
A Non Asymptotic Analysis of Information Set
Decoding

Yann Hamdaoui and Nicolas Sendrier

INRIA Paris-Rocquencourt, Project-Team SECRET
{yann.hamdaoui,nicolas.sendrier}@inria.fr

Abstract. We propose here a non asymptotic complexity analysis of
some variants of information set decoding. In particular, we give this
analysis for the two recent variants – published by May, Meurer and
Thomae in 2011 and by Becker, Joux, May and Meurer in 2012 – for
which only an asymptotic analysis was available. The purpose is to
provide a simple and accurate estimate of the complexity to facilitate
the paramater selection for code-based cryptosystems. We implemented
those estimates and give a comparison at the end of the paper.

Notation:

– Sn(0, w) is the radius w sphere centered in 0 in the Hamming space {0, 1}n.

– |X| denotes the cardinality of the set X.

1 Introduction: the Decoding Problem in Cryptology

The security of code-based cryptography heavily relies on the hardness of de-
coding in a random linear code. The computational syndrome decoding problem
is NP-hard and is conjectured difficult in the average case.

Problem 1 (Computational Syndrome Decoding - CSD). Given a matrix
H ∈ {0, 1}r×n, a word s ∈ {0, 1}r, and an integer w > 0, find e ∈ {0, 1}n of
Hamming weight ≤ w such that He = s.

We will denote CSD(H, s, w) the above problem and the set of its solutions.
Decoding is one of the prominent algorithmic problems in coding theory for more
than fifty years. So far, no subexponential algorithm is known which correct a
constant proportion of errors in a linear code. Code-based cryptography has been
developed on that ground and for many code-based cryptosystems, public-key
encryption [18, 20] and digital signature [10], zero-knowledge protocols based on
codes [28, 29, 14], hash-function [1], PRNG and stream ciphers [13, 15] and many
others, decoding is the most threatening attack and therefore is a key point in
the parameter selection.

Generic Decoding Algorithms. The most ancient technique for addressing CSD
in cryptology is Information Set Decoding (ISD). It can be traced back to Prange
[24]. The variants useful today in cryptology all derive more or less from Stern’s
[27] or Dumers’s [11] algorithms. Following [6, 23] those variants are sometimes
refered to as collision decoding. It was implemented (with various improvements)
in [8] then in [5] which reports the first successful attack on the original parameter
set. General lower bounds were proposed [12]. Several recent works have provided
asymptotic improvements [6, 17, 4].

The other main technique is the Generalized Birthday Algorithm (GBA) [30]
(order 2 GBA was previously published in [7]). The first use of GBA for decoding
was proposed in [9] for attacking an early version of FSB [2]. It is sometimes
faster than ISD. Let us also mention that when addressing multiple instances
there are possible improvement, either with GBA (Bleichenbacher, unpublished,
reported in [22]) or with ISD [26].

The security of the various code-based cryptographic primitives corresponds
to a wide range of parameters for the CSD problem. To determine which attack
is the most efficient, one should compare the error weight w with the Gilbert-
Varshamov distance d0 (which is a function of the code length and size). For a
single instance, the situation is the following: (1) when w < d0 (for encryption
schemes) ISD is always better, (2) when w ≈ d0 (for ZK-protocols, digital sig-
nature, stream cipher), the best attack is also ISD, and (3) when w > d0 (for
hashing) the best attack is either ISD or GBA (with no easy rule to predict which
is the best). Let us also mention that w > r/4 is insecure because Saarinen’s
attack [25]. In the current work, we are concerned with the case w < d0, that is
mainly McEliece and Niederreiter encryption schemes.

