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Abstract. In Eurocrypt 2012, Lewko presented a fully secure IBE scheme
in the prime order setting based on the decisional linear assumption. We
note that some random factor involved in the ciphertext can further be
used to hide yet another message , and get a new fully secure IBE scheme
with better message-ciphertext rate. Similar to Lewko’s scheme, we use
dual pairing vector space in prime order bilinear groups to simulate the
canceling and parameter hiding properties of composite order settings.
The security of our scheme is based on the subspace assumption, which
can be reduced to the decisional linear assumption. We employ the dual
system encryption technique in our security proof.
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1 Introduction

In 1984, Shamir [16] introduced the notion of Identity-Based Encryption
(IBE). An IBE is a public key encryption scheme in which the public key
can be set to any string representing one’s identity. A trusted authority
holds a master secret key which allows it to create secret keys for any
identity. There are two kinds of security requirements for IBE schemes:
a weaker one called selective-ID security in which the adversary selects
an ID priori to other moves and attacks the fixed ID; and a stronger one
called fully security in which the adversary adaptively selects the ID to
be attacked during the security game. IBE schemes are first realized in
the random oracle model, by Boneh and Franklin [3] using bilinear groups
and Cocks [7] under quadratic residue assumption. Later, realization in
the standard model was proposed by Boneh and Boyen [2] and Canetti,
Halevi and Katz [6], but only selective-ID security was achieved in [2, 6].

The first fully secure IBE scheme that has a tight reduction in the
standard model was proposed by Waters in 2009 [17], in which a new proof
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technique called dual system encryption was used. The IBE scheme of [17]
was constructed with bilinear maps in the prime order setting, and its
security was based on the decisional linear (DLIN) assumption and bilin-
ear decisional Diffie-Hellman (BDDH) assumption. However, the scheme
was bothered by too long parameters and complicated structure. In [15]
Ramannal, et al. gave a simplification of Waters’ scheme in asymmetric
bilinear groups, but based on assumptions which are not so standard.

Shortly later another fully secure IBE scheme was given by Lewko
and Waters in 2010 [12] in the composite order setting. Their scheme has
simple structure resembles that of [2]. In the security proof they used two
properties of composite order groups: one is called “canceling”, that is,
for any g1 ∈ Gp1 , g2 ∈ Gp2 , e(g1, g2) = 1; the other is called “parameter
hiding”, which means ga1 information-theoretically hides a mod p2.

Since the computation of bilinear map in composite order groups is
less efficient, much effort has been contributed to finding transformations
to prime order settings. In 2010, Freeman [8] provided a generic method
for transforming schemes in composite order settings [4, 9, 11] to prime
order settings, but the method can not be applied to some schemes. Lewko
[10] observed that the method of [8] perfectly simulated the “canceling”
property, yet was not a useful approach to achieve the “parameter hiding”
property. Lewko [10] used dual pairing vector space which was proposed
by Okamoto and Takashima [13, 14] to simulate both properties in the
prime order setting, and got a fully secure IBE scheme akin to the one in
[2]. Specially, to achieve the canceling property, a pair of dual orthonormal
bases (B,B∗) was used in [10]; to achieve the parameter hiding property,
for a matrix A to be hidden, a pair of random dual orthonormal bases
(B,B∗) was chosen, then A was embedded in (B,B∗), and a new pair of
dual orthonormal bases (BA,B∗A) was generated, which looks random to
the adversary who does not know (B,B∗). The scheme in [10] has simple
structure and its security is based on the DLIN assumption.

In the IBE sheme in [10], both ciphertext and secret key employ two
parameters, s1, s2 and r1, r2. The two exponents play almost the same
roles, except that in the ciphertext, the element hiding the message only
uses s1. We find that both parameters could be used to hide messages,
thus more messages could be encrypted without adding too many ele-
ments to the ciphertext.

Our Result. In this paper, we improve the IBE scheme presented in
[10] by using both parameters to hide messages in the ciphertext, hence
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get an IBE scheme that can encrypt two elements in the target group
simultaneously. As in [10], we use dual orthonormal bases of dimension 6.
Compared to Lewko’s scheme, we only add one element from the target
group to the public parameters and ciphertexts, double the length of the
decryption key. In table 1 we give a comparison of Lewko’s scheme and
ours. The columns #PP, #Msk,#msg, #cpr, #key provide the number of
group elements in the public parameters, the master secret key, messages,
ciphertexts and decryption keys. Encryption efficiency counts the number
of scalar multiplications in G for every group element while decryption
efficiency counts the number of pairings that are required. Key generation
efficiency is given by the number of scalar multiplications in G. We can see
that we encrypt double messages with little extra cost, thus our scheme
has better message-ciphertext rate. Similar to Lewko’s paper, we use dual
pairing vector space in prime order bilinear groups to realize the canceling
and parameter hiding properties.

Scheme #PP #Msk #msg #cpr #key enc eff dec eff keygen eff msg-cpr rate

Lewko’s 25 30 1 7 6 25 6 6 1:7

Ours 26 36 2 8 12 13 6 12 2:8

Table 1. A comparison of Lewko’s IBE scheme and ours

In the security proof we use the dual system encryption technique.
Firstly we change the challenge ciphertext to be semi-functional. Secondly
answers to key extraction queries are changed to be semi-functional one
by one. Here we change every key in two steps: temporary semi-functional
first, then semi-functional. Finally we change the challenge ciphertext to
a semi-functional encryption of a random message. We argue that any
PPT adversary can not tell the difference between two adjacent games.

