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Abstract

In this paper, we obtain a characterization of generalized Boolean functions based on spectral analysis. We investigate
a relationship between the Walsh-Hadamard spectrum and o ¢, the sum-of-squares-modulus indicator (SSMI) of the
generalized Boolean function. It is demonstrated that oy = 22"+ for every s-plateaued generalized Boolean function
in n variables. Two classes of generalized semi-bent Boolean functions are constructed. We have constructed a class of
generalized semi-bent functions in (n + 1) variables from generalized semi-bent functions in n variables and identify
a subclass of it for which o and A ¢ both have optimal value. Finally, some construction on generalized partially bent
Boolean functions are given.

Keywords: Boolean functions, generalized functions; Walsh-Hadamard spectrum; generalized bent Boolean
functions; generalized semi-bent functions; sum-of-squares-modulus indicator (SSMI); modulus indicator (MI)

1. Introduction

Let Z, R, C and Z, respectively denotes the set of integers, real numbers, complex numbers, and the ring of
integers modulo g. By ‘+’ we denote the addition over Z, R and C, whereas ‘®’ denotes the addition over an n-
dimensional vector space Z7 over binary field Z, with the standard operations. Addition modulo ¢ is denoted by ‘+’
and it is understood from the context. The scalar product of two vectors X = (x,,...,x1) and y = (y,...,y1) of Zj is
definedby Xy := x,7, @ - ® %2y, ® x1y;. f z=a + b1 € C, then |z] = Va2 + b? denotes the absolute value of z, and
7 = a — b1 denotes the complex conjugate of z, where 1> = —1, and a, b € R. Re|[z] denotes the real part of z.

In the recent years several authors have proposed generalizations of Boolean functions [6, 11, 14, 15] and studied
the effect of Walsh—-Hadamard transform on these classes. As in the Boolean case, in the generalized setup the
functions which have flat spectra with respect to the Walsh—-Hadamard transform are said to be generalized bent and
are of special interest (the classical notion of bent was invented by Rothaus [8]) in cryptography and coding theory
and have wide application in different type of cryptosystems [6, 11]. For example: the generalized bent Boolean
functions are used for constructing the constant amplitude codes for the g valued version of multicode Code Division
Multiple Access (MC-CDMA). The generalization of Boolean function due to Schmidt is a function from Zj to Z,,
(g = 2), and he referred such function as generalized Boolean function on n variables [11], GB; denotes the set of
such functions. In particular, the set of classical Boolean functions on n variables is B,, := gBﬁ. For some problems
concerning cyclic codes, Kerdock codes, and Delsarte-Goethals codes, the generalization of Boolean function [11]
seems more natural than the generalization due to Kumar, Scholtz and Welch [6].

The (generalized) Walsh-Hadamard transform of f € GB; atu € Z} is given by Hy(u) = 273 erZ; FFO(=1)ux,
is complex valued function, where ¢ = ¢*™/ is the complex g-primitive root of unity. The inverse of the Walsh-
Hadamard transform [15, Thm.1] of f € GBY is given by (/¥ = 2~3 Yuezs Hy(@)(=1)*Y. Moreover, the (generalized)
Parseval’s identity holds, that is,

Z [H )P = 2", (1.1)
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A function f € GB! is a generalized bent function if |H r(w)| = 1, for all w € Z7. A function f € B, is bent
if and only if Hy(u) = 272 erzg(—l)f(")*“"‘ € {—1,1} for all u € Zj. The classical bent Boolean functions exists
only for even n [8] whereas the generalized bent functions exists for every positive integer. For ¢ = 4, Schmidt
[11] studied the relations between generalized bent functions, constant amplitude codes, and Z-linear codes. The
links between Boolean bent functions [8], generalized bent Boolean functions [11], and quaternary bent functions
[6] is investigated systematically by Solé-Tokareva [14]. Recently, several properties as well as constructions of
generalized bent Boolean functions is presented by Stinica et al. [15].

A function f € B! is called generalized semi-bent if for any u € ZZ @) |Hr)| € {0, \/E} for odd n, and (ii)
|H (w)| € {0, 2} for even n. In particular, for g = 2 the semi-bent functions are also known as 3-valued almost optimal
functions, plateaued functions and preferred functions [7, 16]. These functions have lowest Walsh-Hadamard spectrum
values among the functions having 3-valued spectrum. It is not hard to show that the generalized bent Boolean
functions can also be constructed from generalized semi-bent Boolean functions which is desirable in cryptosystem.