2 A General Framework for Information Set Decoding
Algorithms

All known variants of collision decoding [27, 11, 8, 6, 17, 4] can be described within
a simple framework similar to the one presented in [12]. The problem to solve
is CSD(H0, s0, w). The algorithm uses two main parameters p and ` (integers)
and will repeatedly permute randomly the columns of H0, perform a (partial)
Gaussian elimination1

r − ` k + `
1

. . . H ′ s′

UH0P = 1 , Us0 =

` 0 H s

(1)

1 if the first r − ` columns of H0P are dependent, which is unlikely, we change P

where U is a non-singular r × r matrix. We have e ∈ CSD(UH0P,Us0, w) if
and only if Pe ∈ CSD(H0, s0, w). All algorithms in the class we consider can be
described as follows:

input: H0 ∈ {0, 1}r×n, s0 ∈ {0, 1}r
repeat until success

1. pick a permutation P randomly and compute (H,H ′, s, s′) as in (1)
2. compute a set of partial solutions E ⊂ CSD(H, s, p)
3. for all e ∈ E if wt(e) + wt(s′ +H ′e) ≤ w then success

The variants will only differ in step 2.

2.1 Three variants of ISD

Building Blocks. We give in Table 1 the generic building blocks used in all
variants. The function ISD generic has to be instantiated with some other func-

Table 1. Information set decoding building blocks

Parameters:
– integers: n, r, k = n− r, w, p, `

Parameters p and ` can be chosen to optimize the algorithm.

function ISD generic

input: H0 ∈ {0, 1}r×n, s0 ∈ {0, 1}r, sub ISD()
repeat

P ← random permutation matrix() // n× n
(H,H ′, s, s′)← Gauss elim(H0P, s0) // as in (1)
E ← sub ISD(H, s) // a subset of CSD(H, s, p)
for all e ∈ E

if wt(H ′e− s′) + wt(e) ≤ w then return (e, P) // success

function birthday decoding

input: H ∈ {0, 1}b×c, s ∈ {0, 1}b, E1 ⊂ {0, 1}c, E2 ⊂ {0, 1}c
E ← ∅
for all e1 ∈ E1 do T [He1]← e1
for all e2 ∈ E2

for all e1 ∈ T [s−He2] do E ← E ∪ {e1 + e2}
return E

tion sub ISD which depends on the variant. The function birthday decoding is
the elementary building block; given a parity check matrix H, a target syndrome
s and two sets of error patterns E1 and E2, it computes all the error patterns
e = e1 + e2 such that He = s and (e1, e2) ∈ E1 × E2.

The Stern-Dumer variant (SD-ISD). Stern’s algorithm was the first to use
the birthday paradox [27]. It was later improved by Dumer [11] with a slight

asymptotic improvement. It is described in Table 2. Ball-collision decoding [6]
is similar but more involved with the same asymptotic exponent.

Table 2. SD-ISD algorithm

Parameters:
– integers: n, r, k = n− r, w, p, `
– E1 ⊂ Sk+`(0, p/2) and E2 ⊂ Sk+`(0, p/2) of cardinality

(
(k+`)/2

p/2

)
with dis-

joint supports. For instance E1 (respectively E2) consists of all words of
weight p/2 with the non-zero positions in the (k + `)/2 leftmost (respec-
tively rightmost) positions.

Parameters p and ` can be chosen to optimize the algorithm.

function ISD SD

input: H0 ∈ {0, 1}r×n, s0 ∈ {0, 1}r
return ISD generic(H0, s0, birthday decoding SD)

function birthday decoding SD

input: H ∈ {0, 1}`×(k+`), s ∈ {0, 1}`
return birthday decoding(H, s, E1, E2)

The May-Meurer-Thomae variant (MMT-ISD). The generalized birthday
algorithm [30] can be applied to decoding [9]. Using this in conjonction to the
representation technique [16] leads to an asymptotic improvement of ISD [17].
We present in Table 3 a modified version of the original algorithm. In the original
algorithm the set A is a singleton. By allowing several a ∈ A we allow larger
values of `2 and give more flexibility in the search for optimal parameters. A
larger `2 also allows smaller memory requirements with the same algorithmic
complexity.

