
Provably Secure LWE Encryption with
Smallish Uniform Noise and Secret

Daniel Cabarcas, Florian Göpfert, and Patrick Weiden
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Abstract. In this paper we propose the first provably secure public key encryption scheme
based on the Learning with Errors (LWE) problem, in which secrets and errors are sampled
uniformly at random from a relatively small set rather than from the commonly used discrete
Gaussian distribution. Using a uniform distribution, instead of a Gaussian, has the potential
of improving computational efficiency a great deal due to its simplicity, thus making the
scheme attractive for use in practice. At the same time our scheme features the strong security
guarantee of being based on the hardness of worst-case lattice problems. After presenting the
construction of our scheme we prove its security and propose asymptotic parameters. Finally,
we compare our scheme on several measures to one of the most efficient LWE-based encryption
schemes with Gaussian noise. We show that the expected efficiency improvement is debunked,
due to the large blow-up of the parameter sets involved.

Keywords Lattice-Based Cryptography; Learning with Errors; Uniform Noise; Provable Se-
curity.

1 Introduction

The Learning with Errors (LWE) problem [Reg09] has been the source of great progress in
cryptography by providing a link between a variety of cryptographic constructions and clas-
sical mathematical problems. It has served as the base for several basic cryptographic prim-
itives including public key encryption (see e.g. [SSTX09,GHV10,LPR10,LP11,SS11,Gal13])
and digital signatures (see e.g. [GPV08,CHKP10,Lyu12,SS13]), as well as other primitives
such as lossy-trapdoor functions (see e.g. [PW08,BKPW12,Wee12]), identity- and attribute-
based encryption (see e.g. [CHKP10,ABB10,GVW13,GGH+13b]), somewhat and fully ho-
momorphic encryption (see e.g. [BV11a,BV11b,BGV12,GHS12,ASP13,BGH13]), and mul-
tilinear maps (see e.g. [GGH13a]). The (decision) LWE problem is to distinguish (A, b)
sampled according to the LWE distribution from (A, b) sampled uniformly at random from
Zm×nq ×Zmq . On input integers n, m, q and distributions X ,Y on Zq, the LWE distribution
samples a matrix A ∈ Zm×nq uniformly at random, the entries of a secret vector s according
to X , the entries of an error vector e according to Y, computes the noisy linear system
b ≡ As+ e mod q and outputs the tuple (A, b).

In addition to new cryptographic constructions made possible by LWE, there exists
a strong security guarantee for schemes based on LWE, the so-called worst-to-average-
case reduction. Regev and Peikert [Reg09,Pei09] independently showed that, for certain
parameters, LWE is as hard as classical lattice problems, such as the Shortest Independent
Vector Problem (SIVP), in the worst case. Thus it follows that LWE-based schemes are
provably secure assuming the worst-case hardness of classical lattice problems. Since these
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lattice problems have been widely studied and are expected to be hard for most instances,
the assumption is considered quite plausible.

When inspecting practical aspects of LWE-based constructions, there has been a con-
tinuous efficiency improvement over the past years (e.g. [LPR10,LP11,GFS+12,PG12]).
However, the LWE-based cryptosystems have not yet reached the practicality threshold
of mainstream cryptosystems such as RSA as used today. Despite the simplicity of the in-
volved operations and progress in tightening reductions to decrease parameters, the error
distribution stands as an obstacle to develop a simple and practical cryptosystem. To this
date, all provably worst-case secure LWE-based schemes require the error distribution to be
a discrete Gaussian, which is problematic in practice. According to Weiden et al. [WHCB13],
Gaussian sampling can be very time consuming. Moreover, existing discrete Gaussian sam-
plers require either exact computation of transcendental functions or to store large amounts
of data [GPV08,Pei10,GD12], an unsurmountable burden for some constraint devices. It is
also not well understood at the moment, how accurate such samplers are or what the im-
pact of a faulty sampler on security is. Furthermore, recent experiments, in which weak
RSA keys were exposed [HDWH12,LHA+12], show that schemes can be broken because of
biased sampling algorithms. Thus, the complexity of Gaussian samplers adds another pitfall
for developers when implementing LWE-based cryptosystems.

One necessary tool to build a worst-case secure scheme without Gaussian sampling was
recently provided by Micciancio and Peikert [MP13]. The authors give a reduction from
SIVP to LWE with uniform error if the number of LWE samples is limited. They also
suggest it might be possible to construct a worst-case secure LWE-based encryption scheme
with polynomially bounded uniform error. However, they do not elaborate any further.

Our Contribution In this paper we answer this question affirmatively by proposing the first
provably worst-case secure LWE-based encryption scheme with noise and secret drawn from
uniform distributions on smallish sets. Our proposed scheme, which we refer to as U-LP,
is similar to the LP encryption scheme by Lindner and Peikert [LP11], but it uses uniform
distributions over smallish sets for generating keys and for encrypting messages. The security
proof of LP falls apart for U-LP because of the use of the uniform distributions. Thus, we
prove the security of our construction by relating the security to the hardness of classical
worst-case lattice problems. Moreover, we propose asymptotic parameters for U-LP.

The main property of our scheme, instantiating LWE with a uniform distribution instead
of a discrete Gaussian, makes it potentially preferable to existing schemes because of the
simplicity of sampling errors and secrets. Sampling from a uniform distribution over a set
{0, . . . , t− 1} for small t is extremely easy and fast. Even in the worst case (if t is slightly
bigger than a power of two), it simply requires to sample 2dlog(t)e uniformly random bits
on average. Moreover, uniform sampling requires no additional storage and no computation
of transcendental functions. By these characteristics the uniform distribution on a small set
is an ideal candidate for sampling errors and secrets.