Moreover, in the last game the challenge ciphertext is independent of
the identity, so our scheme is anonymous. The IBE scheme in Lewko’s
paper is also anonymous for the same reason. Anonymous IBE [5] is a
useful component to construct public key encryption with keyword search
(PEKS) schemes [1].

The rest of our paper is organized as follows: in section 2 we give the
formal definition of IBE and the security definition; in section 3 we give
the complexity assumptions; in section 4 we describe our construction
and prove its security; section 5 is the conclusion of the whole paper.
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2 Definitions

2.1 IBE

Definition 1 (IBE). An Identity-Based Encryption scheme (IBE) [16]
is a tuple of four probabilistic polynomial time (PPT) algorithms: (Setup,
Keygen, Encrypt, Decrypt.)

Setup(1λ): take as input the security parameter λ and output public pa-
rameters PP and the master secret key Msk.

Keygen(Msk, ID): take as input the master secret key Msk, identity ID
and output a private key SkID.

Encrypt(PP,M, ID): take as input the public paramerters PP , message
M and identity ID and output a ciphertext C.

Decrypt(C, SkID): take as input the ciphertext C and secret key SkID
and output the message M .

For correctness, we require that all properly generated ciphertexts can
be decrypted correctly.

2.2 Security Definition

Here we give the fully security definition of IBE. The security of an IBE
scheme is defined using the following game between an adversary A and
a challenger.

Setup: The challenger runs the Setup algorithm, gives the public param-
eters PP to the adversary A and keeps the master secret key Msk to
itself.

Phase 1: A adaptively issues identity queries ID, the challenger re-
sponds with SkID by calling the Keygen algorithm.

Challenge: A gives two messages and a challenge identity (M0,M1, ID
∗)

to the challenger. The challenge identity should never be queried in
phase 1. The challenger picks a random bit b and responds with
Encrypt(PP,Mb, ID

∗).
Phase 2: A adaptively issues additional queries as in Phase 1, with the

restriction that ID∗ is never allowed to be queried.
Guess: A outputs a guess b′ of b.
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The advantage of A is defined as AdvIBEA =
∣∣∣Pr[b′ = b]− 1

2

∣∣∣.
Definition 2 (Fully Security). An IBE scheme is fully secure if for all
PPT adversary A, AdvIBEA is negligible in λ.

3 Complexity Assumptions

In this section we introduce the complexity assumptions that will be used
in our proof. As in [10], we use dual pairing vector space to achieve the
canceling and parameter hiding properties in the prime order setting.

3.1 Prime Order Symmetric Bilinear Maps

Let G,GT be cyclic groups of prime order p, with a bilinear map e :
G×G→ GT satisfying the following properties:

– (Bilinear) ∀u1, u2 ∈ G, ∀a, b ∈ Zp, e(ua1, ub2) = e(u1, u2)
ab.

– (Non-degenerate) ∃g ∈ G such that e(g, g) has order p in GT .

We assume that the group operations in G and GT as well as the
bilinear map e can be efficiently computed.

Vector computation rules are defined as follows:

– For v = (v1, v2, ..., vn) ∈ Znp and g ∈ G, gv := (gv1 , gv2 , ..., gvn).

– For any a ∈ Zp and v,w ∈ Znp ,

gav := (gav1 , ..., gavn), gv+w := (gv1+w1 , ..., gvn+wn).

– en is used to denote the product of the component-wise pairings:

en(gv, gw) :=

n∏
i=1

e(gvi , gwi) = e(g, g)v·w.

Dual Pairing Vector Spaces. Next let us review the concept of dual pairing
vector spaces from [13, 14, 10]. For a dimension n, we say two random
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chosen bases B := (b1, ...,bn),B∗ := (b∗1, ...,b
∗
n) are dual orthonormal if

for i 6= j,

bi · b∗j = 0(mod p)

and bi ·b∗i = ψ for all i, where ψ is a uniformly random element in Zp. In
the following we let Dual(Znp ) be the set of dual orthonormal bases and

let (B,B∗) R← Dual(Znp ) denote choosing random dual orthonormal bases
B and B∗ from Znp .

Canceling Property. For a generator g ∈ G, we note that en(gbi , gb
∗
j ) = 1

whenever i 6= j. We call this property as “canceling” and it will play an
important role in our scheme.

Parameter Hiding Property. Next we will introduce the other property
called “parameter hiding”. Generally speaking, one can apply an invert-

ible matrix A to a random pair of dual orthonormal bases (B,B∗) R←
Dual(Znp ), and get a new pair of dual orthonormal bases which is ran-
domly distributed for adversaries who do not know (B,B∗). Hence the
newly generated bases information-theoretically hide the matrix A. Next
we describe how the new pair of dual orthonormal bases is generated.

