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Abstract

Users frequently reuse their passwords when authenticating to various online services. Com-
bined with the use of weak passwords or honeypot/phishing attacks, this brings high risks to
the security of the user’s account information. In this paper, we propose several protocols that
can allow a user to use a single password to authenticate to multiple services securely. All our
constructions provably protect the user from dictionary attacks on the password, and cross-site
impersonation or honeypot attacks by the online service providers.

Our solutions assume the user has access to either an untrusted online cloud storage ser-
vice (as per Boyen [14]), or a mobile storage device that is trusted until stolen. In the cloud
storage scenario, we consider schemes that optimize for either storage server or online service
performance, as well as anonymity and unlinkability of the user’s actions. In the mobile storage
scenario, we minimize the assumptions we make about the capabilities of the mobile device: we
do not assume synchronization, tamper resistance, special or expensive hardware, or extensive
cryptographic capabilities. Most importantly, the user’s password remains secure even after the
mobile device is stolen. Our protocols provide another layer of security against malware and
phishing. To the best of our knowledge, we are the first to propose such various and prov-
ably secure password-based authentication schemes. Lastly, we argue that our constructions
are relatively easy to deploy, especially if a few single sign-on services (e.g., Microsoft, Google,
Facebook) adopt our proposal.

Keywords: Password-based authentication, dictionary attacks, malware, honeypots, privacy, mobile.

1 Introduction

A recent study [26] found that the average user logs into 25 different online services in the course
of a three month period. The same study found that the average user has only 7 passwords, and
reuses them for about 3 accounts on average. To make things worse, users frequently forget their
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passwords, and try to login via trial-and-error. This means that a malicious online service would
learn not only a user’s password to that service, but to many other services, possibly also through
a cross-site impersonation attack. Even “trusted” services may mount such attacks. For example,
in 2004, the CEO of Facebook allegedly used Facebook login data to access the private emails of
some business rivals and journalists [20].

In a honeypot attack, Bob would create an online service, Bob.com, and convince Alice to create
an account on it. Bob.com might even provide some useful service, but the real goal of the honeypot
would be to harvest as many usernames and passwords as possible. Bob would then try to use this
information to login to other services such as bank accounts. Even if Bob.com was honest, hackers
might try to break into Bob.com user database and steal user login data. Bob.com might also leak
the information accidentally (e.g., lost company laptops). Analysis of a breach suggests that the
user passwords then can be recovered easily via dictionary attacks by the hackers [34].

Even if Bob.com is an honest online service with strong security precautions, Alice still has
to worry about potential malware running on her computer. She can become the victim of a
phishing attack (where a malicious website impersonates Bob.com), a key logger running on a
public terminal, or a virus on her friend’s computer.

In this work, we present several solutions to the problem of secure password authentication.
Our solutions have three key features:

1. Alice has exactly a single password that she can use with all online services (hence the name
single-password authentication – SPA).

2. No online service ever learns Alice’s password, or any deterministic function of Alice’s pass-
word. In particular, no online service ever learns enough information to impersonate Alice
with any other service.

3. Alice’s user experience is simple and similar to the typical password login experience she is
already used to.

We accomplish these three goals with the help of a storage device. We consider two scenarios. In
the first scenario, the storage device is actually an online cloud service – Carol.net. Alice distrusts
Carol.net as much as she distrusts Bob.com. Yet, as long as Carol and Bob do not collude,
Alice’s password is safe. For simplicity, we describe our protocols assuming Carol and Bob do not
collude (e.g., Carol is Microsoft and Bob is Google), but in Section 6 we show how to relax this
assumption. In our second scenario, where Alice has a trusted mobile device (e.g., a smart-phone),
Alice’s password and online accounts are safe even if an adversary (except Bob, since otherwise it
means the storage and the online service are colluding) steals her mobile device. Note that such
a helper storage means that Alice may use any computer to login to her accounts (in contrast to
password managers that require installation on each computer Alice would like to use).

Our cloud-based solutions are based on Boyen’s Hidden Credential Retrieval (HCR) proto-
cols [14]. HCR lets a user securely store a random value on an untrusted server. Due to the
properties of the HCR scheme, only the user who knows a short password can retrieve the data.
An adversary who does not know the password cannot launch a dictionary attack to retrieve the
secret data because the adversary has no way to test whether the data it retrieves is the correct ran-
dom value via offline means. The adversary may then try to mount an online attack, but Bob.com
will block his attempts after several unsuccessful tries, since by assumption they are not colluding.
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Our mobile SPA constructions only assume that the client computer has a keyboard, monitor,
and connection to the Internet. Furthermore, we make minimal assumptions about the mobile
device capabilities (a keyboard, a display, and a camera/microphone or SMS/Internet connection).
Instead of trying to implement heavy-weight cryptography on the mobile device, we use only simple
cryptographic primitives such as symmetric encryption and MAC. We leverage a crucial observation
in our constructions: It is easy to pass a relatively large amount of data (≥ 128-bits) from the client
computer or the server to the mobile device.

Related Work: Establishing a secure authenticated channel is a well-studied problem [5]. Au-
thenticated key exchange (AKE) goes back to the Diffie-Hellman authenticated key exchange [23].
Once the server and the client establish a shared secret key, it is straightforward to create a se-
cure communication channel. Today, common protocols like SSL give the choice of client-side
authentication and/or server-side authentication.

We are interested in mutually authenticated channels that require the client to memorize only a
small amount of information, i.e. a password. In Password-Authenticated Key Exchange (PAKE),
the client and the server start with a shared password known to both. The earliest example of PAKE
is Bellovin and Merritt’s Encrypted Key Exchange (EKE) [6], and there are many variations [52, 35].
Since we are worried about malicious servers and cross-site impersonation, we require that the
server never learns the client’s password.

Asymmetric Password-Authenticated Key Exchange (APAKE), attempts to remedy this prob-
lem. Only the client knows the password, while the server stores a one-way function of the password
[47, 7, 28]. However, APAKE schemes are still vulnerable to dictionary attacks by the server, or by
hackers stealing information from the server.

