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Abstract One of the main tools to construct secure two-party computation protocols are Yao garbled
circuits. Using the cut-and-choose technique, one can get reasonably efficient Yao-based protocols with
security against malicious adversaries. At TCC 2009, Nielsen and Orlandi [NO09] suggested to apply
cut-and-choose at the gate level, while previously cut-and-choose was applied on the circuit as a whole.
This appealing idea allows for a speed up with practical significance (in the order of the logarithm of the
size of the circuit) and has become known as the “LEGO” construction. Unfortunately the construction
in [NO09] is based on a specific number-theoretic assumption and requires public-key operations per
gate of the circuit.
The main technical contribution of this work is a new XOR-homomorphic commitment scheme based
on oblivious transfer, that we use to cope with the problem of connecting the gates in the LEGO
construction. Our new protocol has the following advantages:
1. It maintains the efficiency of the LEGO cut-and-choose.
2. After a number of seed oblivious transfers linear in the security parameter, the construction uses

only primitives from Minicrypt (i.e., private-key cryptography) per gate in the circuit (hence the
name MiniLEGO).

3. On the contrary of original LEGO, MiniLEGO is compatible with all known optimization for Yao
garbled gates (row reduction, free-XORs, point-and-permute).
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1 Introduction

Secure computation allows two (or more) parties to compute a function of their inputs while ensuring security
properties such as the privacy of the inputs and the correctness of the outputs. The first and arguably still
most popular protocol for secure two-party computation is Yao’s garbled circuit [Yao86,LP09].

In recent years there has been a significant effort to bring secure computation into practice. These efforts
resulted in terrific improvements in terms of algorithmic complexity, efficiency of implementations etc. (see
e.g., [ST04,MNPS04,LP07,BDNP08, IPS08,LPS08,KS08, IKOS08,NO09,PSSW09,HKS+10,LP11,LOP11,
sS11,HEKM11,KsS12,DKL+12,NNOB12,HKE12,BHR12,FN13] and references therein). Perhaps the most
interesting problem is how to achieve protocols with security against malicious adversaries that are efficient
enough to be used in practice.

In a nutshell, Yao’s protocol works as follows: A constructs an encrypted version of the circuit to be
computed (the “garbled circuit”) and sends it to B who evaluates the encrypted circuit on encrypted inputs,
thus learning nothing but the output of the computation. One of the main problems of this protocol is that
if A is malicious she can encrypt a circuit different than the one B agreed on computing, with dramatic
consequences for the correctness of the result and the privacy of B’s input. One of the main tools to cope
with this is the so called cut-and-choose technique: A prepares many copies of the encrypted circuit and
B checks some of them for correctness. This induces a probability on the unopened circuits to be correct.
Nielsen and Orlandi [NO09] presented a twist on this approach, known as LEGO: their approach consists of
performing a cut-and-choose test at the gate level (instead of at circuit level), and allows to save a factor
O(log(s)) with s being the circuit size, in the computation and communication complexity w.r.t., “standard”
cut-and-choose at the circuit level. That is, A prepares many encrypted NAND gates, B checks some of them
and, if no inconsistency is detected, the unopened gates are randomly permuted and partitioned into small
“buckets”. The NAND gates in each bucket are “soldered” together such that the bucket has 2 input wires, a
left and right, and one output wire. The input wires are soldered to each of the NAND gates in the bucket’s
input wires, left to left and right to right. The output of the NAND gates in the bucket are soldered together
to the output wires of the bucket such that if the output of the NAND gates are different the majority (if
such exist) is going to be the value of the bucket’s output wire. Thus a bucket represent a redundant version
of a garbled NAND gate in the original circuit, but which computes the correct output in the presence of a
minority faulty internal gates.

The LEGO approach has been praised for its novelty [Gol09], but did not have a practical impact for the
efficiency of Yao-based protocols. There are several reasons for this:

1. LEGO uses public-key primitives for each gate in the circuit: Each gate has in fact associated three
commitments to its input/output keys. Those commitments are used for the “soldering” and need to be
homomorphic. For this purpose LEGO uses Pedersen commitments (based on the hardness of computing
discrete logarithms in some group – e.g., the group of points of an elliptic curve). This is a drawback for
the efficiency of the protocol (group operations, even in an elliptic curve, are orders of magnitude slower
than symmetric primitives such as hash functions or private-key encryption). Moreover, this is also a
drawback as LEGO can be only implemented using a single computational assumptions – it is unclear
how to implement LEGO under a variety of computational assumptions (including assumptions that are
believed to withstand quantum attacks).

2. LEGO is not compatible with known optimization for Yao’s protocol: Keys in LEGO are element of Zp
for some prime p, while using binary strings {0, 1}t is more natural and standard. Therefore, it is not
possible to use the “free-XOR” trick with LEGO, nor many of the others optimizations that are tailored
for bit-string keys.

3. LEGO has too many bricks: There are many different kind of objects in LEGO (key-filters, not-two gates,
etc.) that make the use of LEGO complex to understand and implement.

1.1 Contributions

In this paper, we present a generalization and a simplification of the LEGO approach. The main techni-
cal difference is to replace the Pedersen commitments with some XOR-homomorphic commitments based
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on oblivious transfer (OT) which we believe is of independent interest and might be used in other appli-
cations. We take this direction as OT can be efficiently extended (both with passive [IKNP03] and active
security [HIKN08,NNOB12]), the price is only a few private-key operations per OT (together with a small
number of “real” seed OTs that use public-key technology used to bootstrap the process). Doing so allows
us to:

1. Maintain LEGO’s good complexity and achieve statistical security 2−k when the replication factor is
only ρ = O(k/ log(s)) against a replication factor of ρ = O(k) for standard cut-and-choose such as the
one in [LP11]

2. Implement a variant on LEGO whose security only relies on generic, symmetric primitives (except for
the few seed OTs needed to bootstrap the OT extension).

3. Achieve a variant of LEGO that uses “standard” garbled gates (ANDs and free-XORs and NOTs),
compatible with garbled gates optimizations.

To sum up, we propose the first real alternative to standard cut-and-choose for practical purposes Yao-
based secure two-party computation. We believe that it is important to have a variety of different protocols
from which implementers can choose from. Whether our proposed protocol will be more efficient in practice
than protocols with standard cut-and-choose [LP07, PSSW09, sS11, KsS12, FN13] will only be decided by
performing a serious comparison of similar implementations running on the same hardware-network config-
uration of our and other approaches. This is an interesting direction for future work.

Table 1. Comparison of the asymptotic complexity of our protocol with the competition. We let s denote the amount
of non-XOR gates in a circuit, k denotes the statistical security parameter and t the computational security parameter.
Finally ` is the amount of input bits from the players.

Model Symmetric Asymmetric Rounds Communication (bits)
Our result ROM, OT-hybrid O(s · k/ log(s)) O(k) O(1) O(tks/ log(s))
[NNOB12] ROM, OT-hybrid O(s · k/ log(s)) O(k) O(d) O(tks/ log(s) + t2)
[FN13] ROM, OT-hybrid O(s · k) O(k) O(1) O(tks)
[LP11], [sS11] SM, DDH O(s · k) O(k`) O(1) O(tks)
[NO09] UC, OT-hybrid, DL, CoRH O(s · k/ log(s)) O(s · k/log(s)) O(1) O(tks/ log(s))

1.2 Technical Overview

The main idea of the protocol we present here is the same as in [NO09]: A prepares many garbled gates
(NANDs in [NO09], while here we use ANDs) together with commitments to the input and output garbled
keys. If A prepares a gate dishonestly we view it as a faulty gate, i.e., one that does not give the correct
output on some inputs. B asks A to open a random subset of the AND gates and checks them for correctness.
If the check goes through, B randomly permutes the unopened gates into buckets representing a redundant
AND gate. He solders the gates within a given bucket together and then solders the buckets together to form
a circuit that computes the function even in the presence of a minority of faulty gates within each bucket.
As part of this soldering NOT gates can be injected thus the garbled AND gates and the soldering alone
provides a universal set of Boolean gates.

As the gates have been generated independently, the output keys of the gates in one layer of the circuit
cannot be directly fed as input to the next layer. Therefore, A reveals the difference between the output keys
in the first layer with the corresponding input keys in the second layer (using the XOR-homomorphic prop-
erties of the commitment scheme). This allows B to “align” the input keys of the gates in one layer with the
output keys of the gates in the previous layer. The main intuition for the security of LEGO cut-and-choose
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is as follows: If A had sent B k faulty gates, B would detect this with probability 1 − 2−k. Therefore, if B
accepts the test, with very high probability there are only a few faulty gates among the unopened ones. As
all gates are permuted at random and placed in random buckets in the circuit, only very little redundancy
is needed to correct for all faulty gates.

FSFE

(Yao, Eval) (Shift, ShiftEval)FCOM

FWCOM

(
n
u

)
-FOT(2µ) (ssecct,n,d,u, enct,n,d,u)

[NNOB12] and [NP99]

FOT prgk

Section 4

Section 4

Section 3

Figure 1. Diagram of the whole protocol and its construction.

The original LEGO construction
in [NO09] used a set of spe-
cially tailored garbled gates and
a complex design for the circuit
used to deal with faulty gates.
This meant that it was not pos-
sible to apply standard garbling
techniques and optimizations. In
contrast, the construction here
can be instantiated with essen-
tially any free-XOR compatible
garbled gate scheme and is com-
patible with various state of the
art optimizations (such as free-
XOR, row-reduction, point-and-
permute). Additionally, we can
design the fault tolerant circuit in
a very simple way: we implement
each gate of the original circuit
as a bucket consisting of ρ gar-
bled gates and take the output
of the bucket to be any output
agreed upon by more than bρ/2c
of the replicated garbled gates it
contains.

1.3 Organization

We start with preliminaries and background in Section 2. We then continue to go through the overall
description of the secure-two party computation protocol in Section 3. This is followed by Section 4 where
we describe the main technical contribution of this paper; the XOR homomorphic commitments.

2 Background

In this section we formalize our goal in the (now standard) real/ideal-world simulation based universally
composable security definitions for two-party computation (refer to textbooks such as [Gol04, HL10] for
definitions). We furthermore list the basic building blocks of our protocol and quickly review their individual
constructions.

2.1 The Ideal Functionality

In Fig. 2 the ideal functionality for secure function evaluation is presented (taken almost verbatim from [NO09]).
Note that the functionality is insecure in the sense that A can try to guess B’s input bits, but if her guess
is wrong B is told that A is cheating. This models a standard problem in Yao based protocols known
as “selective failure attack”, that can be solved by modifying the circuit to be evaluated. For instance,
to evaluate a circuit C

(
(ai)i∈[`], (bi)i∈[`]

)
securely one could instead evaluate C′

(
(ai)i∈[`], (bi,j)i∈[`],j∈[k]

)
=
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C
(
(ai)i∈[`], (⊕i∈[k]bi,j)j∈[`]

)
i.e., B encodes his real input bit in the parity of a k bit-long string, and the modi-

fied circuit first reconstructs the real input and then evaluates the original circuit. Now, in order to guess one
of B’s real input bits A needs to guess correctly the k random bits, so she will fail with probability 1− 2−k.

As our construction allows to compute XOR and NOT gates for free, this increases only marginally the
time needed to construct and evaluate the circuit. On the other hand, this increases the number of OT’s
needed during the input phase by a factor k (but an OT extension can be used – so this is also not too
bad). Better encodings can be used (See [LP07]) to reduce the size of the encoded input from ` · k bits to
max(4`, 8k) bits.

Circuit and inputs:
On input (init, A, k) from A and input (init, B, k) from B where A = (a, CA), B = (b, CB) proceed as
follows:
1. Let k be a statistical security parameter and let CA and CB be descriptions of Boolean circuits consisting

of NOT, XOR and AND gates computing the corresponding boolean functions fA, respectively fB .
2. Leak CA, CB and k to the adversary.
3. If CA 6= CB , then the ideal functionality outputs disagreement! to both parties and terminates. Other-

wise, let C = CA and parse C as (`, C′), where ` ∈ N and C′ is a circuit with 2` input wires and ` output
wires. I.e., we potentially add blank wires to make sure that the size of A’s input, B’s input and the
output are the same. Thus C′ computes the boolean function f = fA.

4. Finally parse a as a ∈ {0, 1}` and b ∈ {0, 1}` and return (`, C′) to both A and B.
Corrupt A:

On input (corrupt) from A, let her be corrupt. She can then specify a set {(i, βi)}i∈I , where I ⊆ {1, . . . , k}
and βi ∈ {0, 1}. If βi = bi for i ∈ I, then output correct! to A. Otherwise, output You were nicked! to A
and output Alice cheats! to B.

Evaluation:
If both parties are honest or A was not caught above, then on input (evaluate) from both A and B the ideal
functionality computes z = f(a,b) and outputs z to A. The adversary decides the time of delivery.

Figure 2. The ideal functionality, FSFE, for secure function evaluation for two parties

2.2 Building Blocks

We here review the main building blocks of our protocol.

Generic Free-XOR Yao Gate. Our protocol works with every “free-XOR compatible” garbling scheme. In
particular, it is possible to use very optimized garbling schemes. We now describe such a garbling scheme that
combines the state of the art optimizations for Yao Gates i.e., free-XOR [KS08], permutation bits [NPS99],
garbled row-reduction [NPS99] in the same way as [BHR12].

In particular this means that to garble a gate 4 evaluations of AES are needed, and a garbled gate consists
of only 3 ciphertexts (therefore saving on communication complexity). The evaluation of the gate consists of
a single AES evaluation.

– We have a (possibly randomized) algorithm Yao(L0, R0, ∆, id) with id a unique gate identifier, a left
input zero-key L0 ∈ {0, 1}t, a right input zero-key R0 ∈ {0, 1}t and a global difference ∆ ∈ {0, 1}t
outputs a garbled gate gg and a output zero-key O0 ∈ {0, 1}t.

– We have a (possibly randomized) algorithm Eval(gg, L′, R′) that on input a garbled gate gg, a left key
L′ ∈ {0, 1}t and a right key R′ ∈ {0, 1}t outputs an output key O′ ∈ {0, 1}t ∪ {⊥}.

– We define the one-keys L1,R1,O1 s.t. L0 ⊕ L1 = R0 ⊕R1 = O0 ⊕O1 = ∆.
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The idea is that a garbled AND gate gg has a zero- and a one-key associated with each of its wires (left
input, right input and output wire), and that these keys represent the bit values on those wires. E.g., if gg
is a garbled AND gate generated as (gg,O0)← Yao(L0, R0, ∆, id) then Eval(gg, La, Rb) for any a, b ∈ {0, 1}
should output Oa∧b.

Note that if A samples ∆ and a zero-key, say L0, at random and give the key La to B then there is no
way for B to infer the bit a from La. Furthermore, even if B learns a he cannot guess the key L1−a with
better probability than guessing ∆. For a garbling scheme to be secure we want that even if B learns gg and
keys La and Rb for a, b ∈ {0, 1}, and is able to evaluate Oa∧b ← Eval(gg, La, Rb), then he cannot guess L1−a,
R1−b or O1−a∧b with better probability then guessing the random string ∆, even if he knows a and/or b.