The cross-correlation between f, g € GBj atu € ZJ is defined as Cro(u) = Yyez [T®=86@W The qutocorrelation
of f € GBLatu € Zj is Cyg(u) above, which we denote by Cr(u). The sum-of-squares-of-modulus indicator
(SSMI) [12] of f and g is defined as or, = Zx€Z§ ICf,g(x)Iz. In particular, the SSMI of f € GBI is defined by
gr= erzg |Cf(X)|2-

The modulus indicator (MI) [12] of f,g € GBY is defined as A fg = MaXyez: ICrg(w). The MI of f € GB, , is
Af = maxyezz uzo [C (W)

In Boolean case, Gong and Khoo [19] have introduced the concept of dual of a Boolean function and provided a
relationship between the autocorrelation of the s-plateaued functions and the Walsh-Hadamard Spectrum of the dual
of the s-plateaued functions. Also, if the function f € B, for n odd, is a balanced semi-bent function such that f € B,
also semi-bent, then A, = 2% and C (@) = 0 for 2n=1 _ 1 o5, that is, f has optimal additive autocorrelation [19,
Thm. 2]. Several classes Boolean functions such as Dillon-Dobbertin, Kasami, Segre hyperoval and Welch-Gong
Transformation functions for which the bounds are optimal is discussed in [19]. Several research papers are available
in literature on these indicators, for details we refer [17, 19, 22, 23] and the references of these papers. Singh et al.
[12, Thm. 4.4] obtained the optimal value of oy, and A, for the functions in a subclass of Maiorana-McFarland
class of g-ary bent functions, demonstrated that o7, = ¢*" whenever one of the function f, g is g-ary bent.

2. Properties of Walsh-Hadamard transform on generalized Boolean functions

The Walsh-Hadamard spectrum has become an important tool for research in cryptography: especially in the
design and characterization of cryptographically significant Boolean functions used in various type of cryptosystems.
Several cryptographic properties of Boolean functions are discussed in terms spectral analysis of Boolean functions,
for details we refer [9, 10, 17] and their references In this section, we provide the spectral analysis of the generalized
Boolean functions. The following lemma is the generalization of Corollary 3.3 of Sarkar and Maitra [10] (obtained
for g = 2).

Lemma 2.1. Let f, g, h € GBY such that h(x) = f(x) — g(x). Then

1

Hp(u) = o

D Hyx + wH,(x), for allu e Z4, 2.1)

n
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Proof. Letu € Z., we have

Z 7’(f(X + u)% — % Z Z é'f(y)(_l)(x+u)~y Z é'—g(z)(_l)x.z

XELy XELY yeL; 2€7;
1 () . . A p
— 5 Z Z é»f(y) g(z)(_l)uy Z(_])X (y+z) _ Z é»h(y)(_l)uy = 22H,(u).
YEZ} 2€Z] XEZ} YEZy



The derivative of f,g € GBI atu € 77 is defined as Dfg(u) = f(x) — g(x + w). In particular for f = g,
D¢(u) = f(x)— f(x+u) is defined as the derivative of f at u. In Theorem 2.1 below we provide a relationship between
Dy ,(w)-the derivative of f, g € GB; at every u € Z} and their Walsh-Hadamard spectrums which is the generalization
of [18, Theorem 1] (obtained for g = 2).

Theorem 2.1. If f,g € GBl and z € 75, then for any u € 7]

1

Hp W = 7 ;Zn(-l)*mf(x + WH,(x), and 2.2)
- 1 .
Wrx + u)W(x) = 5 ;W(-l)x Hp, W) (2.3)

Proof. Let g,(x) = g(z + X). Then we have H,, (u) = (—1)"*H,(u). On replacing g by g, and & by Dy,(z) in (2.1), we
have

Ho o) = 57 3 Hy(x+ w0

n
X€Z}

1 _
=7 DI H (x + W)

XELY
Further, using (2.2), we have
. 1 . . -
D Hp, @11 = =2 D (=1DY D (1 H(x + WH,(X)
23
2€7; 2€7] XEZy

I — , _
r D M+ WH ) ) (=D = 25 H(y + wH,().

2 XEZ) 2€7;

O

Since Dy(2)(0) = 275C 1.¢(z). The following corollary is Theorem 1 of [15], is obtained by putting u = 0 in the
above theorem.

Corollary 2.1. [15, Thm.1] We have:
(i) If f,g € GBI, then
Yuezy Cra(=D" = 2'H(X)H,(X), and Cyo(u) = ey Hy(R)H(x)(~1)"*.
Further, Cy4(u) = Cq ;(u) for all u € 73 this implies that C¢(u) is always real.
(it) Taking the particular case f = g we obtain Zuezg Crw)(=1)"* = 2”|7—(f(x)|2, and Cy(u) = erZ; I(Hf(x)|2(—1)“'x.
(iii) If f € GBYL, then f is a generalized bent function if and only if C¢(u) = 2"Sp(u).

In Boolean case, the properties of these transform can be derived from the previous theorem, and for more results
on Boolean functions, we refer [2—4].