From a technical perspective, the challenge of this paper is in designing U-LP in order
to obtain an encryption scheme that is both efficient and provably secure. Our main result
(summarized in Theorem 5) states that U-LP with correctly chosen parameters is indis-
tinguishable under chosen plaintext attacks (IND-CPA secure) as long as SIVP is hard in
the worst case, using a recent result of Micciancio and Peikert [MP13]. The proof can be



summarized as follows:

U-LP with parameters n, q, sk, se, ` is insecure
Lemma 1

======⇒ LWE(n, n, q,Usk ,Usk) is easy ∨
LWE(n, n+ `, q,Use ,Use) is easy

Lemma 2
======⇒ LWE(n, 2n, q,Uq,Usk) is easy ∨

LWE(n, 2n+ `, q,Uq,Use) is easy
Lemma 4

======⇒ SIVP(k, Õ(
√
k · q)) is easy

Here LWE(n,m, q,X ,Y) denotes the (decision) LWE problem with A ∈ Zm×nq sampled
uniformly at random, secret s ∈ Znq sampled according to the distribution X and error
e ∈ Zmq according to distribution Y (written as e ← Y). By SIVP(k, γ) we denote the
Shortest Independent Vector Problem in dimension k with approximation factor γ, and by
Ut we denote the uniform distribution on {0, . . . , t− 1}. Lemma 1 (Section 2.1) relates the
security of U-LP to the hardness of two LWE instances, one that hides the secret key and
another one that hides the message, with both smallish uniform noise and secret chosen
from the same distribution. Lemma 2 (Section 2.1) shows that these LWE instances, where
the secret is chosen according to the error distribution, are not easier than LWE instances
with secret chosen uniformly from Znq . Lemma 4 (Section 2.2) proves that a family of LWE
instances suitable for U-LP is at least as hard as worst-case SIVP. Finally, Theorem 5
(Section 2.3) puts all these pieces together.

We compare our instantiations of U-LP and LP on several efficiency measures. Unfortu-
nately, the expected advantage does not materialize and instead we obtain opposed results.
This is due to the fact that the modulus q and the bound t of the smallish set cannot be
chosen too small in order to use the uniform distribution in a worst-case secure way within
our proposed scheme. In more detail, the worst-to-average-case reduction from LWE with-
out Gaussian distributions to classical lattice problems requires to restrict the number of
samples [MP13]. The maximum number of samples is determined by the size of the secrets
and errors—more samples require bigger secrets and errors. Unfortunately, the number of
samples provided by the scheme is lower-bounded, which leads to a lower bound for the size
of the errors. Bigger average errors, however, require a bigger modulus in order to avoid
decryption failures.

Although we missed the goal of having a truly small set, we can conclude that it is
relatively small with respect to the modulus (thus smallish). For security parameter n, the
instantiation of U-LP requires a modulus q = O(n3.7) and samples drawn from a uniform
distribution on {0, . . . , t− 1} with t = O(n1.4). In comparison, the instantiation of LP with
Gaussian noise and comparable parameters requires a modulus of q = O(n2), and samples
drawn from a discrete Gaussian with parameter σ = O(n0.5). Thus, U-LP requires bigger
error and modulus as a trade-off for being able to use uniform noise. In terms of security,
we prove that U-LP is secure as long as SIVP in dimension k = n/8 with approximation
factor γ = Õ(n4.7) is hard, whereas LP with modified parameters is secure as long as SIVP
in dimension k = n with approximation factor γ = O(n2.5) is hard.

Organization The remainder of the paper consists of two sections. In Section 2 we present U-
LP and prove its security following the logic of the above sketched proof. Then in Section 3



we analyze several measurements of the scheme’s efficiency and we compare them to those
of LP with comparable parameters. A short conclusion in Section 4 completes the paper.

2 The Scheme

In this section we introduce U-LP, an LWE-based scheme following the framework of Linder
and Peikert [LP11], but with noise and secret drawn form a uniform distribution on a
relatively small set. We propose parameters for the scheme and prove that it is correct and
worst-case secure.

2.1 Description

The LP scheme introduced by Lindner and Peikert [LP11] is an instance of an abstract
cryptosystem described by Micciancio [Mic10]. The scheme uses simple error-tolerant en-
coding and decoding functions encode : Z`2 → Z`q and decode : Z`q → Z`2, such that
decode(encode(m) + e) = m for any error vector e with ‖e‖∞ < bq/4c.

KeyGen(n, q, sk, `): Sample A ← Un×nq , E ← U `×nsk
and S ← U `×nsk

, and let

P = E − SA ∈ Z`×nq . Return public key (A,P ) and secret key S.

Enc(µ, (A,P ), se): Sample e1 ← Unse , e2 ← Unse , e3 ← U `se , compute
µ′ = encode(µ) ∈ Z`q, c1 = Ae1 + e2 and c2 = Pe1 + e3 + µ′, and return
ciphertext (c1, c2).

Dec((c1, c2), S): Return message decode(Sc1 + c2) ∈ Z`2.

Fig. 1. U-LP – our LWE-Based Encryption Scheme with Smallish Uniform Error and Secret

Since we want to avoid Gaussian sampling, our scheme U-LP is derived from LP by
replacing the Gaussian distribution by uniform distributions on smallish sets. In Fig. 1 we
illustrate the key generation, encryption and decryption algorithms of U-LP. It is parame-
terized by a lattice dimension n ∈ N, a prime modulus q ≥ 2, error bounds sk, se ∈ N for key
generation and encryption, respectively, and an integer message length ` ≥ 1. For decryption
to work properly, sk and se must be small with respect to q. Note that in decryption

Sc1 + c2 = S(Ae1 + e2) + Pe1 + e3 + µ′

= SAe1 + Se2 + Pe1 + e3 + µ′

= (E − P )e1 + Se2 + Pe1 + e3 + µ′

= Ee1 + Se2 + e3 + µ′

= e+ µ′,

where e = Ee1 + Se2 + e3. The sizes of E and S depend on sk, while the sizes of e1, e2 and
e3 depend on se. As long as sk and se are small enough to guarantee that ‖e‖∞ < bq/4c,
we have decode(Sc1 + c2) = µ and hence no decryption failures occur (see Theorem 5).



The security of U-LP relies on the hardness of two instances of the decision LWE problem
with uniform noise. The idea is to hide the secret key using a first LWE instance and to
hide the message using a second instance.

