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Abstract

In this paper, we obtain a characterization of generalized Boolean functions based on spectral analysis. We investigate
a relationship between the Walsh-Hadamard spectrum and σ f , the sum-of-squares-modulus indicator (SSMI) of the
generalized Boolean function. It is demonstrated that σ f = 22n+s for every s-plateaued generalized Boolean function
in n variables. Two classes of generalized semi-bent Boolean functions are constructed.We have constructed a class of
generalized semi-bent functions in (n + 1) variables from generalized semi-bent functions in n variables and identify
a subclass of it for which σ f and 4 f both have optimal value. Finally, some construction on generalized partially bent
Boolean functions are given.

Keywords: Boolean functions, generalized functions; Walsh-Hadamard spectrum; generalized bent Boolean
functions; generalized semi-bent functions; sum-of-squares-modulus indicator (SSMI); modulus indicator (MI)

1. Introduction

Let Z, R, C and Zq respectively denotes the set of integers, real numbers, complex numbers, and the ring of
integers modulo q. By ‘+’ we denote the addition over Z, R and C, whereas ‘⊕’ denotes the addition over an n-
dimensional vector space Zn

2 over binary field Z2 with the standard operations. Addition modulo q is denoted by ‘+’
and it is understood from the context. The scalar product of two vectors x = (xn, . . . , x1) and y = (yn, . . . , y1) of Zn

2 is
defined by x · y := xnyn ⊕ · · · ⊕ x2y2 ⊕ x1y1. If z = a + b ı ∈ C, then |z| =

√
a2 + b2 denotes the absolute value of z, and

z = a − b ı denotes the complex conjugate of z, where ı2 = −1, and a, b ∈ R. Re[z] denotes the real part of z.
In the recent years several authors have proposed generalizations of Boolean functions [6, 11, 14, 15] and studied

the effect of Walsh–Hadamard transform on these classes. As in the Boolean case, in the generalized setup the
functions which have flat spectra with respect to the Walsh–Hadamard transform are said to be generalized bent and
are of special interest (the classical notion of bent was invented by Rothaus [8]) in cryptography and coding theory
and have wide application in different type of cryptosystems [6, 11]. For example: the generalized bent Boolean
functions are used for constructing the constant amplitude codes for the q valued version of multicode Code Division
Multiple Access (MC-CDMA). The generalization of Boolean function due to Schmidt is a function from Zn

2 to Zq,
(q ≥ 2), and he referred such function as generalized Boolean function on n variables [11], GBq

n denotes the set of
such functions. In particular, the set of classical Boolean functions on n variables is Bn := GB2

n. For some problems
concerning cyclic codes, Kerdock codes, and Delsarte-Goethals codes, the generalization of Boolean function [11]
seems more natural than the generalization due to Kumar, Scholtz and Welch [6].

The (generalized) Walsh–Hadamard transform of f ∈ GBq
n at u ∈ Zn

2 is given by H f (u) = 2−
n
2
∑

x∈Zn
2
ζ f (x)(−1)u·x,

is complex valued function, where ζ = e2πı/q is the complex q-primitive root of unity. The inverse of the Walsh-
Hadamard transform [15, Thm.1] of f ∈ GBq

n is given by ζ f (y) = 2−
n
2
∑

u∈Zn
2
H f (u)(−1)u·y. Moreover, the (generalized)

Parseval’s identity holds, that is, ∑
x∈Zn

2

|H f (x)|2 = 2n. (1.1)
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A function f ∈ GBq
n is a generalized bent function if |H f (u)| = 1, for all u ∈ Zn

2. A function f ∈ Bn is bent
if and only if H f (u) = 2−

n
2
∑

x∈Zn
2
(−1) f (x)+u·x ∈ {−1, 1} for all u ∈ Zn

2. The classical bent Boolean functions exists
only for even n [8] whereas the generalized bent functions exists for every positive integer. For q = 4, Schmidt
[11] studied the relations between generalized bent functions, constant amplitude codes, and Z4-linear codes. The
links between Boolean bent functions [8], generalized bent Boolean functions [11], and quaternary bent functions
[6] is investigated systematically by Solé-Tokareva [14]. Recently, several properties as well as constructions of
generalized bent Boolean functions is presented by Stănică et al. [15].

A function f ∈ Bq
n is called generalized semi-bent if for any u ∈ Zn

q (i) |H f (u)| ∈ {0,
√

2} for odd n, and (ii)
|H f (u)| ∈ {0, 2} for even n. In particular, for q = 2 the semi-bent functions are also known as 3-valued almost optimal
functions, plateaued functions and preferred functions [7, 16]. These functions have lowest Walsh-Hadamard spectrum
values among the functions having 3-valued spectrum. It is not hard to show that the generalized bent Boolean
functions can also be constructed from generalized semi-bent Boolean functions which is desirable in cryptosystem.

The cross-correlation between f , g ∈ GBq
n at u ∈ Zn

2 is defined as C f ,g(u) =
∑

x∈Zn
2
ζ f (x)−g(x⊕u). The autocorrelation

of f ∈ GBq
n at u ∈ Zn

2 is C f , f (u) above, which we denote by C f (u). The sum-of-squares-of-modulus indicator
(SSMI) [12] of f and g is defined as σ f ,g =

∑
x∈Zn

2
|C f ,g(x)|2. In particular, the SSMI of f ∈ GBq

n is defined by
σ f =

∑
x∈Zn

2
|C f (x)|2.

The modulus indicator (MI) [12] of f , g ∈ GBq
n is defined as 4 f ,g = maxu∈Zn

2
|C f ,g(u)|. The MI of f ∈ GBn,q is

4 f = maxu∈Zn
2,u,0 |C f (u)|.

In Boolean case, Gong and Khoo [19] have introduced the concept of dual of a Boolean function and provided a
relationship between the autocorrelation of the s-plateaued functions and the Walsh-Hadamard Spectrum of the dual
of the s-plateaued functions. Also, if the function f ∈ Bn, for n odd, is a balanced semi-bent function such that f̃ ∈ Bn

also semi-bent, then 4 f = 2
n+1

2 and C f (a) = 0 for 2n−1 − 1 a′s, that is, f has optimal additive autocorrelation [19,
Thm. 2]. Several classes Boolean functions such as Dillon-Dobbertin, Kasami, Segre hyperoval and Welch-Gong
Transformation functions for which the bounds are optimal is discussed in [19]. Several research papers are available
in literature on these indicators, for details we refer [17, 19, 22, 23] and the references of these papers. Singh et al.
[12, Thm. 4.4] obtained the optimal value of σ f ,g and 4 f ,g for the functions in a subclass of Maiorana-McFarland
class of q-ary bent functions, demonstrated that σ f ,g = q2n whenever one of the function f , g is q-ary bent.