The dual of a vector space V of Z is defined by V* = {x € Z) : x-y = Oforally € V}. The following two
theorems is the generalization Zhou et. al [17, Lemma 3 and Theorem 6] results (obtained for g = 2)

Theorem 2.2. Let V be a subspace of 75 of dimension k, and w € 7. Then for any f,g € GBI we have

Z Hy(x + u)Hy(x) = 277" Z Hp,, (W),

xeV zeV+



Proof. From Theorem 2.1, we have

D IH A WH ) =278 Y N Hp, (=1 =278 ) Hp, o) D (1)

xeV xeV zeZ} 2€7) xeV
=25 Y Hp, Wy () =277 3" Hp, oy(W).
2€7] zeV+
m
Corollary 2.2. Let f,g € GB}. Then

D IH@HX) = 2" ) Cpol@), and (2.4)

xeV zeV+

2 —n .

DUHx +w]" =25 Y (<1 Hp, ) (0) 2.5)

xeV zeV+

Let V and W be a subspaces of ZJ such that dim(W) = k and Z7 = V & W. The decomposition of f with respect
to W is the sequence {f; : z € V} of generalized Boolean functions f;, € QBZ defined on W as f,(x) = f(z + x) for all
x € W. The relationship between the Walsh-Hadamard spectrums of f, g € GB{ and the Walsh-Hadamard spectrums
of the decompositions of f and g with respect to V is presented in the following

Theorem 2.3. Let V and W be a subspaces of Zi; with dim(W) =k and Z;; = Ve W. Let{f, : 2 € Vi and {g, : 2 € V}
be the decompositions of f and g with respect to W. Then

DL H@HX) =27 > H (0H,, (0), and (2.6)
xeW+t xeV

DU =27 [H o)

xeW+ xeV

Proof. We have Cy4(1) = Zwezg W+ — 5 Syew W) = 3 Syew LI86HY ) for every A €
7. Using Theorem 2.2 with u = 0, we have

DT HOHX) =275 Hp, 0)(0) = 2" > Cpo(2)

xeW+ zeW zeW
= pk-n gf(X+y)—g(X+y+Z) — pk-n évf(x+y) év—g(X+y+Z)
2.7
=2 Y D Y Y e =07 ) H (07H, ()
xeV yeW ueW xeV
The second part is obtained by putting f = g in (2.6). U

2.1. Analysis of cross-correlation spectrum of generalized Boolean functions

The following results were shown in a different contexts in [12, 21]. One can straightforwardly infer, by modifying
those proofs that these result hold under the current notions, as well.

Theorem 2.4. Let f,g,h,k € GB., and z € Zj. Then

D CreCis+2) = " CraWCrg(v +2). 2.8)

n n
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Proof. Letz € 7. Then

D CraCi+2) = ) CroCiu+z)= ) 3 0 3 ysuenhiy

uezZl uezZy ez XeZl YEZ}
- ff (x)—h(y) évk()’+“+l)—g(x+“) — {f (x)—h(y) é«k(Y+X+“+Z)—g(“)
= Z Z [T ®-hGxv) Z FKorurn-g@) Z Cf,h(V)m = Z Crn(V)Cig(v +12)
VEZLL XL uezZy VEZ) VEZLy
O
Taking f = h and g = k in (2.8) we have the following
Corollary 2.3. Let f,g € GB}, and z € 7. then
> Cre@Cypm+2) = Y CAVC,v +2), 2.9)
uezy VEZ)
and ifz = 0, then
Tre= Y CraWCry@) = ) CraW)Cyp(w) = > CrXIC,X). (2.10)
ueZg ueZ; erg

Further, if we take g = k in (2.8), then Zuezg Cre)Cop(u +1z) = Zvezg Crn(V)Cq(v + z) forall z € Z7, and so
using Corollary 2.3, we have

Proposition 1. Let f,h € GBL, and g € GBYL be a generalized bent Boolean function, then
(1) Xuezs CreCon(u+2) = Yezn Crn(MCe(V +2) = 2" Yivezn Crn(V)So(v + 2) = 2"Crp(z)
() oy =27
() If f is generalized bent Boolean function, then ZueZg Crs)Cy s(u+2) =0 forall z € Z7 \ {0}

Theorem 2.5. Let f,g € GBI, and if g is generalized bent Boolean function, then

Ar >2% and max |C(u)|> ."w
fg = ’ UEZ;\(O} fg = 2;1 _ 1 .

Proof. From property (2) of Proposition 1, we have o, = Zuezg l(,‘f,g(u)i2 = 2%". The values of |C e will be
minimum for every u € ZJ only when they all possess equal values in modulus. Further, |Cy, ()| > O for all u € Z7.

Therefore the minimum value of Ay, is /07 ¢/2" = /22/2n = 25 that is, Apy > 25,
Further, the sum ZueZ'z’\{O} C; g(u) =22 _|C f,g(O)IZ has 2" — 1 non-negative terms on its left side, and therefore

22"—C» 0 2
maxuezz\ (0} [Crg(W] > @ . -
Corollary 2.4. If g € GB} is generalized bent and |C 4(0)| < 2%, then maxyezy\ (o} |Cr.g(W)| > 23, forall g € GBI

The relationship between the Walsh-Hadamard spectrum and the autocorrelation of any two generalized Boolean
functions.