Lemma 1 The encryption scheme U-LP as presented in Fig. 1 is IND-CPA secure as long
as LWE(n, n, q,Usk ,Usk) and LWE(n, n+ `, q,Use ,Use) are hard.

The proof of Lemma 1 is very similar to that of Theorem 3.2 in [LP11]. Intuitively, the idea is
to show that an attacker cannot distinguish c2 = Pe1+e3+µ′ from a vector chosen uniformly
at random, by showing that he cannot distinguish Pe1 + e3 from uniformly random. This
is done in two steps. First, distinguishing P from a uniformly random matrix implies dis-
tinguishing (one of) ` independent LWE(n, n, q,Usk ,Usk) instances of P T = AT (−ST ) +ET

from uniformly random, which is hard by assumption. Second, since P appears random

from the attacker’s point of view,

(
c1
c2

)
=

(
A
P

)
e1 +

(
e2
e3

)
is an LWE(n, n + `, q,Use ,Use)

instance, which again is hard by assumption. Thus, Pe1 + e3 is indistinguishable from a
uniformly random vector, and hence also is c2.

Secret Sampled from Error Distribution It is important to notice that the security of U-LP
is based on LWE instances not only with small error, but also with small uniform secret.
However, the worst-case results for LWE require that the entries of the secret are sampled
uniformly over Zq. To close this gap, we adapt a result from Applebaum et al. [ACPS09],
who showed that LWE becomes no easier if the secret is chosen according to the error
distribution (instead of chosen uniformly from Znq ). Unfortunately, this reduction comes at
a loss of n samples. This is not an issue under the “classical” definition of LWE, where
arbitrarily many samples are available. However, it does matter if the amount of samples is
limited, as it is the case for the small uniform noise LWE instances in U-LP. The following
result states the reduction from LWE with uniform secret to LWE with small secret, taking
into account the precise loss of samples.

Lemma 2 Let X be any distribution over Zq. If there is a probabilistic polynomial time
(PPT) algorithm that solves LWE(n,m, q,X ,X ) with probability p, then there exists a PPT
algorithm for solving LWE(n,m+ n, q,Uq,X ) with probability p ·

∏n
i=1(1− q−i).

Proof. Suppose A is a PPT algorithm that solves LWE(n,m, q,X ,X ) with probability p.
We now define an algorithm B with oracle access to A for solving LWE(n,m+ n, q,Uq,X ).
Algorithm B receives as input m+n samples (ai, bi) ∈ Znq ×Zq, where ai ← Znq , and the bi’s
are either bi := 〈ai, s〉 + ei with ei ← X (in case of LWE) or bi ← Zq (in case of uniform).
Then B performs the following steps.

1.) Use the first n samples to define

b :=

b1...
bn

 , A :=
(
a1, a2, . . . , an

)
.

If A is not invertible over Zq, return ⊥.



2.) Transform the remaining m samples to (a′i, b
′
i) by

a′i := −A−1an+i and b′i := bn+i + 〈b, a′i〉

for i ∈ {1, . . . ,m}.
3.) Query A with the samples {(a′i, b′i) | i ∈ {1, . . . ,m}} and forward the output (either

uniform or LWE) to the challenger.

It is easy to see that if the samples bn+i are uniform, so are the transformed samples b′i and
thus A in step 3 is queried with uniform input. Now, we look at the case bi = 〈ai, s〉 + ei.

Denoting e := (e1, . . . , en)T we have that b = A
T
s+ e and then

b′i = bn+i + 〈b, a′i〉

= 〈an+i, s〉+ en+i + 〈AT s+ e, a′i〉

= 〈an+i, s〉+ 〈AT s, a′i〉+ 〈e, a′i〉+ en+i

= 〈an+i, s〉+ 〈AT s,−A−1an+i〉+ 〈a′i, e〉+ en+i

= 〈a′i, e〉+ en+i,

thus A is queried with LWE samples where the secret is sampled according to X . Thus B
succeeds whenever A is invertible and A succeeds. So the success probability of B is p · c
with

c = Pr[A is invertible | A← Un×nq ]

=

(
1− 1

qn

)(
1− q

qn

)
· · ·
(

1− qn−1

qn

)
=

n−1∏
i=0

(
1− qi−n

)
. ut

2.2 LWE with Small Uniform Error

By combining Lemmata 1 and 2 we establish a link between the security of U-LP and
the hardness of the two LWE instances LWE(n, 2n, q,Uq,Usk) and LWE(n, 2n+`, q,Uq,Usk)
with uniform error. In contrast, the original reductions by Regev [Reg09] and Peikert [Pei09]
show the hardness of LWE instances with Gaussian error and cannot be applied. In order
to prove the worst-case hardness of our LWE instances, we use a recent observation by
Micciancio and Peikert. This result holds only under certain conditions, in particular, if the
number of LWE samples is limited. In this section we propose a family of LWE instances
that satisfies the preconditions of Micciancio and Peikert’s result and at the same time is
suitable for U-LP. We first give an adapted version of their statement.

Theorem 3 (Theorem 4.6 in [MP13]) Let

0 < k ≤ n ≤ m− ω(log(k)) ≤ kO(1),

s ≥ (Cm)(m−(n−k))/(n−k) (1)



for a large enough universal constant C, and q be a prime such that

max{3
√
k, (4s)m/(m−n)} ≤ q ≤ kO(1).

The LWE(n,m, q,Uq,X ) problem is hard with respect to the uniform input distribution X =

Us, under the assumption that SIVP(k, Õ(
√
k · q)) is (quantum) hard to approximate in the

worst case.

In order to construct the LWE instance that hides the secret key, we choose the number
of samples m = c(n− k) for some constant c so that m−(n−k)

n−k in (1) is constant and hence
s is polynomial in n. In order to use the reduction to small secrets from Section 2.1, we
need at least n additional samples. This means m − n ≥ n and leads to c(n − k) ≥ 2n or,
equivalently,

k ≤ c− 2

c
n.

To obtain the biggest possible worst-case dimension k, we choose k = c−2
c n. The number of

samples is thus given by

m = c

(
n− c− 2

c
n

)
= c

(
n− n+

2

c
n

)
= 2n.

