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Abstract

Searching on remote encrypted data (commonly known as searchable en-
cryption) has become an important issue in secure data outsourcing, since it
allows users to outsource encrypted data to an untrusted third party while
maintains the capability of keyword search on the data.

Searchable encryption can be achieved using the classical method called
oblivious RAM, but the resultant schemes are too inefficient to be applied
in the real-world scenarios (e.g., cloud computing). Recently, a number of
efficient searchable encryption schemes have been proposed under weaker
security guarantees. Such schemes, however, still leak statistical information
about the users’ search pattern.

In this paper, we first present two concrete attack methods to show that
the search pattern leakage will result in such a situation: an adversary who
has some auxiliary knowledge can uncover the underlying keywords of user
queries. To address this issue, we then develop a grouping-based construc-
tion (GBC) to transform an existing searchable encryption scheme to a new
scheme hiding the search pattern. Finally, experiments based on the real-
world dataset demonstrate the effectiveness of our attack methods and the
feasibility of our construction.

Keywords: search pattern, searchable encryption, cloud computing, fake
query, grouping-based construction
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1. Introduction

Cloud computing has been increasingly applied to outsource data by cloud
tenants to diminish the high overhead of data storage and management. In
many cases, cloud tenants need to encrypt data before outsourcing them
to prevent cloud administrators from accessing sensitive information, such
as government documents, hospital records and personal emails. However,
data encryption invalidates many data query functions, which will lead to
inefficient data utilization. For instance, the cloud service provider cannot
respond keyword search query over encrypted data. The purpose of search-
able encryption is allowing a user to outsource data to a third party in a
secure manner, and then retrieve documents containing the queried keyword.
Therefore, searchable encryption plays an important role in cloud computing
scenario [16].

Index, an auxiliary structure that accelerates the search process, has been
widely studied in information retrieval fields. In general, each entry of the
index is formed as a <keyword, document identifiers> tuple, so that all
the documents containing the queried keyword can be easily located. We
describe the general scenario of searchable encryption as follows: a data
owner (e.g., Alice) has a set of documents to outsource to an untrusted third
party (e.g., Carol). Alice first builds an index of all the keywords appeared
in the documents, and then encrypts both the documents and the index.
After that, she outsources the encrypted documents and index to Carol.
An authorized data user (e.g., Bob) has a secret key, so that he is able to
generate keyword search queries (a.k.a. trapdoors or tokens) by calling a
trapdoor function. Once Carol receives a query from Bob, she can search
in the index and return the (encrypted) search result1 to Bob. Then Bob is
able to decrypt the search result and retrieve needed documents. Note that
if the secret key is shared appropriately (such as the Multi-user SSE scheme
in [11]), there can be multiple data users. For example, all employees of a
company shared a secret key to perform keyword search on their data.

It has been widely accepted in the literature that both outsourced data
and search query should leak as little information as possible to the third
party. We note that searchable encryption can be achieved using the classical
method called oblivious RAM [19, 14], which attains the optimal security

1The search result is a collection of document identifiers whose corresponding docu-
ments contain the queried keyword.
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(i.e., nothing leaked to the third party). However, this kind of approaches
is impractical due to the poly-logarithmic computation and communication
overheads. Therefore a number of searchable symmetric encryption (SSE)
schemes (e.g., [22, 13, 9, 11, 23, 18, 17]) have been proposed under weaker
security guarantees for efficiency. However, the access pattern and the search
pattern are leaked in their schemes. Informally, the access pattern is the
information about which documents contain the queried keyword (i.e., the
search result) for each of the user queries, while the search pattern is the
information about whether any two queries are generated from the same
keyword or not. In recent studies, [15] has discussed a concrete attack
exploiting the access pattern to disclose the underlying keywords of user
queries. However, the potential risks of the search pattern leakage are rarely
studied in the literature. As it is noted in [17], a limitation of most known
SSE schemes is the leakage of the search pattern. In fact, this limitation
also exists in searchable asymmetric encryption schemes (e.g., [8, 6]). For
the reasons above, we are motivated to investigate on the search pattern
leakage issue and develop a new searchable encryption construction under
more rigorous security requirements.

Intuitions. Let’s begin with analyzing why search pattern is leaked
in SSE schemes. To the best of our knowledge, the query algorithms of
existing SSE schemes in the literature are mostly deterministic, which means
the same keyword will always generate the same query. In this sense, an
adversary can easily judge whether any two queries are generated from the
same keyword or not, so as to obtain the users’ search pattern. One may
apply probabilistic query algorithms to solve this problem. However, simply
making use of probabilistic query algorithms [21] still cannot hide the search
pattern, because the entry touched in each search process discloses the search
pattern as well. In other words, for the same keyword, its corresponding entry
in the index must be the same, so that the adversary can disclose users’
search pattern just by observing the entries touched in the index during the
search process. For this reason, the search pattern is also leaked in searchable
asymmetric encryption (a.k.a. public key encryption with keyword search,
PEKS), whose query algorithms are probabilistic [8, 6, 20, 12]. Therefore,
randomizing query algorithm only contributes to defend outer adversaries
but not inner adversaries (e.g., cloud administrators). It is also worthwhile
to point out that the access pattern might leak the search pattern in the same
way (i.e., the same search result might mean the same queried keyword). We
refer the reader to [15] for the details on how to hide the access pattern. The
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work of this paper focuses on the search pattern leakage caused by the queries
and index. A delicate approach to hide the search pattern is launching several
fake queries along with the real query, so that the adversary cannot identify
the real query. Based on this idea, we develop a new searchable encryption
construction where the number of sub-queries (i.e., the real query and the
fake queries) for each query is parametrized by a confusion parameter k. We
will give detailed description in Section 5.

Our contributions. We outline the contributions of this paper as the
following:

1. We address the search pattern leakage issue and demonstrate its po-
tential risks in the practical applications by giving two concrete attack
methods. In particular, with our attack methods, an adversary who has
obtained users’ search pattern can effectively uncover the underlying
keywords of the user queries under the help of some public available
knowledge.