Thus B can evaluate the garbled gate gg without knowing anymore about the output than he can infer
from his knowledge of a and b. Furthermore, B cannot evaluate the gate on any other inputs. Thus if B sends
back Oa∧b to A, A can learn a ∧ b (as she knows O0 and ∆) and be confident that this is the correct result.

We formalize this intuition about correctness and security of a garbled gate in definition Def. 1.
Definition 1. We say that (Yao,Eval) is a Yao free-XOR garbling scheme if the following holds:
Correctness: Let (gg,O0)← Yao(L0, R0, ∆, id), then for all a, b ∈ {0, 1}

Eval(gg, La, Rb) = Oa∧b

with overwhelming probability over the choices of L0, R0, ∆ and the random coins of Yao and Eval.
Secrecy: Consider the following indistinguishability under chosen input attack game for a stateful adversary
A.

IND-CIAA(Yao,Eval)(t)
(a0, b0)← A(1t), where (a0, b0) ∈ {0, 1}2k

(a1, b1)← A(1t), where (a1, b1) ∈ {0, 1}2k

c← {0, 1}, ∆← {0, 1}t(
Li0, R

i
0
)
← {0, 1}2t, for i = 1, . . . k

d← A
({

Yao
(
Li0, R

i
0, ∆, i

)
, Liai

c
, Ribi

c

}
i∈[k]

)
The adversary outputs two pairs of bit vectors

(
ai0, b

i
0
)
i∈[k] ,

(
ai1, b

i
1
)
i∈[k] ∈ {0, 1}

2k. The game picks a
uniformly random challenge c ∈R {0, 1}, samples ∆ ∈R {0, 1}t and for i = 1, . . . , k it samples Li, Ri ∈R

{0, 1}t, samples ggi ← Yao
(
Li0, R

i
0, ∆

)
and then inputs

(
ggi, Liai

c
, Ribi

c

)
i∈[k]

to A. Finally A outputs a bit

d ∈ {0, 1} and wins if d = c. We say that the scheme is IND-CIA if for all PPT A, A wins the IND-CIA
game with at most negligible advantage in t.

In Fig. 3, a free-XOR garbled gates construction, with optimizations, is presented. We briefly sketch its
properties: for correctness, remember that the requirement for correctness is: Let (gg,O0)← Yao(L0, R0, ∆, id),
then for all a, b ∈ {0, 1}

Eval(gg, La, Rb) = Oa∧b

except with negligible probability over the choices of L0, R0, ∆ and the random coins of Yao and Eval.
This is the case because, if we let L′ = La, R

′ = Rb, then lsb(L′) = a ⊕ pL and lsb(R′) = b ⊕ pR. Then
by construction τ j = a ∧ b for j = 2pL + pR and

αj = Oτj ⊕ KDF(La, Rb, id)

and therefore
O′ = Oτj = O(pL⊕a)∧(pR⊕b) .

This garbling scheme can be proven secure under the assumption that AES (with a fixed keys) behaves
like a random permutation – see [BHR12] and references therein. Note that, as with any other free-XOR
based construction, we need to assume that AES satisfies some kind of related key-attack security [CKKZ12].

We used the assumption that lsb(∆) = 1. If this is not the case, then pL0 = pL1 and therefore during the
cut-and-choose phase of the protocol described in Section 3 when B challenges on (a, b) 6= (0, 0) an error will
occur.
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Notation, Convention:
Let KDF be a secure key derivation function (see [BHR12] for an efficient instantiation). Furthermore, call the
least significant bit of every key the permutation bit and write pK = lsb(K) and we assume that lsb(∆) = 1
– see discussion at the end of this section.

Garbling, Yao(L0, R0,∆, id):
With L0, R0,∆ ∈ {0, 1}t and id a unique identifier do the following:
1. Define

τ0 = pL ∧ pR
τ1 = pL ∧ pR
τ2 = pL ∧ pR
τ3 = pL ∧ pR

2. Compute O0 = KDF (LpL , RpR , id)⊕ (τ0 ·∆);
3. Compute:

α1 = Oτ1 ⊕ KDF
(
LpL , RpR

, id
)

α2 = Oτ2 ⊕ KDF
(
LpL

, RpR , id
)

α3 = Oτ3 ⊕ KDF
(
LpL

, RpR
, id
)

4. Output a garbled gate gg = (id, α1, α2, α3) and the zero output key O0.
Evaluation, Eval(gg, L′, R′):

With L′, R′ ∈ {0, 1}t do the following:
1. Parse gg = (id, α1, α2, α3). Define α0 = 0t.
2. Compute pL′ = lsb(L′) and pR′ = lsb(R′) and let j = 2pL′ + pR′ .
3. Return O′ = αj ⊕ KDF(L′, R′, id);

Figure 3. Free-XOR Garbled Gates Construction

Soldering. The idea for this component is the same as in [NO09], however, slightly changed to support a
general gate garbling scheme.

When a garbled gate gg1 has the same zero-key (and therefore also one-key) associated to one of its wires,
as is associated with one of gg2’s wires, we say that the given wire of gg1 is soldered to the given wire of gg2.
This is a useful concept when we want to build circuits of garbled gates. To see this consider a garbled gate
gg1 with its left input wire soldered to the output of gg2, and its right input wire soldered to the output
of gg3. This means that if gg2 and gg3 has output zero-keys O2

0 and O3
0 respectively, then gg1 has left and

right zero-keys L1
0 = O2

0 and R1
0 = O3

0. Thus if we evaluate gg2 and gg3 on some input and obtain output
keys O2

a and O3
b we can use this to further evaluate gg1 on these outputs. The resulting output would be

some output key O1
a∧b.

Regarding XORs notice that if gg1 has, e.g., left, input zero-key L1
0 = O2

0 ⊕O3
0 then

O2
a ⊕O3

b = O2
0 ⊕O3

0 ⊕ (a⊕ b)∆ = L1
0 ⊕ (a⊕ b)∆ = L1

a⊕b .

In this case we say that the left input wire of gg1 is soldered to the XOR of the output of gg2 and gg3. This
is because by XOR’ing the outputs keys of gg2 and gg3 we get the left input key of gg1 corresponding to
XOR of the outputs of gg2 and gg3. This is also why we call the garbling free-XOR: we do not need to garble
XOR gates, since this is handled by the soldering.

In our protocol we will first generate garbled gates where all zero-keys are picked independently, and
then in a later stage we will solder the wires of the garbled gates to each other to form a garbled circuit.
For this purpose, we introduce a function Shift

(
gg, Ld, Rd, Od

)
that on input a garbled gate gg, generated

as (gg,O0)← Yao (L0, R0, ∆, id), and three differences Ld, Rd, Od ∈ {0, 1}t, outputs a new shifted gate sgg.
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The shifted gate sgg is the gate gg modified to have have input zero-keys
(
L0 ⊕ Ld

)
and

(
R0 ⊕Rd

)
and

output zero-key
(
O0 ⊕Od

)
.

This can be implemented by letting Shift output the concatenation of its inputs i.e., sgg =
(
gg, Ld, Rd, Od

)
and let the evaluation of a shifted gate sgg be defined by:

ShiftEval
(
sgg, L̂, R̂

)
= Eval

(
gg, L̂⊕ Ld, R̂⊕Rd

)
⊕Od

where for all K we define ⊥ ⊕K = ⊥. It is clear that a shifted gate is correct (with respect to the shifted
zero-keys) if and only if a standard gate is correct, and clearly shifting a gate does not threaten its security
property. A shifted gate can be shifted again: The Shift function will just update the values Ld, Rd, Od
accordingly.

Consider two garbled gates
(
gg1, O1

0
)
← Yao

(
L1

0, R
1
0, ∆, 1

)
and

(
gg2, O2

0
)
← Yao

(
L2

0, R
2
0, ∆, 2

)
. The

shifted gate sgg2 = Shift
(
gg2,

(
O1

0 ⊕ L2
0
)
, 0, 0

)
then becomes a garbled gate with left zero-key L2

0⊕
(
O1

0 ⊕ L2
0
)

=
O1

0. I.e. the output wire of gg1 is now soldered to the left input wire of sgg2.
Similarly we could have used the Shift function to solder the input of sgg2 to the XOR of some other

garbled gates.
If one wish to use NOT gates then these can be implemented as part of this shifting by a simply change

in the the difference, i.e., to add a NOT gate to the soldering of the left wire of a gate we simply use
¬Ld = Ld ⊕∆ instead of just Ld.

To see this assume we want to put a NOT into the soldering between the output wire of gg1 and the left
wire of gg2. In this case we would have ¬L2d = L2d⊕∆ = O1

0⊕L2
0⊕∆, i.e., sgg2 = Shift

(
gg2,

(
O1

0 ⊕ L2
0 ⊕∆

)
, 0, 0

)
.

Thus when the evaluator does

ShiftEval
(
sgg2, L2, 0, 0

)
= Eval

(
gg2, L2

a ⊕ (O1
0 ⊕ L2

0 ⊕∆), R2) .
If a = 0 we get the left input key for gg2 is L2

0 ⊕ (O1
0 ⊕ L2

0 ⊕∆) = O1
0 ⊕∆ = O1

1 and similarly for a = 1 we
get L2

1 ⊕ (O1
0 ⊕ L2

0 ⊕∆) = (L2
0 ⊕∆)⊕O1

0 ⊕ (L2
0 ⊕∆) = O1

0. Thus we clearly see that the bit represented by
the left input key (along with the key itself) for gg2 has been flipped.

Shift
(
gg, Ld, Rd, Od

)
:

1. Assume gg has been constructed by the call Yao(L0, R0,∆, id) such that gg = (id, α1, α2, α3).
2. Output sgg =

(
gg, Ld, Rd, Od

)
.

ShiftEval
(
gg, L̂, R̂

)
:

1. Assume sgg has been constructed by a call Shift
(
gg, Ld, Rd, Od

)
, i.e., sgg =

(
gg, Ld, Rd, Od

)
.

2. Return Eval
(
gg, L̂⊕ Ld, R̂⊕Rd

)
⊕Od.

Figure 4. The shifting procedures for free-XOR Garbled Gates.

Homomorphic commitments. To securely implement the soldering described above, we cannot simply
have (potentially malicious) A send the differences needed to shift the gates. Instead we will have A give
homomorphic commitments to all zero-keys of each gate, and then have her open the differences of the com-
mitted keys. Therefore we need a homomorphic commitment scheme. In Fig. 5 we state the ideal functionality
FCOM for such homomorphic commitments. We then show how to implement these in Section 4.

The functionality allows A to commit to messages and to later reveal those messages. In addition the
functionality allows to reveal the XOR of two or more committed messages to B (without revealing any extra
information about the original committed messages).

The functionality is “insecure”, in the sense that A can choose a set of up to κ wildcard commitments where
she can change her mind about the committed value at opening time. However, openings need to be consistent.
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Setup
On input (init, ID,W ) from the adversary, with |ID| = µ, |W | ≤ κ and W ⊂ ID, output ID to both A
and B and let J = ∅. If A is honest, then W = ∅.

Commit
On input (commit, j ∈ ID,mj) with mj ∈ {0, 1}t from A, and where no value of the form (j, ·) is stored,
store (j,mj). If j ∈ ID \W , add J = {j} to J and associate with J the equation Xj = mj . Then output
(commit, j) to B.

Open
On input (open, J ⊂ ID) from A, where for all j ∈ J a pair (j,mj) is stored do the following:
– If A is honest, output (open, J,⊕j∈Jmj) to B.
– If A is corrupted wait for A to input (corrupt-open, J,mJ). Then add J to J , associate the equation
⊕j∈JXj = mJ to J , and check that the equation system {⊕j∈JXj = mJ}J∈J has a solution. If so, output
(open, J,mJ) to B. Otherwise, output Alice cheats to B and terminate.

Oblivious-Opening
On input (OT-choose, otid, b) with b ∈ {0, 1} from B output (OT-choose, otid) to A. On input
(OT-open, otid, J0, J1) from A with J0, J1 ⊂ ID where for all j ∈ J0, J1 a pair (j,mj) is stored and
(OT-choose, otid, ∗) was input before by B do the following:
– If A is honest, output (OT-open, otid, Jb,⊕j∈Jbmj) to B (Note that B does not learn the set of ids J1−b).
– If A is corrupted, wait for A to input (guess, g) with g ∈ {0, 1,⊥}. If g ∈ {0, 1} and g 6= b output Alice

cheats to B and terminate. Otherwise, proceed to wait for A to input (corrupt-open, J0, J1,mJ0 ,mJ1 ).
Add Jb to J and associate the equation ⊕j∈Jb Xj = mJb to Jb. Check that the equation system still has
a solution as described above. If so, output (OT-open, Jb,mJb ) to B. Otherwise output Alice cheats to
B.

Or-Opening
For up to ω Or-Openings, that must all occur before the first Oblivious-Opening, do the following: On input
(OR-open, J0, J1, a) from A, with J0, J1 ⊂ ID, a ∈ {0, 1} where for all j ∈ J0, J1 a pair (j,mj) is stored do
the following:
– If A is honest, output (OR-open, J0, J1,⊕j∈Jamj) to B.
– If A is corrupted, and if Ja ∩W 6= ∅, wait for corrupt A to input (corrupt-open, Ja,mJa ), add Ja to
J and associate ⊕j∈Ja Xj = mJa to Ja. Check if the equation system still has a solution as described
above. If so, output (OR-open, J0, J1,mJa ) to B. Otherwise output Alice cheats to B.

before the first Oblivious-Opening.

Figure 5. The ideal functionality, FCOM, for the commitment scheme used by πLEGO.

More specifically, the FCOM functionality stores a system of linear equations. Initially these equations simply
specify that non-wildcard commitments must be opened to the value, they were commitments to. Every time
A performs an opening involving wildcard commitments this defines a new linear equation, which is stored in
the ideal functionality. For an opening of a wildcard commitment to be successful the set of linear equations
stored in the ideal functionality must be consistent.

If the set of equations stored in the ideal functionality restricts the opening of a commitment in such a
way that it can only be opened to one value, we say that the commitment is fixed to that value. Note, that
all non-wildcard commitments are fixed, and a fixed wildcard commitment can essentially be viewed as a
non-wildcard commitment.

As we are treating the commitments as an ideal functionality, we need to push into the ideal functionalities
two extra commands (in a way similar to the commit-and-prove functionality in [CLOS02])): apart from the
regular openings the functionality allows to open (the XOR of) committed messages in two alternative ways:
In an Oblivious-Opening, B can choose between two sets of committed messages and learn the XOR of the
messages in one of them. In an Or-Opening we allow A to open the XOR of one out of two sets of committed
messages without revealing which one. For technical reasons there can only be a total of ω Or-Openings
and all Or-Openings must be done before the first Oblivious-Opening. Also, note that there is a build-in
selective failure attack in the Oblivious-Opening. However, this is not a problem as we will only use this type

10



of opening to handle B’s input where, as discussed above, the FSFE functionality already allows a selective
failure attack.

Commitment from B to A. Additional to the FCOM functionality we are going to use an extractable
commitment Com. This commitment is used only once by B to commit to his challenge in the cut-and-choose
phase and extraction is needed for simulation (to avoid selective opening issues). Since this commitment does
not need to be homomorphic it can be easily implemented in the FOT-hybrid model.