Since k must be an integer, we choose n to be a multiple of c
c−2 . Obviously, c must be greater

than 2 to get a positive worst-case dimension k. Since we want to allow powers of two for
the security parameter n, we choose c such that c

c−2 = 2i for some positive integer i, which

is equivalent to c = 2i+1

2i−1 . Since bigger values of c lead to bigger parameters (s and q) and
bigger keys, consequently, i should not be chosen too small. For concreteness, we choose
i = 3, i.e., n has to be a multiple of 8, which leads to c = 16/7 and

k =
c− 2

c
n =

2/7

16/7
n =

1

8
n.

The range of the secret can hence be calculated by

s =
⌈
(Cm)(m−(n−k))/(n−k)

⌉
=
⌈
(2Cn)9/7

⌉
.

The LWE instance used to hide the message has to be chosen slightly different. Since we
want to have the same worst-case dimension for both LWE instances and since the average-
case dimension n stays the same, one would have to choose ` linear in n − k in order to
choose the amount of samples 2n+ ` linear in n− k. Instead, we adjust both se and q such
that Theorem 3 can be applied. We now state the reduction from SIVP to LWE for these
particular families of LWE instances. The result accounts for both cases, with a = 0 for the
LWE instance used to hide the secret key and with a = ` for the LWE instance used to hide
the message.

Lemma 4 Let n = 8k for some k ∈ N, 0 ≤ a ≤ nO(1), m = 2n+a, s =
⌈
(Cm)9/7+(8a)/(7n)

⌉
and 16s2 ≤ q ≤ nO(1). Then average case LWE(n,m, q,Uq,Us) is at least as hard as worst

case SIVP(k, Õ(
√
k · q)).



Proof. The result follows from Theorem 3. We show that its preconditions are fulfilled:

1.) s ≥ (Cm)
m−(n−k)
n−k : This is clear since

m− (n− k)

n− k
=

2n+ a− n+ n/8

n− n/8
=

9/8 · n+ a

7/8 · n

=
9n+ 8a

7n
=

9

7
+

8

7
· a
n
.

2.) k > 0: trivial
3.) k ≤ n: trivial
4.) m− n ≥ ω(log(k)) :

m− n = n+ a ≥ n = 8k > ω(log(k))

5.) m− ω(log(k)) ≤ kO(1):

m− ω(log(k)) ≤ m = 2n+ a = 16k + a ≤ kO(1)

6.) q ≥ 3
√
k:

q ≥ 16s2 ≥ 3n2 ≥ 3
√
k

7.) q ≥ (4s)m/(m−n):

(4s)
m

m−n = (4s)
2n+a

2n+a−n ≤ (4s)
2(n+a)
n+a = (4s)2 ≤ q

8.) q ≤ kO(1): by hypothesis ut

Parameters for U-LP With the worst-to-average-case reduction established, we propose to
select the parameters for U-LP as follows. For a given message length `, choose the security
parameter n as a multiple of 8, and choose the maximal error sizes and the modulus as

sk =
⌈
(2Cn)

9
7

⌉
,

se =
⌈
(C(2n+ `))

9
7
+ 8

7
· `
n

⌉
,

q ≥ max
{

(4se)
2, 8nsesk + 4se + 4

}
,

(2)

where q is prime and C ≈ 2
√

2πe · (1 +
√

8 ·C∗) with C∗ ≈ 1/
√

2π. See Appendix A for how
to compute the constant.

2.3 Correctness and Security

We now use the collected results to prove the main theorem of this paper which relates the
security of U-LP with the worst-case hardness of SIVP.

Theorem 5 The encryption scheme U-LP as presented in Fig. 1 with parameters as in
Equation (2) is correct, i.e., no decryption failures occur. Moreover, with k ∈ N big enough
and n = 8k, U-LP is IND-CPA secure as long as SIVP(k, Õ(

√
k · q)) is (quantum) hard in

the worst case.



Proof. We first prove the correctness of the scheme. As explained in Section 2.1, the
cryptosystem correctly decrypts the ciphertext and returns the corresponding message if
‖Ee1 + Se2 + e3‖∞ < bq/4c. Since every entry of the error vector is at most 2nskse + se
and since q was chosen so that 2nskse + se < bq/4c, no decryption failures occur.

The next step is the proof of security. Lemmata 1 and 2 show that U-LP is secure as long
as both LWE(n, 2n, q,Uq,Usk) and LWE(n, 2n+`, q,Uq,Use) are hard. To show the hardness
of the two LWE instances, we use Lemma 4 twice. Recall that it holds for every polynomially
bounded a. Applying Lemma 4 with a = 0 and s = sk shows that LWE(n, 2n, q,Uq,Usk)

is hard as long as SIVP(k, Õ(
√
k · q)) is hard. Likewise, applying it with a = ` and s = se

shows that LWE(n, 2n + `, q,Uq,Use) is hard as long as worst-case SIVP(k, Õ(
√
k · q)) is

hard. Note that a is not a parameter of the scheme, and therefore both LWE instances are
hard as long as worst-case SIVP(k, Õ(

√
k · q)) is. ut

3 Comparison

In this section we compare the LWE-based scheme with uniform noise U-LP to the Gaussian
noise scheme LP by Lindner and Peikert [LP11]. In order to have a fair comparison, we
propose parameters for the latter that assure a negligible error rate and a worst-to-average-
case reduction. This, as well as proofs of correctness and security is given in Section 3.1.
We present the security proof in great detail, not only for completeness, but also because
through the proof we uncover two quantities that are important for the comparison, namely
the worst-case problem’s dimension and approximation factor. Then, in Section 3.2 we
compare the two schemes on several measures including worst-case problem’s dimension
and approximation factor, basic parameters such as modulus q and error distribution, size
of secret key, public key and cipher text, and encryption speed.