Theorem 2.6. Let f,g € GB}, and u € 71, then we have

2 3 [Hof [Hex+ w = 37 Croc, -1 @.11)

n n
b &/4 X€Z}



Proof. Letu € Z5. Using (ii) of Corollary 2.1, we have

D IH [ [Hox+ w =272 3 3 G- 17 Y. G-

X€Zh X€Z) yeZl 2€7)
— 2—211 Z Z Cf(Y)Cg(Z)(—l)zu Z(_I)X'(y+z)
YEZ; 2€Z] XELy
=27 3T CHNC@(=1""0(y +2) = 27 ) CyIC, (=D
YEZL 2€Z) YEZ,
O
Taking f = g in the above theorem, we have the following
Corollary 2.5. Let f € B, ,. Then for any § € 7, we have
n 2 2 2 .
2" 3 [ H | [Hpx + w] = > (Crm0) (-DF (2.12)
XEZY XEZ)
Further, ifu = 0, then
n 4
or=2" 3 [H)|". (2.13)
X€ZY

The following corollary is shown in different context in [12, Theorem 4.2(a)] is obtained, in current notion, by
putting u = 0 in (2.11) and using (2.10).

Corollary 2.6. For any f,g € GBL, we have

Tre=2" Y [H| [H0 (2.14)

n
XEZY

Corollary 2.7. Let f,g € GBy, then oy, < 2.

Proof. Using (1.1) in the above corollary, we have

o= 2" ) [H o[ [Hof <20 3 [Heof ) M of = 2
X€Z} XEZ) xXeZ!

O

A generalized Boolean function f € GB} (¢ = 2", h < n) is balanced if for every k € Zg, the cardinality of the
set {x € Zj : f(x) = k} is 27 Generalized balanced Boolean function exists only if g divides 2". The two functions

f,g € GB! are said to be perfectly uncorrelated it Hy(u)H,(u) = 0 for all u € Zj. The following results were shown
in different contexts in [12, 17]. One can straightforwardly infer by modifying those results hold under the current
notion, as well.

Theorem 2.7. Let f,g € GBy, then
(1) Afg =0ifand only if f(X) — g(x + ) is balanced for every u € Z.
(2) Agg =q" if and only if f(X) = g(X + W) + a, where a € Z, for some u € 7.
3) 0<Aap, <q".

Theorem 2.8. Let f,g € GBI, then

(@) ICr4O) < opy < 2%



(b) ofg = 23" if and only if f and g both are the functions of the form Y, 4(X) = (%) u-x+dueZl,deZ,.

(c) ope=1IC f,g(0)|2 if and only if f and g are either generalized bents or perfectly uncorrelated.

In Theorem 2.9 below we proved that the four indicators oy,, Arg, 0 ¢ and A, are invariant under the affine trans-
formation as represented in (2.15).

Theorem 2.9. The SSMI and MI both of a generalized Boolean function are invariant under the affine transformation
gx) = f(xA®a)+b-x+d, forallx e 75, (2.15)

where A € GL(2,n),a,b € Z},d € Z,.

Proof. Let g1(x) = fixkA®a)+b -x+dand g2(x) = op(xA®a)+b-x+d. Then it is shown in [13] that

Ce (@) = Z‘“‘bcﬁ (@A), for all u € Z7, which implies that |Cy, ¢, (w)| = |Cy, 5, (uA)| for all u € ZJ and therefore, we
have
Ogi.e2 = T fi.fas and Dergr = Dfifee
In particular for g1 = g2 = g (i.e., fi = fo = f) we have |Cg(w)| = |Cr(uA)| for all u € ZJ implying that oy = .
Further, uA # 0 if u # 0 as A is invertible. Thus, we have A, = Af. O

2.1.1. Generalized Boolean functions with optimal value of o and 6y

Letv = (v,...,v1). We define fy(xp—p,...,x1) = f(Xn = Vpyeury Xnepsl = V1, Xy—p, ..., X1). Define the vector
concatenation of w = (uy,...,u1) € Z and W = Wy_,...,w1) € Z5 " asuw = (W, W) = (U, ..., U1, Wn_r,...,wr). The
following lemma is [15, Lemma 3]

Lemma 2.2. Letu € Z;, w € Z™". Then the autocorrelation of f € GBlis

Cruw) = > Cf, s (W),

‘
VEZ]

In particular, Cr(0,w) = Cy (W) + Cr, (W), and Cr(1,w) = 2Re[Cy, 1, (W)].