3 The MiniLEGO Protocol

We now show how to use the ingredients outlined in the previous section in order to construct the MiniLEGO
protocol.

Figure 6. Illustration of a bucket (computing AND) when
ρ = 4 and how the horizontal and vertical soldering are
connected.

Plaintext Circuit. We denote by C′ the Boolean
circuit to be evaluated. We assume C′ to be com-
posed of NOT, XOR and AND gates. The XOR
gates are allowed to have unbounded fan-in while
the AND gates have fan-in 2. With each AND
gate in C′ we associate a unique label and we
let gates be the set of all these labels. A subset
inputGates ⊂ gates of size 2` are specially marked
as input gates. The AND gates in inputGates should
be given the same bit on both input wires, so
that the gate simply computes the identity func-
tion. A subset in Ainputs ⊂ inputGates of size ` are
taken to be A’s inputs. The remaining ` gates in
Binputs = inputGates \ Ainputs are B’s inputs (for
convenience assume that Binputs = [`]). A has input
bits (a1, . . . , a`), while B has input bits (b1, . . . , b`).

A subset outputGates ⊂ gates of size ` are
marked as output gates. The output of these gates
are taken to be the output of the circuit. Note that
this means that all output gates are AND gates.
However, this is without loss of generality: Any cir-
cuit with one or more XOR gates as output gates
can easily be modified to an equivalent circuit with
AND gates as output gates by adding at most `AND
gates. The ` output bits are denoted (z1, . . . , z`).

The wiring of the circuit C′ is described by two
functions lp, rp : gates \ inputGates → 2gates∪{1}. We
call lp(j) the left parents of j (resp. rp(j) the right
parents of j), and take the left (resp. right) input
of j to be the XOR of the output bits of all gates
in lp(j) (resp. rp(j)). Thus, the XOR gates of C′
are implicitly defined by the lp and rp functions. If
the special symbol 1 is included in the set returned
by lp, rp, this means that a NOT gate is inserted
between gate j and its parent gate (i.e., the input is XORed with the constant 1). We assume that C′ does
not have loops and it is ordered i.e., max(lp(j)) < j and max(rp(j)) < j.
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If lp(j) (resp. rp(j)) is not a singleton, it is intended that the input value of gate j is the XOR of the
outputs of the gates in lp(j) (resp. rp(j)). This is just a convenient notation for our construction, given that
XOR gates can be evaluated for free.

Garbled Circuit. Let Γ = 2ρs for s = |gates| and some replication factor ρ ∈ N. For our protocol A will
construct Γ garbled gates. She constructs twice as many garbled gates as is needed to build the garbled
circuit, because half the gates are going to be checked during the cut-and-choose phase. We choose to check
exactly half for the sake of presentation but, as in [sS11], this could be changed to any fraction in order to
optimize concrete efficiency.

Bucket Notation. In the protocol individual garbled gates are combined together in “buckets” of gates.
We introduce here some convenient notation that allow us to address the gates in a bucket, the bucket
of a gate etc. Let B be the family of ρ-to-1, ρ-wise independent functions from a set U ⊂ [Γ ] of size ρs
to gates. For a function BucketOf ∈ B let Bucket be the function that, for all j ∈ gates outputs the set
{i ∈ U |BucketOf(i) = j}. Let BucketHead(j) be the function that returns the “first” (in lexicographic order)
element of Bucket(j).

There are Γ ′ = 3Γ + 1 keys in the protocol, because every constructed AND gate has a left, right and
output key and in addition there is a global difference ∆. The key index is written as a superscript while
subscripts are in {0, 1} and describe the value carried by the key i.e., Ki

b = Ki ⊕ (b∆). Let id be a function
that on input a key Kj

0 ∈ {0, 1}t returns a unique label for that key. We will sometimes abuse notation and
write id

(
Kj

1

)
to denote the set

{
id
(
Kj

0

)
, id (∆)

}
. This will simplify the notation when using the FCOM

functionality.

3.1 Protocol Specification

The protocol πLEGO in Fig. 7 progresses in six phases: Setup, Garbling, Cut-and-choose, Soldering,
Input and Evaluation. Here we describe these phases one by one.

During Setup, A or B initialize the FCOM functionality by calling (init, ID,W ) with |ID| = Γ ′ and
|W | ≤ k. For the remainder of the protocol if FCOM outputs Alice cheats, B will abort the protocol. Then
A samples the global difference ∆ and commits to it using the commit command in FCOM. B samples his
challenge for the cut-and-choose phase and the BucketOf function as described above, and commits to both
using the extractable commitment Com. B also “commits” to his input using the OT-choose command
of the FCOM functionality. These commitments of B’s are needed to avoid selective opening issues in the
cut-and-choose phase and reduce the security of the protocol to the IND-CIA game.

In Garbling, A constructs the candidate garbled gates (ggi)i∈[Γ ] and commits to the input/output
zero-keys of each garbled gate using FCOM.

In Cut-and-choose, B reveals his challenge. The challenge consists of a set of indices T ⊂ [Γ ] of size ρs
and a sequence of bits (ui, vi)i∈T , indicating that B wants to test garbled gate ggi on input (ui, vi). A opens
the corresponding input and output keys for the test gates, allowing B to check for correctness. Note that B
only tests one set of inputs for each gate – otherwise he will learn ∆.

In the remainder of the protocol the garbled gates that are not checked in Cut-and-choose, those with
indices in U = [Γ ] \ T , are used to build a garbled circuit according to the following fault tolerant circuit
design: With each gate j ∈ gates we associate a bucket of ρ AND gates. To evaluate gate j we will evaluate
each gate in the bucket of j on the inputs given to j. If more than bρ/2c of the gates in the bucket agree
on their output bit, we take this bit to be the output of j (otherwise the output is ⊥). Clearly if there are
more than bρ/2c non-faulty gates in each bucket the output obtained in this way is correct. See Fig. 6 for a
pictorial description.

To build such a garbled circuit the gates that were not checked (ggi)i∈U are assigned into buckets using
the BucketOf function. Then B uses the Shift function as described in Section 2 to solder the wires of the
garbled gates. Note that since A may be malicious we cannot simply have her sent the XOR’s of zero-keys
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that B needs for soldering. Instead A reveals the XOR’s by opening the corresponding commitments to the
zero-keys.

In this way the garbled circuit is constructed in Soldering in three different soldering steps: For all
j ∈ gates Horizontal Soldering solders all wires of all gates in (ggi)i∈Bucket(j) to the corresponding wires
of ggBucketHead(j). This allows to evaluate all the gates in the same bucket on the same input keys and get the
same output keys. I.e., if A is honest, after the horizontal soldering all the gates in one bucket have exactly
the same keys. For all j ∈ gates Vertical Soldering solders the left input wire of ggBucketHead(j) to the XOR
of the output wires of

(
ggBucketHead(i))

i∈lp(j), and the right input wire of ggBucketHead(j) to the XOR of the
output wires of

(
ggBucketHead(i))

i∈rp(j) (and we use the convention O1 = ∆ to deal with NOT gates – note
that ∆ can be seen as the 1 key of a special wire with zero-key equal to 0t). Note that since Horizontal
Soldering made all garbled gates in a bucket have the same input keys, this essentially means soldering all
the gates in the bucket to the output wires of gates in (Bucket(i))i∈lp(j) and (Bucket(i))i∈rp(j). I.e., vertical
soldering is “functional”, in the sense that it make sure that the garbled circuit computes the right circuit,
C′. For all j ∈ inputGates Input Soldering simply solders the left and right input wire of garbled gates in
Bucket(j) to each other. This means that the gates in inputGates simply compute the identity function.

In Input, for all j ∈ Ainputs A uses the Or-Opening command of FCOM to open the input key to the
garbled gates in Bucket(j) corresponding to her input bit. For all j ∈ Binputs B also learns the input key to
the garbled gates in Bucket(j) corresponding to his input bit, using the Oblivious-Opening command.

Given the initial input keys in Evaluation B evaluates each bucket of garbled gates in the following
way: He evaluates each gate in the bucket on the left and right input keys for that bucket. If a key appears
more than bρ/2c times as the output key of the garbled gates in the bucket, he takes this to be the output
key of the bucket. If no such key exists B aborts. Note that by the way we soldered the garbled circuit, this
corresponds exactly to the fault tolerant circuit we described above. Finally B provides A with the output
keys. Knowing ∆, A can decipher the output keys and obtain the output values.

Theorem 1. Let k be the security parameter, ρ = O(k/ log(s)). If (Yao,Eval) is an IND-CIA secure Yao
free-XOR garbling scheme then the protocol πLEGO in Fig. 7 UC, active, static securely implements FSFE in
the (FCOM)-hybrid model (initialized with (init, ID,W ) for |ID| = 3Γ + 1 and |W | ≤ k).

Analysis. A full proof of Theorem 1 can be found in Appendix A. However, we quickly sketch the idea of
the proof. First considering a corrupted B and then considering a corrupted A.

Corrupted B. B does not receive any output nor has any real way of cheating in the protocol (in the output
phase, if B changes the output key in a way that makes A accept, then he must have guessed ∆, thus breaking
the IND-CIA game). Essentially, we only need to argue that his view does not leak any information, thanks
to the IND-CIA security of the garbling scheme. Note that in the protocol B starts by committing to his
input and challenge for the cut-and-choose phase. This allows the simulator S to extract all this information
at the beginning of the simulation (and provide input on behalf of corrupted B to the ideal functionality).
Then we reduce the security of the protocol to the IND-CIA security of the garbling scheme: The simulator
knows in fact T and U before it sends the gates to B, therefore S will place honestly constructed gates in T
(for which it knows the openings and therefore can easily simulate the cut-and-choose test – remember that
the simulator fully controls FCOM) and the challenge garbled gates from the IND-CIA game in U : that is, the
simulator produces a view such that distinguishing between a real and a simulated execution is equivalent
to winning the IND-CIA game.

Corrupted A. Essentially, the proof of security boils down to proving correctness. By the design of the garbled
circuit correctness follows when there is more than bρ/2c correct gates in each of the buckets.

The LEGO approach ensures that if A passes the cut-and-choose test, then with overwhelming probability
there are at most k faulty gates left in U . Those faulty gates are then randomly assigned into buckets, this
means that with overwhelming probability each bucket will have a majority of correct gates.
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Setup
Choose ρ = O(k/ log(s)) and Γ = 2ρs where s = |gates| in C′. Let Γ ′ = 3Γ + 1 and proceed as follows:
1. A and B initialize a FCOM functionality by having either of them call (init, ID,W ) with |ID| = Γ ′ and
|W | ≤ k.

2. A samples ∆ ∈R {0, 1}t and inputs (commit, id(∆),∆) to FCOM.
3. B samples a random T ⊂ [Γ ] of size ρs, and for all i ∈ T samples ui, vi ∈R {0, 1}. Let U = [Γ ] \ T .
4. B samples BucketOf ∈ B as described in Section 2.
5. B sends CT = Com(T, (ui, vi)i∈T ,BucketOf, rT ) to A.
6. For each j ∈ Binputs, B inputs (OT-choose, j, bj) to FCOM.

Garbling
1. For all i ∈ [Γ ], A samples Li0, Ri0 ∈R {0, 1}t, computes

(
ggi, Oi0

)
← Yao

(
Li0, R

i
0,∆, i

)
and sends GG =(

ggi
)
i∈[Γ ]

to B.
2. A inputs

(
commit, id

(
Li0
)
, Li0
)
,
(
commit, id

(
Ri0
)
, Ri0
)
and

(
commit, id

(
Oi0
)
, Oi0

)
to FCOM.

Cut-and-choose
1. B sends T , (ui, vi)i∈T , BucketOf and randomness rT to A.
2. If this is not a valid opening of CT A aborts. Otherwise, for all i ∈ T A inputs to FCOM

(
open, id

(
Liui

))
,(

open, id
(
Rivi

))
,
(
open, id

(
Oiui∧vi

))
. Let L̂i, R̂i, Ôi be the values output to B by FCOM.

3. B aborts if there is an i ∈ T so that Ôi 6= Eval
(
ggi, L̂i, R̂i

)
.

Soldering
1. Horizontal Soldering: For all j ∈ gates, let h = BucketHead(j): For all i 6= h ∈ Bucket(j) A in-

puts
(
open,

{
id
(
Lh
)
, id
(
Li
)})

,
(
open,

{
id
(
Rh
)
, id
(
Ri
)})

, and
(
open,

{
id
(
Oh
)
, id
(
Oi
)})

to FCOM.

Let Lid, Rid, Oid be the keys output to B from FCOM and sggi = Shift
(
ggi, Li

d
, Ri

d
, Oi

d
)
.

2. Vertical Soldering: For all j ∈ gates \ inputGates, let h = BucketHead(j): A inputs(
open,

{
id
(
Lh
)}
∪
{

id
(
OBucketHead(i))}

i∈lp(j)

)
and

(
open,

{
id
(
Rh
)}
∪
{

id
(
OBucketHead(i))}

i∈rp(j)

)
to

FCOM. Let Lh
d
, Rh

d be the keys output to B by FCOM and sggh = Shift
(
ggh, Lh

d
, Rh

d
, 0t
)
.

3. Input Soldering: For all j ∈ inputGates, let h = BucketHead(j): A inputs
(
open,

{
id
(
Lh
)
, id
(
Rh
)})

to FCOM. Let Rh
d be the key output to B by FCOM and sggh = Shift

(
sggh, 0t, Rhd, 0t

)
.

Input
1. For all j ∈ Ainputs let h = BucketHead(j), A inputs

(
OR-open, id

(
Lh0
)
, id
(
Lh1
)
, aj
)
to FCOM.

2. For all j ∈ Binputs let h = BucketHead(j), A inputs
(
OT-open, j, id

(
Lh0
)
, id
(
Lh1
))

to FCOM.
3. In both cases let L̂h be the key output from FCOM to B. B computes a list of candidate keys Candj =(

ShiftEval
(
sggi, L̂h, L̂h

))
i∈Bucket(j)

. If any key appears more than bρ/2c times in Candj name it Ôj ,
otherwise B aborts.

Evaluate
1. For each gate j ∈ gates \ inputGates, B computes:

(a) Left and right keys L̂j =
⊕

l∈lp(j) Ô
l and R̂j =

⊕
l∈rp(j) Ô

l.
(b) The list of output keys Candj =

(
ShiftEval

(
sggi, L̂j , R̂j

))
i∈Bucket(j)

.
(c) If a key appears more than bρ/2c times in Candj name it Ôj and proceed, otherwise abort.

2. For all j ∈ outputGates, B sends Ôj to A.
3. For all j ∈ outputGates, A outputs zj = 0 if Ôj = O

BucketHead(j)
0 , zj = 1 if Ôj = O

BucketHead(j)
1 and aborts

otherwise.

Figure 7. The Protocol πLEGO implementing FSFE.

However, as opposed to [NO09] where all commitments were binding, here we have also k wildcard
commitments to deal with. This is in problematic, as wildcard commitments can be opened to anything, and
we need make sure that this does not break correctness.