3.1 Parameter Selection for LP

We propose parameters for Lindner and Peikert’s scheme LP with Gaussian noise [LP11]
that assure a negligible error rate and a worst- to average-case reduction. Recall that the
LP scheme differs from U-LP only in the noise and secret distribution. It uses a discrete
Gaussian distribution with parameter σ for key generation and encryption. Remember that
the discrete Gaussian distribution Dσ over Z assigns x ∈ Z a probability proportional to
exp(−πx2/σ2).

In order to obtain a negligible error rate, we modify the correctness-result of Lemma 3.1
in [LP11] as follows.

Lemma 6 Let n ∈ N, and real c > 1 be such that c · exp(1−c
2

2 ) =
√

1/2. Then, in LP

with parameters n, σ and prime q >
4cσ2
√
n ln(2n+1)

π + 3, the failure probability per symbol is
smaller than 2−n.

The proof of the above lemma closely resembles that of Lemma 3.1 in [LP11]. Note that for

f(c) := c · exp(1−c
2

2 ), since f is continuous as well as f(1) = 1 and limc→∞ f(c) = 0, there

exists c > 1 such that f(c) =
√

1/2.
Unfortunately, the parameters proposed by Lindner and Peikert do not allow a worst-to-

average-case reduction. In order to have a fairer comparison to U-LP, we propose parameters



so that the underlying LWE instances are worst-case hard as in [Reg09]. By Theorem 3.2
in [LP11], LP with parameters n, σ and prime q is IND-CPA secure, assuming the hardness
of LWE(n,poly(n), q,Dσ, Dσ). Since Regev’s worst-to-average-case reduction requires σ >
2
√
n, we choose σ = O(

√
n). Following Lemma 6, we demand

q = O(n
√
n(n+ 1) ln(2)) = O(n2).

Regev’s reduction is not for LWE with a discrete Gaussian distribution Dσ, but for a
“discretized” Gaussian distribution Ψ̄α over Zq. It was noted by Peikert [Pei10] that Regev’s
reduction is valid for both distributions, thus we use Dσ.

Regev’s worst-to-average-case reduction comprises several steps. The first step is a re-
duction from a problem called Discrete Gaussian Sampling (DGS) to LWE. In order to
solve DGSϕ(L), one has to sample from a discrete Gaussian distribution over the lattice
L with parameter ϕ(L). The next step is a reduction from the Generalized Independent
Vector Problem (GIVP) to DGS. For an n-dimensional lattice L, GIVPϕ(L) is the prob-
lem of finding n linearly independent vectors with length at most ϕ(L). The connection to
the more standard SIVP is GIVPγλn(L) = SIVP(n, γ). Unfortunately, the result is not for
GIVPϕ(L) with a function ϕ(L) = γλn(L), but with ϕ(L) = γηε(L), where ηε(L) denotes
the smoothing parameter of L (see [Reg09] for a definition). In order to get a connection
to SIVP, we use a result from [MR07] that connects the smoothing parameter ηε with the
n-th successive minimum λn.

Theorem 7 LP with σ > 2
√
n = O(

√
n) and prime q >

4cσ2
√
n ln(2n+1)

π + 3 = O(n2) is

secure as long as SIVP(n, γ) with γ =
√
8·n1+βq√
π·σ = O(n2.5+β) for any β > 0 is hard.

Proof. With α := σ/q, we show that the results can be combined as follows:

LP with parameters n, q, σ is insecure
Theorem 3.2 in [LP11]

==============⇒ LWE(n,poly(n), q,Dσ, Dσ) is easy
Theorem 3.1 in [Reg09]
==============⇒ DGS√2n·ηε(L)/α is easy
Lemma 3.17 in [Reg09]
==============⇒ GIVP√8·nηε(L)/α is easy
Lemma 3.3 in [MR07]

==============⇒ SIVP(n,
√
8·n1+βq√
π·σ ) is easy

Since σ > 2
√
n, we can apply Theorem 3.1 of [Reg09] for ε(n) := 2n

exp(n2β)−2n to show that

breaking LP is at least as hard as solving DGSϕ(L) with ϕ(L) :=
√

2n · ηε(L)/α. Since

ϕ(L) ≥
√

2 ·ηε(L), we can apply Lemma 3.17 in [Reg09] to show moreover that breaking LP
is at least as hard as solving GIVP2

√
n·ϕ(L) = GIVP√8·nηε(L)/α. Note that ε(n) was chosen

such that

ln(2n(1 + 1/ε(n))) = ln(2n(1 +
exp(n2β)− 2n

2n
)) = n2β.

Consequently, Lemma 3.3 of [MR07] reveals

ηε(L) ≤
√

ln(2n(1 + 1/ε(n)))

π
· λn(L)

=

√
n2β

π
· λn(L) =

nβ√
π
· λn(L)



Parameters Security

` q
Noise

k γ
Key Enc

U-LP 1 n3.7 n1.3 n1.4 n
8
Õ(n4.7)

LP 1 n2 n0.5 n0.5 n O(n2.5)

U-LP n
2
n4.2 n1.3 n1.9 n

8
Õ(n4.7)

LP n
2

n2 n0.5 n0.5 n O(n2.5)

Table 1. Parameter and security comparison of our scheme U-LP with the Gaussian scheme LP for same
average-case dimension n and message lengths 1, n

2
. Columns 2–5 show message length `, modulus q, and

noise bounds for key generation and encryption, column 6 shows the worst-case dimension k and column
7 the approximation factor γ of SIVP, respectively. Note that q and noises are given as O(·), and that the
key—enc-noise of U-LP is sk, se, respectively, whereas in LP the noises are σ.

and therefore breaking LP is not easier than solving

GIVP√8·n1+β√
π·α λn(L)

= SIVP(n, γ)

with γ =
√
8·n1+β
√
π·α =

√
8·n1+βq√
π·σ = O(n2.5+β). ut

3.2 U-LP vs. LP

We now compare the uniform noise scheme U-LP to the Gaussian noise scheme LP. We
compare the schemes in terms of their parameters, security and efficiency.