For (B,B∗) R← Dual(Znp ), let m < n be a fixed number, and A be an
invertible m×m matrix. We use Sm to denote a subset of [n] satisfying
|Sm| = m, let Bm be an n×m matrix consists of bi for i ∈ Sm. Associated
with Sm we define BA as follows: for i /∈ Sm, keep bi unchanged; for i ∈
Sm, swap bi for the corresponding column in BmA. We get B∗A in a similar
way except that for i ∈ Sm, we swap b∗i for the corresponding column
in B∗m(A−1)T . From Lemma 1 in [10] we get that (BA,B∗A) is distributed
as random dual orthonormal bases as long as (B,B∗) is randomly chosen.
Especially, the pair (BA,B∗A) information-theoretically hides A.

3.2 Complexity Assumptions

Decisional Linear Assumption (DLIN). To formally define our assump-
tion, we let G denote a group generation algorithm, which takes in a
security parameter λ and outputs a symmetric bilinear map e together
with G,GT of order p.

Let G be a group generator, run G(1λ) to get (p,G,GT , e), and ran-
domly choose g, f, v ∈ G, c1, c2, w ∈ Zp, T0 = gc1+c2 , T1 = gw. The advan-
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tage of A is defined as

AdvDLINA =
∣∣∣Pr[A(g, f, v, f c1 , vc2 , T1) = 1]−Pr[A(g, f, v, f c1 , vc2 , T0) = 1]

∣∣∣.
Definition 3 (DLIN). We say that G satisfies DLIN assumption if for
all PPT algorithm A, AdvDLINA is negligible in λ.

Next we describe the subspace assumption in [10], here we require
that k ≤ n

3 .

Subspace Assumption. Let G be a group generator algorithm as above,
run G(1λ) to get (p,G,GT , e), and randomly choose

(B,B∗) R← Dual(Znp ), g
R← G,

η, β, µ1, µ2, µ3, τ1, τ2, τ3
R← Zp,

U1 := gµ1b1+µ2bk+1+µ3b2k+1 , ..., Uk := gµ1bk+µ2b2k+µ3b3k ,

V1 := gτ1ηb
∗
1+τ2βb

∗
k+1 , ..., Vk := gτ1ηb

∗
k+τ2βb

∗
2k ,

W1 := gτ1ηb
∗
1+τ2βb

∗
k+1+τ3b

∗
2k+1 , ...,Wk := gτ1ηb

∗
k+τ2βb

∗
2k+τ3b

∗
3k ,

D := (gb1 , gb2 , ..., gb2k , gb3k+1 , ..., gbn , gηb
∗
1 , ..., gηb

∗
k ,

gβb
∗
k+1 , ..., gβb

∗
2k , gb

∗
2k+1 , ..., gb

∗
n , U1, ..., Uk, µ3)

The advantage of A is defined as

AdvSAA =
∣∣∣Pr[A(D,V1, ..., Vk) = 1]− Pr[A(D,W1, ...,Wk) = 1]

∣∣∣.
In this paper we use subspace assumption with n = 6 and k = 2 or

k = 1.

Definition 4. We say that G satisfies the subspace assumption if for all
PPT algorithm A, AdvSAA is negligible in λ.

It was shown in [10] that the subspace assumption can be reduced to
DLIN assumption.

Lemma 1. [10] If there is an adversary A that can break the subspace
assumption with probability ε, then we can build an algorithm B having
the same advantage in solving the DLIN problem.
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4 An IBE Scheme with Better Message-ciphertext Rate

4.1 Our Construction

In this section we describe our construction of IBE scheme. The structure
of our scheme is similar to that in [10], however, by using both random
parameters in the ciphertext to hide messages, we can get an IBE scheme
that can encrypt two elements from GT . Also we note that in Lewko’s
scheme they used θ, σ along with d∗i , i = 1, ..., 4, but these two parameters
is useless in the proof, so we avoid using θ, σ in our scheme. This mod-
ification does not decrease the efficiency, and results in a more elegant
structure.

Here we assume messages are from the target group G2
T and identities

are from Zp.

Setup(1λ) : The setup algorithm runs G(1λ) to obtain (p,G,GT , e). It

samples random dual orthonormal basis (D,D∗) R← Dual(Z6
p), chooses

random α1, α2 ∈ Zp and computes Ω1 = e(g, g)α1d1·d∗1 and Ω2 =
e(g, g)α2d1·d∗1 . The public parameters are: PP = (G, p,Ω1, Ω2, g

d1 , gd2 , gd3 , gd4).
The master secret key is Msk = (gd

∗
1 , gα1d∗1 , gd

∗
2 , gd

∗
3 , gα2d∗3 , gd

∗
4).

Keygen(Msk, ID) : The key generation algorithm chooses random r1, r2, r3, r4 ∈
Zp and sets the secret key SkID as:

K1 = g(α1+r1ID)d∗1−r1d∗2+r2IDd∗3−r2d∗4 ,

K2 = gr3IDd∗1−r3d∗2+(α2+r4ID)d∗3−r4d∗4 .

Encrypt(PP,M1‖M2, ID) : The encryption algorithm chooses random
s1, s2 ∈ Zp and computes the ciphertext C as:

C1 = M1Ω
s1
1 , C2 = M2Ω

s2
2 , C3 = gs1d1+s1IDd2+s2d3+s2IDd4 .

Decrypt(C, SkID) : The decryption algorithm computes the message as:

M1 = C1/en(C3,K1),M2 = C2/en(C3,K2).

