
Interactive Coding, Revisited

Kai-Min Chung
Cornell University

chung@cs.cornell.edu

Rafael Pass ∗

Cornell University
rafael@cs.cornell.edu

Sidharth Telang
Cornell University

sidtelang@cs.cornell.edu

March 17, 2013

Abstract

How can we encode a communication protocol between two parties to become resilient to
adversarial errors on the communication channel? This question dates back to the seminal
works of Shannon and Hamming from the 1940’s, initiating the study of error-correcting codes
(ECC). But, even if we encode each message in the communication protocol with a “good” ECC,
the error rate of the encoded protocol becomes poor (namely O(1/m) where m is the number
of communication rounds). Towards addressing this issue, Schulman (FOCS’92, STOC’93)
introduced the notion of interactive coding.

We argue that whereas the method of separately encoding each message with an ECC ensures
that the encoded protocol carries the same amount of information as the original protocol, this
may no longer be the case if using interactive coding. In particular, the encoded protocol may
completely leak a player’s private input, even if it would remain secret in the original protocol.
Towards addressing this problem, we introduce the notion of knowledge-preserving interactive
coding, where the interactive coding protocol is required to preserve the “knowledge” transmitted
in the original protocol. Our main results are as follows.

• The method of separately applying ECCs to each message is essentially optimal: No
knowledge-preserving interactive coding scheme can have an error rate of 1/m, where m
is the number of rounds in the original protocol.

• If restricting to computationally-bounded (polynomial-time) adversaries, then assuming
the existence of one-way functions (resp. subexponentially-hard one-way functions), for
every ε > 0, there exists a knowledge-preserving interactive coding schemes with constant
error rate and information rate n−ε (resp. 1/polylog(n)) where n is the security parameter;
additionally to achieve an error of even 1/m requires the existence of one-way functions.

• Finally, even if we restrict to computationally-bounded adversaries, knowledge-preserving
interactive coding schemes with constant error rate can have an information rate of at
most o(1/ log n). This results applies even to non-constructive interactive coding schemes.

∗Pass is supported in part by a Alfred P. Sloan Fellowship, Microsoft New Faculty Fellowship, NSF Award CNS-
1217821, NSF CAREER Award CCF-0746990, NSF Award CCF-1214844, AFOSR YIP Award FA9550-10-1-0093,
and DARPA and AFRL under contract FA8750-11-2- 0211. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the US Government.

1

1 Introduction

The study of how to communicate over a noisy channel dates back to the seminal works of Shannon
[Sha48] and Hamming [HAM50] from the 1940s, initiating the study of error-correcting codes.
Roughly speaking, an error-correcting code encodes a k-bit message m into a ck bit message with
the property that even if a fraction η < 1 of the bits of the encoded messages are adversarially
changed, the original message m can be decoded; R = 1/c is referred to as the information rate of
the code, and η as the error rate. Efficiently encodable and decodable error correcting codes with
constant information rate and error rate are known [Jus72]; in fact, such codes can even be made
linear-time encodable and decodable [Spi96].

In this work, we are interested in the question of how to encode interactive communication:
Given an interactive protocol π = (A,B) between two parties, how can we encode this protocol to
become resilient to adversarial errors? A naive approach would be to simply apply a “good” (i.e.,
constant information and error rate) error correcting code to each message of the protocol. This
results in a poor error rate: if the protocol has m rounds and each round requires sending a k-bit
message, then it suffices to corrupt O(k) out of the O(km) communicated bits (that is, a fraction
O(1/m)) to ensure an incorrect decoding. To address this problem, Schulman [Sch92, Sch93, Sch96]
introduced the notion of interactive coding. Roughly speaking, an interactive coding scheme is an
algorithm Q = (Q1, Q2) such that for any interactive protocol π = (A,B), (QA1 , Q

B
2) emulates the

interaction of (A,B) in the sense that (with overwhelming probability) the execution of the actual
protocol (A,B) and the “encoded protocol” (QA1 , Q

B
2) yield the same outputs. Additionally, the

protocol (QA1 , Q
B
2) is error-resilient: the execution of (QA1 , Q

B
2) yields the same outputs even if a η

fraction of the communication is adversarially corrupted, where η is an error rate. Schulman [Sch96]
presented an interactive coding scheme with constant information and error rate. Schulman’s
construction achieved an error rate of 1/240, which was later improved by Braverman and Rao
[BR11] and Braverman [Bra12] to (close to) 1/8. The interactive coding scheme Q in their works,
however, requires exponential or subexponential time. Gelles, Moitra and Sahai [GMS11] showed
to get a polynomial-time interactive coding (with constant information and error rate) for the case
of uniformly distributed (as opposed to adversarial) errors. More recently, the elegant work of
Brakerski and Kalai [BK12] showed how to get a polynomial-time interactive coding handling also
adversarial errors, with a constant information rate and an error rate of (close to) 1/32, and even
more recently Brakerski and Naor [BN13] show how to get quasi-linear time interactive coding with
constant information and error rate.

Interactive Coding, revisited When we encode messages using error correcting codes we ensure
that the encoded messages carry exactly the same information as the original messages; in other
words, they carry all the information in the original messages (or else we cannot decode), and
additionally they do not carry any other information (say, about future messages). Consider, for
instance, transmitting an “interactive exam” (e.g., an oral exam) in an error resilient way. The
exam has the property that question 2 in the exam reveals the answer to question 1. Ideally, we
would like to guarantee that the error resilient version of the exam does not allow the student
(taking the exam) to see question 2 before it needs to provide the answer to question 1 (or else it
can trivially answer question 1). Clearly this property would hold if we use the “naive approach”
of separately encoding every message using an error correcting code, but as we shall see shortly,
this property may no longer hold if we use interactive coding. Intuitively, the problem is that
interactive coding (and in particular, the above-mentioned solutions), while guaranteeing that the
encoded protocol carries at least the same amount of information as the original protocol, does not
necessarily guarantee that the encoded protocol does not reveal more information than the original

1

protocol.
As another example, consider two mutually distrustful players that wish to runs some secure

cryptographic protocol (A,B) over a noisy channel. Can these players instead run an interactive
coding (QA1 , Q

B
2) of (A,B)? In other words, does the interactive coding preserve the security of the

original underlying protocol? It is easy to see that the “naive approach” of separately encoding
every message using an error correcting code preserves security of the underlying protocol. However,
if we use interactive coding, this may no longer be the case. The problem is that the notion of
interactive coding only requires that the encoded protocol (QA1 , Q

B
2) emulates (A,B) as long as

both of the communicating parties are honestly executing the protocol. In particular, if one of the
players is adversarial, it could be the case that the player gains more information when participating
in the encoded protocol than it would have in the original protocol; for instance, player 1 may, by
deviating from the protocol instructions in the encoded protocol (QA1 , Q

B
2), learn something about

player 2’s private input that is guaranteed to remain secret in the original protocol (A,B) (no
matter what player 1 does).

The reason interactive coding schemes do not necessarily provide the desired guarantees in the
above scenarios is that such schemes typically “bundle together” multiple rounds of interactions
of the original protocol, and when an error in the communication is detected, the whole bundle is
“replayed”. (Looking forward, as we show in Theorem 2, any interactive coding with a “good” error
rate in fact needs to replay messages in this way.) This may allow an attacker to “fake” an error in
the communication in order to get the bundle replayed, but this time change its messages, and as a
consequence may learn two (or more) partial transcripts where the attackers messages are different:
in essence, the encoded protocol gives the attack the opportunity to “rewind” the honest player in
original protocol. In the above “interactive exam” example such rewindings mean that the student
may get knowledge of the second question before having to provide the answer to the first one;
for the cryptographic protocol example, it is well-known that most (but not all, see [CGGM00])
cryptographic protocols are not secure under such rewindings: Consider, for instance, any of the
classic zero-knowledge protocols (e.g., [GMR89, Blu86]); if the verifier can rewind the prover just
once, it can completely recover the NP-witness used by the prover, although the protocols are
zero-knowledge without such rewindings.

Knowledge-preserving interactive coding Towards addressing this problem, we here put
forward, and study, the notion of knowledge-preserving interactive coding : Roughly speaking, we
require not only that (QA1 , Q

B
2) conveys at least as much “knowledge” as (A,B), but also that it does

not convey more, even if one of the players adversarially deviates from the protocol instructions;
that is, (QA1 , Q

B
2) preserves the knowledge transmitted in (A,B). In other words, we require not only

that (QA1 , Q
B
2) emulates (A,B) when the players are honest (only caring about their correct output

and not trying to extract any other knowledge), but also that it is a good emulation when one of the
players adversarially deviates from the protocol instructions (e.g., trying to obtain more knowledge
about the other player’s input and potentially use it in the interaction). We formalize this notion
through the classic zero-knowledge “simulation-paradigm” from cryptography [GMR89, GMW91]:
We require that for every adversarial strategy Ã∗ for player 1 (resp. B̃∗ for player 2) participating
in the encoded protocol (Ã, B̃) = (QA1 , Q

B
2), there exists a “simulator” A∗ (resp. B∗) such that

the output of both players in the execution of (Ã∗, B̃) (resp. (Ã, B̃∗)) are indistinguishable from
the outputs of players in the execution of (A∗, B) (resp. (A,B∗)). In other words, an adversary
participating in the encoded protocol does not gain any more “knowledge” than it would have in
the original protocol, and cannot affect the honest parties output more than it could have in the
original protocol.

2

As we shall see, achieving knowledge-preserving interactive coding is significantly harder than
“plain” interactive coding, and studying resilience against only computationally bounded adver-
saries, as was done by Lipton [Lip94] and Micali, Peikert, Sudan and Wilson [MPSW10] in the
context of error correcting codes, is actually essential for achieving good error rates in the context
of knowledge-preserving interactive coding.

1.1 Our Results

We are interested in knowledge-preserving interactive coding schemes Q = (Q1, Q2) where Q1

and Q2 are efficient; we formalize this by requiring that Q1, Q2 receive as input the communication
complexity ` and number of roundsm of the protocol (A,B), and a security parameter n, and require
that Q1, Q2 run in time polynomial in `,m and n; in the sequel, when referring to a knowledge-
preserving interactive coding scheme, we only refer to such efficiently computable schemes.

The information-theoretic regime We start by stating the folklore result that the “naive
approach” of separately encoding each message in the protocol with a good error correcting code
is a knowledge-preserving interactive coding:

Theorem 1. [Informally stated] There exists a knowledge-preserving interactive coding scheme Q
with polynomial information rate and error rate O(1/m) where m is the number of communication
rounds in the original protocol.

Our first result is a strong negative result for knowledge-preserving interactive coding, show-
ing that the naive approach is essentially optimal (if requiring resilience against computationally
unbounded adversaries).

Theorem 2. [Informally stated] For every knowledge-preserving interactive coding scheme Q =
(Q1, Q2), every polynomial m(·), there exists an m(n)-round protocol (A,B) such that (QA1 , Q

B
2)

has an error rate of at most 1/m(n), where n is the security parameter. (In particular, no knowledge
preserving coding scheme can have error rate 1/poly(n) where n is the security parameter).

Let us provide a high-level overview of the proof of the theorem. The key idea is to come
up with a protocol π having the property that the only way to make the protocol error resilient
makes it possible for an attacker to “rewind” the honest players (just as what is done in known
interactive protocols, as described above). Consider some interactive coding protocol Q = (Q1, Q2)
and let M(n,m, `) be a polynomial upper bound on the number queries made by Q1, Q2 to its
oracles (where n is the security parameter, m is the number of round in the protocol π to be
encoded, and ` is the communication complexity of π). Consider the m(n) = poly(n)-round “ping-
pong” protocol π where each player d ∈ {1, 2} gets an M(n,m, 2mn) + 1-wise independent hash
function Hd : {0, 1}poly(n) → {0, 1}n as input and proceeds as follows: player 1 computes and sends
a1 = H1(∅) to player 2; player 2 computes and sends b1 = H2(a1) to player 1; player 1 computes and
send a2 = H1(a1, b1) to player 2, etc, for m rounds, and finally both player output the transcript
of the interaction. That is, at each round, each player d, computes its next message by applying
its hash function Hd to the current transcript. Note that in this protocol, by the unpredictability
of the output of the hash functions, player 1, even if maliciously deviating from the protocol, will
with overwhelming probability be able to obtain at most m distinct pairs (q,H2(q)).

In contrast, as we show, unless the encoded protocol has an error rate less than 1/m, a malicious
player 1 in the encoded protocol can with inverse polynomial probability get m+ 1 such pairs (and
as such a malicious player 1 can learn something new in Qπ that it couldn’t have learnt in π).
The key lemma needed to establish this shows that the encoded protocol “implicitly executes” the

3

original ping-pong protocol. More precisely, the rounds of the encoded protocol can be divided into
“chunks”, where each chunk in the encoded protocol corresponds to a round in ping-pong protocol1,
and additionally by observing the oracle queries made by Q, we can read out a polynomial list of
candidates for the current transcript of the ping-pong protocol; to establish this lemma we rely
on the “elusiveness” property of the output of the hash functions (and the fact that Q queries the
hash functions at most M(n,m, 2mn) times).

Next, by an averaging argument, one of these chunks, say chunk i, must be shorter than a
fraction 1/m of the total communication complexity of the encoded protocol. The idea now is for
a malicious player 1 to honestly execute the encoded protocol using its actual input, except that
during the i’th chunk, the player acts as if its input was a random hash function H ′1 consistent
with the transcript up until the end of chunk i − 1; that is, we switch the input only in chunk i,
but make sure we pick an input that is consistent with the transcript so far. (Note that this attack
is not necessarily efficient since picking an input consistent with the current transcript may not
be computationally feasible.) Now, intuitively, since the chunk was “small”, by the error resilience
property of the interactive coding scheme, with overwhelming probability, player 1 will finally
output the same transcript (including m distinct pairs (q,H2(q))) as if it had been running the
protocol honestly. (Formalizing this requires showing that the attack performed by player 1 can be
perfectly emulated by the channel).

Additionally, as we show, by observing the oracle queries made by Q1 during the i’th chunk
(which corresponds to the i’th round in the implicitly executed ping-pong protocol), player 1 may
learn a new pair (q′, H2(q

′)); intuitively, this follows since player 1 is using a new input in round i
of the implicitly executed ping-pong protocol (but formally proving this claim is quite non-trivial).
Thus, in essence, player 1, by using a different input in only chunk i manages to “rewind” player
2 in the implicit ping-pong protocol.