We want to note that this is a fair comparison. On one side, we crafted LP by choosing
its parameters in a way to be able to apply Regev’s worst- to average-case reduction (The-
orem 7). Furthermore, the provided parameters entail a negligible error rate for decryption
(Lemma 6). On the other side, U-LP is also worst-case secure and has no decryption failures
at all (Theorem 5).

Also, note that the message length ` affects U-LP more than LP. This is due to the
fact that ` influences the number of samples of the LWE instance hiding the message. The
security reduction of LP does not limit the number of samples, thus q and σ are in this
case independent of the number of samples. In the security reduction of U-LP, however, the
number of samples is restricted. Consequently, se has to increase if longer messages should
be encrypted, and with se increases q. In order to compare both schemes, we consider ` = 1
and ` = n/2. The second bound is reasonable for applications in hybrid encryption, where
the asymmetric scheme is only used to encrypt the key of a symmetric scheme.

The main U-LP parameters are the modulus q and the noise bounds sk and se. For LP
the parameters are the modulus q and the Gaussian parameter σ (for the noise distribution).
Sizes for the main parameters of the two schemes are given in Table 1. The modulus in U-
LP is larger than in LP, even for the encryption of a single bit. In particular q has about
twice as many bits in U-LP as in LP. This coincides with the observation above about the
influence of ` on q. Comparing the parameters for the noise distribution is nontrivial and
a direct comparison is misleading. This is because the distributions as well as the meaning



Scheme `
Sizes [bits]

Secret Key Public Key Ciphertext

U-LP 1 1.3 ·N 3.71 ·Nn 3.71 ·N
LP 1 0.5 ·N 2 ·Nn 2 ·N

U-LP n
2

0.64 ·Nn 6.21 ·Nn 6.21 ·N
LP n

2
0.25 ·Nn 3 ·Nn 1.5 ·N

Table 2. Efficiency comparison of U-LP and LP for same average-case dimension n and parameters as in
Table 1, with N = n log(n). Columns three to five show the secret key, public key, and ciphertext sizes
in bits, respectively. Note that we solely listed the leading term here and left out minor terms that are
comparatively small.

of their noise parameters sk, se and σ differ in the two schemes. Thus, a small σ in LP of
order O(

√
n) compared to larger sk, se of order O((

√
n)3) in U-LP does not necessarily lead

to smaller keys.

Perhaps more meaningful is to compare key and ciphertext sizes. The public key in both
U-LP and LP consists of the matrices A,P over Zq. This means that the public key has
overall n2 + n` entries, each of size log(q) bits. Similarly, the ciphertext has n` entries of
size log(q) bits for both schemes. For the secret key the situation is different. The secret
key in U-LP consists of n` entries with log(sk) bits, while in LP it consists of n` entries of
log(k · σ) bits, where k is a small constant. Table 2 shows sizes for the secret and public
keys as well as for the ciphertexts for both schemes. Note that for the sizes of the keys and
ciphertexts we solely write the leading term in order to provide a relatively easy, yet very
precise measure which only depends on the security parameter n. Because σ is considerably
smaller than sk, the secret key in LP is smaller than in U-LP. We note that we estimate
that the secret key is of maximum size kσ for a small constant k. Nonetheless, the entries
of the secret key in LP can become as large as q, though the corresponding probability is
negligibly small. Thus, a strict upper bound for the secret key in LP is given by 2n log(n)
bits for ` = 1 and n2 log(n) bits for ` = n/2, respectively. Regarding the sizes of public keys
and ciphertexts, the situation is quite similar. The public key in U-LP is a factor of 2 larger
than in LP, and ciphertexts are even a factor of 4 larger. This increase for all sizes in U-LP
is entailed by a larger modulus q and larger bounds sk and se, as mentioned above.

As a measure of security we look at the underlying worst-case problem instances which
are determined by the dimension k and the approximation factor γ (see Table 1). Note
that the worst-case dimension k for LP is identical to the average-case dimension n. For
U-LP the worst-case dimension is smaller by a factor 8 compared to LP. Furthermore,
the approximation factor γ of the underlying SIVP in U-LP is roughly the square of the
approximation factor in LP. Since the reduction from worst-case SIVP to the security of
the two schemes is not tight, we are not confident about the overall impact of a smaller
worst-case dimension and a larger approximation factor on the security.

Comparing speed is more involved as it depends on algorithms, hardware and imple-
mentations, thus this analysis should be taken with a grain of salt. We look at encryption
speed. In both U-LP and LP encryption requires to multiply an (n + `) × n-matrix by an
n-vector over Zq and to sample 2n + ` elements from the corresponding distribution. A



single multiplication in Zq takes time proportional to log(q). Thus, matrix multiplication
takes time proportional to 3.7n2(n+ `) for U-LP, and 2n2(n+ `) for LP. Sampling from Use
in U-LP requires log(se) uniformly random bits, while sampling from Dσ depends on the
quality of the distribution. The statistical distance between Dσ and the output of a Gaus-
sian sampler is typically of the order of ε · σ log(n), where ε is the fixed point precision of
the computation [GD12,BCG+13]. In order to make the statistical distance negligible on n,
one must choose ε to be of the order of 2−n. The number of uniformly random bits of a
typical discrete Gaussian sampler is roughly the number of bits in the fixed point represen-
tation, thus O(n).1 Therefore, U-LP requires O(log(n)) times 2n+` uniformly random bits,
while LP requires O(n) times 2n+ ` uniformly random bits in the worst case. In summary,
U-LP encryption can be asymptotically faster in sampling, but linearly slower in multipli-
cation. This theoretical analysis is thus not conclusive and the precise speed depends on
the constants determined by algorithms, hardware, and implementation.

n q σ Bit Security

256 378353 32 85
320 590921 35.77 116
512 1511821 45.25 228

Table 3. Hardness of LWE with Gaussian Error

n q s Bit Security

488 310027967972291 278420 87
592 615698195236667 356922 118
888 2603483886956573 601141 229

Table 4. Hardness of LWE with Uniform Error

Experiments and Results To assess the practicality of our construction, we implemented
both U-LP and LP in C++ using the Number Theory Library (NTL [Sho]). For a fair
comparison, we instantiated both schemes with comparable average-case hardness. In order
to do this, we estimated the security of the underlying LWE problems. Recall that the
security of U-LP reduces to two different LWE instances, and therefore an attacker can
choose which instance to attack. Since the number of samples plays only a minor role in
the hardness of an LWE instance, the LWE instance with smaller noise (i.e., the instance
for the key, or LWE(n, n, q,Usk ,Usk)) is the easier one.