2. We present a grouping-based construction (GBC) which transforms an
existing index-based searchable encryption scheme to a new scheme
hiding the search pattern. GBC is designed to be independent from
the underlying searchable encryption scheme, so that most previous
schemes [13, 9, 11, 23, 18, 17] can be used in GBC.

3. We prove that the resultant scheme of GBC satisfies a stronger secu-
rity guarantee than any existing searchable encryption scheme. GBC
reduces the search pattern leakage to the group pattern leakage.

4. Based on the real-world dataset [5], we test the performance of the
proposed attack methods and the proposed construction. The experi-
ment results indicate the effectiveness and feasibility of proposed attack
methods and construction.

Organization of the paper. The remainder of the paper is organized as
follows: Section 2 briefly surveys the motivations of hiding the search pattern.
Section 3 introduces some preliminaries. We formalize two attack methods
in Section 4. In Section 5 we will describe the grouping-based construc-
tion. Section 6 shows experimental studies for evaluating the performance of
the proposed attack methods and construction. We review related work in
Section 7 and conclude the paper in Section 8.
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Figure 1: Search frequency2over time

2. Motivations

Throughout this paper, we treat the third party Carol as the adversary,
which is consistent with most previous work [22, 13, 8, 9, 11, 23, 18, 17]. Carol
behaves “honest-but-curious” in the searchable encryption scheme. On one
hand, Carol follows the operations required in the scheme. On the other
hand, Carol tries to deduce as much private information as possible by u-
tilizing all kinds of attack methods. Carol has the ability of eavesdropping
the network, so that she has access to all encrypted documents, index and
queries. To make more effective attacks, Carol will draw support from some
auxiliary knowledge, which can be legally obtained from other channels. Now
we demonstrate that the search pattern leakage can lead to the keyword pri-
vacy leakage through several examples below.

Once the search pattern is leaked to Carol, the occurrence frequency of
each query is known to Carol. Intuitively, the most vulnerable keywords are
those of highest occurrence frequencies. For example, the keyword “Thanks-
giving” is the hot keyword on Thanksgiving Day. Since Carol is able to
identify the query with the highest occurrence frequency on Thanksgiving

2The search frequencies offered by Google Trends are normalized and displayed on a
scale from 0 to 100, rather the absolute frequency numbers. We refer the reader to the
site help of [2] for more details on how to normalize and scale data. In this paper, when
we refer search frequencies (or occurrence frequencies) which are used for matching with
the data in Google Trends, we assume these frequency numbers have been normalized and
scaled properly.
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Day, she knows the underlying keyword of that query is “Thanksgiving”.
To make a more general attack, Carol records the occurrence frequency

of a specific query over an interval of time. As it is shown in Figure 1(a),
Carol records the occurrence frequency of a specific query in each week of
the year 2012. She can also obtain auxiliary knowledge from a public web
facility based on Google Search, called Google Trends [2] which shows how
often a particular search-term is entered by users. For illustration, we show
three sample keywords in Figure 1(b) and let the time interval be consistent
with that recorded by Carol. What Carol needs to do is searching the best
matched keyword by applying some methods of similarity measurement (e.g.,
Euclidean distance).

In some cases, data users might have specific background (such as IT,
medicine, etc.), so the search habit of these users has discrepancy when
compared with that of the general users. To attack the users with specif-
ic background, Carol needs to adjust the auxiliary knowledge accordingly.
This is possible because Google Trends also offers statistics under variant
categories, which can be treated as user backgrounds. Therefore the priva-
cy of user searches will always be compromised once Carol obtains users’
search pattern and an appropriate auxiliary knowledge. This paper just
takes Google Trends for illustration, but never eliminates the possibility of
the adversary using other kinds of auxiliary knowledge. The more similar
the auxiliary knowledge is to the users’ search habit, the more successful the
attack will be.

Currently, more and more studies on users’ search habits are open to the
public (e.g., [1, 2, 3]), which indeed facilitates the attacks we have mentioned
above. Consequently, the search pattern leakage will grievously threaten the
keyword privacy. We will formalize two keyword attack methods in Section
4.

3. Preliminaries

Definition 1 defines the index-based searchable encryption, which covers
both searchable symmetric encryption and searchable asymmetric encryp-
tion.

Definition 1 (Searchable Encryption). An index-based Searchable Encryp-
tion (SE) scheme is a tuple of 6 algorithms SE = (KeyGen, BuildIndex, En-
cryption, Query, Search, Decryption):
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1. KeyGen(1λ): The key generation algorithm takes a security parameter
λ as input, it outputs a secret key K.

2. BuildIndex(D): The index building algorithm takes a document collec-
tion D = {D1, ..., Dn} as input, it outputs an index I.

3. Encryption(D, I, K): The encryption algorithm takes a document col-
lection D, an index I and a secret key K as input, it outputs an en-
crypted document collection C = {C1, ..., Cn} and a secure index SI.

4. Query(w,K): The query algorithm takes a keyword w and a secret key
K as input, it outputs an encrypted query qw.

5. Search(qw,SI): The search algorithm takes a query qw and a secure
index SI as input, it outputs a collection of document identifiers whose
corresponding data file containing the keyword w, which denoted as
R(w) = {id(w, 1), ..., id(w, p)}, where id(w, i)(1 ≤ i ≤ p) denotes the
i-th identifier in R(w).

6. Decryption(Ci, K): The decryption algorithm takes an encrypted data
file Ci ∈ C and a secret key K as input, it outputs Di.

Before the formal definition of the search pattern and the access pattern,
we first give the definition of history.

Definition 2 (History). Let D be a document collection. An n-query history
over D is a tuple H = (D,w) where w = {w1, ..., wn} is a vector of underlying
keywords of the n queries.