So, if player 1 could just identify the i’th chunk, it can learn m + 1 distinct pairs (q,H2(q)),
which was not possible in π; but it can simply guess the starting round of the i’th chunk with inverse
polynomial probability. Summarizing, in π, an attacker can learn m + 1 distinct pairs (q,H2(q))
only with negligible probability, whereas in Qπ this can be done with inverse polynomial probability
(if Qπ has a “non-trivial” error rate); thus, we are “blatantly” violating knowledge-preservance of
Q.

The computational regime We next turn to consider computational knowledge-preserving in-
teractive coding, where we only require resilience against computationally bounded adversaries:
we only require the error-resilience property to hold against computationally-bounded channel
adversaries, and the knowledge-preserving property to hold against computationally-bounded ad-
versaries. We first present a positive result, showing that constant-error rate is possible (albeit at
a sub-constant information rate):

Theorem 3. [Informally stated] Assume the existence of one-way functions. Then, for every
ε > 0, there exists a knowledge-preserving interactive coding scheme with error rate (1/12)− ε and
information rate O(1/nε) where n is the security parameter. If additionally subexponentially-hard
one-way functions exists, the information rate can be improved to O(1/polylogn).

The idea behind this scheme is simple: The players start by exchanging verification keys for
a signature scheme; the verification keys are appropriately padded to become “long” and then
encoded using a good error-correcting code. Next, we run the original protocol, except that all
messages in the protocol are signed and additionally encoded using a good error-correcting code.

1These chunks may depend on the inputs of the players and the randomness of Q.

4

Whenever a player receives a message that does not have a valid signature, it requests to hear the
message again. It is easy to show that this coding scheme is knowledge preserving (even against
unbounded attackers); additionally, if the verification keys exchanged in the first round are long
enough, then the scheme has error rate close to η/4, where η is the error rate of the error-correcting
code. Using state of the art error-correcting codes this would yield an error rate of 1/16− ε (where
ε > 0 is an arbitrarily small constant). We can further improve the error rate by relying on an
idea from [MPSW10]: since messages are signed and we only consider a computationally bounded
channel, it in fact suffices to “list-decode” the error-correcting code used to encode the messages
in the protocol (while still using unique decoding for error-correcting code used to encode the
verification keys).2 This allows us to improve the error rate to 1/12− ε.

As our next result demonstrates, one-way functions are necessary to achieve a “non-trivial”
error rate.

Theorem 4. [Informally stated] Assume the existence of a computational knowledge-preserving
interactive coding scheme with error rate 1/m, where m is the number of communication rounds in
the original protocol. Then one-way functions exist.

The proof of Theorem 4 follows by carefully showing that the attack constructed in the proof of
Theorem 2 can be “approximately” implemented in polynomial-time, if one-way functions do not
exists.

We finally show that every computational knowledge-preserving interactive coding scheme with
constant error rate must have an information rate of o(1/ log n).

Theorem 5. [Informally stated] Assume the existence of a computational knowledge-preserving
interactive coding scheme with information rate R and error rate η. Then Rη ∈ o(1/ log(n)), where
n is the security parameter.

Let us first mention that a weaker version of the above theorem, demonstrating that the infor-
mation rate needs to sub constant (as opposed to o(1/ log n)) can be obtained by carefully “scaling
down” the proof of Theorem 2 by considering a constant-round ping-pong protocol where the length
of each message is O(log n). To give the tight bound, we need to rely on an even more scaled down
version where the length of the messages in the ping-pong protocol is just 1. In this regime, the
previous proof no longer works: we can no longer ensure that the transcript from the ping-pong
protocol can be decoded by observing all the oracle calls made by Q. (In the proof of Theorem
2 this was proven by relying on the elusiveness property of the image of the hash function, but
since we now consider the range {0, 1}, this no longer holds.) Rather, we here provide a different
information-theoretic definition of chunks and rely on the fact that the protocol is knowledge pre-
serving to show that chunks are well-defined (to simplify the proof of this, we actually rely on a
simpler variant of the ping-pong protocol). The idea, which turn out to be quite subtle to formalize,
is that if a partial transcript contained information about, say, player 2’s message in round j, before
player 1’s message in round j has been fully determined in the partial transcript, then intuitively,
player 1 has the opportunity to (with non-negligible probability) change its message in round j as
a function of player 2’s message in the same round, which isn’t possible in the original ping-pong
protocol.

2[MPSW10] relies on this idea to show how to achieve an error-correcting code with error rate 1/2− ε if assuming
a (noiseless) public-key infrastructure and a computationally-bounded channel. In our context, we do not have a
public-key infrastructure, but our initial exchange of verification keys using a uniquely decodable error-correcting
code can be viewed as a way to set-up the appropriate public-key infrastructure needed for their results.

5

Non-constructive knowledge-preserving interactive coding All the above-mentioned re-
sults rely on the standard notion of interactive coding where the algorithm Q = (Q1, Q2) only uses
the original protocol π = (A,B) as a black-box (i.e., the encoded protocol is (QA1 , Q

B
2)). One may

also consider a more relaxed notion of coding, where the encoded protocol uses the description
of the protocol π in a non-black-box way, or is even non-constructive. We note that the proof
of Theorem 6 is actually stronger than stated; we actually show that every protocol (not just
those protocols obtained by accessing the original protocol π as a black-box) that preserves the
knowledge transmitted in the 1-bit ping-pong protocol and has an error rate of O(1), must have a
communication complexity of at least ω(log n).

Theorem 6. [Informally stated] For every function η(n) ≥ O(1/ log n), there exists a protocol
π with communication complexity O(1/η(n)) such that for every protocol π′ that is a knowledge-
preserving variant of π (even just w.r.t. computationally-bounded adversaries) and is computation-
ally η-error resilient, the communication complexity of π′ is at least ω(log n).

It is worthwhile to compare Theorem 6 with Theorem 2. As mentioned above, Theorem 6 is
stronger that Theorem 2 in that it rules out also non-constructive interactive coding schemes. On
the other hand, it is weaker is several other aspects: First, in Theorem 2 we “blatantly” violate
knowledge preservance: we exhibit some explicit information that can only be learnt with negligible
probability in π, but can be learnt with inverse polynomial probability in the encoded protocol. In
contrast, in the proof of Theorem 6 we rely on the knowledge-preservance property in a stronger
way (in particular, as mentioned above, we rely the knowledge-preservance property to show that
the encoded protocol implicitly executed π, whereas in Theorem 2 this could be showed uncon-
ditionally). Secondly, the error rate achieved in Theorem 6 is weaker than the one rate achieved
in Theorem 2. This, to some extent, is necessary, since Theorem 6 also rules out computational
knowledge-preserving interactive coding, and as showed in our positive result (Theorem 3), an error
rate of O(1) can be achieved in this setting.

1.2 Overview of the Paper

In Section 2 we provide some notation and preliminaries. In Section 3 we formally define the notion
of knowledge-preserving interactive coding. Section 4 contains our results for the information-
theoretic setting, and Section 5 contains our result for the computational setting; finally, in Section
6 we present our impossibility results for non-constructive interactive coding.

2 Notation and Preliminaries

2.1 Notation

Basic Notation Let N denote the set of positive integers, and [n] denote the set {1, 2, . . . , n}.
By a probabilistic algorithm we mean a Turing machine that receives an auxiliary random tape
as input. If M is a probabilistic algorithm, then for any input x, the notation “Mr(x)” denotes
the output of the M on input x when M ’s random tape is fixed to r, while M(x) represents the
distribution of outputs of Mr(x) when r is chosen uniformly. We say that a function ε : N→ [0, 1]
is negligible if for every constant c ∈ N, ε(n) < n−c for sufficiently large n. We say that a function
µ : N → [0, 1] is overwhelming if there exists a negligible function ε such that for all n ∈ N,
µ(n) ≥ 1− ε(n).

6

Probabilistic Notation We use probabilistic notation from [GMR89]: By x← S, we denote that
an element x is sampled from a distribution S. If F is a finite set, then x← F means x is sampled
uniformly from the set F . To denote the ordered sequence in which the experiments happen we use
comma, e.g. (x← S, (y, z)← A(x)). Using this notation we can describe probability of events. For
example, if p(·, ·) denotes a predicate, then Pr[x← S, (y, z)← A(x) : p(y, z)] is the probability that
the predicate p(y, z) is true in the ordered sequence of experiments (x ← S, (y, z) ← A(x)). The
notation {(x ← S, (y, z) ← A(x) : (y, z))} denotes the resulting probability distribution {(y, z)}
generated by the ordered sequence of experiments (x← S, (y, z)← A(x)).

Notation for Interactive protocols An interactive protocol is a tuple π = (A,B,XA,XB)
where A and B are interactive probabilistic Turing machines and XA and XB specify the set of
inputs to A and B (parametrized by a security parameter n). A and B, on input x ∈ XA(1n) and
y ∈ XB(1n) interact with each other and generate some output at the end of the interaction. We
denote this interaction by A(x)↔ B(y) (formally, it is a random variable over joint views of A and
B, including the randomness of both players, their inputs, and all the messages received). Given
an interaction e, we denote by outi[e] the output of player i ∈ {1, 2}, by out[e] the output of both
parties, and by trans[e] the transcript of the interaction.

2.2 Statistical Distance and Computational Indistinguishability

We recall the definitions of statistical distance and computational indistinguishability.

Definition 7 (Statistical distance). The statistical distance between two probability distributions
X,Y is defined by ∆(X,Y) = (1/2) ·

∑
x |Pr[x ← X] − Pr[x ← Y]|. X and Y are ε-close if

∆(X,Y) ≤ ε.
The statistical distance between two ensembles {Xk}k and {Yk}k is a function δ defined by

δ(k) = ∆(Xk, Yk). Two probability ensembles are said to be statistically close if their statistical
distance is negligible. We also say Xk and Yk are statistically close if ∆(Xk, Yk) ≤ ε(k) for some
negligible function ε.

Definition 8 (Computational Indistinguishability). Two ensembles {Xk}, {Yk} are computationally
indistinguishable if for every probabilistic polynomial time distinguisher D, there exists a negligible
function µ such that for every k ∈ N,

|Pr[D(1k, Xk) = 1]− Pr[D(1k, Yk) = 1]| ≤ µ(k).

2.3 Hash Functions

We recall the standard definition of t-wise independent hash functions.

Definition 9 (t-wise Independent Hash Functions). A family of hash functions H = {h : S1 → S2}
is t-wise independent if the following two conditions hold:

1. ∀x ∈ S1, the random variable h(x) is uniformly distributed over S2, where h← H.

2. ∀x1 6= · · · 6= xt ∈ S1, the random variables h(x1), . . . , h(xt) are independent, where h← H.

7

2.4 One-way Functions and Distributionally One-way Functions

We start by recalling the definition of a one-way function.

Definition 10 (One-way functions). A function f : {0, 1}∗ → {0, 1}∗ is one-way if it is computable
in polynomial time and for every non-uniform probabilistic polynomial time machine A, there exists
a negligible function µ(·) such that for every n ∈ N ,

Pr
[
x← {0, 1}n : A(f(x)) ∈ f−1(f(x))

]
< µ(|x|)

Additionally, if there exists some ε such that above holds for every poly(2n
ε
)-sized circuits A, f is

a subexponentially-hard one-way function.

A distributionally one way function is weaker primitive: here it is only computationally infeasible
to find a random pre-image to f(x) (but finding some pre-image may be easy).

Definition 11 ([IL89]:Distributionally one-way functions). We say a function f : {0, 1}∗ → {0, 1}∗
is distributionally one-way if it is computable in polynomial time and there exists a constant c > 0
such that for every non-uniform probabilistic polynomial-time algorithm A, for sufficiently large
n ∈ N, the statistical distance between the following distributions is at least 1

nc :

• {x← {0, 1}n : (f(x), x)}

• {x← {0, 1}n : (f(x), A(f(xn))}

While distributionally one-way functions are a weaker primitive than one way functions, [IL89]
shows that the existence distributionally one-way functions implies the existence of one-way func-
tions.

Theorem 12 ([IL89]). Distributionally one-way functions exist if and only if one way functions
exist.

2.5 Signature schemes

We recall the definition of an (adaptive-secure) signature schemes.

Definition 13 (Signature scheme [GMR89]). A secure signature scheme with signature-length l(·)
and key-length v(·) is a triple (Gen, Sig,Ver) of probabilistic polynomial time algorithms, such that

• for all n ∈ N,m ∈ {0, 1}∗,

Pr[(sk, vk)← Gen(1n), σ ← Sigsk(m) : |sigma| ≤ l(n) ∧ |vk| ≤ v(n) ∧ Vervk(m,σ) = 1] = 1

• for every non-uniform probabilistic polynomial time adversary A, there exists a negligible
function µ(·) such that

Pr[(sk, vk)← Gen(1n), (m,σ)← ASigsk(·)(1n) : Vervk(m,σ) = 1 ∧m /∈ L] ≤ µ(n)

where L denotes the list of A’s queries to its oracle.

The existence of signatures schemes is implied by the existence of one-way functions [NY89,
Rom90]:

Theorem 14. Assume the existence of one-way functions (resp. sub-exponentially hard one-way
functions). Then there exists a secure signature scheme (resp. a secure signature scheme with
signature-length and key-length polylogn).

8

2.6 Error-correcting Codes

We recall the definition of error correcting codes.

Definition 15 (Coding function). An (n, `)-coding function C = (E,D) is an encoding function
E : {0, 1}n → {0, 1}` and a decoding function D : {0, 1}` → {0, 1}n for some positive integers ` ≥ n.
The information rate of the scheme, denoted R is defined as n/`. The scheme has error rate (or
decoding distance) η if, for all m ∈ {0, 1}n and all r ∈ {0, 1}` such that the codeword E(m) and r
differ in at most η` bits, D(r) = m.

Definition 16 (ECC). An family of coding functions {Cn = (En, Dn)}n∈N is an efficient error
correcting code (ECC) C = (E,D) with error rate η : N → (0, 1) and information rate R : N →
(0, 1) if for every n ∈ N, (En, Dn) is a (n, n/R(n)) coding function with error rate η(n), and {En}
and {Dn} can be computed by uniform polynomial time algorithms.

As shown by Justesen in [Jus72], ECCs with constant error and information rate exist.