Correctness can be easily verified since en(C3,K1) = Ωs1
1 , e(C3,K2) =

Ωs2
2 . Here d5 and d6 are used in the proof to form semi-functional cipher-

texts and keys.
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4.2 Security Proof

In the security proof of our IBE scheme, we use semi-functional cipher-
texts and semi-functional keys, which are widely used in previous litera-
tures [12, 17, 10, 15].

Semi-functional Ciphertexts. To create a semi-functional ciphertext,
we first choose random s1, s2, , z1, z2 ∈ Zp and set

C1 = M1Ω
s1
1 , C2 = M2Ω

s2
2 , C3 = gs1d1+s1IDd2+s2d3+s2IDd4+z1d5+z2d6 .

Semi-functional Keys. To create a semi-functional key, we first choose
random r1, r2, r3, r4, t1, t2, t3, t4 ∈ Zp and set:

K1 = g(α1+r1ID)d∗1−r1d∗2+r2IDd∗3−r2d∗4+t1d∗5+t2d∗6 ,

K2 = gr3IDd∗1−r3d∗2+(α2+r4ID)d∗3−r4d∗4+t3d∗5+t4d∗6 .

We can see that a normal ciphertext can be correctly decrypted by a
semi-functional key, and a semi-functional ciphertext can be correctly de-
crypted by a normal key, but when a semi-functional key is used to decrypt
a semi-functional ciphertext, we will get the blinding factor multiplied by
the additional term e(g, g)d1·d∗1(t1z1+t2z2) and e(g, g)d1·d∗1(t3z1+t4z2).

Theorem 1. If DLIN assumption holds, then our IBE scheme is fully
secure.

Proof. To prove the security of our scheme, we define a sequence of games
that any PPT adversary can not tell the difference between two adjacent
games. Let q denote the number of key extraction queries that the adver-
sary makes during the whole game.

GameReal: the real fully security game.
Game0: the same as GameReal except that the challenge ciphertext is

semi-functional.
Gamej: for j from 1 to q, Gamej is like Game0 except that the first j

key extraction queries are answered with semi-functional keys. The
rest of the keys are normally generated.

GameFinal: the same as Gameq, except that the challenge ciphertext is
a semi-functional encryption of a random message.
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Let AdvRealA denote A’s advantage in GameReal, Adv
i
A denote A’s advan-

tage in Gamei and AdvFinalA denote A’s advantage in GameFinal. It is
clear that AdvFinalA = 0.

Lemma 2. Suppose that there exists a PPT adversary A such that AdvRealA −
Adv0A = ε, then there exists a PPT adversary B with advantage ε in break-
ing the subspace assumption, with k = 2 and n = 6.

Proof. B receives

D = (gb1 , ..., gb4 , gηb
∗
1 , gηb

∗
2 , gβb

∗
3 , gβb

∗
4 , gb

∗
5 , gb

∗
6 , U1, U2, µ3),

along with T1, T2, and its task is to decide whether T1, T2 is independent
of gb

∗
5 , gb

∗
6 . B picks random invertible matrix A ∈ Z2×2

p . We define dual
orthonormal bases F,F∗ as follows:

f1 = ηb∗1, f2 = ηb∗2, f3 = βb∗3, f4 = βb∗4, f5 = b∗5, f6 = b∗6,

f∗1 = η−1b1, f
∗
2 = η−1b2, f

∗
3 = β−1b3, f

∗
4 = β−1b4, f

∗
5 = b5, f

∗
6 = b6.

Then B implicitly sets D = FA,D∗ = F∗A, that is, for i = 1, 2, 3, 4,di =
fi,d

∗
i = f∗i , (d5,d6) = (f5, f6)A, (d

∗
5,d
∗
6) = (f∗5 , f

∗
6 )(A−1)T . Following from

Lemma 1 in [10], we get that (D,D∗) is randomly distributed and reveals
no information about A.

Next B chooses random α′1, α
′
2 and implicitly sets α1 = ηα′1, α2 =

βα′2, then B can compute e(g, g)α1d1·d∗1 = en(gb1 , gηb
∗
1)α
′
1 , e(g, g)α2d1·d∗1 =

en(gb3 , gβb
∗
3)α
′
2 . Thus B sets up the public parameters and sends them

to A. B only knows the gα1d∗1 , gα2d∗3 part of the master secret key and
gηd

∗
1 , gηd

∗
2 , gβd

∗
3 , gβd

∗
4 . When A submits a key extraction query ID, B first

chooses r′1, r
′
2, r
′
3, r
′
4 and implicitly sets r1 = ηr′1, r2 = βr′2, r3 = ηr′3, r4 =

βr′4. B sets the secret key as:

K1 = g(α
′
1+r

′
1ID)ηd∗1−r′1ηd∗2+r′2IDβd∗3−r′2βd∗4 ,

K2 = gr
′
3IDηd

∗
1−r′3ηd∗2+(α′2+r

′
4ID)βd∗3−r′4βd∗4 .

At some point, A sends B the challenge identity ID∗ and (M0,M1). B
chooses a random bit b ∈ {0, 1} and computes the challenge ciphertext as
follows:

C1 = Mb,1en(T1, g
b1)α

′
1 , C2 = Mb,2en(T1, g

b3)α
′
2 , C3 = T1(T2)

ID∗ .
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and gives the answer to A.