Boyen [14] shows that any password-based authentication protocol that involves only two parties
(the client and the server) is vulnerable to a dictionary attack by the server. The server can always
try every single possible password to see if it allows a successful authentication. The best that a
PAKE/APAKE scheme could hope for is to increase the cost of the dictionary attack. Boyen’s
HPAKE scheme [15] lets the client control the cost of a dictionary attack; the client chooses a
security parameter τ , and performs θ(τ) work during registration and authentication. However, as
long as τ is polynomial, which must be the case to have an efficient client, so is the cost to the
server to launch a dictionary attack.

One way to overcome the inherent limitations of a two-party password-based authentication
protocol is to add more parties to the protocol. This can be done by having the client authenticate
with multiple servers. Some systems, e.g., by Ford and Kaliski [27], require all the servers to
participate in every authentication, while others systems, e.g., by MacKenzie et. al. [40], require
only a subset of k out of n servers to participate. All such schemes require a prior setup where
the servers exchange keys. In our cloud SPA constructions the cloud storage and the online
service do not need to interact in any way, or even be aware of the others’ presence.

Another option is to add a trusted mobile device that the user carries [46, 41]. Devices such
as smart cards eliminate entirely the need for password-based authentication. However, they do
not scale well to multiple independent online services. Dedicated hardware devices (such as key
fobs) are usually tied to one online service (e.g., corporate network login for employees); any such
solution would result in the user carrying many such devices. In addition, smart card readers are
not standard on all machines and may not be present on public terminals (such as those in hotels
or airports). The same problem holds for other hardware token devices that require a physical or
wireless communication channel with the client computer. Many such solutions assume tamper-
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proof hardware, and mainly target phishing attacks rather than dictionary attacks. Our mobile
SPA protocols assume only standard hardware, and are provably secure even if the mobile
device is stolen and its contents are revealed (no tamper-resistance required).

Our constructions focus on achieving authentication rather than authenticated key exchange.
There exist many protocols for achieving a secure channel between two parties given an initial set
of secrets; TLS, SSH, and Kerberos are pervasive examples. Instead of creating a new secure channel
protocol that is unlikely to be adopted, we propose practical schemes that are easily deployable with
existing infrastructure.

Finally, other attempts to provide single-password authentication fail to provide complete security
against dictionary attacks by the server or hackers hacking into the server, since they lack formal
definitions and proofs [53, 29]. For example, the SPP scheme [29] assumes the users can remember
long and random passwords; otherwise the scheme is insecure against dictionary attacks. It is
possible to use only the information known to the server to mount a dictionary attack, since
the server also stores the randomness used in the hash function (see our observations below).
Unfortunately Imperva analysis shows that half of the user passwords are already susceptible to
dictionary attacks [34]. In the SOKE scheme, the authors admit that using the same password for
multiple servers makes it even easier to mount dictionary attacks [1]. Recent industrial solutions
trying to secure the server-side password databases [50] make it harder but not impossible to mount
dictionary attacks. The closest formalization to our technique is the virtual soft-token idea [49],
but again without provable security against dictionary attacks. Our constructions are all provably
secure against dictionary attacks, and it is possible that the single password that is used is
simple, as long as it is hard to guess (i.e. secure against social attacks) (e.g., not so obvious
as a birth date).

While we provide provable guarantees against many common attacks, we do not fully protect
against man-in-the-middle attacks or malware. If the adversary can successfully mount a man-in-
the-middle attack (e.g., via attacking SSL, secure DNS, or certificates, or by installing malware
on the machine used), the the adversary may steal a single session in our mobile-based solutions.
This is a problem inherent in today’s world, and would require modifications in network protocols
with support from browsers and operating systems. Yet, we make sure to protect the user’s
persistent, long-term password even under successful man-in-the-middle attacks or
malware.

Our contributions may be summarized as follows:

1. We formally define single-password authentication schemes, and security against attacks by a
malicious server, or a malicious storage, or an external adversary, both in cloud- and mobile-
based scenarios.

2. We present, to the best of our knowledge, the first provably-secure single-password authenti-
cation schemes with various performance/privacy/usability considerations.

3. Our cloud-based solutions do not require that multiple servers need to communicate with, or
even know each other, and thus can be easily deployed via independent vendors.

4. Our mobile-based solutions can work with current standard cell-phones or smart-phones, and
remain secure even when the device is stolen.

5. Overall, we propose methods to (completely or partially) protect against dictionary attacks,
honeypot attacks, cross-site scripting attacks, phishing attacks, and malware. To
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the best of our knowledge, such a comprehensive proposal on password-based authentication
have not been done before.

To enable these contributions, we make three key observations:

1. Password-based encryption is inherently susceptible to dictionary attacks. Therefore, simply
using a master password to encrypt all other passwords do not constitute a solution. The
key idea we use is the fact that password-based encryption is insecure unless the
encrypted input is indistinguishable from random.

2. While offline dictionary attacks are very easy to mount and fast, online dictionary attacks
are inherently slow and easy to protect against. The standard mechanism in use today (lim-
iting the number of unsuccessful attempts) is enough to successfully thwart online dictionary
attacks. Thus, in our solutions, we make sure that the only way of testing correct-
ness of the decryption of a password-based encryption is online through trying to
login to the server (i.e. in cryptographic terms, the number of queries that can be made to a
distinguishing oracle is limited to some constant).

3. Current authentication protocols, where there is no randomization by the client or the server,
are doomed to be susceptible to dictionary attacks (by the server or hackers hacking into the
server), since the server has a deterministic function of the client’s password (see also [31,
13]). To overcome such a limitation, the authentication protocol must be a challenge-
response type protocol where the server never learns any deterministic function of the
client’s password.

2 Preliminaries

We say that neg(k) is a negligible function in k if ∀c constant : ∃K finite : ∀k > K : neg(k) < k−c.
The notationm← {0, 1}k denotes picking a valuem uniformly at random from the space of all k-bit
strings. 1k denotes a k-bit string of ones. The symbol ⊕ denotes bitwise exclusive or operation. We
write ⟨a, b⟩ to denote a database with columns of the types of a and b. For simplicity, we sometimes
pick a row (a, b) from the database ⟨a, b⟩ that matches a particular value a.

A function that can be executed by a single party is denoted Function(input) →
(output). To denote a two-party protocol, we write {Alice(inputA),Bob(inputB )} →
{Alice(outputA),Bob(outputB )}. This means that Alice executes the protocol with inputA and
receives outputA and Bob executes the protocol with inputB and receives outputB . If one of the
players has no input (or output), we may omit writing.

