(Pj○+ Cj-1) = ENCk(Pi○+ Ci-1) = Ci, and so he can confirm his guess by looking at whether 
Cj = Ci. 

W. Dai mentioned a fix [3] that switch to RC4 for encryption to against this attack. And 
RC4 is a stream cipher. 

If the encryption is block cipher and CBC mode, it can use the fix in section 2.2.1 to 
against this attack. If the attacker guesses that i-th plaintext block pi,j of j-th message might be 
x, and then choose i1-th plaintext block pi1,j1 of j1-th message to be x○+ Ci-1,j○+ Ci1-1,j1. Then 
there exists: 

step=k∨0x1                                      
k1=(k+(step×j))○+ i                                
k2=(k+(step×j1))○+ i1                              
Ci-1,j= ENCk1(pi,j○+ Ci-1,j)= ENCk1(x○+ Ci-1,j)         (3.7) 

Ci1-1,j1= ENCk2(pi1,j1○+ Ci1-1,j1)= ENCk2(x○+ Ci-1,j)      (3.8) 
To apply this attack, it need k1=k2. Then there exists: 

k1=k2 
(uk+j×step)○+ i= (uk+j1×step)○+ i1 
i○+ i1=(uk+j1×step)○+ (uk+j×step) 



Without user key uk, attacker cannot know how to choice i, j, i1, j1 to make k1=k2. Then 
it cannot find two blocks decrypted with same key and apply this attack. 

 

3.3 Replay and Out-Of-Order Delivery Attack 
I learn replay and out-of-order delivery attack from [2]. In SSH, the MAC is compute as 
follow: 

MAC=H(ctr||p)                           (3.9) 
Where ctr is a 32-bits counter of message number, and p is encoded packet. The MAC 
depends on counter and present message.  

For replay attacks, attacker get a ciphertext c, then the receiver will decipher the 
ciphertext and get the packet p and MAC. Suppose the message number counter value is ctr. 
There exists: 

MAC=H(ctr||p) 
Then attacker will wait for more 232-1 messages. Then the message number counter 

value will be ctr again. Then attacker can send the ciphertext c to receiver again. And receiver 
deciphers ciphertext c and get same packet p and MAC again. It is undoubtedly that p will 
pass check again. 

For out-of-order delivery attacks, if sender had the sender has encrypted more than 232 
messages. If there exists two pair (ctr1,c1) and (ctr2,c2), suppose the corresponding packets 
of  c1 and c2 are p1 and p2. And there exists: 
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Attack can modify the order that swap c1 and c2.  

 
Mihir Bellare [2] mentioned that if the counter is allowed to repeat, it is easy apply replay 
and out-of-order delivery attack. For fix in section 2.2.1, by lemma 2.1, the key produce 
function will produce same key after 2n messages. And the main key size of block cipher 
are 56, 126,192,256. The circle of message key is bigger than 232. If receiver receives 
the ciphertext after 232 messages, the ciphertext will be deciphered with different key.  

By lemma 2.1, the circle of message key is 2n, 2n is integer multiple of 232. So to apply 
replay and out-of-order delivery attack, attacker need wait for more than 2n messages to wait 
key produce function produce same key. 
 
By (3.9), we will know that attacker can wait for more 232 messages for the same counter and 
apply reply and out-of-order delivery attack. The fix in section 2.2.2 will make the MAC 
depend on current message, counter and previous MAC. Fix in section 2.2.2 will make 
attacker not only wait for same counter value but also same previous MAC. Let MAC is 
(i-1)-th MAC, MAC’ is (i-1+232)-th MAC. The probability of MAC=MAC’: 
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If the previous MACs are not same, by lemma 2.2, if ciphertexts are replayed or 
reordered, the probability that pass MAC check is 2-hl. 
 

3.4 Information Leakage 

Information leakage attack is mentioned in [2]. Suppose that an attacker get a ciphertext with 
a MAC tag t. The attacker can guess the underlying payload is M. He will wait for the sender 
to encrypt 232 − 1 more packets and then requests the sender to encrypt the payload M. Then 
the attacker gets the new MAC tagt t’. If the guess is right, there exists t’=t.  
 
In encrypt-and-authenticate mode the MAC is not encrypted, so attacker just checks the MAC. 
The fix in section 2.2.1 is not help for against this attack.  
 
The fix in section 2.2.2 will make the MAC depend on current message, counter and previous 
MAC. After wait for the sender to encrypt 232 − 1 more packets, if the MAC is not the same 
MAC, even attacker’s guess is right, the probability of t’=t is is 2-hl by lemma 2.2. 
 

4. Improvement 
The fixes in section 2 are base ideas. There are some improvements for these fixes. 
 

4.1 Improvement to Fix in Section 2.2.2 

The fix in section 2.2.2 makes the i-th MAC computed as follow 
MACi=H(ctr||p||MACi-1) 

In same situation, the packet is not arriving in order. Then it cannot get the previous MAC 
immediately. There are some ways to solve this problem. I provide a simple resolvent here. It 
is change (2.4) as follow: 
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MACi=H(ctr||p||MACind(i))                       (4.1) 
(4.1) is use a steady value in a period of time. Then it just need hold some MACs, it will solve 
this problem. In this paper, I do not discuss it in details. 
 