Theorem 17 ([Jus72]). There exists an ECC with error rate O(1) and information rate O(1).

Justesen codes, however, do not give a tight error rate. The concatenation of the Reed-Solomon
code [RS60] and the Hadamard code, however, yield an ECC with error rate close to 1/4 (which is
optimal), but require a polynomial information rate.

Theorem 18 ([GS00]). For every ε > 0, there exists an ECC with error rate 1
4−ε and information

rate R(n) = O(1/n).

When unique decoding is impossible, it may be still possible to decode to a short list of candidate
messages; the notion of list-decoding captures this.

Definition 19. A (n, `)-coding function is (ε, L)-list decodable if for any r ∈ {0, 1}`, there exists
a list of at most l ≤ L distinct m1,m2, . . .ml such that E(mi) and r differ in at most ε` bits,
for all i ∈ [l]. A family of coding functions {(En, Dn)}n∈N with information rate R : N → (0, 1)
is efficiently ε-list decodable if for every n ∈ N, (En, Dn) is a (n, n/R(n)) coding function that is
(ε(n), Ln)-list decodable for some Ln ∈ N, and there exists a polynomial time algorithm LD that
finds this list.

As shown by Guruswami and Sudan [GS00], the concatenation of the Reed-Solomon code and
Hadamard code is efficiently list decodable up to an error rate close to 1/2.

Theorem 20. For every ε > 0, there exists an ECC with information rate R(n) = O(1/n) that is
is efficiently 1

2 − ε-list decodable.

3 Knowledge-Preserving Interactive Coding

In this section we provide a formal definition of knowledge-preserving interactive coding.

3.1 Error Resilience for Interactive Protocols

Let us start by defining error rate for interactive protocols; in contrast to earlier works on interactive
coding, we here consider error-resilience against both unbounded adversarial channels (as is typically
done [Sch96]) and also error-resilience against computationally bounded channels (as was done in
the context of error correcting codes in [Lip94, MPSW10]).

9

Towards providing these definitions, we need some additional notation. The communication
complexity of a protocol π on security parameter n, denoted by CCn(π), is the worst-case total
number of bits transmitted in the interaction A(x)↔ B(y), over all possible input x ∈ XA(1n), y ∈
XB(1n) and randomness of both players. The round complexity m(n) of a protocol π on security
parameter n is the worst-case number of communication rounds (one round corresponds to two
messages) in the interaction A(x) ↔ B(y), over all possible input x ∈ XA(1n), y ∈ XB(1n) and
randomness of both players.

We consider interactive protocols running over noisy/adversarial channels, which may flip some
of the bits transmitted by both players. We model channels as interactive Turing machines that
relay messages between the two players.

Definition 21 (Channel). A channel is an interactive Turing machine C that on input a security
parameter 1n interacts with two interactive machines by relaying messages for the machines as
follows: upon receiving a message m from one machine, C sends a message m′ to the other machine
of length |m′| = |m|.

We denote by A(x) ↔C(1n) B(y) the interaction between A(x) and B(y) over the channel
C given the security parameter n. (Note that the interaction A(x) ↔ B(y) is identical to the
interaction A(x) ↔C0 (1n)B(y), where C0 is the “honest” channel that simply relays messages
between A and B without flipping any bits.)

Definition 22 (Communication Complexity over Noisy Channels). Let π = (A,B,XA,XB) be a
protocol. The communication complexity of π over noisy channels on security parameter n, denoted
by CC∗n(π), is the worst-case number of bits transmitted in the interaction A(x) ↔ B(y), over all
possible inputs x ∈ XA(1n), y ∈ XB(1n), randomness of both players, and the channel C.

We are now ready to define error resilience.

Definition 23. A protocol π = (A,B,XA,XB) with round-complexity m(·) is (computationally)
η(·, ·)-error resilient if there exists a negligible function µ such that for every security parameter n,
inputs x ∈ XA(1n), y ∈ XB(1n), and any (non-uniform probabilistic polynomial-time in the security
parameter n)3 channel C that flips at most η(n,m(n)) · CC∗n(π) bits, the following holds:

Pr
[
out[A(x)↔ B(y)] = out[A(x)↔C(1n) B(y)

]
≥ 1− µ(n).

3.2 Knowledge Preservance

Let us move on to defining what it means for a protocol π̃ = (Ã, B̃,XA,XB) to be convey “as much
knowledge” as a protocol π = (A,B,XA,XB). We formalize this using the classic “simulation-
paradigm” from cryptography [GMR89, GMW91]. We require that for every adversarial strategy
Ã∗ for player 1 (resp. B̃∗ for player 2) participating in π̃, there exists a simulator A∗ such that the
output of both players in the execution of (Ã∗, B̃) (resp. (Ã, B̃∗)) are indistinguishable from the
outputs of players in the execution of (A∗, B) (resp. (A,B∗)). That is, any “harm” Ã∗ can do in
π̃, the simulator A∗ could have also done in π.

Definition 24. A protocol π̃ = (Ã, B̃,XA,XB) is a (computationally) knowledge-preserving variant
of π = (A,B,XA,XB) if the following two properties hold:

3We could also have defined the channel as a uniform polynomial-time algorithm. All our result hold for both
choices.

10

• Completeness: There exists a negligible function µ such that the following ensembles are
statistically close as a function of n.

– {out[Ã(x)↔ B̃(y)]}n∈N,x∈XA(1n),y∈XB(1n)

– {out[A(x)↔ B(y)]}n∈N,x∈XA(1n),y∈XB(1n)

• (Computational) Knowledge Preservance: For every (probabilistic polynomial-time) adver-
sary strategy Ã∗ for player 1, there exists a (probabilistic polynomial-time) strategy A∗ such
that the following ensembles are statistically close (resp. computationally indistinguishable)
as a function of n.

– {out[Ã∗(x, z)↔ B̃(y)]}n∈N,x∈XA(1n),y∈XB(1n),z∈{0,1}∗

– {out[A∗(x, z)↔ B(y)]}n∈N,x∈XA(1n),y∈XB(1n),z∈{0,1}∗

We make the analogous requirement for every (probabilistic polynomial-time) adversary strat-
egy B̃∗ for player 2.

A Remark on Auxiliary Input Just as in the classic definitions of zero-knowledge [GMR89,
GO94] and secure computation [GMW91], the additional input z to Ã∗ (and A∗) models any
auxiliary information available to the attacker. All our results hold regardless of whether we allow
the attacker to receive such auxiliary information.

Single-session v.s. Multiple session Knowledge Preservance Our notion of knowledge
preservance assumes that the attacker is only participating in a single execution of π′, and stipulates
that this execution of π′ emulates π. A stronger notion of concurrent knowledge preservance
(in analogy with the notion of concurrent zero-knowledge [DNS04]) would instead require that
multiple concurrent executions of π′ still emulate π′ (in the sense that an attacker participating in
an arbitrary polynomial number of sessions of π′ can be emulated by a simulator participating in
concurrent sessions of π.) We omit a formal definition of concurrent knowledge preservance, and
simply remark that our positive results extend also to the concurrent multi-session setting.

A Remark on Preserving Cryptographic Protocol Security In this comment we assume
the reader is familiar with classic definitions of protocol security [GMW91]; see [Gol04] for details.
It easily follows from the definition of knowledge preservance that if a protocol π is a “secure
implementation” of some functionality F (in the sense of [Gol04]), then any knowledge-preserving
variant π′ of π will also be a secure implementation of F . Indeed, if π′ is a knowledge-preserving
variant of π, then π′ is “as secure as” π. (Additionally, if π is a concurrently secure implementation
of F and π′ is a concurrent knowledge preserving variant of π, then π′ is a concurrently secure
implementation of F .)

3.3 Knowledge-Preserving Interactive Coding

We are now ready to define knowledge-preserving interactive coding. An interactive coding scheme is
a pair of oracle-aided interactive probabilistic Turing machines Q = (Q1, Q2). For every interactive
protocol π = (A,B,XA,XB), Q induces an encoded interactive protocol Qπ = (QA1 , Q

B
2 ,XA,XB),

defined as follows. In the interaction of Qπ, Q1 and Q2 do not receive the input directly. Instead, Q1

and Q2 receive as input the security parameter 1n, the round complexity 1m and the communication
complexity 1CCn(π) of π, and are given oracle access to ArA(x) and BrB (y) respectively, where
x ∈ XA(1n), y ∈ XB(1n) are the inputs and rA, rB ∈ {0, 1}∞ are uniformly sampled. More precisely,

11

Q1 (resp., Q2) gets oracle access to the next-message functions of ArA(x) (resp., BrB (y)), which on
input a partial transcript T returns the next message (or the final output, in case T is a complete

transcript). The interaction is denoted by Q
A(x)
1 ↔ Q

B(y)
2 where the inputs 1n, 1m, and 1CCn(π)

are omitted for notational simplicity. When we are explicit about the randomness used by Q1 and

Q2, we write Q
A(x)
1 (r1)↔ Q

B(y)
2 (r2).

Definition 25 (Knowledge-Preserving Interactive Coding Schemes). Let η(·, ·), r(·, ·) ∈ (0, 1) be
functions. A pair of oracle-aided interactive probabilistic Turing machines Q = (Q1, Q2) is a (com-
putational) knowledge-preserving interactive coding scheme with error rate η(·, ·) and information
rate R(·, ·) if for every interactive protocol π = (A,B,XA,XB), the corresponding encoded protocol
Qπ satisfies the following properties.

• Efficiency : Q1 and Q2 run in polynomial time in n,m(n) and CCn(π).

• Information Rate: CC∗n(Qπ) ≤ CCn(π)/R(n,m(n)); that is the worst-case “blow-up” of the
encoded protocol is bounded by 1/R(n,m(n)).

• Error Resilience: Qπ is (computationally) η-error resilient.

• Knowledge Preservance: Qπ is a (computationally) knowledge-preserving variant of π.

Q is a (computational) knowledge-preserving interactive coding scheme with information rate
R(·) and error rate η(·) if Q is (computational) knowledge-preserving interactive coding scheme
with information rate R′(n,m) = R(n) and error rate η′(n,m) = η(n).

4 The Information-Theoretic Regime

As we shall see, achieving knowledge-preserving interactive coding is significantly harder than
“plain” interactive coding, and studying resilience against only computationally bounded adversaries
(as was done in [Lip94, MPSW10] in the context of error correcting codes) actually is essential for
achieving good error rates in the context of knowledge-preserving interactive coding.

To put our result in context, let us start by showing that the “naive approach” of separately
encoding each message in the protocol with a good error correcting code is a knowledge-preserving
interactive coding:

Theorem 26. There exists a knowledge-preserving interactive coding scheme Q with information
rate R(n,m) = O(m) and error rate η(n,m) = O(1/m).

Proof. We simply pad each message in the protocol π to become of equal length (this increases the
communication complexity by at most a factor m) and next encode each message using a constant-
rate error correcting code (see Theorem 17); let π̃ denote the encoded protocol. Clearly, π̃ is error
resilient as long as we corrupt at most one message; thus we have an error rate of O(1/m). It easily
follows that π̃ is a security preserving variant of π; the simulator A∗ for an attacker Ã∗ for player 1
emulates an execution of π̃ for Ã∗ by simply encoding all messages in π (using the error correcting
code) and decoding all messages received by Ã∗ before sending them to player 2. The simulator for
player 2 is defined analogously.

Let us now turn to our main impossibility result for the information-theoretic setting. We show
that naive approach is essentially optimal: namely, any knowledge preserving interactive coding
scheme must have an error rate of at most 1/m.

12

Theorem 27. Let Q be a knowledge-preserving interactive coding scheme with information rate
R(·, ·) and error rate η(·, ·). Then for every polynomial m(·), we have that for sufficiently large
n, η(n,m(n)) < 1/m(n). (In particular, there does not exists a knowledge-preserving interactive
coding scheme with error rate η′(n) = 1/poly(n).)

Proof. Consider some knowledge-preserving interactive coding protocol Q = (Q1, Q2) with informa-
tion rate R(·, ·) and error rate η(·, ·) and let M(n,m, `) be a polynomial upper bound on the number
queries made by Q1, Q2 to its oracles (where n is the security parameter, ` is the communication
complexity of the protocol π to be encoded and m is the number of round in π). Assume for contra-
diction that there exists a polynomial m(·) such that for infinitely many n, η(n,m(n)) ≥ 1/m(n).
We will construct a “ping-pong” protocol π = (A,B,XA,XB) with round complexity m(·) such that
Qπ cannot be a knowledge-preserving variant of π.

The ping-pong protocol π. Let t(n) = M(n,m(n), 2m(n)n)+1, andHn = {Hk : ∪i∈{0,...,2m(n)n}{0, 1}i →
{0, 1}n} be a t-wise independent hash function family. On security parameter n, let XA(1n) =
XB(1n) = Hn, i.e., the inputs x ∈ XA(1n) and y ∈ XB(1n) for both players specify hash functions Hx

and Hy in Hn. π is a deterministic protocol that on the inputs x ∈ XA(1n) and y ∈ XB(1n) proceeds
as follows: First, A sends a1 = Hx(∅) to B, who sends back b1 = Hy(a1) to A. Then at each round
i, A sends ai = Hx(a1, b1, . . . , ai−1, bi−1) to B, who sends back bi = Hy(a1, b1, . . . , ai−1, bi−1, ai)
to A; namely, both parties generates their next messages by applying their hash function to the
current transcript. At the end of the interaction, both A and B output the whole transcript
(a1, b1, . . . , am, bm).

Since π is deterministic, the transcript (a1, b1, . . . , am, bm) is determined by the inputs x and y.
Let ai(x, y) (and bi(x, y) resp.) denote the i-th messages A (and B resp.) send in the interaction of
A(x)↔ B(x), and âi(x, y) = (a1, b1, . . . , ai−1, bi−1, ai) and b̂i = (a1, b1, . . . , ai, bi) denote the partial
transcripts of the interaction of A(x)↔ B(x) up until round i; by definition, bi(x, y) = Hy(âi(x, y))

for i ∈ [m] and ai(x, y) = Hx(b̂i−1(x, y)) for i ∈ [m], where b̂0(x, y) is defined to be ∅. Let m′(·)
denote the round complexity of the encoded protocol Qπ.