Since users can typically remember only a short low-entropy password, we will often define
security in terms of two parameters: k which will be large (e.g., 80 − 128), and ℓ, which will be
smaller (e.g., 30− 40). We will use m≪ k to emphasize that the value m is much smaller than the
value k. The notation ProbGuess(N) represents the probability that an adversary can guess the
user’s password in N tries. In some cases, ProbGuess(N) will present an inherent upper bound on
the security of the authentication scheme, attacked through social measures or dictionary attacks.

Definition 1 (Probability of Guessing). Let Adv be a probabilistic polynomial time (PPT) adversary
that has some apriori knowledge of how a user chooses a password during UserGen. We define:
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ProbGuess(N) = Pr[(name, pwd)← UserGen(1ℓ);

(pwd ′
1, . . . , pwd

′
N )← Adv(1ℓ,name) :

pwd ∈ {pwd ′
1, . . . , pwd

′
N}]

Since pwd need not be chosen from a uniform distribution, ProbGuess(N) ≥ N/2ℓ.

One may consider an alternative definition where the adversary gets to adaptively query a
yes/no oracle with N different passwords, and then has to output a guess. This definition is
equivalent to Definition 1. The optimal strategy for an adversary without a yes/no oracle is to
output the N passwords with which it would have queried the oracle had it said “no” each time.
The optimal strategy for an adversary with a yes/no oracle is to keep querying until either the
oracle says “yes” or it runs out of guesses (limited to N). Since the adversary stops when he finds
the correct password, this definition is equivalent to the adaptive version, because the adversary
may assume the oracle’s answer is “no” without loss of generality.

Note that we do not restrict the probability of guessing a password in any manner. Thus, it
may even include social attacks, which, in general, have very high probabilities of guessing the
password correctly. Obviously, no password-based authentication mechanism can be foolproof to
such attacks. But, what we provably show is that our system makes sure the advantage of the
adversary in addition to any such attack is negligible.

Digital Signature schemes are made up of three PPT algorithms: SigKeyGen(1k) generates a
secret signing key ssk and a public verification key svk . Sign(ssk ,msg) generates a signature sig on
the message msg using the secret key ssk . SigVerify(svk ,msg , sig) outputs accept if sig is a valid
signature on msg given the public verification key svk , outputs reject otherwise.

A digital signature scheme must be secure against an (adaptive) existential forgery attack. The
adversary is given the verification key svk and an oracle that will sign any message of the adversary’s
choice, adaptively. No PPT adversary should be able to output a valid message-signature pair
(msg , sig) such that the verification function SigVerify(svk ,msg , sig) will accept and the oracle has
not previously given the adversary any signature on msg .

Message Authentication Code (MAC) is the symmetric key version of a digital signature
scheme. It has the same protocols as above, except MACKeyGen(1k) outputs just one key (i.e.
ssk = svk). The definition of security is the same as for digital signatures, except that the adversary
does not see svk , since it is secret.

Blind Signature is an extension of digital signatures that allows a user to receive a signature
on a message without revealing the message to the signer. BSigKeyGen generates a signing key bsk
and a verification key bvk . The signing algorithm is denoted as BSign(bsk ,msg), which corresponds
to the interactive protocol {Signer(bsk),Receiver(msg)} → {Receiver(sig)}. To verify the resulting
signature, one runs BSigVerify(bvk ,msg , sig). The security properties are the same as for digital
signatures, with the addition that BSign is a secure two party computation scheme (i.e. the inputs
of the parties remain private, and the output is given to the user). Our constructions require
unique blind signatures, such as those due to Boldyreva [10], that allow only one valid signature
per key-message pair (bsk ,msg). We furthermore require that the blind signer does not learn the
signature (in addition to not learning the message). The Boldyreva [10] blind signature has this
property also.

Symmetric Encryption schemes consist of three PPT algorithms: EncKeyGen(1k ) generates
a secret key esk . The encryption algorithm Encrypt(esk ,msg) encrypts the message msg using the
secret key esk and outputs a ciphertext ctext . The decryption function Decrypt(esk , ctext) uses the
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secret key esk to decrypt the ciphertext ctext and outputs the original message msg . For security
definitions, see e.g., [36].

Encryption schemes typically need strong (e.g., 128-bit) secret keys to ensure security. Our con-
structions frequently use short ℓ-bit passwords as the encryption key. As a result, one inherently
expects less security from such a scheme. One way to get around this dilemma is to encrypt k -bit
random messages, in the hopes that the inherent “randomness”’ of the message will prevent a dic-
tionary attack. However, it seems there is no straightforward reduction from secure password based
encryption to semantic security. Below we present what it means for a password-based encryption
scheme to be secure, borrowing ideas from the definition of security of symmetric encryption.

Definition 2 (Secure Password-based Encryption). A password-based encryption scheme is secure
against dictionary attacks under random messages if ∀ PPT adversaries Adv the following holds:

Pr[msg ← {0, 1}k ; (pwd0, pwd1, state)← Adv(1k , 1ℓ); b← {0, 1};
ctext ← Encrypt(pwd b,msg); b′ ← Adv(1k , state, ctext) : b = b′] = 1/2 + neg(k)

Consider a commutative encryption scheme, where for any choice of random coins r,
Encrypt(esk ,msg , r) = Encrypt(msg , esk , r). In this case, semantic security of an encryption scheme
does imply secure password-based encryption (we do not provide a full proof here for the sake of
space, but we hope the reader sees that it is relatively straightforward). One example of such an
encryption scheme is the one-time pad, where Encrypt(esk ,msg) = esk ⊕msg .

Note that, even though we defined secure password-based encryption using a single message, it
can be easily extended to a multi-message definition. A standard hybrid argument is enough to show
that the single-message security implies multi-message security. Briefly, assume adversary A breaks
single-message security. Then, adversary B, given n messages, guesses a value j between 1 and n,
and sets the single message for A to be the jth message. B then forwards to its challenger the same
passwords A provides. Upon receiving n challenge ciphertexts, B forwards the jth ciphertext to A
as the challenge. Finally, B outputs whatever A outputs. It is easy to see that probability of success
for B is at least 1/n times the probability of success of A, and thus if A succeeds in breaking the
single-message security with non-negligible probability, then B breaks the multi-message security
with non-negligible probability.