If (T1, T2) = (V1, V2), then the respond is a normal ciphertext with
s1 = τ1, s2 = τ2. If (T1, T2) = (W1,W2), then the respond is a semi-
functional ciphertext with s1 = τ1, s2 = τ2, and (z1, z2)

T = τ3A
−1(1, ID∗)T .

Thus when (T1, T2) = (V1, V2) we properly simulate GameReal and when
(T1, T2) = (W1,W2) we simulate Game0. So B can leverage A’s advantage
in distinguishing GameReal and Game0 to achieve the same advantage
against the subspace assumption. ut

Lemma 3. Suppose that there exists a PPT algorithm A such that Advj−1A −
AdvjA = ε, then there exists a PPT algorithm B with advantage ε in break-
ing the subspace assumption with k = 2 and n = 6.

To prove the lemma, we define Game′j as an intermediate game and

let Advj
′

A be A’s advantage in Game′j .

Game′j: for j from 1 to q, Game′j is like Gamej−1 except that the j-th key
query is answered by a temporary semi-functional key. A temporary
semi-functional key is generated as follows: we first choose random
r1, r2, r3, r4, t1, t2 ∈ Zp and set:

K1 = g(α1+r1ID)d∗1−r1d∗2+r2IDd∗3−r2d∗4+t1d∗5+t2d∗6 ,

K2 = gr3IDd∗1−r3d∗2+(α2+r4ID)d∗3−r4d∗4 .

Note that half part of the temporary semi-functional key is gener-
ated like semi-functional keys, and the other half is like normal keys.
Here we change the extractable key to semi-functional in 2 steps to make
r1, r2, r3, r4 randomly distributed.

Lemma 4. Suppose that there exists a PPT algorithm A such that Advj−1A −
Advj

′

A = ε, then there exists a PPT algorithm B with advantage ε in break-
ing the subspace assumption with k = 2 and n = 6.

Proof. B receives

D = (gb1 , ..., gb4 , gηb
∗
1 , gηb

∗
2 , gβb

∗
3 , gβb

∗
4 , gb

∗
5 , gb

∗
6 , U1, U2, µ3),
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along with T1, T2, and its task is to decide whether T1, T2 is independent
of gb

∗
5 , gb

∗
6 . B picks random invertible matrix A ∈ Z2×2

p . We implicitly set
dual orthonormal bases D = BA,D∗ = B∗A, that is, for i = 1, 2, 3, 4,di =
bi,d

∗
i = b∗i , (d5,d6) = (b5,b6)A, (d

∗
5,d
∗
6) = (b∗5,b

∗
6)(A

−1)T . Following
from Lemma 1 introduced in [10], we get that (D,D∗) is randomly dis-
tributed and reveals no information about A.

Next B chooses random α′1, α
′
2 and implicitly sets α1 = ηα′1, α2 =

βα′2, then B can compute e(g, g)α1d1·d∗1 = en(gb1 , gηb
∗
1)α
′
1 , e(g, g)α2d1·d∗1 =

en(gb3 , gβb
∗
3)α
′
2 , so B sets up the public parameters and sends them to A.

When A submits key extraction queries:

For i < j, B can answer it since B can create normal keys as in Lemma
2 and knows d∗5,d

∗
6.

For i > j, B can answer it as in Lemma 2.
For i = j, B first chooses random r′3, r

′
4 ∈ Zp and sets:

K1 = gα
′
1ηd
∗
1(T

IDj

1 )T−12 ,K2 = gr
′
3IDjηd

∗
1−r′3ηd∗2+(α′2+r

′
4IDj)βd

∗
3−r′4βd∗4 .

At some point, A sends B the challenge identity ID∗ and (M0,M1). B
chooses a random bit b ∈ {0, 1} and computes the challenge ciphertext as
follows:

C1 = Mb,1en(U1, g
ηb1
∗
)α
′
1 , C2 = Mb,2en(U1, g

βb3
∗
)α
′
2 , C3 = U1(U2)

ID∗ .

and gives the answer toA. Here we implicitly set s1 = µ1, s2 = µ2, (z1, z2)
T =

µ3A
−1(1, ID∗)T .

If (T1, T2) = (V1, V2), then the respond is a normal key with r1 =
τ1η, r2 = τ2β. If (T1, T2) = (W1,W2), then the respond is a semi-functional
key with r1 = τ1η, r2 = τ2β, and (t1, t2)

T = τ3A
−1(1, IDj)

T . Since
IDj 6= ID∗, and A is information-theoretically hidden from (D,D∗), chal-
lenge ciphertext and the j-th key query are randomly distributed in A′s
view.

When (T1, T2) = (V1, V2) we properly simulate Gamej−1 and when
(T1, T2) = (W1,W2) we simulate Gamej′ . So B can leverage A’s advantage
in distinguishing Gamej−1 and Gamej′ to achieve the same advantage
against the subspace assumption. ut

Lemma 5. Suppose that there exists a PPT algorithm A such that Advj
′

A−
AdvjA = ε, then there exists a PPT algorithm B with advantage ε in break-
ing the subspace assumption with k = 2 and n = 6.
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Proof. The proof of this lemma is similar to that of Lemma 4 and we put
the concret proof in our appendix .