Privacy of the Ping-pong Protocol Our first observation is that in the ping-pong protocol,
by the unpredictability of the output of the hash functions, player 1, even if maliciously deviating
from the protocol instructions, can only guess more than m distinct pairs (q,Hy(q)) with negligible
probability. Let the predicate PrivacyBreach(o, y) = 1 iff o contains m+ 1 distinct pairs (q,Hy(q)).

Claim 28. For every adversarial strategy A∗ and every n ∈ N,

Pr [x← XA(1n), y ← XB(1n) : PrivacyBreach(out1[A
∗(x)↔ B(y)], y) = 1] ≤ L/2n,

where L denotes the length of A∗’s output (i.e., L = |out1[A∗(x)↔ B(y)]|).

Proof. Note that the interaction with B(y) only allows A∗ to make m queries to Hy. Thus, for the
predicate PrivacyBreach to output 1, A∗ needs to predict one extra pair (q′, Hy(q

′)) that A∗ does not
learn from B; that is, q′ is different from any partial transcript of the interaction. However, since Hy

is t-wise independent, Hy(q
′) remains uniformly random for every such q. Therefore, each guess of

A∗ in its output can only be correct with probability 2−n. Since A∗ can only make at most L guesses
in its output, by an union bound, Pr[PrivacyBreach(out1[A

∗(x)↔ B(y)], y) = 1] ≤ L/2n.

We shall now see that in the encoded protocol Qπ, this “privacy-property” no longer holds, and
as such Qπ cannot be a knowledge preserving variant of π. As a first step towards showing this,
we demonstrate a structural property of the encoded protocol Qπ. In the sequel of the proof, we

13

assume without loss of generality that Q never makes the same query twice to its oracle (since the
oracle anyway is deterministic).

Implicit Ping-pong Computation. We show that (with overwhelming probability) the en-
coded protocol Qπ “implicitly executes” the original ping-pong protocol in a chronological order.
More precisely, as formalized below, the rounds of the encoded protocol can be divided into (non-
empty) “chunks”, where each chunk in the encoded protocol corresponds to a single round (i.e.,
two consecutive messages) in ping-pong protocol; additionally by observing the oracle queries made
by Q, we can read out a polynomial list of candidates for the current transcript of the (implicitly
executed) ping-pong protocol. We emphasize here that definition of the chunks may depend on the
inputs of the players and the randomness of Q.

Formally, let the predicate ImplicitComp(x, y, r1, r2) = 1 iff Q1 asks its oracle (that is, A(x))

the queries b̂0(x, y)4, b̂1(x, y), b̂2(x, y), . . . , b̂m−1(x, y) in order during the interaction of Q
A(x)
1 (r1)↔

Q
B(y)
2 (r2) and all m queries are made in different rounds. When ImplicitComp(x, y, r1, r2) = 1, Q1’s

queries partition the rounds of the interaction into non-empty chunks in the natural way: for every

i ∈ [m], the i-th chunk of the interaction Q
A(x)
1 (r1)↔ Q

B(y)
2 (r1) starts at the round where Q1 makes

the query b̂i−1(x, y) and finishes when makes Q1 the query b̂i(x, y).5 The following lemma shows

that with overwhelming probability (over random inputs x, y and the execution of Q
A(x)
1 ↔ Q

B(y)
2)

ImplicitComp holds and thus chunks are well-defined.

Lemma 29 (Implicit Computation Lemma). There exists a negligible function µ(·) such that for
every n ∈ N,

Pr[x← XA(1n), y ← XB(1n), r1, r2 ∈ {0, 1}∞ : ImplicitComp(x, y, r1, r2) = 1] ≥ 1− µ(n)

Intuitively, the lemma follows by the “elusiveness” property of the output of the hash function
Hx used by A: if Q1 is not asking its oracle all the queries in order it must be able to guess the
output of Hx on a new point q, which contradicts its t-wise independent property. Note that we
here rely on the fact that the output of the hash functions are “long” (i.e., super-logarithmic);
otherwise, it is easy to guess the output of the hash function with inverse polynomial probability.
We proceed to a formal proof.

Proof (of Lemma 29). For convenience, we actually prove a slightly stronger statement: We show
that with overwhelming probability, the following three properties holds during the execution of

Q
A(x)
1 (r1)↔ Q

B(y)
2 (r2): (a) Q1 makes the queries b̂0(x, y), b̂1(x, y), b̂2(x, y), . . . , b̂m−1(x, y) to A(x),

(b) Q2 makes the queries â1(x, y), â2(x, y), . . . , âm(x, y) to B(y), and (c) the queries are made in
chronological order; that is, every i ∈ [m], Q1 make the query b̂i−1(x, y) before Q2 makes the query
âi(x, y) and Q2 make the query âi(x, y) before Q1 makes the query b̂i(x, y). It easily follows that
if the above three properties hold with respect to (x, y, r1, r2) then ImplicitComp(x, y, r1, r2) = 1.
We now show that except with negligible probability (over x, y, r1, r2), each of these properties
(individually) hold; we can then conclude by a union bound that with overwhelming probability,
all of them simultaneously hold.

For (a), suppose for the sake of contradiction that with some noticeable probability ε(n), Q1

does not make the query b̂i(x, y) for some i ∈ {0, . . . ,m− 1}. By completeness of Qπ, Q1 outputs
b̂m(x, y) with overwhelming probability. Thus, by an union bound, with noticeable probability

4Recall that b̂0(x, y) is defined to be ∅.
5We can assume without loss of generality that Q1 always queries the full transcript b̂m(x, y) before generating

the output (at the cost of at most one extra query), so that the last chunk m also is well defined.

14

ε′(n), Q1 does not query b̂i(x, y) but outputs b̂m(x, y), which contains ai(x, y) = Hx(b̂i(x, y)). But,
this can only happen with probability at most 2−n since Hx is t-wise independent and Q1 makes at
most t− 1 queries to its oracle, none of which is b̂i(x, y), and its oracle is exactly computing Hx(·);
thus, even conditioned on Q1 view of the interaction, Hx(b̂i(x, y)) is uniform and can thus only be
guessed by Q1 with probability 2−n. By identically the same argument it follows that (b) happens
except with negligible probability.

For (c), suppose for the sake of contradiction that with some noticeable probability ε(n), Q2

make the query âi(x, y) before Q1 makes the query b̂i−1(x, y) for some i ∈ [m]. Note that âi(x, y)
contains ai(x, y) = Hx(b̂i−1(x, y)). Thus, by guessing which query of Q2 is b̂i−1(x, y), we can
construct an algorithm R that predicts the value of Hx(b̂i−1(x, y)) with probability ε(n)/t(n),
while querying Hx on at most t(n) − 1 points, none of which is b̂i−1(x, y), contradicting t-wise
independence of Hx. By identically the same argument if follows that Q1 only make the query
b̂i(x, y) before Q2 makes the query âi(x, y) for some i ∈ [m] with negligible probability.

Obtaining a Privacy Breach in the Encoded Protocol We are now ready show how to
obtain a privacy breach in the encoded protocol Qπ.

Claim 30. There exists an adversarial strategy Ã∗ for player 1 in Qπ such that for sufficiently
large n ∈ N, the output length of Ã∗ is bounded by 2M(n,m, 2mn)m(n)n and

Pr[x← XA(1n), y ← XB(1n) : PrivacyBreach(out1[Ã
∗(x)↔ Q

B(y)
2], y) = 1] ≥ 1/4m′(n)

Proof. The idea behind the attacker Ã∗ (acting as player 1) is the following. By an averaging
argument, one of the chunks, say chunk i, in the encoded protocol must be shorter than a fraction
1/m of the total communication complexity of the encoded protocol. The idea now is for Ã∗ to
honestly execute the encoded protocol using its actual input x and randomness r1, except that
during the i’th chunk, Ã∗ samples a fresh input x′ (and a fresh randomness r′1 for Q1) consistent
with the transcript up until (and including) chunk i−1,6 and executes the chunk using the input x′

(and randomness r′1) instead of x. Intuitively, since the chunk was “small”, by the error resilience
property of the interactive coding scheme, player 1 will finally produce the same output (including
m pairs (q,Hy(q))) as if it had been running the protocol honestly (that is, without “deviating” in
chunk i). Formally proving this requires showing that the attack performed by Ã∗ can be modelled
as channel that flips a sufficiently small number of bits; indeed, note that the way Ã∗ deviates from
the protocol does not rely the original random coins r1 used by Q1 or the input x, and this property
is crucial for us to be able to emulate the attacker by a channel.

Finally, by observing the oracle queries made by Q1 during the i’th chunk—which corresponds
to the i’th round in the ping-pong protocol, by the “implicit computation” property—Ã∗ may learn
an additional pair (q′, Hy(q

′)); intuitively, the reason for this is that, with overwhelming probability,
the messages in the i-th round in “implicit computation” of π remain uniformly distributed, even
after conditioning on the first i − 1 rounds. (We, however, warn the reader that proving this is
quite subtle; see Sub-claim 32). Thus, if Ã∗ could just identify the i’th chunk, it can learn m + 1
pairs (q,Hy(q)) of Hy. Towards this, Ã∗ simply guesses the starting round of the i’th chunk.

We proceed to a formal description of the attacker Ã∗. (Recall that m′(·) denotes the round
complexity of Qπ.) On input x ∈ XA(1n), and randomness r1, Ã

∗ performs the follow “forking”
attack:

6Note that this step may not be efficiently computable in general, but this is not a problem since we here consider
information-theoretic security.

15

1. Ã∗ uniformly picks a random round j ← [m′(n)] and honestly executes the encoded protocol
Q1 up to the end of (j − 1)-th round. Let T be the resulting partial transcript.

2. Ã∗ samples a fresh input-randomness pair (x′, r′1) conditioned on the partial transcript T ;

namely, (x′, r′1) are uniformly random over all input-randomness pair such that Q
A(x′)
1 (r′1) is

consistent with T .7 Then, Ã∗ continues executing Q1 but now with inputs x′ and randomness
r′1, for as many rounds as possible, subject to the restriction that the number of bits it
transmitted since round j does not exceed η(n,m) · CCn(Qπ).

3. Ã∗ continues the rest of the interaction honestly, with the “true” input x and randomness r1
of Q1 pretending that its own messages were honestly sent all along (including the messages
sent since round j), but may have been incorrectly received by player 2. At the end of the
interaction, Ã∗ outputs (o, L), where o is the output of Q1, and L is the list of queries Q1

made during the “deviation” (using the new input x′).

We first show that, with overwhelming probability, Ã∗ can still learn the “valid” m pairs (q,Hy(q))
(that it would have learn even if it didn’t deviate).

Sub-claim 31. There exist a negligible function µ(·) such that for every n ∈ N,

Pr[x← XA(1n), y ← XB(1n), (o, L)← out1[Ã
∗(x)↔ Q

B(y)
2] : o = out1[A(x)↔ B(y)]] ≥ 1− µ(n).

Proof. Note that the deviation performed by Ã∗ in Step 2 can be implemented by a channel C,
since it only relies on knowledge of the transcript of the interaction and not the internal state
(inputs and randomness) of either of the players. Also, by construction of Ã∗, C never needs to flip
more than η · CCn(Qπ) bits. The claim follows directly by the η-error resilience and completeness
of Qπ.

Note that o = out1[A(x)↔ B(y)] containsm distinct pairs (q,Hy(q), namely, (âi(x, y), bi(x, y) =
Hy(âi(x, y)) for i ∈ [m]; below we abuse of notation and let o denote the set of of these pairs. We
next show that L contains one additional distinct pair (q′, Hy(q

′)) with noticeable probability. Re-
call that a query of Q1 is of the form (a1, b1, . . . , ai, bi); below we sometimes abuse of notation and
interpret each such query as a pair (q, v) where q = (a1, b1, . . . , ai) and v = bi (that is, q is the
vector containing all but the last component, and v contains only the last component).

Sub-claim 32. For sufficiently large n ∈ N, the following holds

Pr

[
x← XA(1n), y ← XB(1n), (o, L)← out1[Ã

∗(x)↔ Q
B(y)
2] :

∃(q,Hy(q)) ∈ L and (q,Hy(q)) /∈ out1[A(x)↔ B(y)]

]
≥ 1/2m′(n).

Proof. Note that in the experiment {x ← XA(1n), y ← XB(1n) : out1[Ã
∗(x) ↔ Q

B(y)
2]}, for every

choice of j (by Ã∗), the tuple (x′, y, r′1, r2) is uniformly distributed (since we can view the experiment
as first sampling a uniform j−1-round transcript T and then then sampling (x′, y, r′1, r2) conditioned
on T). It follows that the distribution of (x′, y, r′1, r2) is independent of j.

Additionally, note that Ã∗ could have picked x′, r′1 is a somewhat more convoluted way, gen-
erating exactly the same distribution: instead of directly sampling x′, r′1 conditioned on T , first
sample a list L1 of (at most t(n)−1) query-answer pairs corresponding to Q1’s queries to its oracle
A(x) up until round j − 1, conditioned on the transcript being T ; next, sample x′ conditioned on
L1 and T , and finally r′ conditioned on x′, L1 and T . The following observation will be useful in
what follows:

7Note that this is the only inefficient step in the forking attack.

16

Sampling x′ conditioned on L1 and T is equivalent to sampling x′ just conditioned on
just the query-answer pairs L1.

The reason this holds is that conditioned on L1, x
′ and T are independent (recall that T is deter-

mined as a function of just L1, y, r1, r2).
Now, by observing the list of queries L1 (up to the transcript T) and the input y of player 2,

let us determine the next round in the “implicit computation” of π (or said otherwise, the “next
chunk” in the encoded protocol after the transcript T). If L1 does not contains the query ∅, let
i = 1 (i.e., the implicit computation has not begun yet since player 1 has not generated its first
input a1; consequently, the next round is 1). If L1 contains the query-answer pair (∅, a1) (since
Q1’s oracle A is deterministic, there can be at most one such query), check if L1 contains a query of
the form (b1 = Hy(a1), a2) (again, there can be at most one such query); if not set i = 2, otherwise,
check if L1 contains a query of the form (b2 = Hy(a1, b1, a2), a3), and so on.

Below we show the following two statements:

1. With probability at least 1/m′(n) − negl(n), it holds that i ∈ [m(n)] (i.e., the implicit com-
putation of π has not ended) and L contains the query b̂i(x

′, y) (which corresponds to the
pair (âi(x

′, y), bi(x
′, y) = Hy(âi(x

′, y)))

2. With probability at most 2−n, it holds that (âi(x
′, y), bi(x

′, y)) ∈ out1[A(x)↔ B(y)].8

The claim then follows by a union bound.
To prove statement (1), consider some fixed (x′, y, r′1, r2) where chunks are well-defined (i.e.