2. Properties of Walsh-Hadamard transform on generalized Boolean functions

The Walsh-Hadamard spectrum has become an important tool for research in cryptography: especially in the
design and characterization of cryptographically significant Boolean functions used in various type of cryptosystems.
Several cryptographic properties of Boolean functions are discussed in terms spectral analysis of Boolean functions,
for details we refer [9, 10, 17] and their references In this section, we provide the spectral analysis of the generalized
Boolean functions. The following lemma is the generalization of Corollary 3.3 of Sarkar and Maitra [10] (obtained
for q = 2).

Lemma 2.1. Let f , g, h ∈ GBq
n such that h(x) = f (x) − g(x). Then

Hh(u) =
1

2
n
2

∑
x∈Zn

2

H f (x + u)Hg(x), for all u ∈ Zn
2. (2.1)

Proof. Let u ∈ Zn
2., we have∑

x∈Zn
2

H f (x + u)Hg(x) =
1
2n

∑
x∈Zn

2

∑
y∈Zn

2

ζ f (y)(−1)(x+u)·y
∑
z∈Zn

2

ζ−g(z)(−1)x·z

=
1
2n

∑
y∈Zn

2

∑
z∈Zn

2

ζ f (y)−g(z)(−1)u·y
∑
x∈Zn

2

(−1)x·(y+z) =
∑
y∈Zn

2

ζh(y)(−1)u·y = 2
n
2Hh(u).
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The derivative of f , g ∈ GBq
n at u ∈ Zn

2 is defined as D f ,g(u) = f (x) − g(x + u). In particular for f = g,
D f (u) = f (x)− f (x+u) is defined as the derivative of f at u. In Theorem 2.1 below we provide a relationship between
D f ,g(u)-the derivative of f , g ∈ GBq

n at every u ∈ Zn
2 and their Walsh-Hadamard spectrums which is the generalization

of [18, Theorem 1] (obtained for q = 2).

Theorem 2.1. If f , g ∈ GBq
n and z ∈ Zn

2, then for any u ∈ Zn
2

HD f ,g(z)(u) =
1

2
n
2

∑
x∈Zn

2

(−1)x·zH f (x + u)Hg(x), and (2.2)

W f (x + u)Wg(x) =
1

2
n
2

∑
z∈Zn

2

(−1)x·zHD f ,g(z)(u). (2.3)

Proof. Let gz(x) = g(z + x). Then we haveHgz (u) = (−1)u·zHg(u). On replacing g by gz and h by D f ,g(z) in (2.1), we
have

HD f ,g(z)(u) =
1

2
n
2

∑
x∈Zn

2

H f (x + u)Wgz (x)

=
1

2
n
2

∑
x∈Zn

2

(−1)x·zH f (x + u)Hg(x)

Further, using (2.2), we have∑
z∈Zn

2

HD f ,g(z)(u)(−1)y·z =
1

2
n
2

∑
z∈Zn

2

(−1)y·z
∑
x∈Zn

2

(−1)x·zH f (x + u)Hg(x)

=
1

2
n
2

∑
x∈Zn

2

H f (x + u)Hg(x)
∑
z∈Zn

2

(−1)(y+x)·z = 2
n
2H f (y + u)Hg(y).

Since D f ,g(z)(0) = 2−
n
2C f ,g(z). The following corollary is Theorem 1 of [15], is obtained by putting u = 0 in the

above theorem.

Corollary 2.1. [15, Thm.1] We have:

(i) If f , g ∈ GBq
n, then∑

u∈Zn
2
C f ,g(u)(−1)u·x = 2nH f (x)Hg(x), and C f ,g(u) =

∑
x∈Zn

2
H f (x)Hg(x)(−1)u·x.

Further, C f ,g(u) = Cg, f (u) for all u ∈ Zn
2 this implies that C f (u) is always real.

(ii) Taking the particular case f = g we obtain
∑

u∈Zn
2
C f (u)(−1)u·x = 2n|H f (x)|2, andC f (u) =

∑
x∈Zn

2
|H f (x)|2(−1)u·x.

(iii) If f ∈ GBq
n, then f is a generalized bent function if and only if C f (u) = 2nδ0(u).

In Boolean case, the properties of these transform can be derived from the previous theorem, and for more results
on Boolean functions, we refer [2–4].

The dual of a vector space V of Zn
2 is defined by V⊥ = {x ∈ Zn

2 : x · y = 0 for all y ∈ V}. The following two
theorems is the generalization Zhou et. al [17, Lemma 3 and Theorem 6] results (obtained for q = 2)

Theorem 2.2. Let V be a subspace of Zn
2 of dimension k, and u ∈ Zn

2. Then for any f , g ∈ GBq
n, we have∑

x∈V
H f (x + u)Hg(x) = 2

2k−n
2

∑
z∈V⊥
HD f ,g(z)(u).
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Proof. From Theorem 2.1, we have∑
x∈V
H f (x + u)Hg(x) = 2−

n
2

∑
x∈V

∑
z∈Zn

2

HD f ,g(z)(u)(−1)z·x = 2−
n
2

∑
z∈Zn

2

HD f ,g(z)(u)
∑
x∈V

(−1)z·x

= 2
2k−n

2

∑
z∈Zn

2

HD f ,g(z)(u)φV⊥ (z) = 2
2k−n

2

∑
z∈V⊥
HD f ,g(z)(u).