The Becker-Joux-May-Meurer variant (BJMM-ISD). In this variant the
birthday decoding of Stern’s algorithm (step 2) is replaced by an order 3 gen-
eralized birthday decoding. We have eight error sets initially which are merged
pairwise in a three-level tree-like algorithm to produce the set E of candidates
of ISD generic. This is done in conjonction with the representation technique
and, in addition, at every merging step except the first, the error sums might be
filtered to keep only those of smaller weight. The eight sets E1, . . . , E8 at the last

level only contain words of weight p2/2, the four sets E(2)1 , . . . , E(2)4 at the second

level only contain words of weight p2, the two sets E(1)1 , E(1)2 at the first level
only contain words of weight ≤ p1 = 2(p2 − e2) and the final set (the output)
only contains words of weight ≤ p = 2(p1− e1). We may choose e1 or e2 strictly
positive. The algorithm is described in Table 4. The function filter simply keep
words of small weight in a set of words.

Table 3. MMT-ISD algorithm

Parameters:
– integers: n, r, k = n− r, w, p, `, `2
– A ⊂ {0, 1}`2
– Ei ⊂ Sk+`(0, p/4), 1 ≤ i ≤ 4 of cardinality

(
(k+`)/2

p/4

)
. The sets E1 and E2

have disjoint supports. The sets of E3 and E4 have disjoint supports.
Parameters p, `, `2, and |A| can be chosen to optimize the algorithm.

function ISD MMT

input: H0 ∈ {0, 1}r×n, s0 ∈ {0, 1}r
return ISD generic(H0, s0, birthday decoding MMT)

function birthday decoding MMT

input: H ∈ {0, 1}`×(k+`), s ∈ {0, 1}` // H and s decomposed as below in (2)
E ← ∅
for all a ∈ A

E1,2 ← birthday decoding(H(2), a, E1, E2)

E3,4 ← birthday decoding(H(2), s(2) − a, E3, E4)

E ← E ∪ birthday decoding(H(1), s(1), E1,2, E3,4)
return E

H(1) s(1)

H = , s =

`2 H(2) s(2)

(2)

2.2 Some Comments on the Complexity

We will count complexities in term of column operations. Those operations could
be additions, mostly in calls to birthday decoding, or Hamming weight com-
putations, in the final test of ISD generic.

Complexity of ISD generic.

– We denote KGauss the cost of the partial Gaussian elimination. A naive
implementation leads to KGauss = (r − `)n column operations. Fast binary
linear algebra [3] lead to KGauss = (r − `)n/ log2(r − `).
It is possible to reduce this further to KGauss = O(n) by transposing only
one or a few positions at each iterations [21, 8, 5]. The success probability
of an iteration decreases. There is a possible gain, but only for instances of
small size. We do not consider this possibility here.

– To estimate the success probability of one iteration, we will admit, as it is
common in existing literature, that each individual e tested in ISD generic

Table 4. BJMM-ISD algorithm

Parameters:
– integers: n, r, k = n− r, w, p, `, p1, p2, r1, r2
– Ei ⊂ {0, 1}k+`, 1 ≤ i ≤ 8 consisting of words of Hamming weight p2/2.

All Ei have cardinality
(
(k+`)/2
p2/2

)
. The words of E2i−1 and E2i have disjoint

supports.
Parameters p, `, p1, p2, r1, and r2 can be chosen to optimize the algorithm.

function ISD BJMM

input: H0 ∈ {0, 1}r×n, s0 ∈ {0, 1}r
return ISD generic(H0, s0, birthday decoding BJMM)

function birthday decoding BJMM

input: H ∈ {0, 1}`×(k+`), s ∈ {0, 1}` // H and s decomposed as below in (3)

// choose some s1 + s2 + s3 + s4 = s(2) ∈ {0, 1}r2 and a ∈ {0, 1}r1
for all i ∈ {1, 2, 3, 4}
E(2)i ← birthday decoding(H(2), si, E2i−1, E2i)