ImplicitComp(x′, y, r′1, r2) = 1). Note that the event in (1) means that the whole i-th chunk of

Q
A(x′)
1 (r′1)↔ Q

B(y)
2 (r2) is completed during the deviation, i.e., the chunk starts at or after round j,

and ends before the “cut-off”. By an averaging argument, there must exist some chunk i∗ that is
shorter than (1/m) ·CCn(Qπ) ≤ η(n,m) ·CCn(Qπ). Clearly, when j equals to the starting round of
chunk i∗, which happens with probability 1/m′(n) since j is uniformly distributed and independent
of (x′, y, r′1, r2), chunk i = i∗ and thus chunk i will be completed before the cut-off; consequently,
since ImplicitComp(x′, y, r′1, r2) = 1, L contains the query b̂i(x

′, y). Since, by Lemma 29 (and
the observation that x′, y, r′1, r2 are uniformly distributed) ImplicitComp(x′, y, r′1, r2) = 1 holds with
overwhelming probability, we have Pr[b̂i(x

′, y) ∈ L] ≥ 1/m′(n)−negl(n) for some negligible function
negl(n).

To prove statement (2), note that if ai(x, y) 6= ai(x
′, y), then (âi(x

′, y), bi(x
′, y)) /∈ out1[A(x)↔

B(y)]. Thus, it sufficient to show that Pr[ai(x, y) = ai(x
′, y)] ≤ 2−n; that is Pr[Hx(b̂i−1(x, y)) =

Hx′(b̂i−1(x
′, y))] ≤ 2−n. Consider some fixed x, y, r1, r2, L1; note that i is determined as a function

of these (recall that it is a function of L1, y), and trivially Hx(b̂i−1(x, y) is determined. Additionally,
note that for every x′ consistent with L1, b̂i−1(x

′, y) = Hy(âi−1(x
′, y) is determined and furthermore

b̂i−1(x
′, y) is not contained in L1 (since by definition of i, b̂i−2(x

′, y) is the “last” ping-pong query
in L1). Since, as observed above, x′ is uniformly sampled conditioned only on L1 (and since
L1 contains at most t(n) − 1 queries, none of which is b̂i−1(x

′, y)), it follows that every fixed
x, y, r1, r2, L1, Pr[Hx(b̂i−1(x, y) = Hx′(b̂i−1(x

′, y)] ≤ 2−n, and thus this condition also holds for
random x, y, r1, r2.

By combining Sub-claim 31 and 32, and applying the union bound we get that

Pr[PrivacyBreach(out1[Ã
∗(x)↔ Q

B(y)
2], y) = 1] ≥ 1/2m′(n).

which concludes the proof of Claim 30.

8Pedantically, in case i > m(n), âi is not defined; in this case the event is simply defined to not hold.

17

Combining Claim 28 and 30 shows that Qπ is not a knowledge-preserving variant of π, which
leads to a contradiction and completes the proof of Theorem 27.

5 The Computational Regime

We here turn to studying knowledge-preserving interactive coding in the presence of only computationally-
bounded adversaries (i.e., computational knowledge-preserving interactive coding).

5.1 Positive Results

We first present a positive result, showing that assuming the existence of one-way function, compu-
tational knowledge-preserving interactive coding with constant error rate (more specifically, close
to 1/12) and sub-polynomial (or even poly logarithmic, if assuming subexponentially-hard one-way
functions) information rate is possible.

Theorem 33. Assume the existence of one-way functions. For every ε > 0, there exists a com-
putational knowledge-preserving interactive coding scheme with perfect completeness, error rate
η = 1

12 − ε and information rate R(n) = O(1/nε). If additionally sub-exponentially hard one-way
functions exists, the information rate is 1/polylogn.

Roughly speaking, the idea behind the scheme is the following. In a “preamble phase” , the
players start by exchanging verification keys for a signature scheme; the verification keys first are
padded with ρ 0’s to become “long” enough (where ρ is a parameter to be set) and then encoded
using a good ECC (Ep, Dp); let α(n) denote the length of the encoded verification key. Next, in
the “main execution phase” we run the original protocol π, except that each messages is signed
and encoded using a good error correcting code (Em, Dm) (which may be different from the code
(Ep, Dp)). More precisely, player 1 keep track of the “current round” number i1 in the protocol π,
and encode its ith-round message ai as ci = Em(i, ai, σi) where σi is a signature of (i, ai). Upon
receiving a message c while having the “current round” number (in the protocol π) being i, player 1
decodes the message ((i′, b), σ) = Dm(c) and interprets b as the i’th round message bi in π, as long
as 1) i′ = i − 1, and 2) σ is a valid signature on (i′, b); if not, player 1 “signals” that the received
message was corrupted by simply resending its message ci−1 = Em(i−1, ai−1, σi) from the previous
round. Player 2’s strategy is defined analogously except that player 2 accepts the received message
if i′ = i (since player 2 is sending the second message in each round). Finally, we impose a bound
c on the communication complexity of the protocol (or else the protocol may run forever, due to
“resend” message); both players simply abort outputting nothing if the communication complexity
would exceed c if they send their message. Let β(n) denote the length of each encoded message,
and let γ(n,m) = 2α(n) + 2mβ(n) be the length of the protocol if all messages get sent through on
the first trial, and there is no cut-off.

We must set ρ such that the length α(n) of the encoded verification keys is within a constant
factor of c (or else, either the preamble phase can be fully corrupted, or the main phase can be fully
corrupted). On the other hand, c must be long enough to execute the encoded version of π (that is
c > γ(n,m), and additionally handle sufficiently many “resend” requests, before the error-quota of
the adversary runs out. By appropriately setting ρ and c, this leads to an error rate of η/4 if η is
the error rate of both (Ep, Dp) and (Em, Dm); roughly speaking, we lose a factor of two because the
adversary may choose to corrupt either the verification key of player 1 or that of player 2; we loose
another (additively) factor of two due to the fact that the length of the encoded messages must
be within a constant factor of c, and the fact that each time the attacker corrupts the message of

18

a single player in the main phase protocol execution, we need to resend the whole round (i.e., 2
messages).

We can further improve the error rate by relying on an idea from [MPSW10]: since the messages
in the main phase are signed and we only consider a computationally bounded channel, it in fact
suffices to list-decode the error-correcting code (Em, Dm) used in the main phase.9 It follows using
the same argument as in [MPSW10] that (with overwhelming probability) list-decoding can only
yields at most a single valid message (since all the messages are signed), and thus using list-decoding
here yields unique decoding.

We provide a formal description of the scheme in Figure 1. We assume without loss of generality
that in the original protocol π each player sends a single bit at each round in the protocol (we refer
to such protocols as “bit protocols”).

The following key lemma shows that the above-described scheme is a knowledge preserving
interactive coding schemes. The proof of Theorem 33 is then concluded by appropriately setting ρ
and c.

Lemma 34. Let π = (A,B,XA,XB) be a bit protocol with round complexity m(·). Let (Gen,Sig,Ver)
be a secure signature scheme with signature length l(n) and verification-key length v(n), let (Ep, Dp)
be an ECC with constant error rate ηp and information rate Rp(·) and (Em, Dm) be an error
correcting codes that is efficiently ηm-list-decodable and has information rates Rp(·). Consider
Q,α, β, γ defined in Figure 1 w.r.t the functions ρ(·, ·), c(·, ·). If c(n,m) ≥ γ(n,m), then Q is a
computational knowledge preserving interactive coding scheme with perfect completeness, and:

• information rate R(·) s.t.
R(n,m) = c(n,m)/2m;

• error rate η(·, ·) s.t.

η(n,m) = min

(
ηm ·

c(n,m)− γ(n,m)

2c(n,m)
, ηp ·

α(n)

c(n,m)

)
.

Proof. We separately prove each of the required properties.

Efficiency and Information rate: Q is clearly polynomial-time computable, and by defini-
tion of Q, we have that CC∗(Qπ) = c(n,m); it follows that Q has information rate R(n,m) =
c(n,m)/(2m).

Perfect Completeness: It easily follow from the definition of Q that Qπ perfectly emulates π if
both players are honest. In fact, for every n, input pair x ∈ XA(1n), y ∈ calXB(1n) and randomness
pair rA, rB ∈ {0, 1}∞,

Pr
[
out[Q

ArA (x)
1 ↔ Q

BrB (y)
2] = out[ArA(x)↔ BrB (y)]

]
= 1

We refer to this property as perfect completeness, and it will be useful shortly.

9[MPSW10] relies on this idea to show how to achieve an error-correcting code with error rate 1/2− ε if assuming
a (noiseless) public-key infrastructure and a computationally-bounded channel. In our context, we do not have a
public-key infrastructure, but our initial exchange of verification keys using a uniquely decodable error-correcting
code can be viewed as a way to set-up the appropriate public-key infrastructure needed for their results.

19

Input protocol: A bit protocol π = (A,B,XA,XB) with round complexity m = m(n).

Parameters:

• Let ρ = ρ(n,m) be a padding parameter.

• Let c = c(n,m) be a cut-off parameter.

Primitives used:

• Let (Gen,Sig,Ver) be a signature scheme with signature length l = l(n) and verification key
length v = v(n).

• Let (Ep, Dp) be an error correcting code with (constant) error rate ηp and information rate
Rp = Rp(·).

• Let (Em, Dm) be an error correcting code that is efficiently ηm-list decodable and has infor-
mation rate Rm = Rm(·).

Initialization: On input a security parameter 1n, round complexity 1m, and communication complex-
ity 12m, Q1 (resp., Q2) initializes a counter i1 = 1 (resp., i2 = 1).

Preamble: Q1 runs (sk1, vk1) ← Gen(1n) and sends c1,0 = Ep(vk1||0ρ) to Q2. Then Q2 runs
(sk2, vk2) ← Gen(1n) and sends c2,0 = Ep(vk2||0ρ) to Q1. Both Q1 and Q2 decode the
received message c′2,0 and c′1,0 and store vk′2 = Dp(c′2,0) and vk′1 = Dp(c′1,0), respectively.
Let α(n) denote the length of each message c′1,0, c′2,0 in the preamble phase; that is α(n) =
(v(n) + ρ(n))/Rp(v(n) + ρ(n))

Main: We first define the strategy of Q1:

• First, Q1 queries its oracle A to obtain the first message a1, appends a1 to t1, computes
σ1 ← Sigsk1((i1, a1)), sends c1,1 = Em((i1, a1, σ1)) to Q2, and increases the counter by 1
(i.e., i1 := i1 + 1).

• Upon receiving a message c′ from Q2, Q1 list-decodes c, and verifies that there exists a
unique message (i′, b′, σ′) such that (a) i′ = i1 − 1 and (b) Vervk′2((i′, b′), σ′) = 1. If the
verification rejects, Q1 resends its previous message c1,i1−1. If the verification accepts, then
Q1 appends b′ to t1 and queries t1 to its oracle A. If A returns an output o1, then Q1

outputs o1 and terminates. If A returns a next message ai1 , then Q1 appends ai1 to t1,
computes σi1 ← Sigsk1((i1, ai1)), sends c1,i1 = Em((i1, ai1 , σi1)) to Q2, and increases the
counter by 1 (i.e., i1 := i1 + 1).

The strategy of Q2 is defined analogously, except that in step (a) , Q2 verifies that i′ = i2 (as
opposed to i2 − 1).

• Upon receiving a message c′ from Q1, Q2 list-decodes c, and verifies that there exists a
unique message (i′, b′, σ′) such that (a) i′ = i2 and (b) Vervk′1((i′, a′), σ′) = 1. If the
verification rejects, Q2 resends its previous message c2,i2−1. If the verification accepts, then
Q2 appends a′ to t2 and queries t2 to its oracle B. If B returns an output o2, then Q2

outputs o2 and terminates. If B returns a next message bi2 , then Q2 appends bi2 to t2,
computes σi2 ← Sigsk2((i2, ai2)), sends c2,i2 = Em((i2, bi2 , σi2)) to Q1, and increases the
counter by 1 (i.e., i2 := i2 + 1).

Let β(n) denote the length of each round in the main phase. Let γ(n,m) = 2α(n) + 2mβ(n).

Abort condition: At any point, if sending the next message causes the total communication to exceed
c(n,m) bits, the scheme Q aborts (with the players outputting ⊥).

Figure 1: Interactive coding scheme Q = (Q1, Q2) encoding an interactive bit protocol π.

20

Knowledge Preservance: First note that if c(n,m) ≥ γ(n,m) then Q is complete. Note that
Q executes π in a straight-line fashion (without any “rewindings”). We now use this observation to
show that π̃ = Qπ is a knowledge preserving variant of π. More precisely, for every polynomial-time
attacker Ã∗ for player 1, we show the existence of a polynomial-time simulator A∗ such that for every

x ∈ XA, y ∈ XB and z ∈ {0, 1}∗ we have that outÃ∗ [Ã
∗(x, z) ↔ Q

B(y)
2] is identically distributed

to outA∗ [A
∗(x, z) ↔ B(y)]. The simulator A∗(x, z), in essence, is just the encoding algorithm Q2:

A∗(x, z) simply emulates an interaction between Ã∗(x, z) and Q2, while externally forwarding all
the oracle queries by Q2 and answering those queries by forwarding back all the external message.
Since Q2 never rewinds its oracle, the view of Ã∗ in the simulation is identical to its view in the
real execution. (Note that the knowledge preservance property holds unconditionally.) A simulator
for an adversarial player 2 is constructed in the analogous way.

Error resilience We turn to showing that Qπ is η-error-resilient, where

η(n) = min

(
ηm ·

c(n,m(n))− γ(n,m(m))

2c(n,m(m))
, ηp ·

α(n)

c(n,m(m))

)
Consider some non-uniform polynomial-time channel C, security parameter n, inputs x, y and

randomness rA, rB and an execution e ∈ supp(Q
ArA (x)
1 ↔C(1n) Q

BrB (y)
2) such that out(e) 6=

out(ArA(x) ↔ BrB (y)) (recall that by perfect completeness, for every e′ ∈ supp(Q
ArA (x)
1 ↔

Q
BrB (y)
2), we have that out(e) = out(ArA(x) ↔ BrB (y)).) For this to happen, either of two things

must have happened:

1. either execution gets cut-off (in which case both players output ⊥); or,

2. either Q1 or Q2 queries its oracle on a partial transcript t′ that is not a partial transcript in
the execution of A(x)↔ B(y).