To be more specific we say that a garbled gate ggi is faulty if the commitments to its input and out-
put zero-keys are fixed to values Li0, Ri0 and Oi0 respectively, and there exists some a, b ∈ {0, 1} so that
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Eval
(
ggi, Lia, R

i
b

)
does not output Oia∧b with overwhelming probability. If a gate ggi has a wire where the

commitment to the associated zero-key is not fixed, then we say that this wire is faulty, and ggi has faulty
wiring. We say that ggi is fault free if it is neither faulty nor has faulty wiring. If a garbled gate ggi is faulty,
fault free or has faulty wiring, we say the same of any shifted gate sggi resulting from shifting ggi.

Gates ggi with faulty wiring are problematic for the cut-and-choose test: If i ∈ T A can choose to let ggi
act as a fault free gate by opening the wildcard commitments consistently with the actual zero-keys used to
generate ggi. On the other hand, if i ∈ U A can make sggi faulty by opening the commitment inconsistently
in Soldering1.

In Lemma 2 we show that, with overwhelming probability, there will be a majority of fault free gates in(
ggi
)
i∈Bucket(j) for all j ∈ gates. It is easy to verify that this means that after Horizontal Soldering all

commitments to zero-keys are fixed. I.e., the commitment to the zero-key of a faulty wire will be fixed to
open as one specific value. If this value is not consistent with the zero-keys used to generate the associated
garbled gate, then that gate becomes faulty.

Note however, that for all j ∈ gates all fault free shifted gates
(
sggi

)
i∈Bucket(j) resulting from Horizontal

Soldering will have identical input and output keys, as required of the garbled circuit, even if some gates
in
(
ggi
)
i∈Bucket(j) had faulty wiring. I.e., the effect of a garbled gate ggi having faulty wiring is at worst

that shifted gate sggi after Soldering is faulty. Since we use a FCOM functionality with at most k wildcard
commitments we still have at most k faulty gates in Evaluation. Since these faulty gates are placed in
random buckets we can still guarantee correctness with overwhelming probability.

Note that the faulty wires are also the reason for gate replication on the input layer, to not let A change
her or B’s input by using the wildcard commitments.

4 Commitments

In this section we present our novel construction of XOR-homomorphic commitment based solely on OT. To
the best of our knowledge this is the first kind of homomorphic cryptographic primitive that can be obtained
under general assumption. We also describe how to transform this general construction of XOR-homomorphic
commitments into the specific type we need for the MiniLEGO protocol described inFig. 7.

4.1 The Ideal Functionality

We name our ideal functionality FWCOM and describe it in Fig. 8. The functionality allows A to commit to
up to µ messages and to later reveal those messages. In addition the FWCOM allows to reveal the XOR of two
or more committed messages to B (without revealing any extra information about the original committed
messages). In the context of Fig. 7 this is the same as FCOM except without the methods for Oblivious-
Opening, Or-Opening and (which will become apparent later on) contains more wildcards than we can
handle in the MiniLEGO protocol describedFig. 7.

We formalize FWCOM in the following way: First we let the adversary specify a set of identifiers ID with
|ID| = µ used to identify each of the µ commitments (for technical reasons ID will be a subset of [2µ]). In
addition the adversary gives a set W ⊂ ID, of size at most κ, to identify the wildcard commitments. FWCOM
stores a set of linear equations on µ variables (Xi)i∈ID (one for each commitment). Initially this set is empty.
Each time A commits to a message mj using a non-wildcard commitment (i.e., j ∈ ID\W ) FWCOM will store
the equation Xj = mj . For wildcard commitments no such equation are stored when A makes the commitment.
If A instructs FWCOM to open the XOR of the set of commitments J ⊂ ID we let corrupted A input a message
mJ ∈ {0, 1}t she wants to open to. The functionality then adds the equation

⊕
j∈J Xj = mJ to the set of

stored equations and checks that this set of equations has a solution, i.e., if there is an assignment of values
in {0, 1}t to each variable Xj such that all equations are satisfied. If so, the functionality permanently stores
the equation

⊕
j∈J Xj = mJ and opens the XOR of the set of commitments J as mJ . Otherwise, FWCOM

1 By inconsistently we mean inconsistent with the actual keys used for ggi, not inconsistent with the equations stored
in FCOM.
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will output Alice cheats to B and terminate. Note that if J ∩W = ∅ then for all j ∈ J the functionality
has stored the equation Xj = mj , and therefore a corrupt A can only open the commitment successfully if
mJ =

⊕
j∈J mj . Note also that if, e.g., A has made commitments i ∈ W and j ∈ ID \W , and opens the

XOR of commitments i and j as m′ then for all later openings A can only successfully open the wildcard
commitment i as m′i = mj ⊕m′. In these cases, when a commitment can only successfully be opened to one
value, we say that the commitment is fixed to that value. Non-wildcard commitments are always fixed; when
A opens the XOR of a wildcard commitments and non-wildcard commitments, a wildcard commitment can
become fixed. When a wildcard commitment has been fixed it can essentially be viewed as a non-wildcard
commitment.

Notice that the terminology can become a little confusing because of the wildcard commitments: When
we say that A opens the XOR of some set of commitments J ⊂ ID to a value mJ , then we cannot guarantee
that mJ =

⊕
j∈J mj , when J ∩W 6= ∅.

Setup
On input (init, ID,W ) with |ID| = µ, |W | ≤ κ and W ⊂ ID from the adversary output ID to both parties
and let J = ∅. If A is honest, then W = ∅.

Commit
On input (commit, j ∈ ID,mj) with mj ∈ {0, 1}t from A, and where no value of the form (j, ·) is stored,
store (j,mj). If j ∈ ID \W , add J = {j} to J and associate with J the equation Xj = mj . Then output
(commit, j) to B.

Open
On input (open, J ⊂ ID) from A, where for all j ∈ J a pair (j,mj) is stored do the following:
– If A is honest, output (open, J,⊕j∈Jmj) to B.
– If A is corrupted wait for A to input (corrupt-open, J,mJ). Then add J to J , associate the equation
⊕j∈JXj = mJ to J , and check that the equation system {⊕j∈JXj = mJ}J∈J has a solutiona. If so,
output (open, J,mJ) to B. Otherwise, output Alice cheats to B and terminate.

a I.e., there should be an assignment of values to the wildcard commitments such that all stored openings can
be explained by this assignment.

Figure 8. The ideal functionality, FWCOM, for our basic commitment scheme consisting.

4.2 Building blocks

Here we give the building blocks from which we implement FWCOM.

Oblivious Transfer. We use a
(
n
u

)
-Oblivious Transfer functionality with message strings of length 2µ. We

denote this functionality
(
n
u

)
-FOT(2µ). On input start from both A and B the

(
n
u

)
-FOT(2µ) functionality

picks n message strings S1, . . . , Sn ∈R {0, 1}2µ, a uniformly random set I ⊆ {1, . . . , n} with |I| = u and
outputs (Si)i∈[n] to A and (I, (Si)i∈I) to B. We can implement

(
n
u

)
-FOT(2µ) for any 2µ = poly(k) using a

FOT functionality and a pseudo random generator (prg), where k is the security parameter, using the same
technique as in [NNOB12]: Simply use the FOT(k) functionality to send seeds to the prg and then use the
prg to expand those seeds to 2µ bits. One can then construct a

(
n
u

)
-FOT(2µ) functionality from

(2
1
)
FOT(2µ)

e.g., as described in [NP99].

Error Correcting Codes. We also need an error correcting code (ECC), which encodes an t-bit string
as an n-bit string with minimal distance at least d using some φ-bits of randomness. It should at the same
time be a secret sharing scheme in that seeing u random positions of a random codeword does not leak
information on the message. We denote this scheme by ssecct,n,d,u. We use enct,n,d,u to denote the encoding
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function and we use dect,n,d,u to denote the decoding function. Both should be PPT and we drop parameters
for notational convenience. The code should have the following properties:

Error correction For all m ∈ {0, 1}t, r ∈ {0, 1}φ and error vectors e ∈ {0, 1}n with hw(e) < d/2 it holds
that dec(enc(m; r)⊕ e) = m, where hw is the Hamming weight in {0, 1}n. We assume that dec(C) = ⊥
when C has distance more than d/2 to all codewords and we assume that there exists an efficient
algorithm ncw such that ncw(enc(m; r)⊕ e) = enc(m; r) when hw(e) < d/22.

Privacy There exists a PPT function xpl which can explain any codeword as being a codeword of any
message to anyone who knows at most u positions of the codeword. Formally, for all I ⊂ [n], |I| = u and
allm,m′ ∈ {0, 1}t the distributionsD0 andD1 described below are statistically close. The distributionD0
is generated as follows: Sample r ∈R {0, 1}φ, let c = enc(m; r) and output ((ci)i∈I ,m, r). The distribution
D1 is generated as follows: Sample r′ ∈R {0, 1}φ, let c = enc (m′; r′), sample r ← xpl(I,m′, r′,m) and
output ((ci)i∈I ,m, r).

Linearity For allm,m′ ∈ {0, 1}t and r, r′ ∈ {0, 1}φ it holds that enc(m; r)⊕enc(m′; r′) = enc(m⊕m′; r⊕r′).

Note that Error correction implies that the minimal distance is at least d, i.e., for all m 6= m′ ∈ {0, 1}t
and r, r′ ∈ {0, 1}φ, c = enc(m; r) and c′ = enc(m′; r′) it holds that ham(c, c′) ≥ d where ham is the Hamming
distance.

We further require of the parameters of ssecc that: n = Θ(k), u = Θ(n) and d = Θ(n). I.e., both the
privacy and minimum distance of ssecc must be a constant fraction of the length of codewords, and the code
should have constant rate. Codes that satisfy the desired properties can be found in [CC06].

4.3 Protocol Specification

Here we describe the ideas behind the protocol πWCOM (described in Fig. 9) implementing FWCOM (described
in Fig. 8).

Let v ∈ {0, 1}n and I = {i1, i2, . . . , iu} ⊆ [n]. We define the function wI : {0, 1}n → {0, 1}u so that
wI(v) = (vi1 , vi2 , . . . , viu) ∈ {0, 1}u, i.e., wI(v) is the u-bit string consisting of the u bits in v indexed by I.

In the protocol a commitment to a message m is a one-time pad of m with some key T . Clearly this is
hiding but not binding. To make the commitment binding we allow the receiver of the commitment (B) to
learn wI(m) for some secret set I ⊆ [n]. We denote wI(m) the watch bits of the commitment. To open the
commitment to m A sends m′ to B and B checks if wI(m′) = wI(m). If this is not the case B rejects the
opening.

The watch bits give some degree of binding since A can only open the commitment to some message
m′ 6= m if wI(m′) = wI(m). I.e., if u = |I| is large enough A can only hope to change a few bits of m
without getting caught. On the other hand the watch bits clearly compromises the hiding property of the
commitment. To avoid this we use the code ssecc to encode the message m and commit to the encoded m
instead. I.e., a commitment to m becomes enc(m; r)⊕ T . By privacy of ssecc m is now hidden.

The encoding additionally strengthens the binding of the commitment: codewords c and c′ encoding to
two different messages m and m′ must be different in many bit positions. Thus for A to open a commitment
to m to m′ none of these positions must be in the watch bits.

More precisely let d = 2w + 1 be the minimum distance of ssecc for some w < n
2 and suppose a corrupt

A gives the commitment, c⊕ T . Note that when A is corrupt c does not have to be a codeword. In that case
we have that c = ncw(c)⊕ e for some error vector e ∈ {0, 1}n, and we say the commitment has hw(e) errors.

Regardless of the number of errors, consider what it takes for A to be able to open this commitment to
two different messages m′ and m′′, with codewords c′ and c′′ respectively: For any two different codewords c′
and c′′ one of them has distance at least w to c, say c′. In other words c′ has at least w bit positions different
from c. If A tries to open the commitment to m′, B only accepts the opening if none of these bit positions

2 Above and in the following we assume that ncw gives the closest codeword on all inputs, also those with distance
more than d/2 to all codewords.
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are in his u watch bits for the commitment. Thus for any commitment (possibly with errors) the probability
that a cheating A can open the commitment to two different messages m′ and m′′ is at most(

n− u
w

)(
n

w

)−1
=
w−1∏
i=0

n− u− i
s− i

w−1∏
i=0

w − i
n− i

=
w−1∏
i=0

n− u− i
n− i

=
w−1∏
i=0

1− u

n− i
.

Assume that w = w′n and u = u′n for constants 0 < u′, w′ < 1, then the probability of A breaking the
binding property is at most

w−1∏
i=0

(
1− u

n− i

)
≤
w−1∏
i=0

(
1− u′n

n

)
= (1− u′)w

′n
.

Thus with k being the security parameter, n = Θ(k) and for any positive constants u′, w′ with 0 < u′, w′ < 1
A will have negligible probability of breaking binding.

Notice, that while c′ will have distance at least w to c it could be that c′′ is much closer to c. E.g., c′′
could be the nearest codeword to c. In this case, by a similar calculation as the one above, we have that,
if the commitment has very few errors, a cheating A could open the commitment to m′′ with noticeable
probability (say, if the number of errors were constant in k). This is not a problem since such a “slightly
wrong” commitment can be seen as a commitment to the message m′′ encoded by the nearest codeword c′′.

To get XOR-homomorphic commitments, more work has to be done. The problem being that the XOR
of several commitments with errors, may become a commitment that breaks binding, even if the individual
commitments only have a few errors. Consider a number of commitments made with non-codewords ci with
nearest codewords c′i. The XOR the non-codewords c =

⊕
i ci may then be very far from the XOR of their

nearest codewords c′ =
⊕

i c
′
i. In fact c might be so far away from c′ that it gets very close to some other

codeword c′′. Hence the XOR of the commitments can be opened to a message different from the XOR of
the message associated with the individual commitments. This would break the binding property.

To deal with this problem, the protocol starts by letting A commit to 2µ random messages. We then do a
cut-and-choose test to check that half of these commitments can be opened correctly. If A passes the test we
have that, with overwhelming probability, the remaining commitments only have a few errors. Additionally,
those errors must be isolated to a few common bit positions. Thus the result of XOR’ing these commitments
will at most have a few a errors in the same positions.

Thus if A passes the cut-and-choose test we use the un-tested random commitments to implement the
actual commitments. The resulting commitment will have exactly the same errors as the random commitment
(if any).

Theorem 2. Let k be the security parameter and use a code with n = Θ(k), u = Θ(n), d = Θ(n) and
k < d/2 as, e.g., given by [CC06]. Then the protocol in Fig. 9 UC, active, static securely implements FWCOM
in the

((
n
u

)
-FOT(2µ)

)
-hybrid model when initialized on (init, ID,W ) with |ID| = µ and |W | ≤ nk + k.