Ē(1)1 ← birthday decoding(H(1), a, E(2)1 , E(2)2)

E(1)1 ← filter(Ē(1)1 , p1) // keep only words of weight ≤ p1

Ē(1)2 ← birthday decoding(H(1), s(1) − a, E(2)3 , E(2)4)

E(1)2 ← filter(Ē(1)2 , p1) // keep only words of weight ≤ p1

Ē ← birthday decoding(H(0), s(0), E(1)1 , E(1)2)
E ← filter(Ē , p) // keep only words of weight ≤ p
return E

H(0) s(0)

H = , s =

r1 H(1) s(1)

r2 H(2) s(2)

(3)

leads independently to success with probability (see [26])

ε(p, `)2` ≈
(
r−`
w−p

)
2`

min
(
2r,
(
n
w

)) .
It follows that the probability of success of one iteration is equal to

P(p, `) = 1−
(
1− ε(p, `)2`

)|E|
. (4)

The expected value of |E| will depend on the variant.
– The final test cost at least |E| column operations. In practice it is more accu-

rate to count the number of matching pairs of the last call to birthday decoding.
Filtering out duplicate at this point would have a significant cost and would
only save a small amount of tests.

Complexity of birthday decoding. We consider an instance with input H ∈
{0, 1}b×c, s ∈ {0, 1}b, E1 ⊂ {0, 1}c, E2 ⊂ {0, 1}c. There are two fundamental
quantities related to this algorithm.

– The number of matching pairs (e1, e2) ∈ E1 × E2 such that He1 +He2 = s.
This number is expected to be equal to 2−b|E1||E2|.

– The size of the output. In fact we will count for some integer w the number
of elements of E of weight w.

|E ∩ Sn(0, w)| = ImSize

(
µ
|E1||E2|

2b
,

(
c
w

)
2b

)
where µ is the proportion of words of E that have weight w and ImSize(x, y)
is the expected size of the image of a random mapping from a set of size x
into a set of size y

ImSize(x, y) = y

(
1−

(
1− 1

y

)x)
. (5)

It is equal to min(x, y) up to a small constant (between 0.632 and 1).

In all variants, the calls to birthday decoding have a tree structure and the
output sets at one level are used as inputs at the next level. Columns additions
will be performed on full columns (i.e. colums of H not H(i) in the algorithm
description). A careful implementation will store all the syndromes and keep
track of partial sums (as in [5]). Finally a good estimate of the complexity will
be the sum of the sizes of all initial sets (there are two, four, or eight such
sets, depending on the variant) plus the number of matching pairs in all calls of
birthday decoding (recall that the matching pairs of the last call have to be
tested, so thay have to be counted twice).

3 Non Asymptotic Complexity Estimate

3.1 Some Simplifications

– Using expectations. We will freely replace random variables by their expec-
tations. This is valid for products, not for exponentials.

– In MMT-ISD, we will assume that
• all the elements in the final set E have weight p (could be smaller).

– In BJMM-ISD, we will assume that

• the sets E(2)i , 1 ≤ i ≤ 4 behave as random subsets of Sk+`(0, p2) (in fact
they are balanced),

• all the elements of E(1)1 and E(1)2 have weight p1 (could be smaller),
• all the elements of E have weight p (could be smaller),
• the cost of filtering is negligible.

Essentially, all those simplifications cannot cost more than a small constant
factor, at least when the algorithm parameters are close to the optimal value.

3.2 Stern-Dumer Variant

There is a single call to birthday decoding, the input sets have size L0 = |E1| =
|E2| =

(
(k+`)/2

p/2

)
and there are no duplicates in the output.

WFSD(n, r, w) = min
p,`

1

P(p, `)

(
KGauss + 2L0 +

2L2
0

2`

)
.