The most promising attack on LWE is the decoding approach proposed by Lindner
and Peikert [LP11]. The idea is to use a basis reduction (typically BKZ) followed by a
search algorithm. The decoding approach is quite flexible. It allows the attacker to choose

1 According to Galbraith and Dwarakanath [GD12] the expected number of uniformly random bits of the
Knuth-Yao algorithm is close to the entropy of the distribution, thus proportional to σ and independent
of ε.



two attack parameters that regulate the trade-off between the running time of the basis
reduction, the running time of the search step and the overall success probability of the
attack. Lindner and Peikert [LP11] showed how the running time of the attack for given
attack parameters can be predicted. We adapted their approach and combined it with a
numerical method to optimize the attack parameters (and thereby minimize the running
time of the attack). Applying this approach for both schemes leads to the bit security
estimates given in Tables 3 and 4 and corresponding parameter sets. One can see that for
the same bit security level, the hardness of LWE with uniform error requires much larger
values for the dimension n and the modulus q than in the case of LWE with error sampled
from a Gaussian distribution. For example, to obtain a bit security level of about 86, one
requires a nearly doubled n and a factor 8.2 ·108 larger modulus q. The factors for q increase
for larger n, while the factors for n decrease.

Bit Times U-LP [ms] Times LP [ms]
Security KeyGen Enc Dec KeyGen Enc Dec

87 152.3 11.8 0.026 31.1 3.1 0.014
118 209.1 16.8 0.030 49.2 4.9 0.017
229 531.2 4.3 0.052 133.1 12.4 0.026

Table 5. Performance of U-LP and LP for ` = 1

Bit Secret Key [Bytes] Public Key [KBytes]
Security LP U-LP LP U-LP

87 256 1159 156.26 1461.62
118 360 1406 256.80 2194.10
229 640 2220 689.47 5131.31
Table 6. Key Sizes of U-LP and LP for ` = 1

In order to measure the efficiency of both schemes, i.e., the running times of each al-
gorithm as well as the involved sizes, we conducted the following experiments using the
parameters given in Tables 3 and 4.

We let each scheme iteratively and independently generate a key pair, encrypt a ran-
domly chosen message of length `, and decrypt the ciphertext about 106 times. For each
operation we measured the corresponding time and averaged the results. Table 5 shows the
running times for the key generation, encryption, and decryption algorithms of U-LP and
LP in milliseconds, for the same bit security level and ` = 1. As we can see, key generation
in U-LP is about a factor 4–5 slower than in LP, encryption about a factor of 3.5–3.7, and
decryption about a factor 1.7–2 (depending on the bit security level). We note that the
factors for key generation and encryption decrease for increasing bit security, whereas the
factors for decryption scatter around 1.8.

As for keys, we derived the secret and public key sizes as follows. The public key in both

schemes consists of (A,P ) ∈ Zn×(n+`)q . Therefore, one has to store n(n+ `) dlog(q)e bits for
it. For the secret key, the method is similar for both schemes, but the results are different,



in conformance to the distribution the secret key is sampled from. This means, we obtain
a secret key size of n` dlog(sk)e bits in U-LP because the secret key S is chosen from U `×nsk

.
In LP, as the secret key is chosen according to a Gaussian distribution with parameter σ,
the number of bits to store is n` dlog(13σ)e. Here we choose a maximum threshold of 13σ
for the Gaussian sampling such that larger entries of the secret key have a negligibly small
probability (less than 2−100 according to Lyubashevsky [Lyu12]). Thus, we compute the
key sizes as shown in Table 6. One can see that the public key of U-LP is quite large, i.e.,
megabytes, even for small bit security level. Compared to LP, this is about a factor 7.4–9.4
larger, again with a decrease for increasing bit security level. The factors for the secret key,
which itself is much smaller, i.e., only order of kilobytes, are in the range of 3.5–4.5.

The efficiency results are not surprising, since the dimension n and the modulus q are
much larger in U-LP than in LP. Thus, the large value of q negatively influences both the
key sizes and running times in a direct way. As log(q) in U-LP is at least a factor of 2.5
larger than in LP, operations get slower due to the roughly doubled bit size of involved
operands. The direct influence of n and q to the key sizes is obvious. We want to note that
in contrast to the large values of n and q, the noise sizes sk and se are relatively small
compared to q (see e.g. Table 4).

4 Conclusion

We introduced a public key encryption scheme based on the LWE problem. As a novelty,
secrets and errors are sampled uniformly at random from a relatively small set rather
than from the commonly used discrete Gaussian distribution. We proved the scheme secure
assuming the worst-case hardness of SIVP. This was made possible by a recent result by
Micciancio and Peikert who proved the worst-case hardness of LWE for small non-Gaussian
noise [MP13]. We proposed asymptotic parameters for the scheme that offer a compromise
between efficiency and security. And we compared the efficiency and security of the scheme
with those of one of the most efficient Gaussian noise LWE-based encryption schemes [LP11].

Comparing the uniform noise scheme U-LP to the Gaussian noise scheme LP we obtained
negative results. The secret and the public key in U-LP are more than four times larger
than in LP, and ciphertexts are a factor of four larger. The security level of U-LP is lower
than that of LP. The worst-case dimension of U-LP is smaller by a factor of eight compared
to LP, and the approximation factor γ of the underlying SIVP problem in U-LP is roughly
the square of the approximation factor in LP. In terms of speed the comparison is leading
to similar results. Although in theory U-LP could be faster due to the easy operations
involved, the choice of parameters in practice smashes the hope of being comparative. The
sampling share of encryption is asymptotically faster for U-LP, but the multiplication share
is linearly slower.