Analysis. Simulating when no party is corrupted or both parties are corrupted is straight forward. Simu-
lating when B is corrupted is also quite simple, and can be done using standard techniques from simulation
in secure multi-party computation based on secret sharing. Thus we will only sketch the proof for corrupted
B, and focus the case of corrupted A. A sketch of the proof of security against a malicious A is included
below and the formal proof can be found in Appendix B.
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Setup
To set up the scheme A and B run the following.
1. A and B run a

(
n
u

)
-FOT(2µ) functionality and get as output (Ri)i∈[n] and (I, (Ri)i∈I) respectively where

R1, . . . , Rn ∈R {0, 1}2µ and I is a uniformly random subset of [n] with |I| = u.
2. A lets R ∈ {0, 1}n×2µ be the matrix with Ri as the i’th row and lets Tj ∈ {0, 1}n be the j’th column of

Ra.
3. For j = 1, . . . , 2µ A samples xj ∈R {0, 1}t, rj ∈R {0, 1}φ and sends the commitment cj = (enc(xj ; rj)⊕

Tj , j) to B. We let cj = (Uj , j) denote the value received by B.
4. B sends a uniformly random subset C ⊂ [2µ]. This also defines ID = C̄.
5. For j ∈ C, A opens cj by sending oj = (xj , rj , j).
6. For j ∈ C, B receives (x′j , r′j , j) and checks that

wI
(
enc
(
x′j ; r′j

))
= wI(Uj)⊕ wI(Tj) ,

if not B terminates the protocol.
Commit

To commit to mj for j ∈ ID A sends (yj , j) to B where yj is the correction value yj = xj ⊕mj .
Open

To open the XOR of commitments J ⊂ ID the parties do the following.
1. For j ∈ J , let cj = (enc(xj ; rj)⊕ Tj , j) be the commitments sent in initialization and yj the value sent

during commitment. A computes the opening of
⊕

j∈J mj as oJ =
(⊕

j∈J xj ,
⊕

j∈J rj , J
)
, and sends

it to B.
2. If an opening of J was done previously, B uses the previous mJ , otherwise he proceeds as follows: Let

cj = (Uj , j) be the commitments received during Setup. B accepts oJ = (xJ , rJ , J) iff

wI(enc(xJ ; rJ)) = wI

(⊕
j∈J

Uj

)
⊕ wI

(⊕
j∈J

Tj

)
,

where

wI

(⊕
j∈J

Uj

)
=
⊕
j∈J

wI(Uj)

and

wI

(⊕
j∈J

Tj

)
=
⊕
j∈J

wI(Tj) .

If B accepts he outputs xJ ⊕ yJ , where yJ =
⊕

j∈J yj . Otherwise, B rejects the opening and terminates
the protocol.

a Notice B can use (Ri)i∈I to compute wI(Tj) for all j ∈ [2µ].

Figure 9. The protocol πWCOM implementing FWCOM.

Corrupted B. The simulator commits to 0t in all commitments. When asked to open such a commitment Uj
to a given mj ∈ {0, 1}t it uses the efficient algorithm xpl to explain the commitment as Uj = enc(xj ; rj)⊕Tj
for xj = yj ⊕ mj . The only non-trivial detail is that if the simulator is asked to open a commitment,
where the value of the opening follows from previous openings (i.e., using some linear equation), it computes
the opening as a linear combination of the previous simulated openings. As an example, if the simulator
opened Uj as Uj = enc(xj ; rj) ⊕ Tj and opened Ui as Ui = enc(yi; ri) ⊕ Ti. Then it will open Uj ⊕ Ui as
Uj = enc(xj ⊕ xi; rj ⊕ ri)⊕ Tj ⊕ Ti.

Corrupted A. Intuition of the proof when A is corrupted is that the cut-and-choose test will catch A if there
are many indices i for which there exists a commitment that has an error in position i. This is because if

19



the errors of the commitments are very spread out, with high probability, many of them will be in the watch
bits positions. As mentioned above, this means that almost all errors must be isolated in a few positions.
Therefore XOR’s of commitments will also have errors only in these position, so the XOR’s will also be
close to their “correct” codeword. The formal proof is complicated by the fact that a few commitments with
many errors, or errors outside isolated few positions, may pass the cut-and-choose. These commitments will
be the wildcards. It can be shown that not even a commitment with many errors can be opened to two
different values, as it would give a codeword encoding a non-zero value which is 0 in all the watch bits,
which happens with negligible probability by the watch bits being random and the minimal distance high.
This translates into it being impossible to make any combination of openings of linear equations yielding
inconsistent outputs.

4.4 Completing construction

We now give a few simple modifications to FWCOM and πWCOM that we will need for our concrete use in the
MiniLEGO protocol described in Fig. 7. In particular we show the protocol πCOM which extends πWCOM and
implements the functionality FCOM already defined in Fig. 5.

First, as we want to treat the commitments as an ideal functionality, we need to push into the ideal
functionality two extra commands (in a way similar to the commit-and-prove functionality in [CLOS02]).
The first one allows to perform Oblivious-Opening i.e., B can choose between two sets and learn the XOR
of the committed messages in one of them, without learning anything about the other set. Additionally, we
need a command to allow A to open the XOR of committed messages in one out of two sets to B without
revealing which one. In other words, A proves that one of the two sets of committed messages XORs to the
opened message, without revealing which one. We call this an Or-Opening. Note, that for technical reasons
there can at most be ω Or-Openings an all Or-Openings must be done before the first Oblivious-Opening.
The parameter ω can be any polynomial of the security parameter but it must be known when setting up
the functionality.

Second, we need to strengthen the protocol to have only k wildcard commitments instead of nk + k as
the protocol FWCOM.

Finally, note that we already described the FWCOM functionality with these commands added (FCOM) in
Fig. 5 as we used it in a black box manner in the MiniLEGO protocol in Fig. 7.

Oblivious-Opening. The Oblivious-Opening can be implemented very easily in the FOT-hybrid model from
any protocol implementing FWCOM with a non-interactive opening. That is, any protocol that implements
the opening part of FWCOM by sending a single message o from A to B: A inputs as messages to FOT the
openings oJ0 and oJ1 corresponding to the sets of commitments J0 and J1. B inputs b to FOT and receives
oJb

, which he can then open in the regular way.
This solution has an inherent selective failure attack: A corrupt A could compute one opening honestly

and the other in a way that is sure to make B reject the opening. This way A will either learn b or she will
be caught. However, in our concrete use of FCOM in Section 3 it turned out that we can live with this attack.
Therefore, instead of trying to handle the attack we make it explicit in the FCOM functionality that such
attacks are allowed for a corrupted A.

Note also that the actual Oblivious-Opening described in Fig. 5 is of a form where B first inputs his bit
b and then only later does A instruct FCOM to open the XOR of Jb to B. This is needed for our concrete
use of FCOM in Section 3. Again this can be implement very simply: A One Time Pads (OTP) the openings
before she inputs them to FOT. Later when she wants to open to B she sends both OTP keys to B, which
allows B to recover oJb

.
We give a formal description of the implementation extended with the Oblivious-Opening in Fig. 10, and

we prove the following Theorem in Appendix C.

Theorem 3. Let k be the security parameter and use an ECC with n = Θ(k), u = Θ(n), d = Θ(n) and
k < d/2 as, e.g., given by [CC06]. Then the protocol Fig. 10 UC, active, static securely implements the
Oblivious-Opening command of FCOM described in Fig. 5 in the

((
n
u

)
-FOT(2µ),FOT

)
-hybrid model.
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Setup
As in Fig. 9.

Commit
As in Fig. 9.

Open
As in Fig. 9.

Oblivious-Opening
To do an Oblivious-Opening with the sets of commitments J0 and J1 the parties does the following.
1. A computes openings oJ0 and oJ1 of the XOR of commitments in the sets J0 and J1 respectively as

she would for regular openings described in step 1 of the Open phase of Fig. 9. She then samples
M0 ∈R {0, 1}|oJ0 | and M1 ∈R {0, 1}|oJ1 | (where |x| denotes the bit-length of x), and inputs to (M0 ⊕
oJ0 ,M1 ⊕ oJ1 ) = (O0, O1) to FOT.

2. B inputs b to FOT and receives Ob = Mb ⊕ oJb .
3. Later A can open the XOR of commitments Jb by sending (M0,M1) to B. B computes the opening

oJb = Ob ⊕Mb and opens as a regular opening described in step 2 of the Open phase of Fig. 9.

Figure 10. The Oblivious Opening extension of protocol Fig. 9

Less Wildcards. We now show how our scheme can be strengthened to have k wildcard commitments
instead of nk + k. A uses FWCOM to commit to 2µ random values xi (instead of just µ values). Then we
randomly pair all the commitments into µ pairs, open the XOR of each pair, and use the left element in each
pair as the commitment of FWCOM, sending just a correction value yi as the actual commitment (similar to
the protocol in Fig. 9). The idea being that if any wildcard commitment i is paired with a non-wildcard
commitment j it will become fixed by opening the XOR of the pair. Therefore, the resulting commitments
are only wildcard if they were in a pair where both commitments were wildcard commitments. If we take
µ > (nk + k)2, then the probability that there are more than k such pairs of wildcard commitments is
negligible. We describe the protocol formally in the Setup, Commit and Open phases of Fig. 11 and give
a proof of the following Theorem in Appendix C.

Theorem 4. Let k be the security parameter and µ′ = µ + 6kω > (nk + k)2. Then the protocol in Fig. 11
UC, active, static securely implements the Setup, Commit, Open and Oblivious-Opening commands of
FCOM in the (FWCOM)-hybrid model when FCOM is initialized as (init, ID,W ) with |ID| = µ′ and |W | ≤ k
and FWCOM initialized as (init, ID′,W ′) with |ID′| = 2µ′ and |W ′| ≤ nk + k.

Or-Opening. The Or-Opening can be implemented in a black box way given the FWCOM functionality
(without the Or-Opening command): A sends m = ⊕i∈Jami to B, and then proves that it is a correct value,
i.e., that m =

⊕
i∈J0

mi ∨m =
⊕

i∈J1
mi. To do this, she makes two new commitments, to mJ0 =

⊕
j∈J0

mj

respectively mJ1 =
⊕

j∈J1
mj . She will do this by sampling a bit p ∈ {0, 1} and then use FWCOM to commit

to values m′0 = mJ0⊕p
and m′1 = mJ1⊕p

without revealing p to B. Then B will challenge A with a bit c. If
c = 0, A reveals p and uses FWCOM to open (⊕j∈J0mj)⊕mJ0 to 0 and (⊕j∈J1mj)⊕mJ1 to 0, proving that
the messages mJ0 and mJ1 where computed correctly. If c = 1, A opens the commitment to m′a⊕p = m. If
we disregard wildcard commitments, this is a zero-knowledge proof with soundness 1

2 . By repeating k times
we get negligible soundness error.

However, if A commits to m′0 and m′1 using wildcard commitments she can open the commitments as
she pleases, and soundness drops to 0. To deal with this, we let B randomly choose the indices used by A to
commit to m′0 and m′1. Now with high probability there will be k repetitions where neither m′0 nor m′1 are
committed to using wildcard commitments.

We formally describe the protocol used to implement FCOM with the Or-Opening command in Fig. 11
and prove the following Theorem in Appendix C.

Theorem 5. Let k be the security parameter, µ > 6
(
nk2 + k2) and µ′ = 2(µ+ 6kω), where ω = poly(k) is

the number of Or-Openings and k is the number of wildcard commitments. Then the protocol in Fig. 11
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UC, active, static securely implements FCOM in the (FWCOM)-hybrid model when FCOM is initialized as
(init, ID,W ) for |ID| = µ and |W | ≤ k and FWCOM as (init, ID′,W ′) with |ID′| = µ′ and |W ′| ≤ nk+ k.

In conclusion, to implement the FCOM functionality we first use
(
n
u

)
-FOT(2(2(µ + 6kω))) to get FWCOM

with |ID| = 2(µ+6kω) and |W | ≤ nk+k (Theorem 2). We then use this to implement the Oblivious-Opening
functionality (Theorem 3). From that we reduce the amount of wildcards from nk + k to k at the expense
of half the commitments (Theorem 4). Finally, we add the Or-Opening command (Theorem 5) and get the
full FCOM functionality for |ID′| = µ and |W ′| ≤ k. This is summarized in the following corollary:

Corollary 1. Let k be the security parameter, µ > (nk + k)2 > 6k2, ω = poly(k) and assume a code ssecc
with n = Θ(k), u = Θ(n), d = Θ(n) and k < d/2 as, e.g., [CC06]. Then FCOM is UC, active and static
secure in the

((
n
u

)
-FOT(2(2(µ+ 6kω)),FOT

)
-hybrid model when |ID| = µ and |W | ≤ k.
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Setup
1. The adversary initializes a FWCOM functionality by calling (init, ID′,W ′) with |ID′| = 2(µ+ 6kω) and
|W ′| ≤ nk + k, which outputs ID′ to both A and B.

2. For all i ∈ [2(µ+ 6kω)] A samples xi ∈R {0, 1}t and inputs (commit, i, xi) to FWCOM.
3. After receiving (commit, i) for all i ∈ [2(µ+ 6kω)] from FWCOM B picks a uniformly random pairing π (a

permutation π : ID′ → ID′ where ∀i, π(π(i)) = i) and sends it to A.
4. A sets ID = {i ∈ ID′|i < π(i)} and then inputs (open, {i, π(i)}) to FWCOM. She then outputs ID, with
|ID| = µ+ 6kω, as the set of commitment id’s.

5. On receiving (open, {i, π(i)}, zi = xi ⊕ xπ(i)) for all i ∈ ID B outputs ID. Additionally B sends to A
ω uniformly random but disjoint sets D1, . . . , Dω ⊂ ID so that each Di has size 6k. These id’s are set
aside only for use in the Or-Opening.

6. For the remainder of the protocol A is not allowed to use id’s in ID′ \ ID. If she does so B terminates
the protocol.

Commit
To commit to mj for j ∈ ID A sends (yj , j) to B where yj is the correction value yj = xj ⊕mj .

Open
To open the XOR of commitments J ⊂ ID the parties do the following.
1. For j ∈ J , let cj = (enc(xj ; rj)⊕ Tj , j) be the commitments sent in initialization and yj the value sent

during commitment. A computes the opening of
⊕

j∈J mj as oJ =
(⊕

j∈J xj ,
⊕

j∈J rj , J
)
, and sends

it to B.
2. If an opening of J was done previously, B uses the previous mJ , otherwise he proceeds as fol-

lows: Let cj = (Uj , j) be the commitments received during Setup. B accepts oJ = (xJ , rJ , J)
iff wI(enc(xJ ; rJ)) = wI

(⊕
j∈J Uj

)
⊕ wI

(⊕
j∈J Tj

)
, where wI

(⊕
j∈J Uj

)
=
⊕

j∈J wI(Uj) and

wI

(⊕
j∈J Tj

)
=
⊕

j∈J wI(Tj). If B accepts he outputs mJ = xJ ⊕ yJ , where yJ =
⊕

j∈J yj . Oth-
erwise, B rejects the opening and terminates the protocol.

Oblivious-Opening
To do an Oblivious-Opening with the sets of commitments J0 and J1 the parties does the following:
1. A computes openings oJ0 and oJ1 of the XOR of commitments in the sets J0 and J1 respectively as

she would for regular openings described in Open step 1. She then samples M0 ∈R {0, 1}|oJ0 | and
M1 ∈R {0, 1}|oJ1 | (where |x| denotes the bit-length of x), and inputs to (M0⊕ oJ0 ,M1⊕ oJ1 ) = (O0, O1)
to FOT.