Elements in the history are what users expect to hide from the adversary.

Definition 3 (Search Pattern). The search pattern over an n-query history
H = (D,w) is a n×n symmetric binary matrix τH such that for 1 ≤ i, j ≤ n,
τH[i][j] = 1 if wi = wj, and 0 otherwise.

Definition 4 (Access Pattern). The access pattern over an n-query history
H = (D,w) is a a tuple φH = (R(w1), ...,R(wn)).

Definition 5 defines the group pattern that is revealed by group-based con-
struction (described in Section 5.2), where keywords are divided into groups.

Definition 5 (Group Pattern). The group pattern
over an n-query history H = (D,w) is a n× n symmetric binary matrix ρH
such that for 1 ≤ i, j ≤ n, ρH[i][j] = 1 if wi and wj belong to the same subset,
and 0 otherwise.
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Definition 6 explains the concept of CKA2-security from [10, 11], which
has been considered as “state of the art”.

Definition 6 (CKA2-security). Let SE = (KeyGen, BuildIndex, Encryption,
Query, Search, Decryption) be an index-based searchable encryption scheme
and let L be a stateful algorithm. For an adversary A and a simulator S, we
consider the following probabilistic experiments:

RealSEA (λ): the challenger runs KeyGen(1λ) to obtain a key K. A chooses
D and receives (C,SI) such that (C,SI)← Encryption(D, I, K) where
I is the output of BuildIndex(D). Then A makes a polynomial number
of adaptive queries and for each queried keyword w receives a query
qw ← Query(w,K) from the challenger. Finally, A returns a bit b that
is output by the experiment.

IdealSEA,S(λ): A outputs D. Given L(D), S generates and sends (C,SI) to
A. Then A makes a polynomial number of adaptive queries. For each
queried keyword wi, let H = (D,w) denote the i-query history where
w = {w1, ..., wi}, S is given L(H) and returns an appropriate query
qwi

. Finally, A returns a bit b that is output by the experiment.

We say that SE is L-secure against adaptive chosen-keyword attacks if for
all PPT adversary A, there exists a PPT simulator S such that

|Pr[RealSEA (λ) = 1]− Pr[IdealSEA,S(λ) = 1]| ≤ negl(λ).

4. Two Attack Methods

In this section, we formalize two attack methods which exploit the search
pattern to uncover the underlying keywords of user queries. Let q be a specific
query that Carol wants to attack, Carol records the occurrence frequency of q
in each period of time (e.g., day, week, month, etc.), which we denote as f i

q for
1 ≤ i ≤ p where p is the total number of record items (e.g., p = 50 in Figure
1(a)). Thus Carol gets a frequency vector of q denoted as Vq = (f 1

q , ..., f
p
q ).

Let K denote a dictionary of keywords and m denote the size of K. In
our attack methods, we assume Carol has auxiliary knowledge about users’
search habits (e.g., Google Trends [2]). Let Vwi

= (f 1
wi
, ..., f p

wi
) denote the

auxiliary frequency vector of the keyword wi ∈ K(i ∈ {1, ...,m}), where the
time interval is consistent with Vq. Let V = {Vw1 , ..., Vwm} denote the set
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of all auxiliary frequency vectors. Let Dist(Vq, Vwi
) be a function measuring

the similarity of Vq and Vwi
(e.g., Euclidean Distance, Cosine Distance, etc.).

Coral tries to identify the underlying keyword of q, which can be easily
achieved using the following attack method. We call this attack method The
General Attack and denote it as ATKGeneral:

• ATKGeneral(Vq, V ):

1. set i∗ = argmin
i∈{1,...,m}

Dist(Vq, Vwi
).

2. return wi∗ .

We have mentioned that users might have specific background while Carol
does not know it in the beginning. To deal with this situation, we present
The Adaptive Attack (denoted as ATKAdaptive) which dynamically adjust the
auxiliary knowledge based on the previous rounds of attack. For example,
if Carol has obtained five keywords “HIV”, “leukocyte”, “winter”, “virus”
and “glucose” for the first five rounds of attack, she will guess the users are
medical-related and update the auxiliary frequency vector to an associated
version. Here, we assume that the auxiliary knowledge offers statistics of user
searches under different categories which refer to different user backgrounds.

Let C = {c1, ..., cr} be the set of all possible categories in the auxil-
iary knowledge. Let Vwi,cj = (f 1

wi,cj
, ..., f p

wi,cj
) (1 ≤ i ≤ m, 1 ≤ j ≤ r)

be the auxiliary frequency vector of wi under the category cj. Let Vcj =
{Vw1,cj , ..., Vwm,cj} denote the set of all auxiliary frequency vectors under the
category cj. We assume each keyword in K is also labeled with a category in
C according to the semantics of the keyword. We set a weight value on each
of the category (denoted as vj(1 ≤ j ≤ r)), which equals to the proportion
of resultant keywords labeled with that category in the previous rounds of
attack. The Adaptive Attack works as follows:

• ATKAdaptive({Vqi}i=1,2,..., {Vcj}j∈{1,...,r}):

1. for 1 ≤ j ≤ r, set vj = 0.

2. randomly choose Vcurrent from {Vcj}j∈{1,...,r}.
3. set ctr = 1.

4. output wi∗ = ATKGeneral(Vqctr , Vcurrent).

5. let cj∗ be the category labeled on wi∗ .

6. for 1 ≤ j ≤ r(j ̸= j∗), let vj =
vj ·(ctr−1)

ctr .
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7. let vj∗ =
vj∗ ·(ctr−1)+1

ctr .

8. set jmax = argmax
j∈{1,...,r}

vj.

9. let Vcurrent = Vcjmax
.

10. let ctr = ctr+ 1

11. goto 4.

The Adaptive Attack might be inaccurate in the first few rounds of attack,
since Carol have no idea about the exact user background in the beginning.
With the increase of attack rounds, Carol can gradually identify the exact
user background. We will show the attack accuracy in Section 6.