Throughout our paper, we assume that the secret keys for the digital signature schemes and
message authentication codes used are indistinguishable from random values. For example, in DSS
[44] the signature private key is a random integer up to the order of the group that is being used,
and for MAC constructions using HMAC [43], the key is a random string of length equal to the block
length of the hash function. Luckily, mostly the block lengths of encryption and MAC schemes
are compatible, and the orders of the groups used in DSS are mostly a multiple of that block
size, therefore preventing padding that makes the decryption of the encrypted signature/MAC
key distinguishable. In particular, no deterministic padding scheme should be used, since
padding can help the adversary distinguish the decryption from random.

Whenever necessary, hash functions are employed to make the lengths match, and are used as
random oracles as in password-based encryption. We assume that SSL connections are always in
use between the client and the server or the storage, and therefore the messages never leak to a
third party. Moreover, both the server and the storage provider limit the number of attempts to
prevent online dictionary attacks (see [12] for real world analysis of these assumptions).
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2.1 Hidden Credential Retrieval

Boyen [14] presents a scheme for storing and retrieving data from an untrusted online storage
provider. The user has a trusted client, and is capable of remembering only a short password. The
storage provider is assumed to be potentially malicious. Our constructions use a modified version
of Boyen’s scheme as a building block:

Store {Client(1k , pwd , data)} → {Storage(id , ctext , bsk)}

1. The client starts by generating two key-pairs; one for blind signature (bsk , bvk) ←
BSigKeyGen(1k) and one for digital signature (ssk , svk)← SigKeyGen(1k).

2. Afterward, the client computes a blind signature value sig ← BSign(bsk ,Hash(pwd)) and
encrypts the data using hash of this signature: ctext ← data ⊕ Hash(sig).

3. The client sends her blind signature signing key, the encrypted data, and an identifier
(id , ctext , bsk) to the storage.

Retrieve {Client(pwd), Storage(ctext , bsk)} → {Client(data)}

1. The client and the storage execute the blind signature protocol. The storage acts as the
signer using bsk as the signing key. The client acts as the receiver, using Hash(pwd) as
the message. The client gets the signature sig = BSign(bsk ,Hash(pwd)) as its output.

2. The storage sends the ciphertext ctext to the client.

3. The client computes the decryption of the ciphertext as data ← ctext ⊕ Hash(sig).

Theorem 1 (Boyen’s Storage Protocol [14]). Any PPT adversary that makes T impersonation
queries succeeds in recovering the password with the following probability

Pr[Adversary obtains password] ≤ ProbGuess(T ) + neg(k)

Boyen defines impersonation queries in terms of an adversary either impersonating the storage
to the client (“insider” attack) or impersonating the client to the storage (“outsider”) attack. The
adversary also has access to oracles for testing passwords. We have simplified the notation to
consider all types of queries as an impersonation query. In Boyen’s original definition [14], the
adversary wins if it is able to recover the stored credential, called sk , which is a k -bit secret key.
This is equivalent to learning the password, since given the credential, it is possible to launch an
off-line dictionary attack and learn the password, or given the password, it is easy to learn the
credential.

As Boyen brilliantly notes, any mechanism between Alice the client and Carol the storage
provider during the retrieval phase must not output any success or failure signals to either party.
Any such indicator output will enable Carol to perform offline dictionary attacks. Furthermore,
methods other than blind signatures can also be used in this phase (see [14] for a good overview of
such methods).
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Figure 1: SPA Protocol. The registration phase is presented above the dashed line, and below it is
the authentication phase.

3 Single Password Authentication

An SPA protocol lets a user Alice register and authenticate with multiple online services using the
same persistent password. In doing so, Alice may employ an untrusted cloud provider, or a trusted
mobile device, as storage. The goal of an SPA protocol is to protect Alice’s long-term password
from online services, storage providers, and external adversaries.

Figure 1 presents an overview of our protocols. The goal of the registration phase is to let
Alice register with Bob and store her secret securely at Carol. First, Alice generates a random
strong secret key (e.g., k -bits), and a verification mechanism associated with it (e.g., asymmetric
keys for a digital signature scheme or symmetric keys for a MAC scheme). Then, she registers
the verification mechanism with the server. Optionally, she can contribute with her password
(without revealing it to Bob), and Bob can contribute with his own secrets, and Alice can get some
random-looking identifier at the end of the protocol.

In the same phase, Alice also needs to register with Carol. The idea is that Alice will store
her strong secret that looks random, encrypted using her password, on the storage provider with a
random-looking identifier. Furthermore, the choice of the identifier is important in terms of privacy
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of Alice. We will present several options for our protocols, presenting a performance-privacy trade-
off.

Once the registration with the server and the storage is done, the authentication phase may
take place as many times as requested. For Alice to login to Bob.com, first Alice identifies herself
to Bob, then Bob will challenge her, and to respond to that challenge Alice needs to retrieve her
strong secret from Carol. Depending on the scheme, Alice can run the authenticate protocol with
Bob and the retrieve protocol with Carol in parallel. Yet, in some schemes, Alice first needs to
obtain the random-looking identifier with the help of Bob, and use it to retrieve-and-decrypt her
secret from Carol. Finally, Alice responds to Bob’s challenge using the secret she retrieved from
Carol.

We use slightly different trust models in the case of cloud storage versus a mobile storage device.
In both scenarios, Alice completely trusts her computer (browser) during the registration phase of
the protocol. However, in the mobile storage scenario, the browser is assumed to be adversarial and
may collude with the online service during the authentication phase. This is to model situations
where (1) Alice might be using an untrusted (public) terminal, (2) the online service might send
malicious code to Alice’s browser. As a result, we have to distinguish between the user Alice and
the computer client she uses.

3.1 SPA Protocol

An SPA protocol has three types of players: Clients who want to use a password to access services,
servers who register and authenticate clients, and storage providers who store data for the clients
and assist with the registration/authentication process.

An SPA protocol consists of the following algorithms:

UserGen : {Client(1ℓ)} → {Client(name, pwd)}. This algorithm is run by the client to generate a
username name and an ℓ-bit password pwd .