Lemma 6. Suppose that there exists a PPT algorithm A such that AdvqA−
AdvFinalA = ε. Then there exists a PPT algorithm B with advantage ε in
breaking the subspace assumption with n = 6 and k = 1.

In order to prove this lemma, we define Gameqa , Gameqb , Gameqc as
intermediate games:

Gameqa : It is exactly like Gameq except that in the C∗3 part of the
challenge ciphertext, the coefficient of d2 is changed to a random
value in Zp instead of s1ID

∗.
Gameqb : It is exactly like Gameqa except that in the C∗3 part of the

challenge ciphertext is independent of s1.
Gameqc : It is exactly like Gameqb except that in the C∗3 part of the

challenge ciphertext, the coefficient of d4 is changed to a random
value in Zp instead of s2ID

∗.

We denote the advantage in these games as AdvqaA , Adv
qb
A , Adv

qc
A .

Lemma 7. Suppose that there exists a PPT algorithm A such that AdvqA−
AdvqaA = ε, then there exists a PPT algorithm B with advantage ε in break-
ing the subspace assumption with k = 1 and n = 6.

Proof. B receives

D = (gb1 , gb2 , gb4 , ..., gb6 , gηb
∗
1 , gβb

∗
2 , gb

∗
3 , ..., gb

∗
6 , U1, µ3),

along with T1, and its task is to decide whether T1 is independent of gb
∗
3 .

B implicitly sets dual orthonormal bases as follows:

d1 = b∗6,d2 = b∗3,d3 = b∗5,d4 = b∗4,d5 = b∗2,d6 = b∗1,

d∗1 = b6,d
∗
2 = b3,d

∗
3 = b5,d

∗
4 = b4,d

∗
5 = b2,d

∗
6 = b1.

Next B chooses random α1, α2 ∈ Zp and the public parameters can
be correctly computed. Also B can compute the master secret key except
gd
∗
2 .
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WhenA submits key extraction queries, B first chooses random r′1, r2, r
′
3,

r4, t
′
1, t
′
2, t
′
3, t
′
4 ∈ Zp and sets:

K1 = (U1)
−r′1g(α1+µ3r′1ID)d∗1+r2IDd∗3−r2d∗4+t′1d∗5+t′2d∗6 ,

K2 = (U1)
−r′3gµ3r

′
3IDd∗1+(α2+r4ID)d∗3−r4d∗4+t′3d∗5+t′4d∗6 .

Here we implicitly set r1 = µ3r
′
1, r3 = µ3r

′
3, t1 = t′1 − µ2r

′
1, t2 = t′2 −

µ1r
′
1, t3 = t′3 − µ2r′3, t4 = t′4 − µ1r′3.

At some point, A sends B the challenge identity ID∗ and (M0,M1),B
chooses a random bit b ∈ {0, 1}, s1, s2 ∈ Zp and computes the challenge
ciphertext as follows:

C1 = Ωs1
1 Mb,1, C2 = Ωs2

2 Mb,2, C3 = gs1d1+s1ID∗d2+s2d3+s2ID∗d4T1.

Then B gives the answer to A. Here we implicitly set z1 = τ2β, z2 = τ1η.

If T1 = V1 we properly simulate Gameq and when T1 = W1 we sim-
ulate Gameqa . So B can leverage A’s advantage in distinguishing Gameq
and Gameqa to achieve the same advantage against the subspace assump-
tion. ut

Lemma 8. Suppose that there exists a PPT algorithm A such that AdvqaA−
AdvqbA = ε, then there exists a PPT algorithm B with advantage ε in break-
ing the subspace assumption with k = 1 and n = 6.

Proof. B receives

D = (gb1 , gb2 , gb4 , ..., gb6 , gηb
∗
1 , gβb

∗
2 , gb

∗
3 , ..., gb

∗
6 , U1, µ3),

along with T1, and its task is to decide whether T1 is independent of gb
∗
3 .

B implicitly sets dual orthonormal bases as follows:

d1 = b∗3,d2 = b∗4,d3 = b∗5,d4 = b∗6,d5 = b∗1,d6 = b∗2,

d∗1 = b3,d
∗
2 = b4,d

∗
3 = b5,d

∗
4 = b6,d

∗
5 = b1,d

∗
6 = b2.

Next B chooses random α′1, α2 ∈ Zp and implicitly sets α1 = α′1µ3,
so the public parameters can be correctly computed (e(g, g)α1d1·d∗1 =
en(gb4 , gb

∗
4)α1). Also B can compute the master secret key except gd

∗
1 , gα1d∗1 .
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WhenA submits key extraction queries, B first chooses random r′1, r2, r
′
3,

r4, t
′
1, t
′
2, t
′
3, t
′
4 ∈ Zp and sets:

K1 = (U1)
α′1+r

′
1IDg−r

′
1µ3d

∗
2+r2IDd∗3−r2d∗4+t′1d∗5+t′2d∗6 ,

K2 = (U1)
r′3IDg−µ3r

′
3d
∗
2+(α2+r4ID)d∗3−r4d∗4+t′3d∗5+t′4d∗6 .