5. Our construction

In this section, we present new searchable encryption constructions to
defend the previous attacks. For better understanding, we will first intro-
duce a straightforward construction, and then our main construction. Both
constructions are based on an existing index-based searchable encryption
scheme. Before describing our constructions in detail, we introduce some
additional notations. Let W (W ⊆ K) be the list of all distinct keywords
contained in document collection D in alphabetical order and |W| be its size.
Let wi denote the i-th keyword inW . Let k be the confusion parameter used
in our constructions. Let SE be a specific index-based searchable encryption
scheme that satisfies Definition 1.

5.1. The straightforward construction

In the straightforward construction, the query generated by Bob is a
collection of k sub-queries, which includes one sub-query of the real keyword
Bob wants to search for and k−1 sub-queries of randomly selected keywords.
To prevent Carol from identifying the sub-query of the real keyword, Bob
needs to place this sub-query at a random position in the query structure.
When Carol receives a query (i.e., a collection of k sub-queries) from Bob,
for each sub-query, she calls the search algorithm to obtain the sub-result
(assumed to be encrypted). Then she can get the final search result in the
form of k sub-results with the consistent order of the sub-queries, and send
it to Bob. Since Bob knows the correct position of the real sub-query, he
extracts the sub-result of the real sub-query and deletes other sub-results.
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1. KeyGen(1λ): output K ← SE.KenGen(1λ)

2. BuildIndex(D): output I ← SE.BuildIndex(D)
3. Encryption(D, I, K): output (C,SI)← SE.Encryption(D, I, K)

4. Query(k, w,K,W):

(a) randomly choose k − 1 keywords:
wi1 , ..., wik−1

∈ W\w
(b) randomly choose b ∈ {1, ..., k}
(c) for 1 ≤ j ≤ b− 1:

let sqj ← SE.Query(wij , K)

(d) let sqb ← SE.Query(w,K)
(e) for b+ 1 ≤ j ≤ k:

let sqj ← SE.Query(wij−1
)

(f) output (b,Q = {sq1, ..., sqk})
5. Search(Q,SI):

(a) for each sqi in Q:
let Ri ← SE.Search(sqi,SI)

(b) output R = {R1, ...,Rk}
6. Extract(R, b): output Rb

7. Decryption(Ci, K): output Di ← SE.Decryption(Ci, K)

Figure 2: The straightforward construction

Bob then uses his secret key to decrypt the sub-result and finishes the query
process.

We use the Extract algorithm to represent the process of extracting the
real sub-result from the search result structure. The details of the straight-
forward construction are shown in Figure 2.

Analysis. The main idea of the straightforward construction is blending
the sub-query of the real keyword with several sub-queries of fake keywords
which are randomly selected in W . In this case, Carol cannot identify the
real sub-query, thus the search pattern is hidden simultaneously. However, we
observe that the construction is not robust in some cases. It is possible that
some particular keywords are queried much more times than other keywords.
In this case, Carol is able to figure out the real sub-queries of these keywords
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by performing set-intersection operation. For example, let the confusion
parameter k be 3. Consider the query sequence (w1, w2, w1, w1, w1) whose
corresponding queries received by Carol are, say

Q1 = {sq(w7), sq(w1), sq(w38)}

Q2 = {sq(w34), sq(w91), sq(w2)}

Q3 = {sq(w1), sq(w51), sq(w67)}

Q4 = {sq(w8), sq(w77), sq(w1)}

Q5 = {sq(w1), sq(w12), sq(w83)}

Through set-intersection operation, Carol can easily observe that sq(w1) ap-
pears four times among the five queries, so she believes that the real sub-query
of the first, third, fourth and fifth query is sq(w1). Thus the view of Carol can
be described as V iew = {Q1 = {sq(w1)},Q2 = {sq(w34), sq(w91), sq(w2)},Q3

= {sq(w1)},Q4 = {sq(w1)},Q5 = {sq(w1)}}, which leaks Bob’s search pat-
tern to a certain degree. One may think that sq(w1) can also appear in a
query when it is selected as a fake sub-query. Such a case, however, occurs
with relatively low probability when (1) the keyword set size is large, or (2)
k value is small.

5.2. Our main construction: the grouping-based construction (GBC)

To address the drawbacks of the straightforward construction, we now
present our main construction, which we call the grouping-based construction
(GBC). In GBC, we add an additional algorithm named Dividing, which
divides W into |W|/k subsets {S1, ..., S|W|/k}. Here, we assume |W| is an
integral multiple of k.3 Once a keyword w ∈ W is queried, each keyword
that appears in the same subset with w will be selected, so that the final
query also contains one real sub-query and k − 1 fake sub-queries.

Clearly, the Dividing algorithm should make the frequency distribution of
the resultant subsets as uniform as possible in order to minimize the leakage.
Note that the adversary tries to use the distribution of searches (i.e., the
auxiliary knowledge) to perform attacks, users can also use it in hiding the
search pattern. In GBC, the Dividing algorithm takes the auxiliary knowledge

3For the case |W| is not an integral multiple of k, one can appropriately pad W with
several keywords.
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1. KeyGen(1λ): output K ← SE.KenGen(1λ)

2. BuildIndex(D): output I ← SE.BuildIndex(D)
3. Encryption(D, I, K): output (C,SI)← SE.Encryption(D, I, K)

4. Dividing(k,W , V ):

(a) sort all the keywords inW by their total occurrence frequency
according to V . Let W ′ be the ranked list and w′

i be the i-th
keyword in W ′

(b) divide W into k sections as follows:
for 1 ≤ i ≤ k:

set W ′
i = {w′

(i−1)·k+1, ..., w
′
(i−1)·k+k}

(c) initialize |W|/k empty subsets S1, ..., S|W|/k, for 1 ≤ i ≤
|W|/k:

for 1 ≤ j ≤ k:

random select w from W ′
j

insert w into Si

delete w from W ′
j

(d) output {Si}i∈{1,...,|W|/k}

5. Query(k, w,K, {Si}i∈{1,...,|W|/k}):

(a) let Sq be the subset containing w and Sq[j] be the j-th element
in Sq. Suppose w is the b-th element in Sq.