Summarizing, we showed that a worst-case secure LWE-based public key encryption
scheme with noise and secret sampled uniformly at random from a relatively small set
can be constructed. However, the resulting scheme has larger modulus, key and ciphertext
sizes than a similar scheme with Gaussian noise. Moreover, key generation, encryption, and
decryption are not faster in the case of uniform errors. New hardness results are required
to develop efficient worst-case secure LWE-based encryption schemes with uniform noise.
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A Computation of Constant C

We show here how to compute the value given for the constant C in the parameter selection
in Equation (2). Since the constant C in (2) is the same as in Theorem 4.6 of [MP13], a
look at its proof reveals C = 4C ′, furthermore relying on Theorem 4.5 in [MP13]. In the
latter, C ′ is given as “the universal constant hidden by the O(·) notation from Lemma 4.4”.
So, we have to determine C ′ as the constant hidden by O(σms/

√
`) by a closer look to the

proof of Lemma 4.4 in [MP13] and unveil several estimations covered by O(·) notations.
Throughout the analysis we make use of (tuples of) the set X ⊆ {−s, . . . , s} and the

function f : Zm → Z`, x 7→ (I`, Y )·x, where I` is the `×` identity matrix and Y is a `×m−`
discrete Gaussian matrix with parameter σ, i.e., the entries of Y are chosen according to
DZ,σ.

By Lemma 2.9 of [MP12] we obtain that for any t ≥ 0 the largest singular value s1(Y )
of Y is at most

s1(Y ) ≤ c∗σ(
√
`+
√
m− `+ t)

except with probability at most 2 exp(δ) exp(−πt2), and c∗ is very close to 1/
√

2π for discrete
Gaussians. We set t :=

√
`+
√
m− `, and obtain

s1(Y ) ≤ 2c∗σ(
√
`+
√
m− `) ≤ 2

√
2 · c∗σ

√
m

except with probability at most

2 exp(δ) exp(−π(
√
`+
√
m− `)2) ≤

≤ 2 exp(δ) exp(−π(m+
√
`(m− `)) = 2−Ω(m).

This is correct since t =
√
`+
√
m− ` is indeed ≥ 0, as the function g(`) :=

√
`+
√
m− `

satisfies g(`) ∈ [
√
m,
√

2m] for ` ∈ [0,m]: Using its derivative one can show that g(`) has its
maximum value

√
2m for ` = m/2, has a gradient greater or equal zero for ` ∈ [0,m/2] and

a gradient smaller or equal zero for ` ∈ [m/2,m]. This means that g(`) is monotonically
increasing in [0,m/2] and monotonically decreasing in [m/2,m].



To proceed with the analysis, for u1 ∈ X` we have ‖u1‖ ≤ s
√
` and for u2, x ∈ Xm−`

‖Y u2‖ ≤ max
06=x∈Xm−`

‖Y x‖ = s1(Y ) · ‖x‖ ≤ s1(Y ) · s
√
m− `.

With this we can bound the size of the images of f with preimages from Xm as follows:

‖f(u)‖ = (I`, Y )(u1, u2)
T

≤ (
√
`+ s1(Y ) ·

√
m− `)s

≤ (
√
`+ 2

√
2 · c∗σ

√
m ·
√
m− `)s

(∗)
≤ (σm+ 2

√
2 · c∗σ

√
m
√
m)s

= (1 + 2
√

2 · c∗)σms,

where in (∗) we have
√
` ≤

√
m ≤ m ≤ σm for σ > 1 and

√
m− ` ≤

√
m. Using R :=

(1+2
√

2 · c∗)σms and the fact
√
`/2 ≤ R, we can bound the number of integer points in the

`-dimensional zero-centered ball with radius R, and thus the maximal number of images of
Xm under f , as

|f(Xm)| ≤ (R+
√
`/2)`V` ≤ (2R)`V`.

Here V` = π`/2/(`/2)! is the volume of the `-dimensional unit ball. “Tweaking” Stirling’s
formula

(`/2)! ≥ (`/(2e))`/2
√

2π`/2
`≥1,
√
π≥1
≥ (

√
`/
√

2e)`

we can thus upper bound

|f(Xm)| ≤ (2R
√

2πe/
√
`)` = (2

√
2πe · (1 + 2

√
2 · c∗)σms/

√
`)`.

Finally, the constant C is at most 2
√

2πe · (1 + 2
√

2 · c∗) with c∗ ≈ 1/
√

2π. So, we have

C = 2
√
e · (
√

2π + 2
√

2) ≈ 17.59.



B Ring Variant of U-LP

In this section we present the ring variant of our scheme U-LP. We note that the security
proof and the parameters chosen for U-LP do not necessarily hold for the ring variant. This
means more investigation about the ring variant has to be rolled out in order to estimate
its security. Nonetheless, we present the scheme here for completeness.

All operations are performed in the ring Rq = Zq[x]/〈xn + 1〉. Norms of polynomials
correspond to norms of vectors that can be obtained using the coefficient embedding, i.e.,
for a polynomial a =

∑n
i=0 aix

i we write its coefficient vector as (a0, . . . , an−1)
T .

Note that the encode and decode functions also have to be changed. In particular,
encode : Z`2 → Rq and decode : Rq → Z`2 such that decode(encode(µ) + e) = µ for any
message µ ∈ Z`2 of length ` and error polynomial e with ‖e‖∞ < bq/4c.

With everything replaced by the corresponding polynomial version, we obtain the ring
variant of our U-LP scheme as shown in Fig. 2.

KeyGen(n, q, sk): Sample a← Unq , e← Unsk and s← Unsk , and let p = e− sa ∈ Rq.
Return public key (a,p) and secret key s.

Enc(µ, (a,p), se): Sample e1 ← Unse , e2 ← Unse , e3 ← Unse , compute
µ′ = encode(µ) ∈ Rq, c1 = ae1 + e2 and c2 = pe1 + e3 + µ′, and return
ciphertext (c1, c2).

Dec((c1, c2), s): Return message decode(sc1 + c2) ∈ Z`2.

Fig. 2. Ring Variant of U-LP