To compute the minimal value, we have to explore all values of p and `. In prac-
tice, when p is fixed, the optimal value of ` will be close to the one implicitly
defined by L0 =

(
(k+`)/2

p/2

)
= 2` (for which the two rightmost terms of the com-

plexity are equal, see appendix). In addition we limit the search to even values
of p. Finally, since the expression is convex in p and ` in the region we explore,
the search is limited in practice to a very small number of values. Moreover in
the region we explore the workfactor is convex in p and in `, this simplifies the
search for the optimal value.

3.3 May-Meurer-Thomae Variant

There are initially four sets of error patterns, each of size L0 =
(
(k+`)/2

p/4

)
. The

first two calls to birthday decoding are made with sets of disjoint supports
and lead to an output of expected size L2

02−`2 (no duplicates) and the number
of matching pairs in the final call is L4

02−`−`2 . This is repeated for all a ∈ A and
finally

WFMMT(n, r, w) = min
p,`,`2

1

P(p, `)

(
KGauss + |A|

(
4L0 +

2L2
0

2`2
+

2L4
0

2`+`2

))
.

The total number of matching pairs in the calls to birthday decoding producing
E is |A|L4

02−`−`2 . In practice, we will choose `2 and A such that:

– the cost for constructing the initial sets is negligible, that is 2`2 � L0,
– there are no duplicate sums in the matching pairs forming E , that is

|A|L4
0

2`+`2
�
(
k+`
p

)
2`

and thus |E| = |A|L
4
0

2`+`2
.

Optimal parameters can be easily estimated, we first neglect the cost of the Gaus-
sian elimination (true if |A| not too small) and assume P(p, `) ≈ ε(p, `)2`|E| ≈
ε(p, `)|A|L4

02−`2 (true for most problems of cryptographic interest). The expres-
sion of the workfactor simplifies to

WFMMT(n, r, w) ≈ min
p,`,`2

2

ε(p, `)

(
1

L2
0

+
1

2`

)
.

Interestingly, if A and `2 are properly chosen, their exact value do not really
matter. As before, if we examine the above formula, it will be minimal when

2` ≈ L2
0 =

(
(k+`)/2

p/4

)2
. We have to pick |A| and `2 as large as possible but such

that |A| � 2`2 � 2`/2: a large value of `2 will decrease the memory requirements
and a large value of |A| will better amortize the cost of the Gaussian elimination.
In this variant of ISD, the optimal value of p will usually be larger. Consequently
the cost of the Gaussian elimination will never dominate and the above analysis
is correct in practice. As for the Stern-Dumer variant, the expression of the
workfactor is convex in p and ` an exploring only a few values will provide the
minimum.

3.4 Becker-Joux-May-Meurer Variant

level 0

level 1

level 2

level 3 · · · · · ·

· · ·

...

...

join on r2 bits

join on r1 bits

join on `− r2 − r1 bits

E

E(1)2E(1)1

�
�
�

@
@
@

E(2)4E(2)2E(2)1

�
�
�

@
@
@

E8E2E1

�
�
�

@
@
@

Hamming weight

p2/2

p2 = p1/2 + e2

≤ p1 = p/2 + e1

≤ p

Fig. 1. Tree Structure of BJMM-ISD

We will denote by Si the size of the sets at level i and by Ci the number of
matching pairs when two lists at level i are joined. Notations are given in Table 4
and Figure 1.

S3 = |Ei|, S2 = |E(2)i |, S1 = |E(1)1 | = |E
(1)
2 |, S0 = |E|

C3 = S2, C2 = |Ē(1)1 | = |Ē
(1)
2 |, C1 = |Ē |

p2 =
p1
2

+ e2, p1 =
p

2
+ e1

Level 3. The sets contain words of weight p2

2 on a half-sized support of length
k+`
2 . We join such sets pairwise keeping the pairs whose syndromes match on r2

bits, we have

S3 =

(k+`
2
p2

2

)
and C3 =

S2
3

2r2
.

Level 2. The supports at level 3 are disjoint, so we have no duplicates when
building the sets at size 2.