(b) for 1 ≤ j ≤ k:

let sqj ← SE.Query(Sq[j], K)

(c) output (b,Q = {sq1, ..., sqk})
6. Search(Q,SI):

(a) for each sqi in Q:
let Ri ← SE.Search(sqi,SI)

(b) output R = {R1, ...,Rk}
7. Extract(R, b): output Rb

8. Decryption(Ci, K): output Di ← SE.Decryption(Ci, K)

Figure 3: The grouping-based construction (GBC)
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V as one of the inputs (as it is shown in Figure 3). We first sort the keyword
list W by keyword frequency according to V . Then we divide the ranked
keyword list into k sections. We randomly extract one keyword from each
of the sections and get a subset of k keywords. In this way, we can finally
obtain |W|/k subsets with a relatively uniform frequency distribution.

The details of GBC are shown in Figure 3. Unlike the straightforward
construction, which randomly selects fake sub-queries from the whole W ,
GBC divides W into a number of subsets so that the generated queries
will always be the same when the queried keywords belong to the same
subset. This property avoids Carol’s attack by performing set-intersection
operation. For illustration, let k be 3 and suppose w1 and w2 belong to
the subset (w33, w1, w74) and (w85, w41, w2) respectively. Let’s consider the
following view of Carol: V iew = {Q1 = {sq(w33), sq(w1), sq(w74)},Q2 =
{sq(w85), sq(w41), sq(w2)},Q3 = {sq(w33), sq(w1), sq(w74)},Q4 = {sq(w33),
sq(w1), sq(w74)},Q5 = {sq(w33), sq(w1), sq(w74)}}. Although Q1, Q3, Q4

and Q5 are identical, it is not rational for Carol to guess the real sub-queries
of the first, third, fourth and fifth queries are (1) sq(w1), because sq(w33) and
sq(w74) also satisfy this situation; or (2) identical, because different keywords
will generate the same query if these keywords are in the same subset.

As a result, the resultant searchable encryption scheme of GBC satisfies
a stronger security property. Specifically, the search pattern in leakage func-
tion (see Definition 6) is replaced by the group pattern. We offer the formal
proof in Appendix. In Section 6 we will show that this leakage reduction can
successfully defend the attacks proposed in this paper. One of the main con-
tributions of this paper is to discover the potential risks of the search pattern
leakage, but we are not able to guarantee that replacing the search pattern
with the group pattern is secure enough. We leave a better understanding of
the group pattern leakage as an open problem.

Note that a data user has to maintain all the subsets locally to issue
queries. There are many ways for a data owner to share all the subsets to
data users. For example, (s)he can encrypt those subsets using the shared
secret key and upload it to the server. A data user just downloads and
decrypts it at a setup phase.

For both the straightforward construction and GBC, k = 1 implies an
unchanged searchable encryption scheme SE, while k = |W| means each
query contains sub-queries of all the keywords. The larger k is, the stronger
security attained, but the higher communication and computation overhead
required. Therefore, it is important to choose k properly according to the
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corresponding applications.

6. Experiments

In this section, the proposed attack methods and construction are tested.
Our test programs were implemented by Python-2.7.3. All experiments were
performed on a computer with Intel Core i5-2400 CPU 3.10GHz and 4.00GB
RAM. The operation system was Windows 7 Professional. Each data point
presented in the experiment results was the mean of 10 executions.

In our experiments, all keywords were selected from Enron email dataset [5],
which is a real-world dataset containing a total of about 500000 messages of
about 150 users. We selected a subset of the emails as our corpus. It contains
96107 messages from the “Sent Mail” directories. The total number of dis-
tinct words in the corpus is 122426. We ranked these words with occurrence
frequency and chose the top 3000 words as our keyword set. Here, all English
stopwords [4] such as “a”, “the” and “about” had been filtered away.

6.1. Performance of our attack methods

To demonstrate the feasibility and effectiveness of our attack methods, we
tested their attack accuracy4 under different parameter settings. We assumed
that Carol had recorded the occurrence frequency of each query launched by
users for consecutive weeks in the year 2011, thus she had obtained the fre-
quency vector of each query. The length of the frequency vector was equal to
the number of recorded weeks. Carol’s auxiliary knowledge on statistics of
users’ search histories were extracted from Google Trends [2], which contains
the frequency vectors of all the keywords in the keyword set. It is obvious
that the attack accuracy will be 1 if the frequency vectors of users’ queries
perfectly match the auxiliary knowledge. However, in an actual scenario, the
scale of users may be much smaller than Google’s, thus the statistics of the
real users’ queries will be inevitably diverse from the auxiliary knowledge.
Considering the significant differences between particular users’ query behav-
iors (which is also noted by [15]), and no real-world query set on the Enron
dataset has been published to the best of our observation, similar with the
simulation of [15], we simulate the frequency vector of the user query of a

4The attack accuracy represents the proportion of keywords that are successfully at-
tacked by the adversary.
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Figure 4: Attack accuracy of The General Attack for different choices of keyword set size.

particular keyword through adding Gaussian noise N (0, α · σ2) to the fre-
quency vector of this keyword in the auxiliary knowledge. Here, σ2 is the
variance of the frequency vector and α is a constant representing the noise
level.5

Figure 4(a) shows the attack accuracy of The General Attack under dif-
ferent keyword set sizes and α values. In the test, the length of the frequency
vector was fixed at 52 (i.e., 52 weeks in the year 2011), and the keyword set
size was chosen to be 1000, 2000 and 3000 respectively. We can see that the
attack accuracy was almost 100% when α ≤ 0.5 and started to decrease when
α > 0.5. The results indicate that The General Attack is quite accurate if
data users’ searches are well consistent with Google’s statistic, and the at-
tack is also successful if data users’ searches have large deviation to Google’s
statistics since the attack accuracy was approximately 92% even when α = 1.
With the increase of keyword set size, the attack accuracy slightly decreased.
This is because the larger size of keyword set inevitably incurs the higher
probability of mismatch.