The two functions f, g € GB] said to have complementary autocorrelation if and only if C(u) + C,(u) = 0 for all
7\ {0} [15]. The following result is direct consequence of the above lemma

Proposition 2. Let f € GB} be expressed as
SO X) = (1 + x) fo(X) + X f1(X), (2.16)
where fy, fi € GB,_1. If fo and fi have complementary autocorrelation, then
Ap = 2“1212;)5 |Re[Cf0,fl (u)]|.

Corollary 2.8. Let f € GB! as expressed in (2.16), then Ap =2 MaXyez;-1 |Re[C‘,c0,fl (u)]l, if the Boolean functions fy
and f both are generalized bent.

Proof. Since fy, fi € GB,_; are generalized bent Boolean function, therefore Cy,(u) = Cr, () = Oforallu € Z’z”l \{0}.
Thus, by Lemma 2.2 we have C(0,u) = 0 forallu € Zg‘l \ {0}. Further applying Lemma 2.2 we have

Ap=  max | Cy(uy,u)|= max {| Cr(0,u)|,| Cr(1,u) [} = max | Cy(1,u) |=2 max | Cy p5(w)].
(1 WEZy XZYy™" uez;™! uezs! uez;!
O
Let n = 2m, where m be a positive integer. Suppose that E; (i = 1,2,...,2™ + 1) are m-dimensional subspaces

of Zj with E; N E; = {0}, if i # j. Recently, Stdnica et al. [15, Theorem 9] constructed a class of generalized bent
Boolean function (and refer it as generalized Dillon class (GD)), is given in the following.

7



Lemma 2.3. [15, Theorem 9] Let n = 2m and k, 1, ..., {1 be integers such that sz” =% Let F : 7y — C
be given by F(X) = ZZWH LligE (x) for all x € 7. Then the function f € GBI defined by

™ = F(x) forall x € 7 (2.17)

is a generalized bent function.

They identify a subclass of GD in gBi [15, Theorem 13] which have optimal (minimum) value the the cross-
correlation spectrum, in absolute, is given in the following

Lemma 2.4. [15 Theorem 13] Let f,g € §B4 be two Dillon type genemlzzed bent functions such that 7™ =
TSI g (x) and 89 = S g, (x) for all x € Z and R 1% =k RE e = R R et =k
then

2ma@ibi jfu £ 0

2.18
2mlk—€, l.fll =0. ( )

Cf,g(ll) = {

Remark 2.1. The results of Lemma 2.4 can be extended to at least for any even g.

Further, they generalized a result of Schmidt [11, Thm. 5.3] (obtained for ¢ = 4). The class of functions as
represented in (2.19) below is referred to as the generalized Maiorana—McFarland class (GMMF).

Lemma 2.5. [15, Thm. 8] Suppose that q is an even positive integer. Let o be a permutation on Z', and let g € GBY,.
Then the function fq, : 7 X 1)} — Zq expressed as

Fre%.¥) = 8(¥) +( )x o (y) for all x,y € 72 (2.19)
is a generalized bent. The dual of fy.q is g(o™ (X)) + (%) y - (07 (X)), that is, H, (x,y) = Z8 DY) for gl
X,y € ZJ.

Let us denote S,,(Z,) be the set of all permutations on Z7'. Define a set Py, as Py, = {(071, 02) € S;u(Z2) X Su(Zy) :
o' @ o' € S,(Z,)}. Recently, another subclass of GMMF is identified in [13, Theorem 3.2] which have optimal
(minimum) value the the cross-correlation spectrum, in absolute, is given in the following

Lemma 2.6. [13, Theorem 3.2] Suppose that q be a positive even integer. Let fs o, for, 0, be two functions in GMMF

C GBi, that is, fr, ¢,(x.¥) = g1(y) + (4 )x 1Y) and fir, ¢,(%.Y) = g2(y) + (£) X 0o(y) for all X,y € Z2, where o1, 0
are permutations on 2 and g1, 8> € GBL. Ifoy,09 € Py, then

IC ey ofiryy WV = 2", forall (u,v) € Z) X 7.

The following result follows from Corollary 2.8 and Lemma 2.6

Theorem 2.10. Let n = 2m + 1, and let the function f : 7, X Zg_l — Zg is expressed as

S, X) = (1 + 20) fo(X) + x f1(X),

where fy, fi € Qﬂgm are two GMMF type functions as represented in Lemma 2.6, that is, fy(X,y) = X - 1o(y) + go(y)
and fi(x,y) = x-m(y) + g1(y) forallx,y € Z, go, g1 € GBL and my, 7y € Py, then Af = 2%1, and oy = PR
From Corollary 2.8 and Lemma 2.4, we have following

Theorem 2.11. Let n = 2m + 1, and let the function f : Z, X Zg’l — Zy is expressed as

f(xna x)=(1+ xn)fO(X) + xnfl (X)’

where fy, fi € QB‘Z‘ are two Dillon type generalized functions such that 1°® = 212:1+ ! Yigg (X) and '™ = 212:1+ L o (X)

m m n+l
for all x € 7y and DIPRRN LN UA YAA TN /) it Zin# 14970 = %~ then np = 25, and oy = 2211,