2. B inputs b to FOT and receives Ob = Mb ⊕ oJb .
3. Later A can open the XOR of commitments Jb by sending (M0,M1) to B. B computes the opening

oJb = Ob ⊕Mb and opens as a regular opening described in Open step 2.
Or-Opening

To perform the d’th Or-Opening the parties do the following (recall that no Or-Openings are done after the
first Oblivious-Opening):
1. A computes mJ0 = ⊕j∈J0mj and mJ1 = ⊕j∈J1mj and sends (J0, J1,m = mJa ) to B.
2. B parses Dd as Dd = {j1

0 , j
1
1 , . . . j

3k
0 , j3k

1 } ⊂ ID.
3. For each i ∈ [3k] A samples pi ∈R {0, 1} and inputs

(
commit, ji0,mJ0⊕pi

)
and

(
commit, ji1,mJ1⊕pi

)
to

FWCOM.
4. After receiving

(
commit, ji0

)
and

(
commit, ji1

)
from FWCOM for all i ∈ [3k], B sends

(
ci
)
i∈[3k]

∈R {0, 1}3k

to A.
5. For each i ∈ [3k] A does the following:

– If ci = 0: A inputs
(
open, J0⊕pi ∪ {ji0}

)
and

(
open, J1⊕pi ∪ {ji1}

)
to FWCOM and sends pi to B.

– If ci = 1: A inputs
(
open, {jia⊕pi}

)
to FWCOM.

6. For each i ∈ [3k] B does the following:
– If ci = 0: B checks that he receives both

(
open, J0⊕pi ∪ {ji0}, 0

)
and

(
open, J1⊕pi ∪ {ji1}, 0

)
from

FWCOM.
– If ci = 1: B checks that he receives

(
open, {ji},m

)
from FWCOM for some ji ∈

{
ji0, j

i
1
}
.

If any of the checks fail B rejects the opening and terminates the protocol. Otherwise, B outputs
(open, J0, J1,m).

Figure 11. The Protocol πCOM implementing FCOM.
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A Proof of Theorem 1

To do this proof we first show Lemma 1, which shows that the theorem is true for a malicious B. We then
prove Lemma 2 which is needed in order to show security against a malicious A. We finish by proving
Lemma 3. From these proofs the theorem follows directly.

Lemma 1. πLEGO is a secure implementation of FSFE against a malicious B∗.

Proof (Lemma 1).
We present a simulator S that given access to FSFE simulates the real world view of the environment Z

when Z corrupts B∗.
At the beginning of the simulation Z inputs (a, CA, k) and (b, CB , k) to A and S respectively, and A inputs

(init, (a, CA), k) to FSFE. The simulator receives (`, C′) from FSFE and then runs πLEGO completely as an
honest A with input

(
0`, C′

)
except that the simulator fully controls the FCOM functionality. Thus S reads

the input b∗ used by B∗ as it is given to the FCOM functionality in step 6 of Setup, and S can extract the
challenges chosen by B∗ in step 5 of Setup. To conclude the simulation, if B∗ does not cause the protocol
to abort, S inputs (init, (b∗, CB) , k) to FSFE on behalf of B∗ and FSFE outputs C′ (a,b∗) to A. If B∗ causes
S to abort, S makes FSFE abort.

To argue indistinguishability of the Z’s view in the real and ideal world we reduce to the security of
garbling scheme (Yao,Eval). Thus we consider an adversary A in the IND-CIA game as defined in Def. 1 that
makes use of Z and B∗. We will construct A so that, depending on the value of the challenge c chosen by
the IND-CIA game, A produces a view for Z that is either indistinguishable from the real world view or the
ideal world simulation of S.
A first runs Z to get the inputs A = (a, CA) for A. When B∗ in step 5 and 6 of Setup inputs T , (ui, vi)i∈T ,

BucketOf and b∗ A reads these values.
Now A uses the IND-CIA game to generate the garbled gates to hand to B∗. A constructs its two strings

to IND-CIA so that A receives keys to evaluate the garbled circuit, as specified by T and BucketOf, on inputs
(a,b∗) for c = 0, and on inputs

(
0`,b∗

)
for c = 1. Additionally A will construct the strings so that for either

value of c, A receives the keys needed to evaluate the gates in the cut-and-choose challenge.
To this end A evaluates C′ (a,b∗) and for each gate j ∈ gates records the left and right inputs lj0 and rj0

respectively. Similarly A evaluates C′
(
0`,b∗

)
and for each gate j ∈ gates records the left and right inputs lj1

and rj1. Then A outputs the strings
(
â1

0, . . . , â
Γ
0 , b̂

1
0, . . . , b̂

Γ
0

)
and

(
â1

1, . . . , â
Γ
1 , b̂

1
1, . . . , b̂

Γ
1

)
where

– For each i ∈ T A lets
(
âi0, b̂

i
0

)
=
(
âi1, b̂

i
1

)
= (ui, vi).

– For each j ∈ gates A lets âi0 = lj0 and âi1 = lj1 for all i ∈ Bucket(j).
– For each j ∈ gates A lets b̂i0 = rj0 and b̂i1 = rj1 for all i ∈ Bucket(j).

Given these strings the IND-CIA game inputs
(
ggi, Liâi

c
, Ri

b̂i
c

)
i∈[Γ ]

to A, and A hands
(
ggi
)
i∈[Γ ] to B∗.

A then computes the output keys Oi ← Eval
(
ggi, Liâi

c
, Ri

b̂i
c

)
for each i ∈ [Γ ]. Notice that the keys(

Liâi
c
, Ri

b̂i
c

, Oi
)
i∈[Γ ]

are enough for A to compute the correct value of all the strings she needs to open in

Cut-and-choose and Soldering: For Cut-and-choose A knows Liui
= Liâi

c
, Rivi

= Ri
b̂i

c

and Oi = Oiui∧vi
.

For Soldering consider the difference Lhd corresponding to a gate j ∈ gates with h = BucketHead(j). A can
compute Lhd as

Lh
d = Lhâh

c
⊕OBucketHead(lp(j))

=
(
Lh0 ⊕ âhc∆

)
⊕
(
O

BucketHead(lp(j))
0 ⊕ âhc∆

)
= Lh0 ⊕O

BucketHead(lp(j))
0
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where the second equality is by the correctness of (Yao,Eval) and definition of âhc and b̂hc . Similarly A can
compute all the other differences needed in Soldering.

Thus A can simulate Cut-and-choose and Soldering as it fully controls the FCOM functionality.
Similarly A can simulate Input by simply sending the input keys given by the IND-CIA game to B∗ on

behalf of the FCOM functionality.
In Evaluation A receives Ôj for each j ∈ outputGates from B∗. Now since A has all the same keys for

the garbled circuit as B∗, she can compute the keys Oj that an honest B would have sent. Thus A aborts if
Ôj 6= Oj . Otherwise, A outputs C′(a,b∗) to Z on behalf of A. A then outputs whatever Z outputs.

Denote by F the event that B∗ outputs a Ôj 6= Oj so that Ôj ⊕Oj = ∆, and assume F does not occur.
Then by definition of the IND-CIA game and the way A constructs the strings

(
â1

0, . . . , â
Γ
0 , b̂

1
0, . . . , b̂

Γ
0

)
and(

â1
1, . . . , â

Γ
1 , b̂

1
1, . . . , b̂

Γ
1

)
it is easy to verify that when c = 0 the view produced by A towards Z is perfectly

indistinguishable to the real world view, while for c = 1 the view is perfectly indistinguishable from the ideal
world simulation of S. Thus any advantage of Z in distinguishing the real from ideal world directly translates
into advantage of A in the IND-CIA game. Thus assuming F does not occur and (Yao,Eval) is secure the
ideal and real worlds are indistinguishable.

Now assume F does occur. In this case A aborts the protocol whereas S and honest A does not. To handle
this we argue that F only occurs with negligible probability. In fact, if F occurs and B∗ outputs a Ôj 6= Oj

then A can use ∆′ = Ôj ⊕Oj to get all keys for some garbled gate and therefore distinguish. By assumption
that F does occur this allows A to win the IND-CIA game with noticeable probability. ut

Before we show security for corrupted A, we show in Lemma 2 that if the protocol does not abort in
Cut-and-choose then for the remainder of the protocol there will be more than bρ/2c fault free garbled
gates in each of the buckets with overwhelming probability. We note that in [Orl11] a similar lemma is
proved, however, there they did not have the wildcard commitments to worry about.

Lemma 2. Consider the protocol πLEGO with honest B. Let k be the statistical security parameter and ρ =
O(k/ log(s)) and assume A in Garbling prepares f faulty gates and v gates with faulty wiring. Let

– E1 be the event that the protocol does not abort in Cut-and-choose.
– E2 be the event that, before Soldering, there exists a j ∈ gates so that (ggi)i∈Bucket(j) does not have

more than bρ/2c fault free gates.

Then Pr(E1 ∧ E2) is at most

s

(
k + f

sρ

)dρ/2e
2ρ−(f/6+1) ≤ 2−k

Proof (Lemma 2).
Let F, V ⊂ [Γ ] be the sets of indices of all garbled gates that are faulty or have faulty wiring respectively

and let G = F∪V . Note that by the definition of faulty gates and faulty wiring F∩V = ∅. Let b = |G| = f+v,
ri = |Bucket(i) ∪G| and R = |{i ∈ [s]|ri > ρ/2} (Here we assume wlog ρ to be odd).

Then for each garbled gate in {ggi}i∈F we have that i ∈ T with probability 1/2, and that if i ∈ T then
ggi will be detected as being faulty with probability at least 1/4. I.e., we have

Pr(E1) ≤
(

7
8

)f
=
(

8
7

)−f
≤ 2−f/6 .

To bound Pr(E2) ≤ Pr(R > 0), first notice that Pr(ri > ρ/2) is the same for any i ∈ [s]. Thus by union
bound we have

Pr(R > 0) ≤ s · Pr(r1 > ρ/2) . (1)
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The event r1 > ρ/2 we can describe in terms of the following experiment: from a collection of ρs balls
were b balls are red and ρs − b balls are green pick at random ρ balls. The probability that we pick q red
balls in this way is exactly Pr(r1 = q). I.e., r1 follows a hyper geometric distribution and we have

Pr(r1 = q) =
(
b

q

)(
sρ− b
ρ− q

)(
sρ

ρ

)−1
.

Note that we can assume b ≥ q or this probability is clearly 0. Writing out the binomial coefficients we
get

Pr(r1 = q) =
q−1∏
i=0

b− i
q − i

ρ−q−1∏
i=0

sρ− b− i
ρ− q − i

ρ−1∏
i=0

ρ− i
sρ− i

. (2)

Assume ρ ≥ q > ρ/2 and focus on the last two products of (2). Then we have

ρ−q−1∏
i=0

sρ− b− i
ρ− q − i

ρ−1∏
i=0

ρ− i
sρ− i

=
ρ−q−1∏
i=0

sρ− b− i
ρ− q − i

ρ−q−1∏
i=0

ρ− q − i
sρ− q − i

q−1∏
i=0

ρ− i
sρ− i

≤
q−1∏
i=0

ρ− i
sρ− i

,

where the inequality follows from b ≥ q. If we plug this into (2) we get

Pr(r1 = q) ≤
q−1∏
i=0

b− i
q − i

q−1∏
i=0

ρ− i
sρ− i

=
q−1∏
i=0

ρ− i
q − i

q−1∏
i=0

b− i
sρ− i

=
(
ρ

q

) q−1∏
i=0

b− i
sρ− i

≤
(
ρ

q

)(
b

sρ

)q
,

Plugging this into (1) we have

Pr(R > 0) ≤ sPr(r1 > ρ/2)

≤ s
ρ∑

q=dρ/2e

(
ρ

q

)(
b

sρ

)q

≤ s
(
b

sρ

)dρ/2e ρ∑
q=dρ/2e

(
ρ

q

)

= s

(
b

sρ

)dρ/2e
2ρ−1 .

Now since v ≤ k by definition of the FCOM functionality, we have as stated in the lemma
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Pr(E1 ∧ E2) ≤ s
(
f + k

sρ

)dρ/2e
2ρ−12−f/6 .

It is easy to verify (simply by finding the derivative) that this is maximized for f = 6dρ/2e/ ln(2) − k.
Thus we have

Pr(E1 ∧ E2) ≤ s
(

6dρ/2e/ ln(2)
sρ

)dρ/2e
2ρ−1−dρ/2e/ ln(2)+k/6

≤ s (5/s)dρ/2e 2ρ−2ρ/3+k/6

= 2− log(s)(ρ−1)/2+log(5)(ρ+1)/2+ρ/3+k/6

≤ 2− log(s)ρ/3+7ρ/3+2+k/6

≤ 2ρ(7−log(s))/3+2+k/6,

where the third inequality is true since (ρ − 1)/2 ≥ ρ/3 which follows from the assumption on ρ. From
ρ = O(k/ log(s)) it follows that Pr(E1 ∧ E2) ≤ 2−k. ut

Lemma 3. πLEGO s a secure implementation of FSFE against a malicious A.

Proof (Lemma 3). We present a simulator S that given access to FSFE simulates the real world view of the
environment Z when Z corrupts A∗.

At the beginning of the simulation Z inputs (init, (b, CB), k) to B who inputs it to FSFE. So S receives
CB = (`, C′) from FSFE and then runs πLEGO as an honest B with input B =

(
0`, CB

)
towards A∗.

In step 2 of Input S cannot immediately simulate the FCOM functionality as it does not know the input
b of the honest B. I.e., it does not know if the FCOM would output Alice cheats making the real world
protocol abort. However, S can check for each j ∈ Binputs if there is a value of bj ∈ {0, 1} that would make
FWCOM output Alice cheats. For each j where such a value of bj exists denote that value b̂j (if more than
one such value exists S can safely abort the protocol) and let ζ be set of all such j’s. Then S sets βj = 1− b′j
and inputs B′ = (j, βj)j∈ζ to FSFE. Note, that this perfectly simulates the selective failure attack that A∗
might do.

Since S fully controls FCOM through out the protocol, S can extract any information A∗ inputs to FCOM.
This includes all committed keys, the indicies of wildcard commitments W and A∗’s input a∗.

Also, S can extract the value ∆ from the commitment done in step 2 Setup. The only problem is that
if the commitment to ∆ is a wildcard commitment, S cannot be sure that A∗ will use this value of ∆ later
in the protocol. However, even if the commitment to ∆ is a wildcard commitment it will become fixed as
soon as it is opened XOR a non-wildcard commitment. This happens in Cut-and-choose if for some i ∈ T
ui = 1 and id(Li) 6∈W (or vi = 1 and id(Ri) 6∈W respectively). Say that this does occurs for some i ∈ T and
A∗ opens the XOR of the two commitments to K, then since S can extract the value Li it can also compute
∆ = Li ⊕K which is the value that the commitment to ∆ is now fixed to open to by FCOM.