Figure 4(b) shows the attack accuracy of The General Attack under d-
ifferent keyword set sizes and lengths of the frequency vector. In this test,
the α value was set at 0.5 and the keyword set size was chosen to be 1000,
2000 and 3000 respectively. We can see that the attack accuracy grew with
the increase of the frequency vector length and reached 90% when the vector

5The larger α value implies the larger noise energy.

16



5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
15
20
25
30
35
40
45
50
55
60
65
70
75
80

ac
cu

ra
cy

 (%
) i

n 
ro

un
d 

r

r

 x = 50
 x = 60
 x = 70
 x = 80
 x = 90

Figure 5: Attack accuracy of The Adaptive Attack for different choices of x.

length came to 25. In addition, the attack accuracy was higher than 50%
even when the vector length was as short as 10. As with the previous test,
the attack accuracy slightly decreased when the keyword set size increased.

To test the attack accuracy of The Adaptive Attack, we labeled 1000 key-
words with six categories, which were “science”, “health”, “games”, “sports”,
“food” and “non-classified”. We also downloaded the associated frequency
vectors under each of the six categories from Google Trends, which formed
Carol’s auxiliary knowledge. In this experiment, data users were assumed
to be of a specific category. To simulate the users’ searches, we assumed
that users of a specific category searched the keywords of this very catego-
ry with higher probability than keywords of other categories. We generated
a sequence of 100 keywords, where x of them were labeled with the same
category as the users. In the test, x was set to be 50, 60, 70, 80 and 90
respectively. The noise parameter α and the length of the frequency vector
were set to be 0.5 and 52 respectively. According to The Adaptive Attack we
have described in Section 4, during each round of the attack process Carol
adjusts the utilized frequency vectors based on the previous rounds. From
Figure 5 we can see that the attack accuracy in the first round was only
about 20%, that is because Carol had no idea on the users’ category in the
beginning, thus the version of the auxiliary knowledge she used was very
likely to mismatch the users’ category. With the increase of rounds, Carol
has significant probability to figure out the users’ exact category, so that the
attack accuracy in the 100th round came to about 65% when x = 50 and near
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80% when x = 90. The larger x implies the higher speciality of user searches,
so that Carol can identify the exact user category more easily. That’s why
the attack accuracy was higher when x was larger.

The experiment results suggest significant distinctions among the fre-
quency vectors of each keyword, thus again we emphasize that any searchable
encryption scheme leaking users’ search pattern is vulnerable to the proposed
attack methods.

Figure 6 shows the execution time for searching the best match among
the auxiliary frequency vectors under different lengths of the frequency vec-
tor. The keyword set size was set to be 1000, 2000 and 3000 respectively.
We can see that although the time cost was linear to the length of the fre-
quency vector and the number of keywords, it was in millisecond level, which
demonstrates the efficiency of our attack methods.

6.2. Performance of GBC

This section evaluates the performance of GBC. In GBC, a user query is
a set of k− 1 fake sub-queries and one real sub-query. In order to apply The
General Attack, Carol has to first guess the real sub-query for each of the user
queries. Figure 7 reports the attack accuracy of The Adaptive Attack under
a probability p of Carol correctly guessing the real sub-query. In the test, the
keyword set size, the length of the frequency vector and the noise parameter
α were 3000, 52 and 0.5 respectively. From Figure 7 we can see that the
attack accuracy was approximately as low as 9% even Carol could correctly
guess the real sub-query with a probability of 0.5. The attack accuracy was
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Figure 8: Average query and search execution time in SSE-2 and GBC.

close to 0 when p ≤ 0.25. Note that we didn’t make any assumption of the
approaches Carol might use to guess the real sub-query.

Obviously, the p value will be 1 if the search pattern is leaked to Carol.
In GBC, only the group pattern is leaked, thus the p value would ideally be
1/k, which means that Carol randomly chooses a sub-query as the “real” sub-
query. The p value might slightly higher than 1/k if Carol is able to deduce
some useful information from the group pattern. As the open problem we
have discussed in Section 5, to figure out the actual p value one should
quantify the leakage of the group pattern. Nevertheless, our experiment
indeed demonstrates that GBC is a fairly effective way to defend the attack.
We empirically suggest to choose k no less than 3.

We also evaluated the computation overhead of GBC. In our experiments,
the SSE-2 scheme in [11] was chosen as the underlying searchable encryption
scheme in GBC. Figure 8 reports the execution time for the Query and the
Search algorithms under different choices of k value. Figure 8(a) shows that
in GBC the execution time for the Query algorithm was linear to the k value.
In addition, the time costs were about k times the execution time in SSE-
2. Nevertheless, the Query algorithms of GBC quite time-saving, since the
execution time was less than 1ms even when k = 10. In Figure 8(b), similarly,
the execution time for the Search algorithm was linear to the k value, and it
was about k times the execution time in SSE-2. In SSE-2, index was built
using hash table, which achieved O(1) look-up time. Therefore, the search
time of GBC is fairly short even with a big k.
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Besides the Query and the Search algorithms, the Dividing algorithm and
the Extract algorithms also import computation overhead. However, the Di-
viding algorithm only needs executing once at the setup phase for each user,
and the execution time of the Extract algorithms can be ignored. In conclu-
sion, the additional computation overhead induced by GBC is acceptable.
Obviously, the additional communication overhead (i.e., the fake queries and
results) is also small when compared with the cost of outsourcing and re-
trieving the data files.