S2 = C3 and C2 =
S2
2

2r1
.

Level 1. From the C2 matching pairs of level 2, we keep only those with a
sum of Hamming weight smaller or equal to p1 = 2p2 − 2e2. We denote µ2 the
probability for the sum of two words of weight p2 to have weight p1. The min
below takes into account possible duplicates (see §2.2).

S1 = min

(
µ2C2,

(
k+`
p1

)
2r1+r2

)
and C1 =

S2
1

2`−r1−r2
.

Level 0. Similarly, the size of the final set is

S0 = min

(
µ1C1,

(
k+`
p

)
2`

)

where µ1 denotes the probability for two words of weight p1 and length k+ ` to
have a sum of weight p.

The values of µ1 and µ2 derive from the following result.

Proposition 1. Two binary words drawn uniformly and independently in Sn(0, w)
have a sum of weight 2w − 2e with probability

Pr(“w + w = 2w − 2e”) =

(
w
e

)(
n−w
w−e

)(
n
w

) .

The proof is left to the reader. We deduce that

µ2 =

(
p2

e2

)(
k+`−p2

p2−e2

)(
k+`
p2

) and µ1 =

(
p1

e1

)(
k+`−p1

p1−e1

)(
k+`
p1

) .

Workfactor. The algorithm workfactor is

1

P(p, `)
(KGauss + 8S3 + 4C3 + 2C2 + 2C1)

where
P(p, `) = 1−

(
1− ε(p, `)2`

)S0 ≈ ε(p, `)2`S0.

The workfactor has to be minimized according to six parameters (p, `, r1, r2, e1, e2).
This could lead to a rather high computational burden, but fortunately it is
possible to guess what the optimal behaviour of the algorithm should be and to
deduce from that a fair estimate of some of the parameters.

Parameter Estimation.

– The parameters r2 and r1 are meant to compensate multiple representations
of the intermediate solutions. When the algorithm performs optimally, we
should have

S1 ≈ µ2C2 ≈
(
k+`
p1

)
2r1+r2

and S0 ≈ µ1C1 ≈
(
k+`
p

)
2`

,

that is

2r2 ≈
µ2

(
(k+`)/2
p2/2

)4(
k+`
p1

) and 2r1+r2 ≈
µ1

(
k+`
p1

)2(
k+`
p

) . (6)

Next, assuming that last two level of the algorithm are dominant (which is
true in practice, at least when we are close to the optimal parameters), the
workfactor will be proportional to C2 +C1 and is likely to be minimal when
C1 ≈ C2, that is

2` ≈ µ2

(
k + `

p1

)
. (7)

Between (6) and (7) we have three equation which provide values of `, r1,
and r2 for any fixed values of p, e1, and e2.

– Assuming now that `, r1, and r2 verify (6)-(7) and that the algorithm cost
is dominated by the last two steps, the workfactor will be proportional to

C1

P(p, `)
=

1

ε(p, `)

1

µ2µ1

(
k+`
p1

) .
In this expression, only µ2 and ` vary with e2. We will assume the varia-
tions of ` with e2 are negligible. In that case, the value of e2 for which the
expression is minimal is such that µ2 is maximal, that is

e2 ≈
p22
k + `

≈ 1

16

(p+ 2e1)2

k + `
.

Now if we fix everything but e1, the best value for e1 will be such that
µ1µ2

(
k+`
p1

)
is maximal. Experimentally we find e1 ≈ p/4.

The approach is heuristic, but for any fixed value of p we look for the optimal
parameters in the vicinity of the above estimate for (`, r1, r2, e1, e2). This works
very well in practice. Experimentally, the convexity assumption doesn’t seem to
hold for all parameters and so the search is a bit more complex than for the
other variants.