8



Remark 2.2. Let g € GB; is obtained by f € GB; under the transformation given below

gx) = f(Ax®a)+eb-x+d, forallx € Z,, (2.20)

0,¢q/2 ifq is even

if g is odd
the generalized bent of generalized Boolean functions is preserved under the affine transformation as represented in
(2.20). The set of all the generalized Boolean functions as represented in (2.20) a complete class, specially, it is
referred to as generalized Maiorana—McFarland complete class (GWF )if f € GMMEF . Similarly, GD denotes the
complete class GD. Thus, from Theorem 2.10 and Theorem 2.11 we conclude that there exists two large classes of
generalized Boolean functions in odd variables for which the indicators o ¢, and ¢ have optimal value.

where A € GL(2,n),a,b € ZJ,d € Z,, and € = . It is shown in [15, Theorem 5] that property

2.1.2. A class of semi-bent Boolean functions with optimal value of SSMI and M1
In binary case, the modulus indicator is additive autocorrelation and SSMI is the sum-of-squares indicators. In
this section, we identify a class of semi-bent Boolean functions with optimal value of SSMI and MI in n variables
constructed from bent functions in n — 1 variables. Let n be an odd integer. Dillon [5] demonstrated that a function
f 2y x 25" — Z, expressed as
J O X) = (1 + x) fo(X) + X f1(X), (2.21)
where fy, fi € B, are bent functions, is semi-bent, and therefore, by Corollary 3.1 oy = 22+l Thus, by Corollary

2.8 for g = 2, we have the following

Corollary 2.9. The function f as constructed in (2.21) is semi-bent, and

= — n2n+l
Ap = 2:;12})_(} | Ch.ri(m) |, and op = 27",

The following proposition is direct consequence of the above corollary and Theorem 2.10.

Proposition 3. Let n = 2m + 1, and fy, fi € Boy are two Maiorana-McFarland type bent functions as given in [12,
Theorem 4.4], that is fy(x,y) = X - mo(y) + go(y) and fi(x,y) = x-m1(y) + g1(y) for all X,y € Z, where gy, g, € By,
and my, w1y are permutations on 7 such that 7151 ® 7Tl_1 is also a permutation, then the function f : Z; X Zg‘l — 7
expressed as

f(xns x)=(+ xn)fO(X) + -xnfl (x),
[ is semi-bent function with optimal values of SSMI and MI both, that is o = 221 and Ap = 27

3. Constructions of generalized s-plateaued Boolean functions

In this section, we obtain the SSMI for generalized s-plateaued functions (the function f € GB] for which
2% |H r(w)| is either O or 27 is called s-plateaued). Further, we constructed a class of generalized semi-bent Boolean
functions for odd n (1-plateaued functions) and another class of generalized semi-bent Boolean functions for even n
(2-plateaued functions), and obtained their SSMI.

Theorem 3.1. The SSMI of a generalized s-plateaued (s = 1,2, ... ,n) function f € GB,, q is 2.

Proof. Since f € GB,, q be a s-plateaued generalized Boolean function. Therefore, | (u)] € {0, 22} foreveryu € ;.
Suppose if k be the number of vectors u’s for which Hy(u) # 0. Then by Parseval’s identity we have k = 2"7*. Now,
from (2.13) we have

o= on Z | q‘lf(ll) |4= on . gn=s (2%)4 — 22n+s-

"
ueZl

In particular for s = 1,2, we have the following corollary

9



Corollary 3.1. The SSMI of a generalized semi-bent Boolean function f € B, is 22+ if n is odd, and g¥"*? if n is
even.

n=s nts

Theorem 3.2. Let n, s be two integers such that n + s is even. Let g € GBux and ¢ : 2, — 7Z,* be an injective
nts n=s -

function, then a functionf : Z,> X L, — 7L, (q is an even integer) expressed as

n—s

oy = (£)x- 0w+ g, foratt vy € 2,7 x 2 3.
is s-plateaued generalized Boolean function.

Proof. Let (u,v) € Z? X Z? , then

Hf(U, V) = 273 Z é’f(XwY)(_l)ll'XJrV'y =23 Z é’g(y)*'(%)v'y Z (_I)X'(¢(Y)+“)

n+s n—s n=s nts

(x,y)eZz% XZZZ yEZZT XEZZT
s Dy _ (3.2)
; y 23 Y, if y =47 (w)
=23 s+($)vy s, +u) = ’ ’
Zﬂ, . ¢ (@) + ) 0 otherwise.
yez,?
which implies that f is s-plateaued generalized Boolean function.
O

1 1
Corollary 3.2. Let n be an odd integer. Let g € GB =y and ¢ : 2, — Z,* be an injective function, then a function

1 1
fiZy XZ,P — Zg(qis an even integer) expressed as

F(x,y) = (g)x - (y) + g(y), forall (x,y) € Z? x Z?

is generalized semi-bent Boolean function.
Corollary 3.3. Let n be an even integer. Let g € GB 12, and ¢ : 7,> — Z,* be any injective function, then a function
f:Z, X7, — Zg(qis an even integer) expressed as

n=2

.y = ()x- 0w + s, forall x.y) € 2,7 x 7,

is generalized semi-bent Boolean function.