The probability that ∆ does not become fixed in this way for some i ∈ T is negligible. To see this
consider that there is at most κ wildcard commitments but |T | = ρs, thus the since the challenges ui and vi
are sampled uniformly at random, the probability that ∆ is not fixed is at most 2κ−sρ. By assumption that
s ≥ κ4 this probability is negligible. I.e., regardless of whether or not A∗ commits to ∆ using a wildcard
commitment, S learns ∆ with overwhelming probability.

If A∗ did not make the protocol abort, S inputs a∗ to FSFE and learns the output z.
By Lemma 2 and the discussion above we have that, with overwhelming probability, all buckets have

a majority of fault free shifted gates that have the same input and output keys. S can now, for all j ∈
outputGates, compute keys corresponding to the actual outputs, i.e., Ojzj

= Oj0⊕zj∆, where Oj0 is the output
zero-key of the fault free gates in Bucket(j) (which where extracted earlier).

Now we argue that the view of A∗ is statistically indistinguishable (in the (FCOM)-hybrid model) when
playing with a real B and when playing with the simulator S. This is by construction: Note that in the
protocol the only information that travels from B to A∗ is
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1. in step 1 of Cut-and-choose, when B opens the commitment Com and the simulator does this as an
honest B would do.

2. B’s reaction to the selective failure attack A∗ may use in step 2 of Input, but as we have argued above,
this is simulated perfectly.

3. In step 3 of Evaluate, when B reveals the output keys to A.

So as long as the simulator S sends the correct output keys to A∗, the views are identical.
It follows from the construction that the simulator S will send the wrong keys only if output of a real

execution of the protocol and the output of the ideal functionality are different.
Those outputs are identical if all buckets have a majority of fault free gates (this is by construction), and

by Lemma 2 this happens with overwhelming probability.
ut

B Proof of Theorem 2

In this section we formally prove the security of our homomorphic commitment scheme.

Proof. We first describe how to simulate the setup phase against a corrupt A∗. The simulator simulates
the ideal functionality

(
n
u

)
-FOT(2µ) to the adversarial A∗ and records the outputs (Ri)i∈[n] and (I, (Ri)i∈I).

The simulator lets R ∈ {0, 1}n×2µ be the matrix with Ri as the i’th row and lets Tj ∈ {0, 1}n be the j’th
column of R. Then the simulator runs the rest of the setup as B would have done. What remains is to input
to the ideal functionality ID = C̄ along with a set W specifying which commitments should be wildcard
commitments.

We describe how W is computed. When A∗ sends a commitment (Uj , j), compute Sj = Uj ⊕ Tj , let
Nj = ncw(Sj) and let ej = Nj ⊕ Sj , where ncw gives the nearest codeword, i.e., ej is the smallest error of
Sj relative to the error correcting code. Let E ∈ {0, 1}n×2µ be the matrix with ei as the i’th column3.

In Lemma 4 and 5 we show that, if A∗ passes the cut-and-choose test, with overwhelming probability
there exists sets F ∈ [2µ] and D ∈ [n] with |D|, |F | ≤ k, so that for all Ei,j = 0 if and only if (i, j) ∈ D×F .
In other words all commitments with in [2µ]\F has all of their errors isolated to indices in D. In Lemma 6 we
show that, if such sets exist then the simulator can efficiently compute sets D and F with the same properties
except |F | ≤ nk + k. Thus the simulator will compute these sets and input (ID,W ) =

(
C̄, F ∩ C̄

)
.

We now describe how to simulate a commitment. Record the received value (yj , j). Let xj = dec(Nj), for
the value Nj computed when the j’th commitment was received in the setup phase as described above. Let
mj = yj ⊕ xj , and input (commit, j,mj) to the ideal functionality. Again the simulation is clearly perfect.

We describe how to simulate an opening. Let cj = (Uj , j) be the commitments sent earlier and let yj be
the correction value sent at commit time. Let oJ = (xJ , rJ , J) be the opening. Iff

wI(enc(xJ ; rJ)) = wI

⊕
j∈J

Uj

⊕ wI
⊕
j∈J

Tj

 ,

input (open, J) to the ideal functionality—when J was not previously opened andW ∩J 6= ∅ follow this input
by (corrupt-open, J,mJ), where mJ = xJ ⊕ yJ and yJ =

⊕
j∈J yj . If wI(enc(xJ ; rJ)) 6= wI

(⊕
j∈J Uj

)
⊕

wI

(⊕
j∈J Tj

)
the simulator rejects the opening and terminates the protocol.

It is clear that this simulation is perfect until one of the following two events occur:
3 Note that the simulator cannot necessarily compute Nj = ncw(Sj) efficiently when there are more than d/2 errors
in Sj (i.e., when hw(ej) > d/2). However, from k < d/2, it follows that Nj = ncw(Sj) is correct when dec(Sj) 6= ⊥.
So, if the simulator lets ej = 1n when dec(Sj) = ⊥, it will only add too many 1 to a column ej where there would
be more than k non-zero entries anyway. It can be seen that this maintains the correctness of the below analysis,
but for notational convenience we simply assume that ncw works for all inputs.
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1. During the simulation of an opening, the simulator inputs (open, J) to the ideal functionality and J∩W =
∅ and it is not the case that mJ =

⊕
j∈J mj for the mj stored in the ideal functionality and the mJ

computed by the simulator.
2. During the simulation of an opening, the simulator inputs (open, J) to the ideal functionality followed

by (corrupt-open, J,mJ) and the equation mJ =
⊕

j∈J mj is not consistent with the equations stored
in FWCOM.

We prove that each of these events occur with negligible probability.
We start with the first case. For j ∈ J , let mj be the values computed by the simulator, i.e.,

Sj = Uj ⊕ Tj , Nj = ncw(Sj) , ej = Nj ⊕ Sj , xj = dec(Nj) , mj = yj ⊕ xj .

For the first event to happen we have that A∗ opened the commitment to some mJ for which

mJ 6=
⊕
j∈J

mj ,

since ⊕
j∈J

mj = yJ ⊕
⊕
j∈J

xj .

Since the opening was of the form oJ = (xJ , rJ , J) with

wI(enc(xJ ; rJ)) = wI

⊕
j∈J

Uj

⊕ wI
⊕
j∈J

Tj

 (3)

and the output of the opening is defined to be

mJ = yJ ⊕ xJ ,

we get that
xJ 6=

⊕
j∈J

xj , (4)

which we will take as the basis for our contradiction. Note for later use how the correction values yj cancel
out and mJ 6=

⊕
j∈J mj became xJ 6=

⊕
j∈J xj . We later use this to simplify the proof of the more involved

second event.
From Sj = Uj ⊕ Tj and (3) we get

wI(enc(xJ ; rJ)) = wI

⊕
j∈J

Sj

 .

Using the argument from the discussion in Section 4, it follows from the above equation that except with
negligible probability

dec

⊕
j∈J

Sj

 = xJ . (5)

Namely, if dec
(⊕

j∈J Sj

)
6= xJ , then

⊕
j∈J Sj and enc(xJ ; rJ) would have Hamming distance at least d/2

and then wI(enc(xJ ; rJ)) = wI

(⊕
j∈J Sj

)
occurs with negligible probability.

It follows from the way we pick W = F ∩ ID (as described above) and from j 6∈ W for j ∈ J , that
hw(ej) ≤ k for all j ∈ J . I.e., ej only has non-zero entries with indices in D and |D| ≤ k. Furthermore, from
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this it also follows that for all j ∈ J the at most k errors in each ej are sitting in the same k positions (those
indexed by D). I.e.,

hw

⊕
j∈J

ej

 ≤ k .
From Sj = Nj ⊕ ej we get that ⊕

j∈J
Sj =

⊕
j∈J

Nj

⊕
⊕
j∈J

ej

 ,

i.e.,

ham

⊕
j∈J

Sj ,
⊕
j∈J

Nj

 ≤ k ,
so

ncw

⊕
j∈J

Sj

 =
⊕
j∈J

Nj .

Since

dec

⊕
j∈J

Nj

 =
⊕
j∈J

dec(Nj) =
⊕
j∈J

xj ,

we get that

dec

⊕
j∈J

Sj

 =
⊕
j∈J

xj . (6)

Equations (4), (5) and (6) are in contradiction. Thus the first event occurs with at most negligible probability.
We then handle the second event. For simplicity we will assume that all yj = 0t such that mj = xj and

mJ = xJ . This is without loss of generality following the comment made above about the yj-values canceling
out.

Note that all equations stored in FWCOM are of the form⊕
j∈J′

Xj = xJ′ , (7)

for some constant value xJ′ and some J ′ ⊂ ID. For any J ′ we can rewrite (7) stored in FWCOM as

⊕
j∈J′∩W

Xj =

 ⊕
j∈J′\W

Xj

⊕ xJ′ .
If we let

ξJ′ =

 ⊕
j∈J′\W

xj

⊕ xJ′ ,
we can then rewrite (7) as an equation ⊕

j∈J′∩W
Xj = ξJ′ ,

where ξJ′ is fixed by the stored (xj , j) for j 6∈W and the constants xJ′ .
By assumption the system {

⊕
j∈J′∩W Xj = ξJ′}J′∈J is inconsistent. It is an easy piece of linear algebra

to see that this means that there exists J1,J2 ⊆ J and V ⊂W such that
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⊕
j∈V

Xj =
⊕
J′∈J1

 ⊕
j∈J′∩W

Xj


⊕
j∈V

Xj =
⊕
J′∈J2

 ⊕
j∈J′∩W

Xj


⊕
J′∈J1

ξJ′ 6=
⊕
J′∈J2

ξJ′ .

(Simply apply Gaussian elimination to solve the system. This must fail, which will yield a system as above.)
From the last equation we get that

⊕
J′∈J1

 ⊕
j∈J′\W

xj

⊕ xJ′
 6= ⊕

J′∈J2

 ⊕
j∈J′\W

xj

⊕ xJ′
 ,

which implies that ⊕
J′∈J1∪J2

 ⊕
j∈J′\W

xj

 6= ⊕
J′∈J1∪J2

xJ′ . (8)

Note that the existence of the equation

⊕
j∈J′∩W

Xj =

 ⊕
j∈J′\W

xj

⊕ xJ′ ,
stored in FWCOM, implies that A∗ sent a codeword SJ′ = enc(xJ′ ; rJ′) such that

wI(SJ′) = wI

⊕
j∈J′

Sj

 ,

which means that

wI

 ⊕
j∈J′∩W

Sj

 = wI

 ⊕
j∈J′\W

Sj

⊕ wI(SJ′) .
Combining, we get that

wI

⊕
j∈V

Sj

 =
⊕
J′∈J1

wI

 ⊕
j∈J′\W

Sj

⊕ wI(SJ′)
wI

⊕
j∈V

Sj

 =
⊕
J′∈J2

wI

 ⊕
j∈J′\W

Sj

⊕ wI(SJ′) .
Using transitivity of = and that wI(SJ′) = wI(enc(xJ′ ; rJ′)) we conclude that

⊕
J′∈J1

wI
 ⊕
j∈J′\W

Sj

⊕ wI(enc(xJ ; rJ′))

 =

⊕
J′∈J2

wI
 ⊕
j∈J′\W

Sj

⊕ wI(enc(xJ′ ; rJ′))

 ,
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which, implies that

wI

 ⊕
J′∈J1∪J2

 ⊕
j∈J′\W

Sj

 = wI

( ⊕
J′∈J1∪J2

enc(xJ′ ; rJ′)
)
. (9)

By construction of W , the string
⊕

J′∈J1∪J2

(⊕
j∈J′\W Sj

)
has distance at most k to a codeword encod-

ing
⊕

J′∈J1∪J2

(⊕
j∈J′\W xj

)
, namely, they differ in at most the k positions in the set D, as we sum only

over j 6∈W . By linearity, the string
⊕

J′∈J1∪J2
enc(xJ′ ; rJ′) is a codeword, encoding

⊕
J′∈J1∪J2

xJ′ . By (9)
and I being chosen at random and independent of the view of A∗, we have that

ham

 ⊕
J′∈J1∪J2

 ⊕
j∈J′\W

Sj

 ,
⊕

J′∈J1∪J2

enc(xJ′ ; rJ′)

 ≤ k
except with negligible probability. It then follows from k < d/2 that with overwhelming probability the
string

⊕
J′∈J1∪J2

enc(xJ′ ; rJ′) is the only codeword within distance k of
⊕

J′∈J1∪J2

(⊕
j∈J′\W Sj

)
. Hence⊕

J′∈J1∪J2
enc(xJ′ ; rJ′) must be the codeword encoding

⊕
J′∈J1∪J2

(⊕
j∈J′\W xj

)
. From this it follows

that
⊕

J′∈J1∪J2
enc(xJ′ ; rJ′) is an encoding of both

⊕
J′∈J1∪J2

xJ′ and
⊕

J′∈J1∪J2

(⊕
j∈J′\W xj

)
. This

contradicts (8), and thus the second event can only occur with negligible probability. This concludes the
proof. ut

Now all that remains is to show that the simulator can indeed pick a set W as described in the proof.
I.e., that we can pick sets F ⊂ [2µ] and D ⊂ [n], where |D| ≤ k and |F | ≤ nk + k, so that all commitments
in [2µ] \ F have their errors isolated to indices in D.

To this end let a set of independent errors, be a set {(ri, ci)}Qi=1 for which ri ∈ [n], ci ∈ [2µ], |{ri}Qi=1| =
|{ci}Qi=1| = Q and Eri,ci

= 1 for i = [Q] (recall that E is the matrix with the error vectors of all commitments
as its columns). Let the independent errors value ν(E) to be the size of the largest set of independent errors.

Lemma 4. The probability that A∗ is not caught cheating during the setup is ≤ αν(E) for a positive constant
α < 1 independent of ν. In particular, if ν(E) = Θ(k), then A∗ is caught except with overwhelming probability.

Proof. To see this, let {(ri, ci)}νi=1(E) be a maximal set of independent errors. Note that if j ∈ C for
some j = ci ∈ {ci}νi=1(E) for the challenge C sent by B, i.e., A∗ is asked to open commitment number
j = ci, she must send an opening (x′j , r′j , j) with enc

(
x′j ; r′j

)
= Nj . Assume namely that she does not: Then

ham
(
enc(x′j ; r′j), Sj

)
≥ d/2, and from the above it also follows that wI(Uj)⊕wI(Tj) = wI(Uj⊕Tj) = wI(Sj),

so wI(Sj) = wI(enc(x′j ; r′j)). Since I is independent of the view of A∗, the probability that wI(A) = wI(B),
when ham(A,B) ≥ d/2 is at most

(
n−d/2
n

)u
, which is negligible. If A∗ does use an opening

(
x′j , r

′
j , j
)
with

enc
(
x′j ; r′j

)
= Nj , then ej = enc

(
x′j ; r′j

)
⊕ Sj has a 1 in position ri, so A∗ is caught with probability at least

u
n . The probability that j = ci is chosen for opening, i.e., j ∈ C, is at least 1

2 . This means the probability A∗
is not caught is at most α = 1

2
(
1− n−u

n

)
. This holds independently for the ν(E) errors (ri, ci) as they sit in

different rows and columns by the definition of ν. ut

By Lemma 4 we can henceforth without loss of generality assume that the independent error value of E is
less than k.