Register : {Client(1k , name, pwd , servername), Server(1k , servername)} → {Client(sk , id),
Server(name, state)}. Using this two-party protocol, the client registers with the server.
At the end, the client gets as output a secret key sk and a unique identifier id . The server
stores (name, state) in its database ⟨name, state⟩.

Store : {Client(pwd , sk , id)} → {Storage(id , data)}. The client uses its password pwd and the
output it got from the registration protocol to compute data (generally an encryption of sk).
The client sends (id , data) to the storage provider for safe keeping. At this point, the client
may forget/erase (id , data, sk), but remembers (name, pwd).

PreAuth : {Client(name, pwd , servername), Server(servername, ⟨name, state⟩)} → {Client(id ,
chal), Server(state, chal)}. The client uses its username name and password pwd to re-
trieve its identifier id from the server. The server retrieves the state associated with the
client’s username from its database. The server sends a challenge chal to the client, and
remembers it.

Retrieve : {Client(id , pwd , chal), Storage(⟨id , data⟩)} → {Client(sk)}. The client uses its identifier
id and password pwd to retrieve its strong secret key sk from the storage provider. The
storage provider uses its database ⟨id , data⟩ as input, and gets no output.
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Authenticate : {Client(sk , chal), Server(state, chal)} → {Server(accept/reject)}. The client uses its
strong secret key sk to prove to the server that it owns the account corresponding to state,
by responding to the challenge chal . The server outputs accept or reject.

It is important to note that all our definitions require that the adversary has negligible
advantage in the security parameter k and not the weaker password-security parameter
ℓ. This is the key property of our definitions and schemes that provably prevent dictionary attacks.

3.2 Secure Cloud SPA

A cloud SPA uses storage providers that are available online. We assume that when the client
accesses the cloud storage provider, the client is guaranteed to connect to the storage provider to
which it intends. This may be achieved through secure DNS systems and SSL connections. In
addition, we assume the client’s computer is trusted (i.e. free of malware). Later, when we present
mobile SPA, we show how the user can be protected even if her computer is infected.

Both the server and the storage provider may be malicious; however, they may not collude (we
present a solution to the collusion problem later). Besides, to prevent online dictionary attacks,
as explained in Theorem 1, we assume that the server limits the number unsuccessful Authenticate
attempts and the storage provider limits the number of Retrieve requests that a client may make
(note here that the storage provider does not know whether or not those requests were successful,
but needs to limit their frequency anyway to thwart online dictionary attacks). We now formalize
these notions.

Definition 3 (Secure Cloud SPA). A cloud SPA protocol is secure if it provides Cloud Honeypot
Security and Cloud Storage Security (defined below).

(T,N)-Cloud Honeypot Security Game. In this game, a malicious server tries to learn an
honest client’s password. There is one honest client who has access to N different honest cloud
storage providers. The adversary plays the role of the server. It can ask the client to execute
Register, PreAuth, and Authenticate using any of the cloud storage providers. The adversary is
also allowed to execute the Retrieve protocol directly with any storage provider, up to T times
per provider. (There is no point to allowing the adversary to execute Store because the adversary
can simulate the result of any Store request without the assistance of a storage provider). In the
following game, there are three phases, performed in the presented order, where the challenger
plays the roles of the client and the storage providers.

Setup. The challenger creates username and password (name, pwd) ← UserGen(1ℓ). The chal-
lenger sends name to the adversary.

Play. The adversary interacts with the client and storage provider via the following four protocols.
The challenger maintains a sessionid that uniquely identifies each interaction.

PlayRegister(servername, i). The client must register with a server chosen by the adversary.
The adversary generates servername and sends it to the challenger. Then the chal-
lenger and adversary execute Register, where the challenger plays an honest client with
input (1ℓ,name, pwd , servername) and the adversary plays the server. After the Register
protocol completes, the challenger simulates the Store protocol between the client and
the storage by computing data ← Store(pwd , sk , id) and storing (id , data) in database
Storage[i]. If Storage[i] already has an entry with id , the challenger overwrites it.
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PlayPreAuth(servername, sessionid). The adversary asks the client to run the PreAuth pro-
tocol and plays the server role. The challenger plays the role of an honest client and
executes the PreAuth protocol with input (name, pwd , servername). After the PreAuth
protocol completes, the challenger stores (sessionid , id , chal) in its PreAuth database.

PlayAuthenticate(sessionid , i). The adversary asks the client to run the Authenticate protocol.
The challenger looks up the id associated with the sessionid in its PreAuth database.
Then the challenger simulates the Retrieve protocol between the client and the storage
provider Storage[i], obtaining sk . The challenger then uses sk to execute the Authenticate
protocol with the adversary.

PlayRetrieve(i). The adversary interacts directly with the ith storage provider. For each
i ∈ [1, N ], the adversary is limited to call PlayRetrieve(i) at most T times. The challenger
plays the role of an honest storage provider and executes Retrieve using the database
⟨id , data⟩ of Storage[i] as its input.

Output. The adversary outputs his guess pwd ′ for the password. The adversary wins if pwd ′ =
pwd .

Note that the adversary can interact with N cloud storage provider T times, and has one
more try during the Output phase of the game (TN + 1 guesses in total). After each Retrieve
interaction, the adversary can check whether or not he guessed the password correctly, therefore
making adaptive guesses. Since pwd is a short (i.e. ℓ-bit) secret, the adversary can guess it with
probability ProbGuess(TN + 1) ≥ (TN + 1)/2ℓ.

Definition 4 ((T,N)-Cloud Honeypot Security). We say that a cloud SPA has (T,N)-Cloud Hon-
eypot Security if no PPT adversary can win the (T,N)-Cloud Honeypot Security game with proba-
bility more than ProbGuess(TN + 1) + neg(k).

(T,N)-Cloud Storage Security Game. In this game, a malicious storage provider tries to
impersonate an honest user to an honest server. The adversary plays the role of the storage
provider, while the challenger plays the role of the client and N different servers. The adversary
can interact with the client polynomially-many times (asking the client to store and retrieve), and
can make T PreAuth and Authenticate queries to each server.

Setup. The challenger computes (name, pwd)← UserGen(1ℓ), but discards the name.

Play. The adversary interacts with the client and online service via the following three protocols.