In Theorem 3.3 below we demonstrate that the direct sum of f, g- the two generalized semi-bent functions is
generalized semi-bent if both f and g are defined on odd number of variables.

Theorem 3.3. Let f, € GBI and f» € GBI, where r and s are positive integers. Then a function g : 7y X L5 — Ly
expressed as

gx,y) = fix) + fo(y), forallx € 7,y € 7,
is generalized semi-bent if fi and f, both are generalized semi-bent Boolean functions.

Proof. Let fi and f; be generalized semi-bent Boolean functions on Z} and Z; respectively, then [H (), [H ()] €
{0, V2} for all u € 7}, v € 73, and therefore |Hg(u, v)| = [Hp )|H,(v)| € {0,2} for all (u,v) € Z x Z5 which
implies that g is generalized semi-bent Boolean function. U

4. Constructions of generalized partially bent Boolean functions

A function f € GB! is generalized partially bent Boolean function if (2" — N¢ (2" — Ngy,) = 2", where N¢, =
lix € Z3 : Cy(x) = 0}] and Ny, (x) = [{x € Z} : Hy(x) = O}].

10



Theorem 4.1. Let f € GBL. Then

() 2" = Ng)(2" = Ngi,) 2 2", and
(ii) f is generalized partially bent if and only if (x) There exists a € Z such that Cy(u) € {0,(=1)** 2"} for all
u € Z5, and (%) |7‘(f(X)|2 is constant for all x € 7 whenever H(x) # 0.

Proof. (i) Since 'CQ,(,XN < 1for all x € Zj. Using Triangle Inequality: |z + 25| < |z1] + |z for all z;, 2> € C, we have

2" Ne, =|ix € Zy : Cp(x) # 0} 227" ) |Cyx)|

X€Zh
“4.1)
Z Z gf(Y) fyex)| _ Z gf()’) Z 'S fw| _ |7.{f(0)7_(f(0) |q_[f(0)|2
X€Zh yel YEZ, uezj
Let f; € GBI such that f(x) = f(x) + ( )x a, then we have,
Cr(x) = (=1)*™C¢(x), and Hp, (x) = Hy(x @ a) 4.2)

Thus, for any a € Zj, using (4.1) and (4.2), we have 2" — N¢, = 2" - N¢, > |H, 0 = 2”|7-(f(a)|2, this implies that

2" = Ne, 2 |7‘{f(W)|2, 4.3)
where [H;(W)* = max{{H;(x)]* : x € Z}}, and so, ||714{f((jv))|\2 < 1 for all x € Z~. Using (1.1), we have
[H (%)l )
2 él |(Hf(W)|2 - I‘Hf( w)? éﬂ O = H; ( H W (4.4)

Combining (4.3) and (4.4), we have
(2" = Nyt )(2" = N¢,) > 2" 4.5)
(if) Suppose f is partially generalized bent, that s, (2" =Ny, )(2" —N¢,) = 2", then (x) 2" =N¢, = max{|H(x)| : x € Z}}

and (xx) 2" — Ngy, = W Let a € ZJ such that [Hy(a)| = max{|[Hy(x)| : x € Z1}, and let f; € GB! such that

Ai(®) = f(x)+(%)x - a. Then by (x)

Z Cp,(x) = Z Z Fhm-fivex) _ Z Pl Z W = 2 (0P

X€Z} X€Z yel YEZ, uezZj

4.6)
= 2{H@P = 22" = Ne) = 2'2" = Ng,) = ), 2",
x:Cr, (x)£0
which implies that Cy, (x) = 0 or 2" because of |C, (x)| < 2". Now, using (4.2) we have C(x) = 0 or (-1)**2".
Next, by assumption (xx) and (1.1), we have
on |H r(x)|? )
2" — Ngy, = 1= = |,

H Z max{|H(x)? : x € Z} Z (|7-(f(a)|2 4.7

x:Hp(x)#0 xeZ)
which implies that |‘Hf(x)|2 |H f(a)|2 for x € Z and Hy(x) # 0. This shows that |?{f(w)|2 is constant for w € Z]
and Hy(w) # 0.

Conversely, suppose that there exists a € Z7, such that for any u € Z, Cr(u) is either 0 or (-1)"? 2", and |H f(x)|2
is a constant for x € Z and Hy(x) # 0.