Corollary 2.2. Let f , g ∈ GBq
n. Then ∑

x∈V
H f (x)Hg(x) = 2k

∑
z∈V⊥
C f ,g(z), and (2.4)

∑
x∈V

∣∣∣H f (x + u)
∣∣∣2 = 2

2k−n
2

∑
z∈V⊥

(−1)z·uHD f (z)(0) (2.5)

Let V and W be a subspaces of Zn
2 such that dim(W) = k and Zn

2 = V ⊕W. The decomposition of f with respect
to W is the sequence { fz : z ∈ V} of generalized Boolean functions fz ∈ GB

q
k defined on W as fz(x) = f (z + x) for all

x ∈ W. The relationship between the Walsh-Hadamard spectrums of f , g ∈ GBq
n and the Walsh-Hadamard spectrums

of the decompositions of f and g with respect to V is presented in the following

Theorem 2.3. Let V and W be a subspaces of Zn
2 with dim(W) = k and Zn

2 = V ⊕W. Let { fz : z ∈ V} and {gz : z ∈ V}
be the decompositions of f and g with respect to W. Then∑

x∈W⊥
H f (x)Hg(x) = 2−n

∑
x∈V
H fx (0)Hgx (0), and (2.6)

∑
x∈W⊥

∣∣∣H f (x)
∣∣∣2 = 2−n

∑
x∈V

∣∣∣H fx (0)
∣∣∣2 .

Proof. We have C f ,g(λ) =
∑

w∈Zn
2
ζ f (w)−g(w+λ) =

∑
x∈V

∑
y∈W ζ fx(y)−gx(y+λ) =

∑
x∈V

∑
y∈W ζ f (x+y)−g(x+y+λ), for every λ ∈

Zn
2. Using Theorem 2.2 with u = 0, we have∑

x∈W⊥
H f (x)Hg(x) = 2

2k−n
2

∑
z∈W
HD f ,g(z)(0) = 2k−n

∑
z∈W
C f ,g(z)

= 2k−n
∑
z∈W

∑
x∈V

∑
y∈W

ζ f (x+y)−g(x+y+z) = 2k−n
∑
x∈V

∑
y∈W

ζ f (x+y)
∑
z∈W

ζ−g(x+y+z)

= 2k−n
∑
x∈V

∑
y∈W

ζ fx(y)
∑
u∈W

ζ−gx(u) = 2−n
∑
x∈V
H fx (0)Hgx (0).

(2.7)

The second part is obtained by putting f = g in (2.6).

2.1. Analysis of cross-correlation spectrum of generalized Boolean functions

The following results were shown in a different contexts in [12, 21]. One can straightforwardly infer, by modifying
those proofs that these result hold under the current notions, as well.

Theorem 2.4. Let f , g, h, k ∈ GBq
n, and z ∈ Zn

2. Then∑
u∈Zn

2

C f ,g(u)Ck,h(u + z) =
∑
v∈Zn

2

C f ,h(v)Ck,g(v + z). (2.8)
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Proof. Let z ∈ Zn
2. Then∑

u∈Zn
2

C f ,g(u)Ck,h(u + z) =
∑
u∈Zn

2

C f ,g(u)Ch,k(u + z) =
∑
u∈Zn

2

∑
x∈Zn

2

ζ f (x)−g(x+u)
∑
y∈Zn

2

ζk(y+u+z)−h(y)

=
∑

x,y∈Zn
2

ζ f (x)−h(y)
∑
u∈Zn

2

ζk(y+u+z)−g(x+u) =
∑

x,y∈Zn
2

ζ f (x)−h(y)
∑
u∈Zn

2

ζk(y+x+u+z)−g(u)

=
∑
v∈Zn

2

∑
x∈Zn

2

ζ f (x)−h(x+v)
∑
u∈Zn

2

ζk(v+u+z)−g(u) =
∑
v∈Zn

2

C f ,h(v)Cg,k(v + z) =
∑
v∈Zn

2

C f ,h(v)Ck,g(v + z)

Taking f = h and g = k in (2.8) we have the following

Corollary 2.3. Let f , g ∈ GBq
n, and z ∈ Zn

2. then∑
u∈Zn

2

C f ,g(u)Cg, f (u + z) =
∑
v∈Zn

2

C f (v)Cg(v + z), (2.9)

and if z = 0, then
σ f ,g =

∑
u∈Zn

2

C f ,g(u)C f ,g(u) =
∑
u∈Zn

2

C f ,g(u)Cg, f (u) =
∑
x∈Zn

2

C f (x)Cg(x). (2.10)

Further, if we take g = k in (2.8), then
∑

u∈Zn
2
C f ,g(u)Cg,h(u + z) =

∑
v∈Zn

2
C f ,h(v)Cg(v + z) for all z ∈ Zn

2, and so
using Corollary 2.3, we have

Proposition 1. Let f , h ∈ GBq
n, and g ∈ GBq

n be a generalized bent Boolean function, then

(1)
∑

u∈Zn
2
C f ,g(u)Cg,h(u + z) =

∑
v∈Zn

2
C f ,h(v)Cg(v + z) = 2n ∑

v∈Zn
2
C f ,h(v)δ0(v + z) = 2nC f ,h(z)

(2) σ f ,g = 22n.

(3) If f is generalized bent Boolean function, then
∑

u∈Zn
2
C f ,g(u)Cg, f (u + z) = 0 for all z ∈ Zn

2 \ {0}

Theorem 2.5. Let f , g ∈ GBq
n, and if g is generalized bent Boolean function, then

4 f ,g ≥ 2
n
2 , and max

u∈Zn
2\{0}
|C f ,g(u)| ≥

√
22n − |C f ,g(0)|2

2n − 1
.

Proof. From property (2) of Proposition 1, we have σ f ,g =
∑

u∈Zn
q

∣∣∣C f ,g(u)
∣∣∣2 = 22n. The values of |C f ,g(u)| will be

minimum for every u ∈ Zn
2 only when they all possess equal values in modulus. Further, |C f ,g(u)| ≥ 0 for all u ∈ Zn

2.
Therefore the minimum value of 4 f ,g is

√
σ f ,g/2n =

√
22n/2n = 2

n
2 , that is, 4 f ,g ≥ 2

n
2 .

Further, the sum
∑

u∈Zn
2\{0}
C2

f ,g(u) = 22n − |C f ,g(0)|2 has 2n − 1 non-negative terms on its left side, and therefore

maxu∈Zn
2\{0} |C f ,g(u)| ≥

√
22n−|C f ,g(0)|2

2n−1 .

Corollary 2.4. If g ∈ GBq
n is generalized bent and |C f ,g(0)| < 2

n
2 , then maxu∈Zn

2\{0} |C f ,g(u)| > 2
n
2 , for all g ∈ GBq

n.