7. Related Work

The problems of searching on remote encrypted data have been widely
studied in the literature, most of which focus on enhancing privacy guaran-
tees and optimizing efficiency. The classical method proposed by Goldreich
and Ostrovsky [19, 14], which called oblivious RAM, can resolve the prob-
lem without leaking any information to the third party. However, standing
in the perspective of practical applications, such schemes are unacceptable
due to their poly-logarithmic computation and communication overheads.
A number of searchable encryption schemes [22, 13, 8, 9, 11, 23, 18, 17]
have been proposed under weaker security guarantees for efficiency. Specif-
ically, Song et al. [22] gave a practical solution attaining search time that
is linear to the data size. This construction is not secure against statisti-
cal analysis, since the adversary can obtain the distribution information of
the underlying plaintext through statistic approaches. To formalize security,
Goh [13] formulated a security model as semantic security against adaptive
chosen keyword attack (IND-CKA) and a slightly stronger IND2-CKA. He
also developed an IND-CKA secure index called Z-IDX which utilizes Bloom
filter [7] to build an index for each data file. The overhead of Z-IDX for
testing whether a keyword belongs to a data file is O(1), thus searching on
the whole file collection needs O(n) time. The security definition in [9] is
similar with IND2-CKA except for the requirement that trapdoors should
not leak any information of the queried keywords. As further related work,
Curtmola et al. [11] put forward stronger security definitions. Their security
definition requires nothing is leaked more than the length of the documents,
the identifiers of the documents, the access pattern and the search pattern.
In addition, both non-adaptive and adaptive adversaries are considered in
their work.

20



The approaches mentioned above are in the scope of searching on symmet-
ric key encrypted data, which thus called searchable symmetric encryption
(SSE). For application sake, another research field of searchable encryption
focuses on the public key setting. As pioneer work, Boneh et al. [8] proposed a
searchable encryption scheme called PEKS (i.e., Public-key Encryption with
Keyword Search), where trapdoor function is probabilistic. This property
seems to contribute to hiding the search pattern. Unfortunately, not only
trapdoors, but index and search outcomes leak the search pattern, which we
have discussed in Section 1.

With the exception of oblivious RAM, all proposed searchable encryp-
tion schemes leak the search pattern. The trend of distributing searchable
encryption schemes into cloud [16, 25, 23, 24] highlights the potential risks
of search pattern leakage (as well as access pattern leakage). That is because
large amounts of data centralizing into the cloud servers affiliates effective
statistic attacks. Moreover, such attacks can be launched well under the
massive computing power of cloud servers.

We are aware of a recent work of access pattern disclosure on searchable
encryption proposed by Islam et al. [15], which is close to our work. In [15],
the authors formulate a novel attack that exploits the access pattern leakage
to disclose the underlying keywords of user queries. The adversary in their
attack is assumed to have background knowledge on the keyword distribution
of user’s document collection. They also presented a mitigation approach to
hide the access pattern. Our work is quite different with theirs due to: (1)
their topic is the access pattern leakage while ours is the search pattern
leakage; (2) the background knowledge used by an adversary is different; and
(3) the core ideas of their solution and our construction are different (i.e.,
their idea is to import some false positives to make search outcomes turn
into identical to a certain degree while ours is to generate fake queries along
with the real query). Nevertheless, both their and our work demonstrate the
underlying keywords of user queries can be recovered once the access pattern
or the search pattern is leaked.

8. Conclusion

In this paper, we review searchable encryption schemes in the literature
and point out the search pattern leakage issue. By giving two concrete attack
methods, we demonstrate that the search pattern can be utilized to attack
the underlying queried keywords. Motivated by this threat, we present a
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new searchable encryption construction based on the idea of generating fake
queries. Finally, to clarify the performance of proposed attack methods and
constructions, we give detailed experiments which are based on the real-world
dataset.
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Appendix A. Security proof of GBC

We analyze the security of GBC under the “state of the art” security
definition from [10, 11] (as defined in Section 3). The CKA2-security is
parametrized by a leakage function L, which is assumed to be leaked to an
adversary. The definition guarantees that an adversary cannot learn more
about L from a searchable encryption scheme that is L-secure against adap-
tive chosen keyword attack. To make the security definition fit GBC, we
appropriately modify the description of CKA2-security.

Definition 7 (modified CKA2-security). Let SEGBC = (KeyGen, BuildIndex,
Encryption, Dividing, Query, Search, Extract, Decryption) be an index-based
searchable encryption scheme that results from applying random-dividing-
based construction and let L be a stateful algorithm. Let k be the confusion
parameter used in GBC. For an adversary A and a simulator S, we consider
the following probabilistic experiments:

RealSE
GBC

A (λ): the challenger runs KeyGen(1λ) to obtain a key K. A
chooses D and receives (C,SI) such that (C,SI)← Encryption(D, I, K)
where I is the output of BuildIndex(D). The challenger divides the key-
word listW into |W|/k subsets {S1, ..., S|W|/k} by calling Dividing(k,W , V ).
Then A makes a polynomial number of adaptive queries and for each
queried keyword w receives a query Qw = {sq1, ..., sqk} ← Query(k, w,K,
{Si}i∈{1,...,|W|/k}) from the challenger. Finally, A returns a bit b that is
output by the experiment.

IdealSE
GBC

A,S (λ): A outputs D. Given L(D), S generates and sends (C,SI)
to A. Then A makes a polynomial number of adaptive queries. For each
queried keyword wi, let H = (D,w) denote the i-query history where
w = {w1, ..., wi}, S is given L(H) and returns to A an appropriate
query Qwi

= {sq1, ..., sqk}. Finally, A returns a bit b that is output by
the experiment.