Assume that E = {x € Z] : Cr(x) = 2"(-1)**}, fi(x) = f(x) ® a - x, then from (4.2), C,(x) = 0 or 2". Thus,
E = {x €7} : Cs(x) = 2"}. First, we show that E is subspace of Z. Suppose u,v € E, then C¢(u) = 2"(-1)"* and

11



Cp(v) =2"(=1)"?, thatis f(x®u) = f(x) + (%)u caand f(x®V) = f(x) + (%)V -a for all x € Zj. Therefore,

Cruev) = Z F-feuey) _ Z - f(xowey)

X€Z} X€Zh

, . 4.8)
— Z é,f(x)—(f(x+u)+(§)v-a) — (—l)v'aCf(ll) — 2”(_1)(U®V)~X’
XEL)
implies that u ® v € E. This proves that E is subspace of ZJ. Using (ii) of Corollary 2.1, we have
(H@F =27 ) CA=1* = Y (=) = |Elpp-(2), forallz € Zj, “9)

X€Zj xeE

which implies that H;,(z) # 0 whenever z € E*, thatis, |[EY| = 2" — N(Hfl. From (4.2), it is clear that the Walsh-

Hadamard spectrums of f and f; are same. This implies that |E*| = 2" — Ny, and |H f(x)l2 is a constant for x € Z]
and Hy, (x) # 0. Now, using (1.1) in (4.9), we have

2" = |E| Y. ¢ps(@) = |El ) 1= |EIE*] = 2" = No,)(2" = Ny,).

2€7} zeE+
This completes the proof. O

It can be easily conclude that the Walsh-Hadamard spectrum as well as the autocorrelation spectrum of a gener-
alized Boolean function is invariant, in absolute value, under the affine transformation as represented in (2.15) this
implies that (2" — N¢,)(2" — Ngy,) = (2" = Nc, )(2" — Ngy,). Thus we have the following

Proposition 4. The property of generalized partially bent of the generalized Boolean functions is invariant under the
affine transformation as represented in (2.15).

Proposition 5. Let f € GB} be a generalized partially bent Boolean function. E r=1{xeZ: Crx) =2"(-1)*},
ErN EfL = {0}, and a € 7] as defined in Theorem 4.1. Then f(X) is equivalent to the addition of a generalized bent
function g : 257" — Z4 and an affine function yra : 73 — Z, of the form ya(X) = (%) a-x, forall x € Z, where m in
an integer such that |E| = 2™,

Proof. If f € GB} is generalized bent, that is, E; = 0. In case the proof is trivial. Assume that f is not generalized
bent, and hence E; # 0. By (4.8) E is a subspace of ZJ, and so, without loss of generality, assume that Ey = ZJ', 1 <

m < n. Since 7 = 7' ® 75", therefore, there exists a; € Z7' and a, € ZJ™" such that a = a; + a,. Thus, by property
of Ef =77, f(y+u) = f(y) + (%) u-a forallu e Z7, and y € Z;™™. Thus, f(x +u) is an affine function restricted in
7.

? Next, we show that f is generalized bent Boolean function restricted within Zg"”. Letx,ue Zg. Then there exists
Xi,uy € Z, and X, u, € Z47" such that X = X; + X, u = u; + u,. Now, f(x) + (%)x ‘u = f(x] +X) + (%) ((x; +X2) -
(U +w)) = f(x2) + (g) a-x; + (g) (X1 - Uy + X - W) = f(X2) + (g) (X2 -wp + X; - (a; +uy)). The Walsh-Hadamard
transform of f atu € Z7 is

[H(u) = -4 Z évf(X)+(%)X'“ =273 Z Z é’f(XZ)"'(%)(XZ'“Z"’XI'(a]+Ul))

xeZj X|EZY x€Z5™"

—n3 f(X2)(_1\X2t2 _1y%i-@ituy) _ 2 f&) 1y

=278 ) Jenpe Y (- =2% Y 1 g (uy + ay) (4.10)
Xp€Z57" x €2 X2 €Z5"

= ﬁﬂfzgw (up)do(u; + ay),

where fzz-» denotes the restriction of f to Z5™. Since f is generalized partially bent Boolean function. By Theorem
2
4.1, the value of |‘H Fonem (u2)| is constant and not equal to zero for all uy € Z5™", that s, |‘H Fonem (u2)| = ¢ # 0 for all
2 2
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u; € Z57". Now, using (1.1), we have

=Yl = Y [ Hewf =2 Y 1=2frm =2, @1D)

uezZj (), w)eZYXZE™ weZy ™" uy=a;

implies that £ = |7{ Fgm (uz)| = 1 forall w; € Z5™. Hence fz;n € G8B!I_, is generalized bent Boolean function.

Finally, we conclude that g is the addition of the generalized bent functions restricted with in Zg"”, and an affine
function of the form i, restricted in Z7'. O

Remark 4.1. Let f be a generalized partially bent Boolean function as constructed in Proposition 5, then 6y = 27,
and oy = 2+,
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