PlayStore(i,name, servername). The client must register with a server chosen by the adver-
sary using a username chosen by the adversary, and store the result. The challenger
simulates the Register protocol between the client and the ith server to compute (sk ,
id , state). The client’s input is (name, pwd , servername) and the ith server’s input is
(servername). The challenger then runs Store(pwd , sk , id) with the adversary, where the
adversary obtains (id , data). The challenger locally stores (servername, name, state)
in the database Server[i] overwriting state if an entry with (servername, name) already
exists.
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PlayRetrieve(i,name, servername). The client must run the PreAuth protocol with the ith

server and the Retrieve protocol with the adversary. First, the challenger looks up
(servername, name, state) in the database Server[i]. Then it computes (id , chal) by
executing PreAuth simulating both the client and the ith server. The client’s input in
this execution is (name, pwd , servername), and the ith server’s input is (servername,
name, state). Then the challenger plays the role of the client and executes Retrieve with
the adversary using input (id , pwd , chal). The challenger stores (servername, name,
state, chal) in its Authenticate[i] database (no overwriting of duplicate entries).

PlayAuthenticate(i,name, servername, chal). The adversary tries to authenticate with the ith

server. The challenger looks up (servername, name, state, chal) in its Authenticate[i]
database and outputs reject if it is not there. Then the challenger executes the
Authenticate protocol with the adversary; the challenger plays the role of ith server
with input (name, state, chal , servername). The challenger outputs accept or reject.

Output. The adversary wins the game if the challenger ever outputs accept during
PlayAuthenticate.

Definition 5 ((T,N)-Cloud Storage Security). We say that a Cloud SPA has (T,N)-Cloud Storage
Security if no PPT adversary can win the (T,N)-Cloud Storage Security game with probability more
than ProbGuess(TN + 1) + neg(k).

3.3 Secure Mobile SPA

A mobile SPA assumes that the user has access to a trusted storage device (e.g., a cell-phone). The
user completely trusts the device while it is in his possession. Therefore, the user can even enter
his persistent password into the device. However, the device might be lost or stolen at any point;
and at that point a malicious adversary might try to use the data stored on the device to access
the user’s online services, or even to try to learn the persistent password of the user. The trusted
device can perform computations on the user’s behalf. This is important if the user does not trust
the terminal (s)he is using to authenticate with the online service (e.g., accessing his bank account
from a hotel computer).

Definition 6 (Secure Mobile SPA). A mobile-based SPA protocol is secure if it has the Mobile
Honeypot Security and Mobile Storage Security properties.

Mobile Honeypot Security Game. This game is similar to the Cloud Honeypot Security
game where the adversary acts as a malicious online service.

Setup. The adversary chooses two passwords, pwd0 and pwd1. The challenger flips a bit b and
sets pwd b as its password.

Play. The adversary may invoke all the same queries as during the Cloud Honeypot Security game
except the PlayRetrieve query.

Output. The adversary outputs a bit b′. It wins if b = b′.

Definition 7 (Mobile Honeypot Security). A Mobile SPA protocol has the Mobile Honeypot Se-
curity property if no PPT adversary can win the Mobile Honeypot Security game with probability
more than 1/2 + neg(k).
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Winning the Mobile Honeypot Security game merely requires distinguishing two passwords,
while the Cloud Honeypot Security game requires full password recovery. The reason is that in
the Cloud Honeypot Security game, an adversary can query an online cloud storage provider with
pwd0 and pwd1 to see which of them is valid.

On another note, our honeypot security games, as is, define security in terms of password
recovery or password distinguishing, while intentionally leaving man-in-the-middle attacks out. As
pointed out in the introduction, we do not fully protect against man-in-the-middle attacks, but
limit their potential to session hijacking rather than full long-term secret leaks.

(T,N)-Mobile Storage Security Game. This game simulates what happens if the storage
device is stolen by an adversary. It is similar to the Cloud Storage Security game. In the beginning
of the Play stage, the storage device is honest. The adversary does not get to see the outcome
of any PlayStore or PlayRetrieve query. At some point, the adversary may choose to corrupt the
storage device. The adversary gains access to all the information on the storage device once it
is corrupt. However, at that point, the challenger ceases to interact with that device (modeling
the real-world scenario that the user stops using her cell-phone once it is stolen). Specifically, the
challenger no longer simulates calls to Store or Retrieve, which means the challenger will terminate
early during the PlayRegister and PlayAuthenticate queries. The adversary wins if it can convince
the online service to output accept during PlayAuthenticate.

Definition 8 ((T,N)-Mobile Storage Security). A Mobile SPA protocol has the (T,N)-Mobile
Storage Security property if no PPT adversary can win the (T,N)-Mobile Storage Security game
with probability more than ProbGuess(TN + 1) + neg(k).

3.4 Privacy

We consider two notions of privacy:

Anonymity. A malicious storage provider cannot learn Alice’s username at a particular server.

Unlinkability. A malicious storage provider cannot link a Store and a Retrieve request, or even
two Retrieve requests, when they come from the same user.

Note that Alice already registers a username with the online service, and uses the same username
so that her logins can be linked to provide the service (e.g., one needs a fixed email address to obtain
meaningful service most of the time). Therefore, we are not trying to protect Alice’s privacy against
Bob. Anonymous authentication methods [21, 16, 39, 19, 4] can be employed if that is desired.

Definition 9 (Privacy of an SPA protocol). An SPA protocol is anonymous if all PPT adversaries
have negligible advantage in winning the Anonymity game below. The protocol is called unlinkable
if Carol the storage provider cannot link two requests made using the same identifier.

(T )-Anonymity Game. In this game, the adversary plays the role of Carol the storage
provider, whereas the challenger plays the role of Alice the user and Bob the server. Carol provides
Alice with two user names name1,name2. Alice flips a fair coin and gets the bit b. She then
registers and authenticates with Bob with the user name nameb, and with her choice of password
generated using UserGen. Carol can interact with Bob T times. At the end, Carol outputs a bit
b′. The adversary wins if b′ = b. Call her probability of winning PrW . Her advantage is then
PrW − 1/2− ProbGuess(T ).
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A weaker anonymity notion can be a (T,N)-Anonymity game where Alice registers with her
choice of user name with N servers, and Carol learns it after T interactions with each one of the
servers (just as the analogy between Mobile Honeypot Security game and Cloud Honeypot Security
game: indistinguishability vs. recovery).