Here we implicitly set r1 = µ3r
′
1, r3 = µ3r

′
3, t1 = t′1 + µ1(α

′
1 + r′1ID), t2 =

t′2 + µ2(α
′
1 + r′1ID), t3 = t′3 + µ1IDr

′
3, t4 = t′4 + µ2IDr

′
3.

At some point, A sends B the challenge identity ID∗ and (M0,M1),B
chooses a random bit b ∈ {0, 1}, s1, s2, w ∈ Zp and computes the challenge
ciphertext as follows:

C1 = Ωs1
1 Mb,1, C2 = Ωs2

2 Mb,2, C3 = gs1d1+wd2+s2d3+s2ID∗d4T1.

and gives the answer to A. Here we implicitly set z1 = τ1η, z2 = τ2β.

If T1 = V1 we properly simulate Gameqa and when T1 = W1 we simu-
late Gameqb . So B can leverage A’s advantage in distinguishing Gameqa
and Gameqb to achieve the same advantage against the subspace assump-
tion. ut

Lemma 9. Suppose that there exists a PPT algorithm A such that AdvqbA−
AdvqcA = ε, then we can construct a PPT algorithm B with advantage ε in
breaking the subspace assumption with k = 1 and n = 6.

Lemma 10. Suppose that there exists a PPT algorithm A such that
AdvqcA−AdvFinalA = ε, then there exists a PPT algorithm B with advantage
ε in breaking the subspace assumption with k = 1 and n = 6.

The proof of Lemma 9 and Lemma 10 is similar to that of Lemma 7
and Lemma 8, so we omit it here and put it in the appendix.

The previous lemmata show that the real security game is indis-
tinguishable from GameFinal, in which the value of b is information-
theoretically hidden from the attacker, hence the attacker can only get
negligible advantage in breaking the security of our IBE scheme. ut

4.3 Anonymity

We note that in the final game, the challenge ciphertext is independent of
the challenge identity, so our scheme is anonymous. Lewko’s IBE scheme is
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anonymous for the same reason. Anonymous IBE [5] is a useful component
to construct public key encryption with keyword search (PEKS) schemes
[1].

5 Conclusion

In this paper, we improve the IBE scheme presented by Lewko in [10],
and get a fully secure anonymous IBE scheme in the prime order setting
that has a better message-ciphertext rate. Similar to Lewko’s scheme,
we use dual pairing vector space in prime order bilinear groups to re-
alize the canceling and parameter hiding property. The security of our
scheme is based on the subspace assumption, which can be reduced to
the decisional linear assumption. We use the dual system encryption in
the security proof.
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Appendix

Proof of Lemma 5

Proof. B receives

D = (gb1 , ..., gb4 , gηb
∗
1 , gηb

∗
2 , gβb

∗
3 , gβb

∗
4 , gb

∗
5 , gb

∗
6 , U1, U2, µ3),

along with T1, T2, and its task is to decide whether T1, T2 is independent
of gb

∗
5 , gb

∗
6 . B picks random invertible matrix A ∈ Z2×2

p . We implicitly set
dual orthonormal bases D = BA,D∗ = B∗A, that is, for i = 1, 2, 3, 4,di =
bi,d

∗
i = b∗i ,

(d5,d6) = (b5,b6)A, (d
∗
5,d
∗
6) = (b∗5,b

∗
6)(A

−1)T .

Following from the lemma introduce in [10], we get that (D,D∗) is random
distributed and reveals no information about A.
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Next B chooses random α′1, α
′
2 and implicitly sets α1 = ηα′1, α2 =

βα′2, then B can compute e(g, g)α1d1·d∗1 = en(gb1 , gηb
∗
1)α
′
1 , e(g, g)α2d1·d∗1 =

en(gb3 , gβb
∗
3)α
′
2 , so B knows the public parameters and can give it to A.

When A submits key extraction queries:

For i < j, B can answer it since B can create normal keys as in Lemma
2 and knows d∗5,d

∗
6.

For i > j, B can answer it as in Lemma 2.

For i = j, B first chooses random r′1, r
′
2, t1, t2 ∈ Zp and sets:

K1 = g(α
′
1+r

′
1IDj)ηd

∗
1−r′1ηd∗2+r′2IDjβd

∗
3−r′2βd∗4+t1d∗5+t2d∗6 ,

K2 = gα
′
2βd

∗
3(T1)

IDjT−12 .

At some point, A sends B the challenge identity ID∗ and (M0,M1). B
chooses a random bit b ∈ {0, 1} and computes the challenge ciphertext as
follows:

C1 = Mb,1en(U1, g
ηb1
∗
)α
′
1 , C2 = Mb,2en(U1, g

βb3
∗
)α
′
2 , C3 = U1(U2)

ID∗ .

and gives the answer toA. Here we implicitly set s1 = µ1, s2 = µ2, (z1, z2)
T =

µ3A
−1(1, ID∗)T .

If (T1, T2) = (V1, V2), then the respond is a normal key with r3 =
τ1η, r4 = τ2β. If (T1, T2) = (W1,W2), then the respond is a semi-functional
key with r3 = τ1η, r4 = τ2β, and (t1, t2)

T = τ3A
−1(1, IDj)

T . Since
IDj 6= ID∗, and A is information-theoretically hidden from (D,D∗), chal-
lenge ciphertext and the j-th key query are randomly distributed in A′s
view.