We show that neither of these cases can happen with inverse polynomial probability for infinitely
many n (and selections of x, y, rA, rB) as long as C corrupts at most η(n)c(n,m(n)) bits.

Let us first prove that case 1 only can happen with negligible probability. First, note that since
c(n,m(n)) ≥ γ(n,m(n)) we have that Qπ does not abort when run over a noiseless channel. Next,
note that since η(n) ≤ ηpα(n)/c(n,m(n)), the channel can corrupt at most ηp ·α(n) bits. It follows
that each message in the preamble phase will always be correctly decoded, since (Ep, Dp) has error
rate ηp and each message in the preamble phase is of length α(n).

Additionally, since η(n) ≤ ηm · (c(n,m(n))− γ(n,m(n)))/(2c(n,m(n)), the channel can corrupt
at most

ηm ·
(c(n,m(n))− γ(n,m(n)))

2

bits. Note that unless channel corrupts ηmβ(n) bits in a message in the main phase, the message
can still be list decoded. Furthermore, it follows (as in [MPSW10]), relying on the security of the
signature scheme (against non-uniform polynomial-time attackers)10 that except with negligible
probability, the correct message is the unique one that has an accepting signature (since the channel
has seen at most a single signed message of the form (i, ·) for each verification key). On the other
hand, if the channel corrupts more than ηmβ(n) bits in one message, list decoding is no longer
guaranteed to work, and this may cause the players to resend two messages (recall that the player

10Note that the reason we require non-uniform security of the signature scheme is that the attacker needs to get
the inputs x, y and the non-uniform advice of C.

21

that notices a corrupted message, resends its previously send message, which forces the other player
to resend the corrupted one). Thus, every time the channel corrupts ηmβ(n) bits, it may cause
the interaction to become 2β(n) bits longer. So, to make the interaction become cut-off (with
non-negligible probability), we need j such corruptions of ηmβ(n) bits, where

γ(n) + 2β(n)j > c(n,m(n)).

In other words,

j >
c(n,m(n))− γ(n,m(n))

2β(n)
,

which means that the channels needs to corrupt more than

ηm ·
c(n,m)− γ(n,m)

2

bits, which is a contradiction.
We proceed to show that case 2 only can happen with negligible probability. The key observation

needed to prove this is that, as mentioned above, the preamble phase is always uniquely decoded
and thus C cannot change the verification keys vk1, vk2. Consider the first time that, say, Q1 queries
its oracle on a partial transcript t′ that is not a partial transcript in the execution of A(x)↔ B(y).
It means that Q1 accepts an incorrect message (i′, b′, σ′) such that b′ is different from the message
bi1−1 it should have received in π in round i1 − 1, it must be the case that a) i′ = i1 − 1 (or else
Q1 would reject it), and b) C provided a valid signature (for the verification key vk2) on (i′, b′).
But the channel has seen at most a single signature (for the verification key vk2) on a message
of the type (i1 − 1, ·) (since Q2 will only send a single message of this type); it thus follows from
the non-uniform security of the signature scheme that player 2 accepts an incorrect message with
at most negligible probability. It follows analogously that C can only make player 2 accept an
incorrect message with negligible probability.

Equipped with Lemma 34, we now turn to proving Theorem 33.

Proof of Theorem 33. Assume the existence of one-way functions, fix some ε > 0. By scaling down
the security parameter in the construction from Theorem 14, there exists a signature scheme with
both verification-key length and signature length O(nε). Additionally, by Theorem 18 and 20, there
exists ECCs (Ep, Dp), (Em, Dm) with information rate R(n) = O(1/n), and such that (Ep, Dp) has
error-rate 1/4− ε and (Em, Dm) is 1/2− ε efficiently list decodable. By Lemma 34, we get that the
error rate η(n) is (approximately) maximized11 when

c(n,m) = γ(n,m) + α(n) = 3α(n) + 2m(n)β(n).

(that is, the two expressions inside the min are the same). In this case,

η(n) = ηp ·
α(n)

3α(n) + 2m(n)β(n)
.

Note that we can set the padding parameter ρ(n) to be a sufficiently big polynomial such that
ε · α(n) ≥ 2m(n)β(n); it follows that the error rate is at least

ηp

3 + ε
=

(1/4)− ε
3 + ε

≥ 1

12
− ε

11For simplicity, we ignore ε terms.

22

By Lemma 34, the information rate of Q is c(n,m)/2m = O(nε). This concludes the first part of
the theorem.

If additionally assuming the existence of subexponentially-hard one-way functions, it instead
follows that c(n,m) ≤ O(m · polylogn).

5.2 Negative Results

We show that our positive result is optimal in two ways:

1. The existence of one-way functions is necessary.

2. If a constant error rate is desired, it is impossible to achieve an information rate of Ω(1/ log n).

The necessity of one-way functions We show that the existence of one-way functions is nec-
essary to achieve computational knowledge-preserving interactive coding with error rate 1/poly(n).

Theorem 35. For every polynomial m(·), the existence of a computational knowledge-preserving
interactive coding scheme Q with error rate η(n,m) ≥ 1/m(n) implies the existence of one-way
functions.

Proof. At a high level, the theorem follows by observing that the forking attacker Ã∗ in the proof
of Theorem 27 can be approximated efficiently if one-way functions do not exist, and so can the
channel adversary. We turn to a formal proof. Assume for contradiction that one-way functions
do not exist, we show that there does not exist a computational knowledge-preserving interactive
coding scheme with polynomial error and information rate.

Consider some polynomial m(·) and computational knowledge-preserving interactive coding
protocol Q = (Q1, Q2) with error rate η(n,m) ≥ 1/m(n); let M(n,m, `) be a polynomial upper
bound on the number queries made by Q1, Q2 to its oracles (where n is the security parameter, m
and ` are the round complexity and communication complexity of the protocol π to be encoded).

Let t = M(n,m, 2mn) + 1. Let π = (A,B,XA,XB) be the ping-pong protocol defined in
the proof of Theorem 27 with m rounds and using t-wise independence hash functions as inputs.
Let m′(·) be the round complexity of the encoded protocol Qπ. We show that Qπ cannot be a
computational knowledge-preserving variant of π by obtaining a privacy breach using the same
forking attacker Ã∗ as in the proof of Theorem 27, but relying on the assumed non-existence of
one-way functions, to make Ã∗ and the channel C that emulates the attacker Ã∗, efficient.

Recall that the only inefficient step of Ã∗ is in Step 2, where Ã∗ needs to sample a fresh input-
randomness pair (x′, r′1) conditioned on the first j − 1 rounds partial transcript T of the execution

Q
A(x)
1 (r1) ↔ Q

B(y)
2 (r2). Let f denote the function that maps (x, y, r1, r2, j) to T . Clearly, f

is efficient. By Theorem 12 and the assumed non-existence of one-way functions, there exists a
polynomial-time inverter M such that (T,M(T)) and (T, (x, y, r1, r2, j)) has statistical distance at
most 1/8m′(n) for infinitely many n ∈ N. (Note that M only works for infinitely many n ∈ N.
Nevertheless, this is sufficient.) Namely, M can approximately sample a random pre-image of a
random transcript T with small inverse polynomial error. Relying on the inverter M , Ã∗ can be
made efficient straightforwardly, with the following modification; let us denote the modified attacker
Ã∗eff .

• In the second step, Ã∗eff appliesM to the partial transcript T to obtain a pre-image (x′, y′r′1, r
′
2, j
′).

Then Ã∗eff uses (x′, r′1) to continue the attack as before. Namely, Ã∗eff continues the interac-
tion, but with the input and randomness to Q1 switched to x′ and r′1, for as many rounds
as possible, subject to that the number of bits it transmits since round j does not exceed
η(n) · CCn(Qπ).

23

By construction, the attacker Ã∗eff runs in polynomial time; additionally, since the channel C
used in the proof of Theorem 27 perfectly mimics the attacker, it is also efficient.

We now show that Ã∗eff approximate Ã∗ well over random inputs, which implies that Ã∗eff can
also obtain a privacy breach with inverse polynomial probability for infinitely many n. Specifically,
we show that the following two experiments have a statistical distance of at most 1/8m′(n) for
infinitely many n ∈ N.

• Exp1(1
n) =

{
x← XA(1n), y ← XB(1n) : Ã∗(x)↔ Q

B(y)
2

}
• Exp2(1

n) =
{
x← XA(1n), y ← XB(1n) : Ã∗eff(x)↔ Q

B(y)
2

}
Claim 36. For infinitely many n ∈ N, the statistical distance between Exp1(1

n) and Exp2(1
n) is

at most 1/8m′(n).

Proof. Recall that both experiments are determined by the values of (x, y, r1, r2, j, x
′, r′1), where

(x, y, r1, r2, j) are independently and uniformly sampled, and then in Exp1, (x′, r′1) are sampled

conditioned on the first j − 1 round partial transcript T of the execution Q
A(x)
1 (r1) ↔ Q

B(y)
2 (r2),

and in Exp2, (x′, r′1) are sampled by first applying the efficient inverter to obtain (x′, y′, r′1, r
′
2, j
′)

and then discarding (y′, r′2, j
′).

Fix a security parameter n ∈ N such thatM works; that is, such that (T,M(T)) and (T, (x, y, r1, r2, j))
have a statistical distance of at most 1/8m′(n). This implies that the distributions of (T, x′, r′1)
in Exp1(1

n) and Exp2(1
n) have a statistical distance of at most 1/8m′(n), since projection (i.e.,

removing (y′, r′2, j
′)) cannot increase statistical distance. We claim that additionally, the distribu-

tion of the whole tuple (x, y, r1, r2, j, x
′, r′1) in Exp1(1

n) and Exp2(1
n) have a statistical distance of

at most 1/8m′(n) as well. To see this, as a thought experiment, we can view the experiments as
sampled in the following different order: first, T is sampled, then (x′, r′1) are sampled conditioned
on T , and finally (x, y, r1, r2, j) are sampled conditioned on T (note that conditioned on T , (x′, r′1)
and (x, y, r1, r2, j) are independent). Note that in both experiments, (x, y, r1, r2, j) are sampled in
an identical way after sampling (T, x′, r′1), so it does not increase the statistical distance. Therefore,
the statistical distance between Exp1(1

n) and Exp2(1
n) on this security parameter n is at most

1/8m′(n).

Now, since Ã∗ obtains a privacy breach with probability ≥ 1/4m′(n) in Exp1(1
n) for sufficiently

large n ∈ N, and Exp1(1
n) and Exp2(1

n) have statistical distance at most 1/8m′(n) for infinitely
many n ∈ N, it follows that Ã∗eff can also obtains a privacy breach with probability ≥ 1/8m′(n)
in Exp2(1

n) for infinitely many n ∈ N. This shows that Qπ is not a computationally knowledge-
preserving variant of π and completes the proof.

The necessity of a communication complexity blow-up We show that every computational
knowledge-preserving interactive coding scheme with constant error rate must have an information
rate of o(1/ log n), showing that the inverse polylogarithmic rate achieved in Theorem 33 (assuming
subexponentially hard one-way functions) is essentially optimal.

Theorem 37. Assume the existence of a computational knowledge-preserving interactive coding
scheme with information rate R(n) and error rate η(n). Then R(n)η(n) ∈ o(1/ log(n)).

Proof. The theorem is a direct consequence of Theorem 38 proven in Section 6.

24

6 Lower Bound for Non-constructive Schemes

In this section, we present an impossibility result for the computational setting, which applies
even to non-constructive interactive coding scheme. In particular, for every η(n) > 1/ log n, we
demonstrate the existence of protocol π with communication complexity 1/η(n) such that every
computationally η-error resilient, computationally knowledge-preserving variant of π must have
communication complexity at least ω(log n). In particular, for the case η(n) = O(1), we get that
the information rate also for non-constructive interactive coding is at most o(1/ log n). (Note that
this result is interesting also in the information theoretic setting, since in contrast to Theorem 27,
we here provide an impossibility result also for non-constructive interactive coding.)

Theorem 38. For every function η(·) such that η(n) ≥ O(1/ log n), there exists a protocol π =
(A,B,XA,XB) with communication complexity CCn(π) = O(1/η(n)) such that for every protocol
π′ = (Q1, Q2,XA,XB) that is a computationally knowledge-preserving variant of π and is computa-
tionally η-error resilient, the communication complexity of π′ is at least ω(log n).

Proof. We here consider a somewhat simpler variant of the ping-pong protocol, which we refer to
as the “bit-exchange” protocol π (the protocol is almost identical to a protocol used in [CP11] in
a quite different context). We show that any protocol π′ with communication complexity O(log n)
that is computational η-error resilient cannot be a computationally knowledge preserving variant
of π.

Similarly to the proof of Theorem 27, let us first formally define π and formalize a security
property that it satisfies.

The “bit-exchange” protocol π. Let m(·) = d2/η(·)e and consider the following simple bit-
exchange protocol π = (A,B,XA,XB), where both players simply send their inputs to each other,
bit-by-bit. On security parameter n, let m = m(n) and XA(1n) = XB(1n) = {0, 1}m(n). π is a
deterministic m-round protocol that on the inputs x ∈ {0, 1}m and y ∈ {0, 1}m proceeds as follows:
at each round i ∈ [m], A sends ai = xi to B, who sends back bi = yi to A, where xi, yi denote
the i-th bit of x, y, respectively. At the end of the interaction, both A and B output the whole
transcript (a, b), where a = (a1, . . . , am) ∈ {0, 1}m and b = (b1, . . . , bm) ∈ {0, 1}m.

“Guess-the-next-bit” security of the bit-exchange protocol. We say that player matches
in a round i ∈ [m] if it guesses the bit sent by its opponent in the next message. Formally, for
i ∈ [m], defined the predicates Match1,i(a, b) = 1 iff ai = bi, Match2,i(a, b) = 1 iff bi = ai+1. Note
that if the inputs are uniformly distributed, then for every i ∈ [m], the probability that each player
matches in round i with probability exactly 1/2.

Claim 39. For every adversarial strategy A∗, every n ∈ N and i ∈ [m],

Pr [x, y ← {0, 1}m : Match1,i(out2[A
∗(x)↔ B(y)]) = 1] = 1/2.