4 Experimental Results

We implemented our estimates and give numbers for various code parameters
corresponding to typical instances of McEliece encryption scheme with Goppa
codes or MDPC codes [19]. The table gives two workfactors for each algorithm.
The leftmost is computed with unconstrained parameters: the parameters can
take any integer value, even those not allowed by the algorithm. For instance odd
values of p do not seem to fit but could make sense with a clever implementation.
The rightmost value corresponds to more realistic constraints: p even for SD-ISD,
p multiple of 4 for MMT-ISD, and p, p1, p2 even for BJMM-ISD. It is interesting
to note that the speedup for BJMM-ISD, though small, is already measurable
for cryptographic sizes.

Table 5. Unconstrained and constrained workfactors for ISD (in column operations)

(n, k, t) SD-ISD MMT-ISD BJMM-ISD

(1024, 524, 50) 55.42 55.60 54.29 54.75 52.50 52.90

(2048, 1696, 32) 81.60 81.60 79.32 79.50 75.78 76.82

(4096, 3844, 21) 81.23 81.23 78.11 78.88 74.34 78.46

(4096, 3616, 40) 121.38 121.38 118.048 119.08 114.62 118.90

(8192, 7945, 19) 89.54 89.54 85.87 87.16 82.58 87.43

(8192, 7815, 29) 122.66 122.66 118.67 120.31 115.65 120.84

(9600, 4800, 84) 88.73 88.73 87.75 87.75 85.82 86.16

(22272, 14848, 85) 138.06 138.06 137.07 137.07 134.78 135.35

References

1. D. Augot, M. Finiasz, P. Gaborit, S. Manuel, and N. Sendrier. SHA-3 proposal:
FSB. Submission to the SHA-3 NIST competition, 2008.

2. D. Augot, M. Finiasz, and N. Sendrier. A fast provably secure crypto-
graphic hash function. Cryptology ePrint Archive, Report 2003/230, 2003.
http://eprint.iacr.org/.

3. Gregory Bard and Martin Albrecht. M4ri(e)- linear algebra over F2 (and F2e).
Free Open Source Software. http://m4ri.sagemath.org/index.html.

4. Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding
random binary linear codes in 2n/20: How 1+1=0 improves information set de-
coding. In D. Pointcheval and T. Johansson, editors, Advances in Cryptology -
EUROCRYPT 2012, volume 7237 of LNCS, pages 520–536. Springer, 2012.

5. D.J. Bernstein, T. Lange, and C. Peters. Attacking and defending the McEliece
cryptosystem. In J. Buchmann and J. Ding, editors, Post-Quantum Cryptography,
volume 5299 of LNCS, pages 31–46. Springer, 2008.

6. D.J. Bernstein, T. Lange, and C. Peters. Smaller decoding exponents: Ball-collision
decoding. In P. Rogaway, editor, Advances in Cryptology - CRYPTO 2011, volume
6841 of LNCS, pages 743–760. Springer, 2011.

7. P. Camion and J. Patarin. The knapsack hash function proposed at CRYPTO ’89
can be broken. In D.W. Davies, editor, Advances in Cryptology - EUROCRYPT
’91, volume 547 of LNCS, pages 39–53. Springer, 1991.

8. A. Canteaut and F. Chabaud. A new algorithm for finding minimum-weight words
in a linear code: Application to McEliece’s cryptosystem and to narrow-sense BCH
codes of length 511. IEEE Transactions on Information Theory, 44(1):367–378,
January 1998.

9. J.-S. Coron and A. Joux. Cryptanalysis of a provably secure crypto-
graphic hash function. Cryptology ePrint Archive, Report 2004/013, 2004.
http://eprint.iacr.org/.

10. N. Courtois, M. Finiasz, and N. Sendrier. How to achieve a McEliece-based digital
signature scheme. In C. Boyd, editor, Advances in Cryptology - ASIACRYPT 2001,
volume 2248 of LNCS, pages 157–174. Springer, 2001.

11. I. Dumer. On minimum distance decoding of linear codes. In Proc. 5th Joint
Soviet-Swedish Int. Workshop Inform. Theory, pages 50–52, Moscow, 1991.