The relationship between the Walsh-Hadamard spectrum and the autocorrelation of any two generalized Boolean
functions.

Theorem 2.6. Let f , g ∈ GBq
n, and u ∈ Zn

2, then we have

2n
∑
x∈Zn

2

∣∣∣H f (x)
∣∣∣2 ∣∣∣Hg(x + u)

∣∣∣2 =
∑
x∈Zn

2

C f (x)Cg(x)(−1)<x,u>
(2.11)
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Proof. Let u ∈ Zn
2. Using (ii) of Corollary 2.1, we have∑

x∈Zn
2

∣∣∣H f (x)
∣∣∣2 ∣∣∣Hg(x + u)

∣∣∣2 = 2−2n
∑
x∈Zn

2

∑
y∈Zn

2

C f (y)(−1)y·x
∑
z∈Zn

2

Cg(z)(−1)z·(x+u)

= 2−2n
∑
y∈Zn

2

∑
z∈Zn

2

C f (y)Cg(z)(−1)z·u
∑
x∈Zn

2

(−1)x·(y+z)

= 2−n
∑
y∈Zn

2

∑
z∈Zn

2

C f (y)Cg(z)(−1)z·uδ0(y + z) = 2−n
∑
y∈Zn

2

C f (y)Cg(y)(−1)y·u

Taking f = g in the above theorem, we have the following

Corollary 2.5. Let f ∈ Bn,q. Then for any β ∈ Zn
q, we have

2n
∑
x∈Zn

2

∣∣∣H f (x)
∣∣∣2 ∣∣∣H f (x + u)

∣∣∣2 =
∑
x∈Zn

2

(
C f (x)

)2
(−1)x·u. (2.12)

Further, if u = 0, then
σ f = 2n

∑
x∈Zn

2

∣∣∣H f (x)
∣∣∣4 . (2.13)

The following corollary is shown in different context in [12, Theorem 4.2(a)] is obtained, in current notion, by
putting u = 0 in (2.11) and using (2.10).

Corollary 2.6. For any f , g ∈ GBq
n, we have

σ f ,g = 2n
∑
x∈Zn

2

∣∣∣H f (x)
∣∣∣2 ∣∣∣Hg(x)

∣∣∣2 . (2.14)

Corollary 2.7. Let f , g ∈ GBq
n, then σ f ,g ≤ 23n.

Proof. Using (1.1) in the above corollary, we have

σ f ,g = 2n
∑
x∈Zn

2

∣∣∣H f (x)
∣∣∣2 ∣∣∣Hg(x)

∣∣∣2 ≤ 2n
∑
x∈Zn

2

∣∣∣H f (x)
∣∣∣2 ∑

x∈Zn
2

∣∣∣Hg(x)
∣∣∣2 = 23n.

A generalized Boolean function f ∈ GBq
n (q = 2h, h ≤ n) is balanced if for every k ∈ Zq, the cardinality of the

set {x ∈ Zn
2 : f (x) = k} is 2n

q . Generalized balanced Boolean function exists only if q divides 2n. The two functions
f , g ∈ GBq

n are said to be perfectly uncorrelated ifH f (u)Hg(u) = 0 for all u ∈ Zn
2. The following results were shown

in different contexts in [12, 17]. One can straightforwardly infer by modifying those results hold under the current
notion, as well.

Theorem 2.7. Let f , g ∈ GBq
n, then

(1) 4 f ,g = 0 if and only if f (x) − g(x + u) is balanced for every u ∈ Zn
2.

(2) 4 f ,g = qn if and only if f (x) = g(x + u) + a, where a ∈ Zq for some u ∈ Zn
2.

(3) 0 ≤ 4 f ,g ≤ qn.

Theorem 2.8. Let f , g ∈ GBq
n, then

(a) |C f ,g(0)|2 ≤ σ f ,g ≤ 23n
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(b) σ f ,g = 23n if and only if f and g both are the functions of the form ψu,d(x) =
(

q
2

)
u · x + d,u ∈ Zn

2, d ∈ Zq.

(c) σ f ,g = |C f ,g(0)|2 if and only if f and g are either generalized bents or perfectly uncorrelated.

In Theorem 2.9 below we proved that the four indicators σ f ,g,4 f ,g, σ f and 4g are invariant under the affine trans-
formation as represented in (2.15).

Theorem 2.9. The SSMI and MI both of a generalized Boolean function are invariant under the affine transformation

g(x) = f (xA ⊕ a) + b · x + d, for all x ∈ Zn
2, (2.15)

where A ∈ GL(2, n), a,b ∈ Zn
2, d ∈ Zq.

Proof. Let g1(x) = f1(xA ⊕ a) + b · x + d and g2(x) = f2(xA ⊕ a) + b · x + d. Then it is shown in [13] that
Cg1,g2 (u) = ζ

−u·b
C f1, f2 (uA), for all u ∈ Zn

2, which implies that |Cg1,g2 (u)| = |C f1, f2 (uA)| for all u ∈ Zn
2 and therefore, we

have
σg1,g2 = σ f1, f2 , and 4g1,g2 = 4 f1, f2 .

In particular for g1 = g2 = g (i.e., f1 = f2 = f ) we have |Cg(u)| = |C f (uA)| for all u ∈ Zn
2 implying that σg = σ f .

Further, uA , 0 if u , 0 as A is invertible. Thus, we have 4g = 4 f .

2.1.1. Generalized Boolean functions with optimal value of σ f and δ f

Let v = (vr, . . . , v1). We define fv(xn−r, . . . , x1) = f (xn = vr, . . . , xn−r+1 = v1, xn−r, . . . , x1). Define the vector
concatenation of u = (ur, . . . , u1) ∈ Zr

2 and w = (wn−r, . . . ,w1) ∈ Zn−r
2 as uw = (u,w) = (ur, . . . , u1,wn−r, . . . ,w1). The

following lemma is [15, Lemma 3]

Lemma 2.2. Let u ∈ Zr
2, w ∈ Zn−r

2 . Then the autocorrelation of f ∈ GBq
n is

C f (uw) =
∑
v∈Zr

2

C fv, fv⊕u (w),

In particular, C f (0,w) = C f0 (w) + C f1 (w), and C f (1,w) = 2Re[C f0, f1 (w)].