Similarly, for every adversarial strategy B∗, every n ∈ N and i ∈ [m− 1],

Pr [x, y ← {0, 1}m : Match2,i(out1[A(x)↔ B∗(y)]) = 1] = 1/2.

Proof. The claim trivially follows by noting that for every A∗ (resp., B∗), yi (resp., xi+1) remains
uniformly random conditioned on the view of A∗ (resp., B∗) when A∗ (resp., B∗) needs to send its
i-th message.

25

Now, consider some computationally knowledge preserving variant π′ = (Q1, Q2, {0, 1}m(n), {0, 1}m(n))
of π that hasO(log n) communication complexity and is η-error resilient. Let c(n) = max{CCn(π′), log n},
and m′(·) be the round complexity of π′. As in the proof of Theorem 27, we first show that π′

needs to be “implicitly executing” π in a chronological order. In contrast to this step in the proof
of Theorem 27, we here rely on the knowledge preservance property of π′ to demonstrate this.

Implicit bit-exchange computation. Our formalization of implicit computation here is quite
different from how it was formalized in the proof of Theorem 27. Here we rely on information-
theoretic definitions of what it means to implicitly execute π (which is what allows us to provide an
impossibility result also for non-constructive coding schemes). Towards formalizing it, let us first
introduce some additional definitions.

For two strings T and T ′, we denote by T � T ′ (resp., T ≺ T ′) that T is a prefix (resp., proper
prefix) of T ′. Fix a security parameter n and let m = m(n). If x, y ∈ {0, 1}m and T is a partial
transcript, then let p(x, y, T) = Pr[T � trans[Q1(x) ↔ Q2(y)]]; that is, the probability that T is
consistent with the execution of Q1(x) ↔ Q2(y). Let δ > ε ∈ (0, 1) be two parameters (to be
determined later). For inputs x, y ∈ {0, 1}m, a partial transcript T , i ∈ [m] and β ∈ {0, 1}, we say
that (y, T) (resp., (x, T)) is (δ, ε)-binding for (i, β) if the following two conditions hold:

1. There exists x′ ∈ {0, 1}m with x′i = β (resp., y′ ∈ {0, 1}m with y′i = β) such that p(x′, y, T) ≥ δ
(resp., p(x, y′, T) ≥ δ).

2. For every x′ ∈ {0, 1}m with x′i 6= β (resp., y′ ∈ {0, 1}m with y′i 6= β), p(x′, y, T) ≤ ε (resp.,
p(x, y′, T) ≤ ε).

Intuitively, this means that (y, T) “determines” xi = β. Consider an execution T ← trans[Q1(x, r1)↔
Q2(y, r2)] for some inputs x, y ∈ {0, 1}m and randomness r1, r2 ∈ {0, 1}∞. Note that since the prob-
ability p(x, y, T) can be estimated by sampling, the above two conditions can be checked in time
poly(2c, 1/δ, 1/ε), which allows player 1 to “decode” the bit yi from (x, T) when (x, T) is binging for
player 2’s i-th bit input. Specifically, there is an algorithm Dec1 with runtime poly(n, 2c, 1/δ, 1/ε)
that takes (x, T, i, δ, ε) as input such that (a) if (x, T) is (δ, ε)-binding for (i, β), then Dec1 outputs
β with probability at least 1 − 2−n, and (b) if (x, T) is not (δ/2, 2ε)-binding for both (i, 0) and
(i, 1), then Dec outputs ⊥ with probability at least 1 − 2−n. Analogously, there is an algorithm
Dec2 to “decode” player 1’s bit xi from (y, T).

Define the i-th binding-point for player 1 (resp., 2) of the execution (x, y, r1, r2) with parameters
(δ, ε) to be the shortest partial transcript T1,i � T (resp., T2,i � T) such that (i) the last message in
T1,i (resp., T2,i) is sent by player 1 (resp. player 2), and (ii) (y, T1,i) (resp., (x, T2,i)) is (δ, ε)-binding
for (i, xi) (resp., (i, yi)); if no such partial transcript exists, define T1,i = ⊥ (resp., T1,i = ⊥). For
convenient, we use notation Td,i(x, y, r1, r2; δ, ε) to denote the i-th binding-point for player d of the
execution (x, y, r1, r2) with parameters (δ, ε).

Intuitively, Td,i is the point where player d sends its i-bit to the other player (corresponding to
the i-th message in the implicit computation of π). Formally, let the predicate ImplicitComp(x, y, r1, r2; δ, ε) =
1 iff (i) Td,i(x, y, r1, r2; δ, ε) 6= ⊥ for every d ∈ {1, 2} and i ∈ [m], (ii) T1,i ≺ T2,i for every i ∈ [m],
and (iii) T2,i ≺ T1,i+1 for every i ∈ [m−1]; that is, the i-th binding-points for both players occur in
a chronological order corresponding to the execution of π and do not occur at the same time. When
ImplicitComp(x, y, r1, r2; δ, ε) = 1, the interaction of π′ can be partitioned into non-empty chunks as
before: for every i ∈ [m], the i-th chunk of the execution Q1(x, r1) ↔ Q2(y, r1) starts after T2,i−1
and finishes at the end of T2,i; that is, the i-th chunk starts when player 1 starts sending i-message
and finished when player 1 receives the i-th message from player 2.

26

The following lemma shows that ImplicitComp holds with high probability for every input pair
(x, y) and appropriate (sufficiently small) inverse polynomial δ and ε.

Lemma 40 (Implicit Computation Lemma). For every polynomial q(n) ≥ n5 · 25(m(n)+c(n)), for
sufficiently large n ∈ N,

Pr[x, y ← {0, 1}m(n), r1, r2 ∈ {0, 1}∞ : ImplicitComp(x, y, r1, r2; 1/q(n), 1/q2(n)) = 1] ≥ 1− 1/n.

Proof. Let δ(n) = 1/q(n) and ε(n) = 1/q2(n). Let µ(n) be a negligible function such that π′ is a
computational knowledge preserving variant of π with respect to µ(n) (for both completeness and
computational knowledge preservance). Recall that the completeness property says that for every
n ∈ N, every x, y ∈ {0, 1}m(n),

Pr[out[Q1(x)↔ Q2(y)] = out[A(x)↔ B(y)] ≥ 1− µ(n).

Fix n to be a sufficiently large security parameter such that µ(n) ≤ 1/q5(n). We first show that
for every x, y ∈ {0, 1}m,

Pr[r1, r2 ← {0, 1}∞ : ∀d ∈ {1, 2}, i ∈ [m], Td,i(x, y, r1, r2; δ, ε) 6= ⊥] ≥ 1− 1/2n.

Namely, condition (i) of the predicate ImplicitComp is satisfied for every inputs x, y{0, 1}m(n) with
high probability. Note that it suffices to show that with probability at least 1 − 1/2n over T ←
trans[Q1(x)↔ Q2(y)], for every i ∈ [m], (y, T) is (δ, ε)-binding for (i, xi) and (x, T) is (δ, ε)-binding
for (i, yi); that is, every bit of both players’ input are eventually binding at the end of the execution.
To show this, it suffices to show the following two statements.

1. For every x, y ∈ {0, 1}m(n), Pr[T ← trans[Q1(x)↔ Q2(y)] : p(x, y, T) ≥ δ(n)] ≥ 1− 1/2n.

2. For every x 6= x′ ∈ {0, 1}m(n), y 6= y′ ∈ {0, 1}m(n), and a full transcript T ∈ {0, 1}∗,

min{p(x, y, T), p(x′, y, T)} ≤ 3µ(n) and min{p(x, y, T), p(x, y′, T)} ≤ 3µ(n).

Statement (1) implies that condition (1) in the definition of binding is satisfied with probability at
least 1− 1/2n, and when the event in statement (1) holds, statement (2) guarantees that condition
(2) is also satisfied. Now, statement (1) follows by noting that

Pr[T ← trans[Q1(x)↔ Q2(y)] : p(x, y, T) ≤ δ(n)] ≤ δ(n) · 2c(n) ≤ 1/2n.

For statement (2), suppose that there exist x 6= x′{0, 1}m(n), y ∈ {0, 1}m(n) and a full transcript
T ∈ {0, 1}∗ such that both p(x, y, T), p(x′, y, T) ≥ 3µ(n). Consider two executions Q1(x)↔ Q2(y)
and Q1(x

′) ↔ Q2(y). Note that conditioned on the full transcript, the output of player 2 is
independent of the input of player 1. Thus, when the transcript is T , player 2 must generate an
incorrect output for one of the two executions (i.e., out2[Q1(x) ↔ Q2(y)] 6= out2[A(x) ↔ B(y)],
which is simply (x, y)). Since in both executions, T occurs with probability at least 3µ(n), it follows
that player 2 produces incorrect output in one of the execution with probability ≥ 3µ(n)/2 > µ(n),
violating the completeness property. This shows that min{p(x, y, T), p(x′, y, T)} ≤ 3µ(n) for every
x 6= x′ ∈ {0, 1}m(n), y ∈ {0, 1}m(n), and full transcript T ∈ {0, 1}∗. An analogous argument shows
that min{p(x, y, T), p(x, y′, T)} ≤ 3µ(n) for every x 6= x′ ∈ {0, 1}m(n), y ∈ {0, 1}m(n), and full
transcript T ∈ {0, 1}∗.

We proceed to show that condition (ii) and (iii) hold with high probability, relying on the
following claim.

27

Claim 41. For every i ∈ [m], suppose one of the following holds.

• Pr[x, y ← {0, 1}m(n), r1, r2 ← {0, 1}∞ : xi 6= yi ∧ T2,i(x, y, r1, r2; δ, ε) ≺ T1,i(x, y, r1, r2; δ, ε)] ≥
1/q(n), or

• Pr[x, y ← {0, 1}m(n), r1, r2 ← {0, 1}∞ : xi = yi ∧ T2,i(x, y, r1, r2; δ, ε) ≺ T1,i(x, y, r1, r2; δ, ε)] ≥
1/q(n).

Then there exists an adversarial strategy Ã∗ for player 1 such that∣∣∣Pr
[
x, y ← {0, 1}m, o← out2[Ã

∗(x)↔ Q2(y)] : Match1,i(o) = 1
]
− 1/2

∣∣∣ ≥ 1/8q(n).

Similarly, for every i ∈ [m− 1], suppose one of the following holds.

• Pr[x, y ← {0, 1}m(n), r1, r2 ← {0, 1}∞ : yi 6= xi+1 ∧ T1,i+1(x, y, r1, r2; δ, ε) ≺ T2,i(x, y, r1, r2; δ, ε)] ≥
1/q(n), or

• Pr[x, y ← {0, 1}m(n), r1, r2 ← {0, 1}∞ : yi = xi+1 ∧ T1,i+1(x, y, r1, r2; δ, ε) ≺ T2,i(x, y, r1, r2; δ, ε)] ≥
1/q(n), or

Then there exists an adversarial strategy B̃∗ for player 2 such that∣∣∣Pr
[
x, y ← {0, 1}m, o← out2[Q1(x)↔ B̃∗(y)] : Match2,i(o) = 1

]
− 1/2

∣∣∣ ≥ 1/8q(n).

Note that the conclusions of the claim contradict to the knowledge preserving property. Thus,
it follows that for every i ∈ [m],

Pr[x, y ← {0, 1}m(n), r1, r2 ← {0, 1}∞ : T2,i(x, y, r1, r2; δ, ε) ≺ T1,i(x, y, r1, r2; δ, ε)] ≤ 2/q(n), and

Pr[x, y ← {0, 1}m(n), r1, r2 ← {0, 1}∞ : T1,i+1(x, y, r1, r2; δ, ε) ≺ T2,i(x, y, r1, r2; δ, ε)] ≤ 2/q(n).

It now follows by a union bound that condition (ii) and (iii) hold with probability at least 1 −
4m/q(n) ≥ 1− 1/2n, and another union bound concludes that

Pr[x, y ← {0, 1}m(n), r1, r2 ∈ {0, 1}∞ : ImplicitComp(x, y, r1, r2; 1/q(n), 1/q2(n)) = 1] ≥ 1− 1/n.

It remains to prove the claim.

Proof of Claim 41. We start by proving the first case of the claim. Namely, we show that if

Pr[x, y ← {0, 1}m(n), r1, r2 ← {0, 1}∞ : xi 6= yi ∧ T2,i(x, y, r1, r2; δ, ε) ≺ T1,i(x, y, r1, r2; δ, ε)] ≥ 1/q(n),

then

Pr
[
x, y ← {0, 1}m, o← out2[Ã

∗(x)↔ Q2(y)] : Match1,i(o) = 1
]
≥ 1/2 + 1/8q(n).

At a high level, the idea is simple: whenever yi is bound at point T2,i before xi is bound, Ã∗ can
first decode yi from (x, T2,i), and then if xi = yi, Ã

∗ simply continues honestly, but if xi 6= xi, Ã
∗

changes its input from x to some x′ with x′i = yi (Ã∗ can do so since xi is not bound yet). Formally,
on input x ∈ {0, 1}m, Ã∗ performs the following strategy to interact with Q2:

• Ã∗ samples a uniform randomness r1 ← {0, 1}∞ and starts by honestly executing the protocol
Q1, but at the end of each round j, Ã∗ runs Dec1(x, Tj , i, δ, ε) where Tj is the current partial
transcript. If Dec1 outputs ⊥, then Ã∗ simply continues honestly at round j + 1. If Dec1
outputs β ∈ {0, 1}, let T ∗ denote the current transcript and Ã∗ proceeds as follows.

28

– If β = xi, then Ã∗ simply continues the execution honestly throughout.

– If β 6= xi, then Ã∗ uses rejection sampling to sample a random (x′, r′1) conditioned on
x′i = β and the current transcript T ∗. Ã∗ cuts-off the rejection sampling procedure when
it fails for more than M = O(n2m/δε) samples; in this case, Ã∗ sets (x′, r′1) = (x, r1)
(i.e., does not change the input-randomness pair). Then Ã∗ continues executing the
protocol Q1 with the alternative input-randomness pair (x′, r′1) throughout.

We proceed to analyze Ã∗. The following sub-claim says that Match1,i holds with high proba-
bility when xi = yi.

Sub-claim 42. Pr
[
x, y ← {0, 1}m, o← out2[Ã

∗(x)↔ Q2(y)] : xi = yi ∧Match1,i(o) = 1
]
≥ 1/2 −

1/8q(n).