12. M. Finiasz and N. Sendrier. Security bounds for the design of code-based cryp-
tosystems. In Mitsuru Matsui, editor, Advances in Cryptology - ASIACRYPT 2009,
volume 5912 of LNCS, pages 88–105. Springer, 2009.

13. J.-B. Fischer and J. Stern. An efficient pseudo-random generator provably as
secure as syndrome decoding. In Ueli Maurer, editor, Advances in Cryptology -
EUROCRYPT ’96, volume 1070 of LNCS, pages 245–255. Springer, 1996.

14. P. Gaborit and M. Girault. Lightweight code-based identification and signature.
In IEEE Conference, ISIT 2007, pages 191–195, Nice, France, July 2007. IEEE.

15. P. Gaborit, C. Laudaroux, and N. Sendrier. Synd: a very fast code-based stream
cipher with a security reduction. In IEEE Conference, ISIT 2007, pages 186–190,
Nice, France, July 2007. IEEE.

16. N. Howgrave-Graham and A. Joux. New generic algorithms for hard knapsacks.
In H. Gilbert, editor, Advances in Cryptology - EUROCRYPT 2010, volume 6110
of LNCS, pages 235–256. Springer, 2010.

17. A. May, A. Meurer, and E. Thomae. Decoding random linear codes in Õ(20.054n).
In D.H. Lee and X. Wang, editors, Advances in Cryptology - ASIACRYPT 2011,
volume 7073 of LNCS, pages 107–124. Springer, 2011.

18. R.J. McEliece. A public-key cryptosystem based on algebraic coding theory. DSN
Prog. Rep., Jet Prop. Lab., California Inst. Technol., Pasadena, CA, pages 114–
116, January 1978.

19. Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo S. L. M. Barreto.
Mdpc-mceliece: New mceliece variants from moderate density parity-check codes.
Cryptology ePrint Archive, Report 2012/409, 2012. http://eprint.iacr.org/.

20. H. Niederreiter. Knapsack-type cryptosystems and algebraic coding theory. Prob.
Contr. Inform. Theory, 15(2):157–166, 1986.

21. J.K. Omura. Iterative decoding of linear codes by a modulo-2 linear programm.
Discrete Mathematics, 3:193–208, 1972.

22. R. Overbeck and N. Sendrier. Code-based cryptography. In D.J. Bernstein,
J. Buchmann, and E. Dahmen, editors, Post-Quantum Cryptography, pages 95–
145. Springer, 2009.

23. C. Peters. Curves, Codes, and Cryptography. PhD thesis, Technische Universiteit
Eindhoven, 2011.

24. E. Prange. The use of information sets in decoding cyclic codes. IRE Transactions,
IT-8:S5–S9, 1962.

25. M.-J. Saarinen. Linearization attacks against syndrome based hashes. In K. Sri-
nathan, C. Pandu Rangan, and M. Yung, editors, Indocrypt 2007, volume 4859 of
LNCS, pages 1–9. Springer, 2007.

26. N. Sendrier. Decoding one out of many. Cryptology ePrint Archive, Report
2011/367, 2011. http://eprint.iacr.org/.

27. J. Stern. A method for finding codewords of small weight. In G. Cohen and
J. Wolfmann, editors, Coding theory and applications, volume 388 of LNCS, pages
106–113. Springer, 1989.

28. J. Stern. A new identification scheme based on syndrome decoding. In D.R.
Stinson, editor, Advances in Cryptology - CRYPTO ’93, volume 773 of LNCS,
pages 13–21. Springer, 1993.

29. P. Véron. Improved identification schemes based on error-correcting codes.
AAECC, 8(1):57–69, January 1997.

30. D. Wagner. A generalized birthday problem. In M. Yung, editor, Advances in
Cryptology - CRYPTO 2002, volume 2442 of LNCS, pages 288–303. Springer, 2002.