4 Cloud SPA Constructions

We present three constructions of a cloud SPA protocol. The first construction is very efficient for
the server, the second construction is very efficient for the storage, and the third construction
provides optimal privacy for the client.

Our constructions use modified versions of Boyen’s hidden credential retrieval protocol [14] as
building blocks. During registration, the client generates a strong signature key pair (ssk , svk). The
client sends the verification key svk to the online service and an encryption of the signing key ssk
to the storage provider. To authenticate, the client retrieves the encrypted signing key, decrypts
it, and uses it to sign a challenge generated by the online service.

In our first construction, we employ Boyen’s protocol directly, with the slight addition of identi-
fiers. Alice stores an identifier with the storage provider; during Retrieve, and she uses the identifier
to tell the storage provider which ciphertext to retrieve. Boyen’s Retrieve protocol involves a blind
signature operation. In our second construction, we move this blind signature from the storage to
the server instead. Finally, our third construction requires an oblivious transfer (OT) or private
information retrieval (PIR) protocol during Retrieve.

In terms of privacy, our first construction computes the identifier as a hash of Alice’s username
and the name of the online service. These are short values that Alice can remember. However, the
storage provider can use this identifier to launch a dictionary attack and learn Alice’s username at a
particular online service (not the password, of course), and thus the protocol is neither anonymous
nor unlinkable. In our second construction, identifiers are random values stored at the server;
the storage cannot learn Alice’s username (anonymous), but she can still link Store and Retrieve
requests (not unlinkable). Our third construction uses OT/PIR to provide unlinkability, thus giving
Alice complete privacy (both anonymity and unlinkability).

All our protocols are provably secure according to the definitions in Section 3.1. Security proofs
for our cloud SPA schemes assume that the digital signature used is existentially unforgeable and
its secret key is computationally indistinguishable from random; the blind signature used is secure,
unique, and private (i.e. the signer does not learn the signature); the password-based encryption
used is secure as per Definition 2; the oblivious transfer scheme that is used is secure; and the
hash function is modeled as a Random Oracle. Furthermore, we assume that the communication
channels are secure and server-authenticated (e.g., via SSL).

4.1 Server-optimal Cloud SPA

Our first construction (see Figure 2) is the most efficient for the server. The drawback is that it is
neither anonymous nor unlinkable.

Register: {Client(1k ,name, pwd)} → {Client(ssk , bsk), Server(name, svk)}

1. The client computes two key-pairs; one for blind signatures (bsk , bvk)← BSigKeyGen(1k)
and one for digital signatures (ssk , svk)← SigKeyGen(1k).
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Figure 2: Server-optimal Cloud SPA

2. The client sends (name, svk) to the server. The client keeps (ssk , bsk).

Store: {Client(pwd , bsk , ssk)} → {Storage(id , ctext , bsk)}

1. The client computes a blind signature value sig ← BSign(bsk ,Hash(pwd)) and encrypts
her secret key ssk using hash of the signature as key ctext ← Encrypt(Hash(sig), ssk).

2. The client computes the identifier id ← Hash(name, servername) via a hash function.

3. The client sends the identifier, the encrypted secret signing key, and the blind signature
key (id , ctext , bsk) to the storage. At this point, the client may forget all hard-to-
remember values (i.e. ssk , bsk , id , ctext).

PreAuth: {Client(name, pwd), Server(⟨name, svk⟩)} → {Client(id , chal), Server(svk , chal)}

1. The client sends name to the server.

2. The server sends the client a random challenge chal ← {0, 1}k.
3. The client receives the challenge chal from the server and computes the identifier id ←

Hash(name, servername).

4. The server looks up the verification key svk associated with name in its database and
outputs (svk , chal) to use for authentication.
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Retrieve: {Client(id , pwd , chal),Storage(⟨id , ctext , bsk⟩)} → {Client(response)}

1. The client sends the identifier id to the storage.

2. The storage looks up the (ctext , bsk) associated with id . The client and the storage
execute the blind signature protocol. The storage acts as the signer using bsk as the
signing key. The client acts as the receiver, using Hash(pwd) as the message. The client
gets a blind signature sig ← BSign(bsk ,Hash(pwd)) on the hash of her password as its
output.

3. The storage sends ctext to the client.

4. The client decrypts the ciphertext using the blind signature to obtain her secret sign-
ing key ssk ← Decrypt(Hash(sig), ctext) and outputs the response to the challenge
response ← Sign(ssk , chal).

Authenticate: {Client(response),Server(svk , chal)} → {Server(accept/reject)}

1. The client sends the response response to the server.

2. The server accepts iff the response verifies using the registered verification key of the
client (i.e. SigVerify(svk , response, chal) = 1).

Theorem 2. Server-optimal Cloud SPA is a secure cloud SPA scheme.

Proof. Since the client’s interaction with the cloud storage provider during Store and Retrieve
is identical to that in Boyen HCR protocol, Cloud Honeypot Security follows. Thus, given an
adversary Adv that can defeat the Cloud Honeypot Security of our construction, we can create a
reduction that attacks Boyen HCR scheme:

1. The challenger generates an ℓ-bit password pwd and a k -bit credential cred . The challenger
simulates a Store request to the Boyen HCR storage provider. The reduction gets (1ℓ, 1k ) as
input.

2. To answer a PlayRegister(servername, i) query of the adversary Adv, the reduction generates
a key pair (ssk , svk). Then, it sends svk to the adversary Adv and tells the challenger to store
ssk . The reduction records ssk .

3. To answer a PlayPreAuth(servername) query of Adv, the reduction sends name to Adv. The
adversary Adv returns a challenge chal , which the reduction stores.

4. To answer a PlayAuthenticate(sessionid , i) query, the reduction returns sig ← Sign(ssk , chal)
to the adversary.

5. To answer a PlayRetrieve(i) query, the reduction simply passes messages between the adversary
Adv and the challenger.

6. Eventually, Adv returns a guess pwd ′ and the reduction uses it as its output.

The reduction succeeds with the same probability as the adversary, which by Theorem 1 is
ProbGuess(TN + 1) + neg(k).

Cloud Storage Security follows immediately from Theorem 1.