Proof. First note that by completeness, we have

Pr [x, y ← {0, 1}m, o← out2[Q1(x)↔ Q2(y)] : xi = yi ∧Match1,i(o) = 1] ≥ 1/2− µ(n).

Additionally, note that when xi = yi and there is no “decoding error” (i.e., during the execution
Dec1 does not return β = ȳi), then Ã∗ simply executes Q1 honestly. Thus, to lower bound the
probability of the desired event, it suffices to upper bound the probability that a decoding error
occur during the execution. Now, observe that during the execution, the property of Dec1 ensures
that when p(x, y, T) > 2ε, Dec1(x, T, i, δ, ε) outputs incorrect answer β = ȳi with probability at
most 2−n. Noting that for every (x, y), Pr[T ← trans[Q1(x)↔ Q2(y)] : p(x, y, T) ≤ 2ε] ≤ 2c(n) · 2ε,
and that Ã∗(x) invokes Dec1 at most m′(n) times, the probability that a decoding error occur can
be upper bounded by m′(n) · 2−n + 2c(n) · 2ε. A final union bound implies that

Pr
[
x, y ← {0, 1}m, o← out2[Ã

∗(x)↔ Q2(y)] : xi = yi ∧Match1,i(o) = 1
]

1/2− µ(n)−m′(n) · 2−n − 2c(n) · 2ε ≥ 1/2− 1/8q(n).

We next show that when xi 6= yi, Match1,i still holds with noticeable probability.

Sub-claim 43. Pr
[
x, y ← {0, 1}m, o← out2[Ã

∗(x)↔ Q2(y)] : xi 6= yi ∧Match1,i(o) = 1
]
≥ 1/4q(n).

Proof. Let Good denote the event that during the execution, the tuple (x, y, T ∗) satisfies the fol-
lowing three conditions: (i) xi 6= yi, (ii) p(x, y, T ∗) ≥ δ, (iii) Dec1(x, T

∗, i, δ, ε) outputs yi (i.e., Dec1
decodes correctly), and (iv) let T− denote the partial transcript obtained by removing the last
message from T ∗ (thus, the last message is from player 1 to player 2); (y, T−) is not (δ, ε)-binding
for (i, xi).

We first show that Good happens with probability at least 1/2q(n). Recall that Ã∗ executes Q1

honestly before the end of T ∗, and that in the execution of Q1(x)↔ Q2(y),

Pr[x, y ← {0, 1}m(n), r1, r2 ← {0, 1}∞ : xi 6= yi ∧ T2,i(x, y, r1, r2; δ, ε) ≺ T1,i(x, y, r1, r2; δ, ε)] ≥ 1/q(n).

Now, consider any tuple (x, y, r1, r2) such that the above event hold, and let T2,i = T2,i(x, y, r1, r2; δ, ε)
and T−2,i be T2,i with the last message removed. Note that Dec1(x, T2,i, i, δ, ε) outputs yi with

probability at least 1 − 2−n, and that (y, T−2,i) is not (δ, ε)-binding for (i, xi). Therefore, in the

execution of Ã∗(x) ↔ Q2(y), conditioned on such (x, y, r1, r2), we have that with probability at

29

least 1 −m′(n) · 2−n, it holds that the above four conditions hold with T ∗ � T2,i (the m′(n) · 2−n
term comes from union bound over at most m′(n) invocation of Dec1; note that it is possible that
T ∗ ≺ T2,i and in this case, the probability that Dec1 outputs ȳi is also upper bounded by 2−n).
Therefore, the probability that the Good event happens is at least 1/q(n)·(1−m′(n)·2−n ≥ 1/2q(n).

We next show that conditioned on any tuple (x, y, T ∗) such that the Good event holds, with
probability at least (1 − 1/8q(n)), (a) Ã∗ can successfully sample a fresh input-randomness pair
(x′, r′1) through rejection sampling, and (b) Q2 outputs (x′, y) at the end of the execution. For (a),
the fact that (y, T−) is not (δ, ε)-binding for (i, xi) and p(x, y, T−) ≥ p(x, y, T ∗) ≥ δ implies that
there exists some x∗ such that x∗i 6= xi and p(x∗, y, T−) ≥ ε. Now, the facts that the last message of
T ∗ is sent by player 2 and that p(x, y, T ∗) ≥ δ imply that p(x∗, y, T ∗) ≥ εδ. Therefore, the chance
of sampling a pair (x′, r′1) that is consistent with T ∗ is at least 2−mεδ, and rejection sampling with
M = O(n2m/δε) samples can succeed with probability at least 1 − 2−n. For (b), note that the
execution now is equivalent to an honest execution of Q1(x

′) ← Q2(y) conditioned on transcript
T ∗. By completeness, Q2 outputs (x′, y) with probability at least 1−µ(n)/p(x′, y, T ∗). Now, recall
that there exists x∗ with p(x∗, y, T ∗) ≥ εδ. A Markov argument shows that the rejection sampling
procedure returns an x′ with p(x′, y, T ∗) ≤ εδ2−m/8q(n) is at most 1 − 1/8q(n). Therefore, when
condition (a) holds, we have that condition (b) also holds with probability at least (1− 1/8q(n)) ·
(1 − µ(n)8q(n)2m/εδ) ≥ (1 − 1/4q(n)). Therefore, the probability that both conditions hold is at
least (1− 2−n) · (1− 1/4q(n)) ≥ 1− 1/2q(n).

Finally, we can conclude that

Pr
[
x, y ← {0, 1}m, o← out2[Ã

∗(x)↔ Q2(y)] : xi 6= yi ∧Match1,i(o) = 1
]

≥ 1/2q(n) · (1− 1/2q(n)) ≥ 1/4q(n).

Combining the above two sub-claims, we have that

Pr
[
x, y ← {0, 1}m, o← out2[Ã

∗(x)↔ Q2(y)] : Match1,i(o) = 1
]

≥ 1/2− 1/8q(n) + 1/4q(n) ≥ 1/2 + 1/8q(n).

This completes the proof of the first case of the claim. The remaining three cases of the claim can
be proved by an analogous argument.

Obtaining a match-deviation in π′ Now that we have established that implicit computation
holds in π′ with high probability, we can obtain a deviation on the matching probability in π′

relying on a similar forking attack as in the proof of Theorem 27; such deviation shows that π′

cannot be a knowledge-preserving variant of π.
Let δ(n) = 1/n5 · 25(m(n)+c(n)) and ε(n) = δ2(n). For i ∈ [m] and e ∈ {0, 1}, consider the

following adversarial strategy Ã∗i,e for player 1. On input x ∈ {0, 1}m, and randomness r1, Ã
∗

performs the follow “forking” attack:

1. Ã∗i,e uniformly picks a random round j ← [m′(n)] and honestly executes the encoded protocol
Q1 up to the end of (j − 1)-th round. Let T be the resulting partial transcript.

30

2. Ã∗i,e samples a fresh input-randomness pair (x′, r′1) conditioned on the partial transcript T

using rejection sampling with a sufficiently large cuts-off parameter M = 1/ε5. Then, Ã∗

continues executing Q1 but now with inputs x′ and randomness r′1, for as many rounds as
possible, subject to the restriction that the number of bits it transmitted since round j does
not exceed η(n) · CCn(π′). Let T ′ be the resulting partial transcript.

3. Ã∗i,e invokes Dec1(x, T
′, i, δ, ε), and proceeds with the following two cases.

• If Dec1 outputs ⊥ or β ∈ {0, 1} such that β ⊕ xi = e, then Ã∗i,e continues the rest of the
interaction honestly, with the “true” input x and randomness r1 of Q1 (pretending that
it was player 2 that deviated since round j, but its own messages were correctly sent).
(pretending that it sent its own messages correctly but was corrupted by the channel).

• If Dec1 outputs β ∈ {0, 1} such that β ⊕ xi 6= e, then Ã∗i,e samples another fresh input-
randomness pair (x′′, r′′1), conditioned on the partial transcript T and that β ⊕ x′′i = e,
using rejection sampling with a sufficiently large cuts-off parameter M = 1/ε5; if the
rejection sampling fails, Ã∗i,e sets (x′′, r′′1) = (x, r1) (i.e., Ãi,e does not change the input-

randomness pair). Then Ã∗i,e continues the rest of the interaction honestly, with the
“new” input x′′ and randomness r′′1 of Q1 (again, pretending that it sent its own messages
correctly but was corrupted by the channel).

4. Ãi,e produces no output.

Claim 44. For sufficiently large n, there exists i ∈ [m(n)] and e ∈ {0, 1} such that∣∣∣Pr
[
x, y ← {0, 1}m, o← out2[Ã

∗
i,e(x)↔ Q2(y)] : Match1,i(o) = 1

]
− 1/2

∣∣∣ ≥ 1/32m′(n).

Proof. The claim is proved by combining the analysis of Sub-claim 32 in Theorem 27 and the proof
of Claim 41 above.

Recall that implicit computation holds with probability at least 1−1/n, and in such case, chunks
are well-defined. Let i∗ ∈ [m] be such that the i∗-th chunk has shortest expected length when
chunks are well-defined. By an averaging argument, the expected length of the i∗-th chunk is at
most (1/m) ·CCn(π′). By an identical argument to the analysis of Sub-claim 32, for both e ∈ {0, 1},
in the experiment {x, y ← {0, 1}m : Ã∗i∗,e(x) ↔ Q2(y)}, (x′, y, r′1, r2) is uniformly distributed and
independent of j. By a Markov argument, with probability at least 1/2, the i∗-th chunk has length
at most (2/m) · CCn(π) < η(n) · CCn(π). Define Good to be the event that (i) chunks are well-
defined, (ii) the i∗-th chunk has length at most (2/m)·CCn(π) and (iii) j equals to the starting round
of the i∗-th chunk. Note that when Good happens, the i∗-th chunk finished before T ′ and when
Ãi∗,e invokes Dec1, it returns a correct bit β = yi with overwhelming probability. Additionally, by
definition, (y, T−) is not (δ, ε)-binding for xi, where T− is obtained by removing the last message
from T . Note that Good happens with probability at least (1−1/n)·(1/2)·(1/m′(n))·(1−negl(n)) ≥
1/4m′(n).

By a similar argument to the proof of Sub-claim 43, when Good happens, Q2 outputs (a, b) with
ai⊕ bi = e with high probability. Roughly, the reason is that in this case, with high probability (a)
Ã∗i∗,e can sample a input-randomness pair (x′′, r′′1) such that x′′i ⊕ yi = e and (b) the error-resilient

property implies that Q2 outputs (x′′, y). Therefore, for either e = 0 or e = 1, Ã∗i∗,e can gain
at least 1/16m′(n) advantage from the Good event. On the other hand, as argued in the proof
of Sub-claim 42, the only chance that Ã∗i∗,e is when Dec1 returns incorrect answer β = ȳi, which

happens with negligible probability. Therefore, the overall advantage of Ã∗i,e is at last 1/32m′(n).

31

References

[BK12] Zvika Brakerski and Yael Tauman Kalai. Efficient interactive coding against adversarial
noise. In FOCS, pages 160–166, 2012.

[Blu86] M. Blum. How to prove a theorem so no one else can claim it. Proc. of the International
Congress of Mathematicians, pages 1444–1451, 1986.

[BN13] Zvika Brakerski and Moni Naor. Fast algorithms for interactive coding. In SODA ’13,
2013. To appear.

[BR11] Mark Braverman and Anup Rao. Towards coding for maximum errors in interactive
communication. In STOC, pages 159–166, 2011.

[Bra12] Mark Braverman. Interactive information complexity. In STOC, pages 505–524, 2012.

[CGGM00] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Resettable zero-
knowledge (extended abstract). In STOC ’00, pages 235–244, 2000.

[CP11] Kai-Min Chung and Rafael Pass. The randomness complexity of parallel repetition. In
FOCS, pages 658–667, 2011.

[DNS04] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. J. ACM,
51(6):851–898, 2004.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof-systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[GMS11] Ran Gelles, Ankur Moitra, and Amit Sahai. Efficient and explicit coding for interactive
communication. In FOCS, pages 768–777, 2011.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity, or all languages in np have zero-knowledge proof systems. Journal of the ACM,
38(1):691–729, 1991.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof
systems. J. Cryptology, 7(1):1–32, 1994.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2. Cambridge University
Press, 2004.

[GS00] Venkatesan Guruswami and Madhu Sudan. List decoding algorithms for certain con-
catenated codes. In STOC, pages 181–190, 2000.

[HAM50] R. W. HAMMING. Error detecting and error correcting codes. BELL SYSTEM TECH-
NICAL JOURNAL, 29(2):147–160, 1950.

[IL89] R. Impagliazzo and M. Luby. One-way functions are essential for complexity based
cryptography. In Proceedings of the 30th Annual IEEE Symposium on Foundations of
Computer Science, pages 230–235, 1989.

32

[Jus72] J. Justesen. Class of constructive asymptotically good algebraic codes. IEEE Trans.
Inf. Theor., 18(5):652–656, Sep 1972.

[Lip94] Richard J. Lipton. A new approach to information theory. In STACS, pages 699–708,
1994.

[MPSW10] Silvio Micali, Chris Peikert, Madhu Sudan, and David A. Wilson. Optimal error correc-
tion for computationally bounded noise. IEEE Transactions on Information Theory,
56(11):5673–5680, 2010.

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic
applications. In STOC ’89, pages 33–43, 1989.

[Rom90] J. Rompel. One-way functions are necessary and sufficient for secure signatures. In
Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, pages 387–
394, 1990.

[RS60] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of the
Society of Industrial and Applied Mathematics, 8:300–304, 1960.

[Sch92] Leonard J. Schulman. Communication on noisy channels: A coding theorem for com-
putation. In FOCS, pages 724–733, 1992.

[Sch93] Leonard J. Schulman. Deterministic coding for interactive communication. In STOC,
pages 747–756, 1993.

[Sch96] Leonard J. Schulman. Coding for interactive communication. IEEE Transactions on
Information Theory, 42(6):1745–1756, 1996.

[Sha48] Claude E. Shannon. A mathematical theory of communication. The Bell System
Technical Journal, 27:379–423, 623–656, July, October 1948.

[Spi96] Daniel A. Spielman. Linear-time encodable and decodable error-correcting codes. IEEE
Transactions on Information Theory, 42(6):1723–1731, 1996.

33