4.2 Improvement to Fix in Section 2.2.1 

In section 3.3, we can find that the circle of message is 2n. 2n is an integer multiple of 232. So 



attacker can wait for more 2n messages. If circle of key produce function is 2n-1, 2n-1 and 232 
are relatively-prime, then attacker will wait for more 2n+32-232 messages to wait for same 
counter value and same key. There is a simple way to do this. The key of i-th block of j-th 
message as follow:  
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When j>0, there exists mkj≠uk. So the circle of mk is 2n-1. 
 

4.3 Improvement to Fix in Section 2.2.1 

The fix in section 3.3 has a problem. If attacker can find two blocks that have same initial 
value, same plaintext and same ciphertext block, he will know the two blocks are encrypted 
with same key. Then attacker will get the equation (2.3.a).  

To get the equation (2.3.a), attacker just need force sender encrypt lots same plaintext 
blocks. Select and hold i1-th block of j1-th message, let the block is c1. Then for a same 
ciphertext block that has same initial value. Suppose i2-th block of j2-th message is c2. If 
c1=c2, attacker get an equation as (2.3.a) as follow: 

step=uk∨0x1 
kj1,i1=kj2,i2 

(uk+j1×step)○+ i1= (uk+j2×step)○+ i2 
i1○+ i2=(uk+j1×step)○+ (uk+j2×step)              (4.2) 

In (4.2), step and key uk is unknown. Then attacker can compute key uk by (4.2). 
Because attacker needs two blocks that have same initial value and same key. The probability 
of same initial value is 2-cl, where cl is block size. The probability of same key is 2-kl, where kl 
is key size. Then the probability of attacker get the equation (4.2) is 2-(kl+cl).  

Here I assume if two same ciphertext blocks that have same initial value, same plaintext 
are encrypted with same key. In same case, this is not established. For example, AES with 
256-bits key. But the hypothesis will not reduce the probability of attacker get the equation 
(4.2).  

To against above attack, I try to find a way to fix it. In the above attack, attacker exact 
know the initial value of two block is same or not, and then he can know it can apply the 
attack or not. So my strategy is use user key to change the initial value. I find a simply way. 
We can change encrypt as follow: 

step=uk∨0x1 
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cpbi= ENCuk(cpbi-1○+ （step×i）○+ bi) 
To exact know the initial value of two block is same, it need the condition i1≡i2 mod 2cl. I 
do not deep discuss it here. 
 

5. Countermeasures 
In this paper, I study some attacks [1,2,3] on SSH. I find the condition that these attacks need. 
And I propose some fixes to SSH in section 2. And these fixes are easy and simple. 

The fix in section 2.2.1 produce difference key for blocks with a key produce function. 
The fix can make it hard to use CBC mode format to apply attack. And I notice that the fix 
maybe can be applied to ECB mode. 

The fix in section 2.2.2 improve encrypt-and-authenticate mode. It makes MACs like a 
chain. The fix makes it hard to use MAC check applies attacks. 

From the attacks that mentioned in [1,2,3], we can find that against attack is a 
complicated task. It need consider some different attacks and the limit by some environment. 
In this paper, I propose fixes that can against the attacks that I know. These fixes are base 
ideas. In some severe environment, it need revise these fixes to fit the environment. However 
I find some simple ways to against these attacks. These ways have their specialty. If we 
combined these ways, we can design some different function. For example use previous MAC, 
user key and block index to produce key. In this paper I just propose some fixes. To design an 
excellent function; it need build a model to study it. 

 

References 

1. Martin R. Albrecht, Kenneth G. Paterson, Gaven J. Watson: Plaintext Recovery Attacks against 
SSH. IEEE Symposium on Security and Privacy 2009: 16-26 
 
2. M. Bellare, T. Kohno, and C. Namprempre. Breaking and Provably Repairing the SSH 
Authenticated Encryption Scheme: A Case Study of the Encode-then-Encrypt-and-MAC 
Paradigm. ACM Transactions on Information and Systems Security, 7(2):206–241, 2004. 
 
3. W. Dai. An Attack Against SSH2 Protocol. Email to the SECSH Working Group available from 
ftp://ftp.ietf.org/ietf-mail-archive/secsh/2002-02.mail, 6th Feb. 2002. 
 
4. P. Rogaway. Problems with proposed IP cryptography, 1995. Available at http://www.cs. 
ucdavis.edu/~rogaway/papers/draft-rogaway-ipsec-comments-00.txt. 
 
5. M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and 
analysis of the generic composition paradigm. In T. Okamoto, editor, Advances in Cryptology 
– ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer Science, pages 531–545. 
Springer-Verlag, Berlin Germany, Dec. 2000. 
 
6. H. Krawczyk. The order of encryption and authentication for protecting communications 
(or:How secure is SSL?). In J. Kilian, editor, Advances in Cryptology – CRYPTO 2001, 



volume 2139 of Lecture Notes in Computer Science, pages 310–331. Springer-Verlag, Berlin 
Germany, Aug. 2001. 