The two functions f , g ∈ GBq
n said to have complementary autocorrelation if and only if C f (u) + Cg(u) = 0 for all

Zn
2 \ {0} [15]. The following result is direct consequence of the above lemma

Proposition 2. Let f ∈ GBq
n be expressed as

f (xn, x) = (1 + xn) f0(x) + xn f1(x), (2.16)

where f0, f1 ∈ GBn−1. If f0 and f1 have complementary autocorrelation, then

4 f = 2 max
u∈Zn−1

2

∣∣∣Re[C f0, f1 (u)]
∣∣∣ .

Corollary 2.8. Let f ∈ GBq
n as expressed in (2.16), then 4 f = 2 maxu∈Zn−1

2

∣∣∣Re[C f0, f1 (u)]
∣∣∣, if the Boolean functions f0

and f1 both are generalized bent.

Proof. Since f0, f1 ∈ GBn−1 are generalized bent Boolean function, therefore C f0 (u) = C f1 (u) = 0 for all u ∈ Zn−1
2 \{0}.

Thus, by Lemma 2.2 we have C f (0,u) = 0 for all u ∈ Zn−1
2 \ {0}. Further applying Lemma 2.2 we have

4 f = max
(un,u)∈Z2×Zn−1

2

| C f (un,u) |= max
u∈Zn−1

2

{| C f (0,u) |, | C f (1,u) |} = max
u∈Zn−1

2

| C f (1,u) |= 2 max
u∈Zn−1

2

| C f0, f1 (u) | .

Let n = 2m, where m be a positive integer. Suppose that Ei (i = 1, 2, . . . , 2m + 1) are m-dimensional subspaces
of Zn

2 with Ei ∩ E j = {0}, if i , j. Recently, Stănic̆a et al. [15, Theorem 9] constructed a class of generalized bent
Boolean function (and refer it as generalized Dillon class (GD)), is given in the following.

7



Lemma 2.3. [15, Theorem 9] Let n = 2m and k, `1, . . . , `2m+1 be integers such that
∑2m+1

i=1 ζ`i = ζk. Let F : Zn
2 → C

be given by F(x) =
∑2m+1

i=1 ζ`iφEi (x) for all x ∈ Zn
2. Then the function f ∈ GBq

n defined by

ζ f (x) = F(x) for all x ∈ Zn
2 (2.17)

is a generalized bent function.

They identify a subclass of GD in GB4
n [15, Theorem 13] which have optimal (minimum) value the the cross-

correlation spectrum, in absolute, is given in the following

Lemma 2.4. [15, Theorem 13] Let f , g ∈ GB4
n be two Dillon type generalized bent functions such that ı f (x) =∑2m+1

i=1 ıaiφEi (x) and ıg(x) =
∑2m+1

i=1 ıbiφEi (x) for all x ∈ Zn
2 and

∑2m+1
i=1 ıai = ık,

∑2m+1
i=1 ıai = ı`. If

∑2m+1
i=1

∑2m+1
j=1, j,i ı

ai−b j = ık−`,
then

C f ,g(u) =

2mıai−bi , if u , 0
2mık−`, if u = 0.

(2.18)

Remark 2.1. The results of Lemma 2.4 can be extended to at least for any even q.

Further, they generalized a result of Schmidt [11, Thm. 5.3] (obtained for q = 4). The class of functions as
represented in (2.19) below is referred to as the generalized Maiorana–McFarland class (GMMF).

Lemma 2.5. [15, Thm. 8] Suppose that q is an even positive integer. Let σ be a permutation on Zm
2 , and let g ∈ GBq

m.
Then the function fσ,g : Zm

2 × Z
m
2 → Zq expressed as

fσ,g(x, y) = g(y) +

(q
2

)
x · σ(y) for all x, y ∈ Zm

2 (2.19)

is a generalized bent. The dual of fσ,g is g(σ−1(x)) +
(

q
2

)
y · (σ−1(x)), that is, H fσ,g (x, y) = ζg(σ−1(x))+( q

2 )y·(σ−1(x)) for all
x, y ∈ Zm

2 .

Let us denote Sm(Z2) be the set of all permutations on Zm
2 . Define a set Pm as Pm = {(σ1, σ2) ∈ Sm(Z2)× Sm(Z2) :

σ−1
1 ⊕ σ

−1
2 ∈ Sm(Z2)}. Recently, another subclass of GMMF is identified in [13, Theorem 3.2] which have optimal

(minimum) value the the cross-correlation spectrum, in absolute, is given in the following

Lemma 2.6. [13, Theorem 3.2] Suppose that q be a positive even integer. Let fσ1,g1 , fσ2,g2 be two functions in GMMF
⊆ GB

q
n, that is, fσ1,g1 (x, y) = g1(y) +

(
q
2

)
x ·σ1(y) and fσ2,g2 (x, y) = g2(y) +

(
q
2

)
x ·σ2(y) for all x, y ∈ Zm

2 , where σ1, σ2

are permutations on Zm
2 and g1, g2 ∈ GB

q
m. If σ1, σ2 ∈ Pm, then

|C fσ1 ,g1 , fσ2 ,g2
(u, v)| = 2m, for all (u, v) ∈ Zm

2 × Z
m
2 .

The following result follows from Corollary 2.8 and Lemma 2.6

Theorem 2.10. Let n = 2m + 1, and let the function f : Z2 × Zn−1
2 → Zq is expressed as

f (xn, x) = (1 + xn) f0(x) + xn f1(x),

where f0, f1 ∈ GB
q
2m are two GMMF type functions as represented in Lemma 2.6, that is, f0(x, y) = x · π0(y) + g0(y)

and f1(x, y) = x · π1(y) + g1(y) for all x, y ∈ Zm
2 , g0, g1 ∈ GB

q
m and π0, π1 ∈ Pm, then 4 f = 2

n+1
2 , and σ f = 22n+1.