We say that SEGBC is L-secure against adaptive chosen-keyword attacks if
for all PPT adversary A, there exists a PPT simulator S such that

|Pr[RealSE
GBC

A (λ) = 1]− Pr[IdealSE
GBC

A,S (λ) = 1]| ≤ negl(λ).
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Theorem 1. If SE is L-secure against adaptive chosen keyword attack, then

SEGBC as described above is L′-secure against adaptive chosen keyword at-
tack, where

L(D) = (|D1|, ..., |Dn|,#SI)

L(H) = (φH, τH)

L′(D) = (|D1|, ..., |Dn|,#SI)

and
L′(H) = (φH, ρH)

where |Di| denotes the length of Di, #SI denotes the total number of entries
in SI, and φ, τ and ρ denote the access pattern, the search pattern and the
group pattern, respectively.

Before the proof,it should be noted that the access pattern φ in L′ is a

little bit different with that in L since the search result in SEGBC is a col-
lection of k sub-results rather than a single search result in SE. For example,
given an n-query history H = (D,w) where w = {w1, ..., wn},

• in L(H):
φH = (R(w1), ...,R(wn))

• in L′(H):

φH = (R1,1, ...,R1,k,R2,1, ...,R2,k, ...,Rn,1, ...,Rn,k)

where Ri,j denotes the j-th sub-result of the i-th result structure.

Proof. Since SE is L-secure against adaptive chosen keyword attack, there
exists a simulator S that can simulate appropriate ciphertexts C∗, secure
index SI∗ and search queries q∗i (i=1,2,...), which are indistinguishable from
the real ones (denoted as C, SI and qi) to a PPT adversary A. Now we
construct a simulator S ′ which makes use of S to simulate C∗, SI∗ and Q∗

i

as follows:

• (Simulating C∗ and SI∗) Given L′(D), S ′ directly gives L′(D) to S,
and outputs C∗ and SI∗ that output by S.
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• (Simulating Q∗
i ) Recall that τH is a |w| × |w| binary matrix such that

τH[s][t] = 1 if ws = wt (and 0 otherwise), and ρH is a |w| × |w| binary
matrix such that ρH[s][t] = 1 if ws and wt belong to the same subset
(and 0 otherwise). Let k be the confusion parameter. Given L′(H), for
1 ≤ s, t ≤ i (note that |w| = i), S ′ construct a τ ′H as follows:

– if ρH[s][t] = 0, then replaces ρH[s][t] with a zero matrix of size k,
and

– if ρH[s][t] = 1, then replaces ρH[s][t] with a identity matrix of size
k.

Let the new matrix be τ ′H. We can see that the size of τ ′H is (k ·i)×(k ·i).
Let τ ′H(j) denote the sub-matrix of τ ′ that covers the first j rows and
columns of τ ′H. Let φH(j) denote the sub-tuple of φH that covers the
firt j elements of φH. S ′ respectively gives (φH(k ·(i−1)+1), τ ′H(k ·(i−
1) + 1)), ..., (φH(k · (i− 1) + k), τ ′H(k · (i− 1) + k)) to S. As responses,
S respectively returns the simulated search queries q∗i,1, ..., q

∗
i,k. Finally,

S ′ outputs Q∗
i = {q∗i,1, ..., q∗i,k}.

Now we argue that (C∗,SI∗, {Q∗
i }i=1,2,...) is computationally indistinguish-

able from (C,SI, {Qi}i=1,2,...) to a PPT adversary A.

• (C∗ and C, SI∗ and SI) The CKA2-security of SE guarantees that C∗
and SI∗ are indistinguishable from C and SI to A respectively.

• ({Q∗
i }i=1,2,... and {Qi}i=1,2,...) For any individual sub-query Q∗

i =
{q∗i,1, ..., q∗i,k}, the CKA2-security of SE guarantees that q∗i,j is indistin-
guishable from qi,j to A. The CKA2-security of SE also guarantees
that the outcome of SE.Search(q∗i,j,SI∗) is indistinguishable from the
outcome of SE.Search(qi,j,SI) to A (i.e., the resultant access patterns
are indistinguishable between the real case and the simulation case).
Thus Q∗

i is indistinguishable from Qi to A. Now we show that the re-
sultant group pattern (denoted as ρ∗) in the simulation case is exactly
the same with that in the real case (denoted as ρ).

– If ρ[s][t] = 0 (i.e., Qs ̸= Qt), as the description above, S ′ replaces
the bit with a zero matrix of size k. The CKA2-security of SE
requires q∗s,1, ..., q

∗
s,k and q∗t,1, ..., q

∗
t,k (generated from S) satisfy (1)

q∗s,1 ̸= q∗t,1, ..., q
∗
s,k ̸= q∗t,k and (2) q∗s,r1 ̸= q∗s,r2 and q∗t,r1 ̸= q∗t,r2 for any

1 ≤ r1 ̸= r2 ≤ k. Thus Q∗
s ̸= Q∗

t and ρ∗[s][t] = 0.
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– If ρ[s][t] = 1 (i.e., Qs = Qt), as the description above, S ′ replaces
the bit with a identity matrix of size k. The CKA2-security of SE
requires q∗s,1, ..., q

∗
s,k and q∗t,1, ..., q

∗
t,k (generated from S) satisfy (1)

q∗s,1 = q∗t,1, ..., q
∗
s,k = q∗t,k, and (2) q∗s,r1 ̸= q∗s,r2 and q∗t,r1 ̸= q∗t,r2 for

any 1 ≤ r1 ̸= r2 ≤ k. Thus Q∗
i = Q∗

j and ρ∗[i][j] = 1.

Thus we have ρ∗ = ρ. Therefore, {Q∗
i }i=1,2,... is indistinguishable from

{Qi}i=1,2,... to A.

For any PPT A, A cannot distinguish the view in RealSE
GBC

A (λ) and the

view in IdealSE
GBC

A,S (λ), so we have

|Pr[RealSE
GBC

A (λ) = 1]− Pr[IdealSE
GBC

A,S (λ) = 1]| ≤ negl(λ).
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