Thus when (T1, T2) = (V1, V2) we properly simulate Gamej−1 and
when (T1, T2) = (W1,W2) we simulate Gamej′ . So B can leverage A’s
advantage in distinguishing Gamej′ and Gamej to achieve the same ad-
vantage against the subspace assumption. ut

Proof of Lemma 9

Proof. B receives

D = (gb1 , gb2 , gb4 , ..., gb6 , gηb
∗
1 , gβb

∗
2 , gb

∗
3 , ..., gb

∗
6 , U1, µ3),
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along with T1, and its task is to decide whether T1 is independent of gb
∗
3 .

B implicitly sets dual orthonormal bases as follows:

d1 = b∗4,d2 = b∗5,d3 = b∗6,d4 = b∗3,d5 = b∗1,d6 = b∗2,

d∗1 = b4,d
∗
2 = b5,d

∗
3 = b6,d

∗
4 = b3,d

∗
5 = b1,d

∗
6 = b2.

Next B chooses random α1, α2 ∈ Zp and the public parameters can
be correctly computed. Also B can compute the master secret key except
gd
∗
4 .

WhenA submits key extraction queries, B first chooses random r1, r
′
2, r3,

r′4, t
′
1, t
′
2, t
′
3, t
′
4 ∈ Zp and sets:

K1 = (U1)
−r′2g(α1+r1ID)d∗1−r1d∗2+µ3r′2IDd∗3+t

′
1d
∗
5+t
′
2d
∗
6 ,

K2 = (U1)
−r′4gr3IDd∗1−r3d∗2+(α2+µ3r′4ID)d∗3+t

′
3d
∗
5+t
′
4d
∗
6 .

Here we implicitly set r2 = µ3r
′
2, r4 = µ3r

′
4, t1 = t′1 − µ1r

′
1, t2 = t′2 −

µ2r
′
1, t3 = t′3 − µ1r′3, t4 = t′4 − µ2r′3.

At some point, A sends B the challenge identity ID∗ and (M0,M1),B
chooses a random bit b ∈ {0, 1}, s1, s2, w1, w2 ∈ Zp and computes the
challenge ciphertext as follows:

C1 = Ωs1
1 Mb,1, C2 = Ωs2

2 Mb,2,

C3 = gw1d1+w2d2+s2d3+s2ID∗d4T1

and gives the answer to A. Here we implicitly set z1 = τ1η, z2 = τ2β.

If T1 = V1 we properly simulate Gameqb and when T1 = W1 we simu-
late Gameqc . So B can leverage A’s advantage in distinguishing Gameqb
and Gameqc to achieve the same advantage against the subspace assump-
tion. ut

Proof of Lemma 10

Proof. B receives

D = (gb1 , gb2 , gb4 , ..., gb6 , gηb
∗
1 , gβb

∗
2 , gb

∗
3 , ..., gb

∗
6 , U1, µ3),

along with T1, and its task is to decide whether T1 is independent of gb
∗
3 .

B implicitly sets dual orthonormal bases as follows:

d1 = b∗5,d2 = b∗6,d3 = b∗3,d4 = b∗4,d5 = b∗1,d6 = b∗2,
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d∗1 = b5,d
∗
2 = b6,d

∗
3 = b3,d

∗
4 = b4,d

∗
5 = b1,d

∗
6 = b2.

Next B chooses random α1, α
′
2 ∈ Zp and implicitly sets α2 = α′2µ3, so

the public parameters can be correctly computed. Also B can compute
the master secret key except gd

∗
3 , gα2d∗3 .

WhenA submits key extraction queries, B first chooses random r1, r
′
2, r3,

r′4, t
′
1, t
′
2, t
′
3, t
′
4 ∈ Zp and sets:

K1 = (U1)
r′2IDg(α1+r1ID)d∗1−r1d∗2−r′2µ3d∗4+t′1d∗5+t′2d∗6 ,

K2 = (U1)
α′2+r

′
4IDgr3IDd∗1−r3d∗2−µ3r′4d∗4+t′3d∗5+t′4d∗6 .

Here we implicitly set r2 = µ3r
′
2, r4 = µ3r

′
4, t1 = t′1 + µ1r

′
2ID, t2 = t′2 +

µ2r
′
2ID, t3 = t′3 + µ1(α

′
2 + r′4ID), t4 = t′4 + µ2(α

′
2 + r′4ID).

At some point, A sends B the challenge identity ID∗ and (M0,M1),B
chooses a random bit b ∈ {0, 1}, s1, s2, w1, w2, w3 ∈ Zp and computes the
challenge ciphertext as follows:

C1 = Ωs1
1 Mb,1, C2 = Ωs2

2 Mb,2, C3 = gw1d1+w2d2+s2d3+w3d4T1.

and gives the answer to A. Here we implicitly set z1 = τ1η, z2 = τ2β.

If T1 = V1 we properly simulate Gameqc and when T1 = W1 we
simulate GameqFinal

. So B can leverage A’s advantage in distinguishing
Gameqc and GameqFinal

to achieve the same advantage against the sub-
space assumption. ut