From Corollary 2.8 and Lemma 2.4, we have following

Theorem 2.11. Let n = 2m + 1, and let the function f : Z2 × Zn−1
2 → Z4 is expressed as

f (xn, x) = (1 + xn) f0(x) + xn f1(x),

where f0, f1 ∈ GB4
2m are two Dillon type generalized functions such that ı f0(x) =

∑2m+1
i=1 ıaiφEi (x) and ı f1(x) =

∑2m+1
i=1 ıbiφEi (x)

for all x ∈ Zn
2 and

∑2m+1
i=1 ıai = ık,

∑2m+1
i=1 ıai = ı`. If

∑2m+1
i=1

∑2m+1
j=1, j,i ı

ai−b j = ık−`, then 4 f = 2
n+1

2 , and σ f = 22n+1.
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Remark 2.2. Let g ∈ GBq
n is obtained by f ∈ GBq

n under the transformation given below

g(x) = f (Ax ⊕ a) + ε b · x + d, for all x ∈ Zn
2, (2.20)

where A ∈ GL(2, n), a,b ∈ Zn
2, d ∈ Zq, and ε =

0, q/2 i f q is even
0 i f q is odd

. It is shown in [15, Theorem 5] that property

the generalized bent of generalized Boolean functions is preserved under the affine transformation as represented in
(2.20). The set of all the generalized Boolean functions as represented in (2.20) a complete class, specially, it is
referred to as generalized Maiorana–McFarland complete class (ĜMMF) if f ∈ GMMF . Similarly, ĜD denotes the
complete class GD. Thus, from Theorem 2.10 and Theorem 2.11 we conclude that there exists two large classes of
generalized Boolean functions in odd variables for which the indicators σ f , and δ f have optimal value.

2.1.2. A class of semi-bent Boolean functions with optimal value of SSMI and MI
In binary case, the modulus indicator is additive autocorrelation and SSMI is the sum-of-squares indicators. In

this section, we identify a class of semi-bent Boolean functions with optimal value of SSMI and MI in n variables
constructed from bent functions in n − 1 variables. Let n be an odd integer. Dillon [5] demonstrated that a function
f : Z2 × Zn−1

2 → Z2 expressed as
f (xn, x) = (1 + xn) f0(x) + xn f1(x), (2.21)

where f0, f1 ∈ Bn−1 are bent functions, is semi-bent, and therefore, by Corollary 3.1 σ f = 22n+1. Thus, by Corollary
2.8 for q = 2, we have the following

Corollary 2.9. The function f as constructed in (2.21) is semi-bent, and

4 f = 2 max
u∈Zn−1

2

| C f0, f1 (u) |, and σ f = 22n+1.

The following proposition is direct consequence of the above corollary and Theorem 2.10.

Proposition 3. Let n = 2m + 1, and f0, f1 ∈ B2m are two Maiorana-McFarland type bent functions as given in [12,
Theorem 4.4], that is f0(x, y) = x · π0(y) + g0(y) and f1(x, y) = x · π1(y) + g1(y) for all x, y ∈ Zm

2 , where g0, g1 ∈ Bm

and π0, π1 are permutations on Zm
2 such that π−1

0 ⊕ π
−1
1 is also a permutation, then the function f : Z2 × Zn−1

2 → Z2
expressed as

f (xn, x) = (1 + xn) f0(x) + xn f1(x),

f is semi-bent function with optimal values of SSMI and MI both, that is σ f = 22n+1 and 4 f = 2
n+1

2 .

3. Constructions of generalized s-plateaued Boolean functions

In this section, we obtain the SSMI for generalized s-plateaued functions (the function f ∈ GBq
n for which

2
n
2 |H f (u)| is either 0 or 2

n+s
2 is called s-plateaued). Further, we constructed a class of generalized semi-bent Boolean

functions for odd n (1-plateaued functions) and another class of generalized semi-bent Boolean functions for even n
(2-plateaued functions), and obtained their SSMI.

Theorem 3.1. The SSMI of a generalized s-plateaued (s = 1, 2, . . . , n) function f ∈ GBn, q is 22n+s.

Proof. Since f ∈ GBn, q be a s-plateaued generalized Boolean function. Therefore, |H f (u)| ∈ {0, 2
s
2 } for every u ∈ Zn

2.
Suppose if k be the number of vectors u′s for which H f (u) , 0. Then by Parseval’s identity we have k = 2n−s. Now,
from (2.13) we have

σ f = 2n
∑
u∈Zn

2

| H f (u) |4= 2n · 2n−s · (2
s
2 )4 = 22n+s.

In particular for s = 1, 2, we have the following corollary

9



Corollary 3.1. The SSMI of a generalized semi-bent Boolean function f ∈ Bn,q is 22n+1 if n is odd, and q2n+2 if n is
even.

Theorem 3.2. Let n, s be two integers such that n + s is even. Let g ∈ GB n−s
2

and φ : Z
n−s

2
2 → Z

n+s
2

2 be an injective

function, then a function f : Z
n+s

2
2 × Z

n−s
2

2 → Zq (q is an even integer) expressed as

f (x, y) =

(q
2

)
x · φ(y) + g(y), for all (x, y) ∈ Z

n+s
2

2 × Z
n−s

2
2 (3.1)

is s-plateaued generalized Boolean function.

Proof. Let (u, v) ∈ Z
n+s

2
2 × Z

n−s
2

2 , then

H f (u, v) = 2−
n
2

∑
(x,y)∈Z

n+s
2

2 ×Z
n−s

2
2

ζ f (x,y)(−1)u·x+v·y = 2−
n
2

∑
y∈Z

n−s
2

2

ζg(y)+( q
2 )v·y

∑
x∈Z

n+s
2

2

(−1)x·(φ(y)+u)

= 2
s
2

∑
y∈Z

n−s
2

2

ζg(y)+( q
2 )v·yδ0(φ(y) + u) =

2
s
2 ζg(y)+( q

2 )v·y, i f y = φ−1(u),
0 otherwise.

(3.2)

which implies that f is s-plateaued generalized Boolean function.

Corollary 3.2. Let n be an odd integer. Let g ∈ GB n−1
2

, and φ : Z
n−1

2
2 → Z

n+1
2

2 be an injective function, then a function

f : Z
n+1

2
2 × Z

n−1
2

2 → Zq (q is an even integer) expressed as

f (x, y) =

(q
2

)
x · φ(y) + g(y), for all (x, y) ∈ Z

n+1
2

2 × Z
n−1

2
2

is generalized semi-bent Boolean function.