We then let a pair of error isolating sets be two sets D ⊂ [n] and F ⊂ [2µ] such that if i ∈ [n] \ D
and j ∈ [2µ] \ F , then Ei,j = 0. I.e., sets so that all the ones in E are isolated to at most |D| rows and |F |
columns. We let the error isolation value µ(E) be the smallest integer Q such that there exists error isolating
sets D and F with |D|, |F | ≤ Q. We show that the error isolation value is less than or equal the independent
error value.
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Lemma 5. µ(E) ≤ ν(E).

Proof. If E contains only zeros, then µ(E) = 0 = ν(E). Otherwise, we prove the lemma by constructing a
set of independent errors G from E, so that µ(E) ≤ |G|: pick (r1, c1) to be in G such that Er1,c1 = 1. Then
greedily pick values (ri, ci) such that Eri,ci

= 1 and such that ri is different from all rj<i and ci is different
from all cj<i, and put these in G. Do this till it is not longer possible to pick a new pair (ri, ci). Then by
definition of ν we have |G| ≤ ν(E) (since G is a set of independent errors). Furthermore, note that all errors
are now isolated to either rows indexed by ri or columns indexed by ci for some pair (ri, ci) ∈ G. Thus by
definition of µ we have µ(E) ≤ |G|. ut

Finally we show that an pair of almost optimal error isolating sets can be found efficient by simulator.

Lemma 6. When µ(E) ≤ k, the simulator can efficiently compute D and F with |D| ≤ k and |F | ≤ nk+ k
such that if i ∈ [n] \D and j ∈ [2µ] \ F , then Ei,j = 0. I.e., all the errors in the codewords are isolated to
the k rows of D and nk + k columns of F 4.

Proof. To construct F and D we proceed as follows: First add the index of any column in E with Hamming
weight more than k to F and add the index of any row with Hamming weight more than k to D. There
are at most k such columns and k such rows, or we could not have µ(E) ≤ k. Now all remaining rows have
at most Hamming weight k. There are at most n remaining rows. This gives a total of nk non-zero entries
in the remaining rows. Add the index of any columns with one of these non-zero entries to F . This gives
|F | ≤ nk + k. ut

C Proof of complete construction

We here formally prove the theorems and lemmas needed to make our commitment scheme usable in the
MiniLEGO protocol in Fig. 7.

C.1 Oblivious opening

Proof (Theorem 3). We focus on the simulator when simulating the Oblivious-Opening command, since
for all other commands we can use the simulator from the proof of Theorem 2. Furthermore, the case of
corrupted B is trivial so we will focus on corrupted A.

On output (OT-choose, otid) from FCOM the simulator observes the messages (O′0, O′1) as A inputs them to
FOT. Later when A sends OTP keysM0 andM1 the simulator computes both openings o′0 = O′0⊕M0 and o′1 =
O′1 ⊕M1. For each i ∈ {0, 1} the simulator parses o′i as o′i = (xJi

, rJi
, Ji) and inputs (OT-open, otid, J0, J1)

to FCOM. So far the simulation is perfect.
Note that from this point on the behavior of B in the real world protocol is the same as when he receives

o′b as the opening in a regular opening. Since there is no other communication from B to A, A will only learn
whether or not B accepts or rejects the opening of o′b. Apart from handling the input (guess, g), essentially
the same goes for the ideal functionality FCOM. Thus, if the simulator ignores o′1−b and runs the simulator
from the proof of Theorem 2 when opening o′b, the simulation will go through. The only problem is that the
simulator does not know the value of b. To solve this the simulator will run the simulator from the proof of
Theorem 2 on both o′0 and o′1, and if necessary use FCOM to try and guess b. There are three cases:

1. The simulator of Theorem 2 rejects both openings. In this case the simulator of the Oblivious-Opening
can safely reject and terminate, since o′b must be a rejecting opening.
The simulation is clearly perfect.

4 Given enough time the simulator could get |F | down to k, but we conjecture that it is NP hard to get get |F | down
to O(k) due to the similarity to the bipartite clique problem.
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2. The simulator of Theorem 2 accepts both openings. In this case o′b must be an accepting opening. The sim-
ulator of the Oblivious-Opening can safely input (guess,⊥) followed by (corrupt-open, J0, J1,mJ0 ,mJ1)
to FCOM, were mJ0 and mJ1 are computed as by the simulator of Theorem 2.
The simulation is indistinguishable from the real world by the same argument as in the proof of Theo-
rem 2.

3. For some g ∈ {0, 1} the simulator of Theorem 2 rejects on opening o′1−g but not o′g. In this case the
simulator of the Oblivious-Opening inputs (guess, g) to FCOM. If FCOM terminates the simulator does the
same. Otherwise, the simulator learns that b = g, and proceeds to input (corrupt-open, J0, J1,mJ0 ,mJ1)
where mJb

is computed as by the simulator of Theorem 2 and mJ1−b
= 0t.

If FCOM terminates on input (guess, g) the simulation is perfect since o′b is a rejecting opening. Otherwise,
the simulation is indistinguishable from the real world by the same argument as in the proof of Theorem 2.

So since in all cases the simulation is indistinguishable from the from the real world protocol, this
concludes our proof.

ut

C.2 Less wildcards

Proof (Theorem 4).
In the setup phase the simulator behaves as an honest B while fully controlling the FWCOM functionality.

Doing so the simulator can read of the set of wildcard commitments input by corrupt A W ′ when initializing
FWCOM with (init, ID′,W ′) for |W ′| ≤ nk+k and |ID′| = 2µ′. For all inputs (commit, i, xi) made by A during
the setup the simulator records (xi, i). For all inputs (open, {i, π(i)}) followed by (corrupt-open, {i, π(i)}, zi)
made by A the simulator records (zi, i).

After the setup phase the simulator computes the set W = {i ∈ ID ∩W ′|π(i) ∈ W ′}, i.e., W is the
set of wildcard commitments in ID that were paired with another wildcard commitments. To initialize the
FCOM functionality, (init, ID,W ) with |ID| = µ′ and |W | ≤ k, the simulator then inputs ID as the set of
commitment identifiers and W as the set of wildcard commitments. This makes FCOM output ID to B and
simulation is clearly perfect.

From this point on the simulator is going to simulate the FWCOM functionality by essentially just forward-
ing messages between A and FCOM. Note though that if A gives an input to FWCOM with an id j ∈ ID′ \ ID
then this input cannot simply be forwarded to FCOM because that functionality only knows about id’s in ID.
This is not a problem though because for any such input A could make, FWCOM outputs j to B and honest B
terminates. So, in case of such an input the simulator just terminates the protocol. In the following we will
assume that A only makes inputs to FWCOM with id’s in ID.

To simulate the j’th commitment the simulator records the value (yj , j) sent by A. If j ∈ W ′ \W the
simulator lets mj = (xπ(j)⊕ zj)⊕ yj . Otherwise, the simulator lets mj = xj ⊕ yj . Then the simulator inputs
(commit, j,mj) to the FCOM, and the functionality outputs (commit, j) to B.

Note that for j ∈ ID \W ′ the FCOM functionality used in the ideal world stores the equation Xj = xj⊕yj
while the FWCOM functionality used in the real world would have stored Xj = xj . Furthermore, for j ∈W ′\W
FCOM stores Xj = xπ(j) ⊕ zj ⊕ yj while FWCOM stores Xj ⊕ Xπ(j) = zj and Xπ(j) = xπ(j). Thus, ignoring the
correction values, the restrictions on how to open commitment j ∈ ID is equivalent in both worlds. I.e., the
XOR of commitments in any set J ⊂ ID can, in the real world, be opened to xJ using FWCOM if and only if
the XOR of commitments in J can be opened to mJ = xJ ⊕

(⊕
j∈J yj

)
in the ideal world using FCOM.

On input (open, J) from A the simulator forwards the input to FCOM. On input (corrupt-open, J, xJ) the
simulator inputs

(
corrupt-open, J,mJ = xJ ⊕ (

⊕
j∈J yj)

)
to FCOM. By the discussion above the simulation

is perfect.
To simulate the Oblivious-Openings the simulator forwards messages between A and the FCOM in es-

sentially the same way as for the regular opening. I.e., all messages are forwarded verbatim except if A
inputs the message (corrupt-open, J0, J1, xJ0 , xJ1). In that case the simulator inputs to FCOM the command(

corrupt-open, J0, J1, xJ0 ⊕ (
⊕

j∈J0
yj), xJ1 ⊕ (

⊕
j∈J1

yj)
)
. Again the simulation is perfect.
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The only thing left to argue is that with overwhelming probability |W | ≤ k. Consider any of µ′ pairs of
commitments opened in the setup phase. The probability that both commitments in this pair are wildcard
commitments less than

(
nk+k

2µ′

)2
. As there are µ′ pairs, by union bound we have

Pr(|W | ≥ k) =
(
k

µ′

)(
nk + k

2µ′

)2k

≤ µ′k
(
nk + k

2µ′

)2k

≤ (nk + k)2knk + k−2k2−2k = 2−2k < 2−k .

where the last inequality is by µ′ > (nk + k)2. ut

C.3 Or-Opening

Proof (Theorem 5). From Theorem 4 we have that the protocol implements the Setup, Commit, Open
and Oblivious-Opening commands of FCOM with |ID| = µ + 6kω and |W | ≤ k in the (FWCOM)-hybrid
model when initializing FWCOM with |ID′| = µ′ = 2(µ+ 6kω) and |W ′| ≤ nk+ k. So in the rest of this proof
we will simply assume that we have access to these commands of FCOM with |ID| = µ+ 6kω and |W | ≤ k.
So for these commands the simulator simply simulates all interaction between A and FWCOM by interacting
correspondingly with the FCOM functionality and recording all messages. Clearly this simulation is perfect,
so for the remainder of proof we will concentrate on the Or-Opening command.

For the Or-Opening the simulator acts as the honest B. Note that since the simulator has recorded all
messages between A and FWCOM it can simulate the FWCOM functionality perfectly. This means that when
the simulator rejects the opening the simulation has been perfect.5

Assuming that the opening was not rejected, the simulator then needs to interact with FCOM so that the
functionality outputs (OR-open, J0, J1,m) to B with overwhelming probability. I.e., the simulator must find
an a′ so that either Ja′ ∩W = ∅ and

⊕
j∈Ja′

mj = m or Ja′ ∩W 6= ∅ and the equations stored in the FCOM
functionality allows to corruptly open the XOR of commitments Ja′ to m.

To show that the simulator can do this we first show that, given the opening was not rejected, there
exists an i′ ∈ [3k] and a ji′a′ ∈ {j1

0 , j
1
1 , . . . , j

3k
0 , j3k

1 } = Dd with the properties that

1. mi′

ai′ = m, where mi′

a′ is the message committed to as commitment ji′a′ .
2. The XOR of commitments in Ja′⊕pi′ can be opened to mi′

a′ (honestly or corruptly).

Notice that such a ji′a′ implies that Ja′⊕pi′ can be opened to m.
We would like to prove this by showing that for each i ∈ [3k] if there is not a jia′ with both properties

then the opening is rejected with probability 1
2 . Thus, assuming the opening is not rejected the probability

that there is no i ∈ [3k] with a jia′ with both properties is at most 2−3k. However, the wildcard commitments
get in the way of such a straight forward proof.

Instead we assume that the set H ⊂ [3k] where for all i ∈ H neither ji0 nor ji1 is a wildcard commitment,
i.e.,

H =
{
i ∈ [3k]|ji0, ji1 6∈W

}
,

has size least k. Below we show that since honest B chooses the set Dd ⊂ ID uniformly at random, this is
the case with overwhelming probability.

We then have that for each i ∈ H the opening will reject with probability at least 1
2 if there is not a jia′

with property 1. Namely, if ci = 1 A must open a commitment jia′ to m and by i ∈ H we have that jia′ 6∈W
can only be opened to mi

a′ .
5 Note that to simulate the FWCOM functionality the simulator needs to know all the equations stored inside the
functionality. This is why we cannot do Or-Openings after the first Oblivious-Opening: After an Oblivious-Opening
the equations stored in FWCOM depend on B’s secret bit b which would be unknown to the simulator.
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On the other hand for each i ∈ H the opening will also reject with probability at least 1
2 if there is not

a jia′ with property 2. Namely, if ci = 0 A must be able to open the XOR of commitments in Ja′⊕pi ∪ {jia′}
to 0, but since jia′ 6∈W this is equivalent to being able to open the XOR of commitments in Ja′⊕pi to mi

a′ .
Thus with probability at least 1 − 2−k there exists an i ∈ H and a jia′ with both the above properties.

Note that since the simulator knows all messages sent to FWCOM by A it can easily find such a jia′ .
The simulator then inputs (OR-open, J0, J1, a

′) to the FCOM functionality, and if Ja′ ∩W 6= ∅ proceeds
to input (corrupt-open, Ja′ ,m). The FCOM functionality then outputs (J0, J1,m) to B and the simulation
is indistinguishable to the real world protocol.

To conclude the proof we must show that with overwhelming probability |H| ≥ k. To see this we use that
if |Dd ∩W | ≤ s then |H| ≥ 3k − 2s. Thus we will show that |Dd ∩W | ≤ k with overwhelming probability.

Consider some j ∈ Dd and assume  ⋃
i∈[ω]

Di \ {j}

 ∩W = ∅ ,

then the probability that j ∈ W is k/((µ + 6kω) − 6kω + 1) = k/(µ + 1). Therefore, for each j ∈{
j1

0 , j
1
1 , . . . , j

3k
0 , j3k

1
}
we have that

Pr(j ∈W ) ≤ k

µ+ 1 .

Now, let Y1, . . . , Y6k be random independent variables where each Yi = 1 with probability k/(µ + 1) and
Yi = 0 otherwise, and let S =

∑
i∈[6k] Yi. We then have that

1− Pr(|H| ≥ k) ≤ Pr(|Dd ∩W | > k|) ≤ Pr(S > k|) .

The random variable S has expected value E [S] = 6k k
µ+1 ≤ 1 by assumption on µ. Thus by Hoeffdings

inequality we have that
Pr(S > k) ≤ e−2 2k2

6k = e−
2
3k ,

which means that
Pr(|H| ≥ k) ≥ 1− e− 2

3k .

I.e., we have shown that H has size at least k with overwhelming probability. ut
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D List of Variable Names

Table 2. Overview of the different variables used along with their semantic meaning.

k Statistical security parameter
t Computational security parameter
s Amount of AND gates in a circuit
` Amount of input and output bits to the circuit
n Size of commitments in bits, Θ(k)
u Size of message to commit to in bits
φ The randomness used in the XOR-homomorphic commitments
d The minimum distance of the secret sharing error correcting code (ssecc)
w Defined such that d = 2w + 1 and w < n/2
µ Variable expressing the amount of commitments in a given protocol
κ Variable expressing amount of wildcard commitments in a given protocol
ω Amount of Or-Openings
ρ Replication factor. Defined as ρ = O(k/ log(s))
Γ Gates in the replicated circuit. Defined as 2ρs
Γ ′ Keys in the replicated circuit. Defined as 3Γ + 1
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