Corollary 3.3. Let n be an even integer. Let g ∈ GB n−2
2

, and φ : Z
n−2

2
2 → Z

n+2
2

2 be any injective function, then a function

f : Z
n+2

2
2 × Z

n−2
2

2 → Zq (q is an even integer) expressed as

f (x, y) =

(q
2

)
x · φ(y) + g(y), for all (x, y) ∈ Z

n+2
2

2 × Z
n−2

2
2

is generalized semi-bent Boolean function.

In Theorem 3.3 below we demonstrate that the direct sum of f , g- the two generalized semi-bent functions is
generalized semi-bent if both f and g are defined on odd number of variables.

Theorem 3.3. Let f1 ∈ GB
q
r and f2 ∈ GB

q
s , where r and s are positive integers. Then a function g : Zr

2 × Zs
2 → Zq

expressed as
g(x, y) = f1(x) + f2(y), for all x ∈ Zr

2, y ∈ Z
s
2,

is generalized semi-bent if f1 and f2 both are generalized semi-bent Boolean functions.

Proof. Let f1 and f2 be generalized semi-bent Boolean functions on Zr
2 and Zs

2 respectively, then |H f1 (u)|, |H f2 (v)| ∈
{0,
√

2} for all u ∈ Zr
2, v ∈ Zs

2, and therefore |Hg(u, v)| = |H f1 (u)||H f2 (v)| ∈ {0, 2} for all (u, v) ∈ Zr
2 × Zs

2 which
implies that g is generalized semi-bent Boolean function.

4. Constructions of generalized partially bent Boolean functions

A function f ∈ GBq
n is generalized partially bent Boolean function if (2n − NC f )(2

n − NH f ) = 2n, where NC f =

|{x ∈ Zn
2 : C f (x) = 0}| and NH f (x) = |{x ∈ Zn

2 : H f (x) = 0}|.
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Theorem 4.1. Let f ∈ GBq
n. Then

(i) (2n − NC f )(2
n − NH f ) ≥ 2n, and

(ii) f is generalized partially bent if and only if (∗) There exists a ∈ Zn
2 such that C f (u) ∈ {0, (−1)u·a 2n} for all

u ∈ Zn
2, and (∗∗) |H f (x)|2 is constant for all x ∈ Zn

2 wheneverH f (x) , 0.

Proof. (i) Since |C f (x)|
2n ≤ 1 for all x ∈ Zn

2. Using Triangle Inequality: |z1 + z2| ≤ |z1| + |z1| for all z1, z2 ∈ C, we have

2n − NC f =
∣∣∣{x ∈ Zn

2 : C f (x) , 0}
∣∣∣ ≥ 2−n

∑
x∈Zn

2

|C f (x)|

≥ 2−n

∣∣∣∣∣∣∣∣
∑
x∈Zn

2

∑
y∈Zn

2

ζ f (y)− f (y⊕x)

∣∣∣∣∣∣∣∣ = 2−n

∣∣∣∣∣∣∣∣
∑
y∈Zn

2

ζ f (y)
∑
u∈Zn

2

ζ− f (u)

∣∣∣∣∣∣∣∣ =
∣∣∣∣H f (0)H f (0)

∣∣∣∣ = |H f (0)|2.
(4.1)

Let f1 ∈ GB
q
n such that f1(x) = f (x) +

(
q
2

)
x · a, then we have,

C f1 (x) = (−1)a·xC f (x), andH f1 (x) = H f (x ⊕ a) (4.2)

Thus, for any a ∈ Zn
2, using (4.1) and (4.2), we have 2n − NC f = 2n − NC f1

≥ |H f1 (0)|2 = 2n|H f (a)|2, this implies that

2n − NC f ≥ |H f (w)|2, (4.3)

where |H f (w)|2 = max{|H f (x)|2 : x ∈ Zn
2}, and so, |H f (x)|2

|H f (w)|2 ≤ 1 for all x ∈ Zn
2. Using (1.1), we have

2n − NH f ≥
∑
x∈Zn

2

|H f (x)|2

|H f (w)|2
=

1
|H f (w)|2

∑
x∈Zn

2

|H f (x)|2 =
2n

|H f (w)|2
. (4.4)

Combining (4.3) and (4.4), we have
(2n − NH f )(2

n − NC f ) ≥ 2n. (4.5)

(ii) Suppose f is partially generalized bent, that is, (2n−NH f )(2
n−NC f ) = 2n, then (∗) 2n−NC f = max{|H f (x)| : x ∈ Zn

2}

and (∗∗) 2n − NH f = 2n

max{|H f (x)|:x∈Zn
2}

. Let a ∈ Zn
2 such that |H f (a)| = max{|H f (x)| : x ∈ Zn

2}, and let f1 ∈ GB
q
n such that

f1(x) = f (x) +
(

q
2

)
x · a. Then by (∗)

∑
x∈Zn

2

C f1 (x) =
∑
x∈Zn

2

∑
y∈Zn

2

ζ f1(y)− f1(y⊕x) =
∑
y∈Zn

2

ζ f1(y)
∑
u∈Zn

2

ζ− f1(u) = 2n|H f1 (0)|2

= 2n|H f (a)|2 = 2n(2n − NC f ) = 2n(2n − NC f1
) =

∑
x:C f1 (x),0

2n,
(4.6)

which implies that C f1 (x) = 0 or 2n because of |C f1 (x)| ≤ 2n. Now, using (4.2) we have C f (x) = 0 or (−1)a·x2n.
Next, by assumption (∗∗) and (1.1), we have

2n − NH f =
∑

x:H f (x),0

1 =
2n

max{|H f (x)|2 : x ∈ Zn
2}

=
∑
x∈Zn

2

(
|H f (x)|2

|H f (a)|2

)
, (4.7)

which implies that |H f (x)|2 = |H f (a)|2 for x ∈ Zn
2 and H f (x) , 0. This shows that |H f (w)|2 is constant for w ∈ Zn

2
andH f (w) , 0.

Conversely, suppose that there exists a ∈ Zn
2, such that for any u ∈ Zn

2, C f (u) is either 0 or (−1)u·a 2n, and |H f (x)|2

is a constant for x ∈ Zn
2 andH f (x) , 0.

Assume that E = {x ∈ Zn
2 : C f (x) = 2n(−1)a·x}, f1(x) = f (x) ⊕ a · x, then from (4.2), C f1 (x) = 0 or 2n. Thus,

E = {x ∈ Zn
2 : C f1 (x) = 2n}. First, we show that E is subspace of Zn

2. Suppose u, v ∈ E, then C f (u) = 2n(−1)u·a and
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C f (v) = 2n(−1)v·a, that is f (x ⊕ u) = f (x) +
(

q
2

)
u · a and f (x ⊕ v) = f (x) +

(
q
2

)
v · a for all x ∈ Zn

2. Therefore,

C f (u ⊕ v) =
∑
x∈Zn

2

ζ f (x)− f (x⊕u⊕v) =
∑
x∈Zn

2

ζ f (x)− f ((x⊕u)⊕v)

=
∑
x∈Zn

2

ζ f (x)−( f (x+u)+( q
2 )v·a) = (−1)v·aC f (u) = 2n(−1)(u⊕v)·x,

(4.8)

implies that u ⊕ v ∈ E. This proves that E is subspace of Zn
2. Using (ii) of Corollary 2.1, we have

|H f1 (z)|2 = 2−n
∑
x∈Zn

2

C f1 (x)(−1)z·x =
∑
x∈E

(−1)z·x = |E|φE⊥ (z), for all z ∈ Zn
2, (4.9)

which implies that H f1 (z) , 0 whenever z ∈ E⊥, that is, |E⊥| = 2n − NH f1
. From (4.2), it is clear that the Walsh-

Hadamard spectrums of f and f1 are same. This implies that |E⊥| = 2n − NH f , and |H f (x)|2 is a constant for x ∈ Zn
2

andH f1 (x) , 0. Now, using (1.1) in (4.9), we have

2n = |E|
∑
z∈Zn

2

φE⊥ (z) = |E|
∑
z∈E⊥

1 = |E||E⊥| = (2n − NC f )(2
n − NH f ).

This completes the proof.

It can be easily conclude that the Walsh-Hadamard spectrum as well as the autocorrelation spectrum of a gener-
alized Boolean function is invariant, in absolute value, under the affine transformation as represented in (2.15) this
implies that (2n − NCg )(2n − NHg ) = (2n − NC f )(2

n − NH f ). Thus we have the following

Proposition 4. The property of generalized partially bent of the generalized Boolean functions is invariant under the
affine transformation as represented in (2.15).

Proposition 5. Let f ∈ GBq
n be a generalized partially bent Boolean function. E f = {x ∈ Zn

2 : C f (x) = 2n(−1)a·x},
E f ∩ E⊥f = {0}, and a ∈ Zn

2 as defined in Theorem 4.1. Then f (x) is equivalent to the addition of a generalized bent

function g : Zn−m
2 → Zq and an affine function ψa : Zm

2 → Zq of the form ψa(x) =
(

q
2

)
a · x, for all x ∈ Zm

2 , where m in
an integer such that |E| = 2m.

Proof. If f ∈ GBq
n is generalized bent, that is, E f = 0. In case the proof is trivial. Assume that f is not generalized

bent, and hence E f , 0. By (4.8) E f is a subspace of Zn
2, and so, without loss of generality, assume that E f = Zm

2 , 1 ≤
m < n. Since Zn

2 = Zm
2 ⊕ Z

n−m
2 , therefore, there exists a1 ∈ Zm

2 and a2 ∈ Zn−m
2 such that a = a1 + a2. Thus, by property

of E f = Zm
2 , f (y + u) = f (y) +

(
q
2

)
u · a1 for all u ∈ Zm

2 , and y ∈ Zn−m
2 . Thus, f (x + u) is an affine function restricted in

Zm
2 .

Next, we show that f is generalized bent Boolean function restricted within Zn−m
2 . Let x,u ∈ Zn

2. Then there exists
x1,u1 ∈ Zm

2 , and x2,u2 ∈ Zn−m
2 such that x = x1 + x2, u = u1 + u2. Now, f (x) +

(
q
2

)
x · u = f (x1 + x2) +

(
q
2

)
((x1 + x2) ·

(u1 + u2)) = f (x2) +
(

q
2

)
a1 · x1 +

(
q
2

)
(x1 · u1 + x2 · u2) = f (x2) +

(
q
2

)
(x2 · u2 + x1 · (a1 + u1)) . The Walsh-Hadamard

transform of f at u ∈ Zn
2 is

|H f (u) = 2−
n
2

∑
x∈Zn

2

ζ f (x)+( q
2 )x·u = 2−

n
2

∑
x1∈Zm

2

∑
x2∈Zn−m

2

ζ f (x2)+( q
2 )(x2·u2+x1·(a1+u1))

= 2−
n
2

∑
x2∈Zn−m

2

ζ f (x2)(−1)x2·u2
∑

x1∈Zm
2

(−1)x1·(a1+u1) = 2
2m−n

2

∑
x2∈Zn−m

2

ζ f (x2)(−1)x2·u2φZn−m
2

(u1 + a1)

= 2
m
2H fZn−m

2
(u2)δ0(u1 + a1),

(4.10)

where fZn−m
2

denotes the restriction of f to Zn−m
2 . Since f is generalized partially bent Boolean function. By Theorem

4.1, the value of
∣∣∣∣H fZn−m

2
(u2)

∣∣∣∣2 is constant and not equal to zero for all u2 ∈ Zn−m
2 , that is,

∣∣∣∣H fZn−m
2

(u2)
∣∣∣∣ = ` , 0 for all

12



u2 ∈ Zn−m
2 . Now, using (1.1), we have

2n =
∑
u∈Zn

2

∣∣∣H f (u)
∣∣∣2 =

∑
(u1,u2)∈Zm

2 ×Z
n−m
2

∣∣∣H f (u1,u2)
∣∣∣2 = 2m`2

∑
u2∈Zn−m

2 ,u1=a1

1 = 2m`22n−m = 2n`2, (4.11)

implies that ` =
∣∣∣∣H fZn−m

2
(u2)

∣∣∣∣ = 1 for all u2 ∈ Zn−m
2 . Hence fZn−m

2
∈ GB

q
n−m is generalized bent Boolean function.

Finally, we conclude that g is the addition of the generalized bent functions restricted with in Zn−m
2 , and an affine

function of the form ψa restricted in Zm
2 .

Remark 4.1. Let f be a generalized partially bent Boolean function as constructed in Proposition 5, then δ f = 2n,
and σ f = 2m+2n.
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