17



Privacy: The cloud storage provider can mount a dictionary attack on id ←
Hash(name, servername) to learn Alice’s username associated with a server (using a name and
servername dictionary instead of a password dictionary). This attack can be avoided if Alice
chooses a random id during registration, and retrieves it from the online service during PreAuth,
as we will see in our second construction.

4.2 Storage-optimal Cloud SPA

This version of our protocol (see Figure 3) is the most efficient for the cloud storage provider, and
provides anonymity (while still being linkable). The main difference is that the server stores the
blind signature key bsk and performs the blind signature operation instead of the storage provider.

Figure 3: Storage-optimal Cloud SPA

Register: {Client(1k ,name, pwd)} → {Client(ssk , bsk), Server(name, svk , bsk)}

1. The client computes two key-pairs; one for blind signatures (bsk , bvk)← BSigKeyGen(1k)
and one for digital signatures (ssk , svk)← SigKeyGen(1k)

2. The client sends (name, svk , bsk) to the server. The client’s private output is (ssk , bsk).

Store: {Client(pwd , bsk , ssk)} → {Storage(id , ctext)}

1. The client sets the identifier id ← BSign(bsk ,Hash(pwd)) by simulating the blind signing
protocol using her own knowledge of bsk .

2. The client encrypts her key using her password ctext ← Encrypt(Hash(pwd), ssk).
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3. The client sends (id , ctext) to the storage. At this point, the client may forget all hard-
to-remember values (i.e. ssk , bsk , id , ctext).

PreAuth: {Client(name, pwd), Server(⟨name, svk , bsk⟩)} → {Client(id , chal), Server(svk , chal)}

1. The client sends name to the server.

2. The server looks up the (svk , bsk) associated with the name in its database. The client
and the server then execute the blind signature protocol. The server acts as the signer
using bsk as the blind signing key. The client acts as the receiver, using Hash(pwd) as
the message. The client gets the identifier id ← BSign(bsk ,Hash(pwd)) as its output.

3. The server sends the client a random challenge chal ← {0, 1}k.
4. The client remembers (id , chal). The server remembers (svk , chal).

Retrieve: {Client(id , pwd , chal),Storage(⟨id , ctext⟩)} → {Client(response)}

1. The client sends the identifier id to the storage.

2. The storage looks up the ctext associated with the id in its database and sends ctext to
the client.

3. The client computes the decryption of the ciphertext to obtain her secret key ssk ←
Decrypt(Hash(pwd), ctext) and computes the response response ← Sign(ssk , chal).

Authenticate: Same as in Server-optimal Cloud SPA (the client sends the response to the server,
the server verifies it with svk).

Theorem 3. Storage-optimal Cloud SPA is a secure cloud SPA scheme.

Proof. Cloud Honeypot Security is proven by reduction to Boyen’s HCR protocol, similar to the
previous protocol. Thus, given an adversary Adv that can defeat the Cloud Honeypot Security of
our second construction, we can create a reduction that attacks Boyen HCR scheme:

1. The challenger generates an ℓ-bit password pwd and a k -bit credential cred . The challenger
simulates a Store request to the Boyen HCR storage provider. The reduction gets (1ℓ, 1k ) as
input.

2. To answer a PlayRegister(servername, i) query of the adversary Adv, the reduction generates
two key pairs (ssk , svk , bsk , bvk) as usual. It then sends (svk , bsk) to the Adv, and tells the
challenger to store ssk . The reduction records ssk .

3. To answer a PlayPreAuth(servername) query, the reduction executes the blind signature pro-
tocol with Adv using Hash(1) as its message. The reduction records the (id , chal) that it gets
from the Adv. Due to the properties of a blind signature scheme, Adv cannot tell that the
reduction uses Hash(1) as its input instead of Hash(pwd) (otherwise the reduction may use
the adversary to break the security of the blind signature scheme).

4. To answer a PlayAuthenticate(sessionid , i) query, the reduction returns sig ← Sign(ssk , chal)
to the adversary.
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5. To answer a PlayRetrieve(i) query, the reduction asks the challenger to execute the Retrieve
protocol using “1” as its password. The reduction forwards the ctext it obtains from the
storage to the adversary.

6. Eventually, Adv returns a guess pwd ′ and the reduction uses it as its output.

It is clear that the reduction wins whenever the adversary wins. Due to Theorem 1, the reduction
may succeed with probability ProbGuess(TN + 1) + neg(k).

Cloud Storage Security follows trivially from Boyen [14] since the storage provider gets even
less information than the Boyen storage provider.

Privacy: Storage-optimal Cloud SPA is anonymous; the storage provider does not learn any
information about Alice’s username, since the identifier is chosen at random. However, it is not
unlinkable because Alice uses the same identifier for every Store and Retrieve request.

4.3 Privacy-optimal Cloud SPA

We can provide both anonymity and unlinkability by employing oblivious transfer (OT) or private
information retrieval (PIR) techniques [8, 17, 25, 37, 22, 18, 11, 42, 38], in particular, the Oblivious
Keyword Search [45] that allows efficient OT with any keyword as an index rather than only
consecutive integers. Privacy-optimal Cloud SPA (see Figure 4) is identical to Storage-optimal
Cloud SPA, except that during Retrieve, the client and storage provider execute a PIR. As a result,
Alice learns her ctext without revealing her id . This prevents the storage provider from linking
Store and Retrieve requests (and even two Retrieve requests), hence providing both anonymity
and unlinkability.1

Theorem 4. Privacy-optimal Cloud SPA is a secure cloud SPA scheme.

Proof. The security proof follows trivially from Storage-optimal Cloud SPA proof, whereas the
anonymity and unlinkability directly follow from the properties of oblivious transfer, and hence a
full proof is omitted.

5 Mobile SPA Construction

Our mobile SPA construction requires the ability to establish a channel between the online service
and the storage provider (i.e. the mobile device). However, we want to minimize setup and assump-
tions about the hardware on the mobile device. We require some of the following input/output
capabilities from the mobile device:

Local human output: Capability to output a small amount of information to the user. Examples
include outputting a 5-8 character value through a display or a speaker.

Local human input: Capability to obtain a small amount of information from the user. Examples
include Alice inputting a 5-8 character value through a keypad or a touchpad.

1Anonymous communication techniques such as TOR [24] should be employed on top of our scheme to provide
even IP-level anonymity and unlinkability.
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Figure 4: Privacy-optimal Cloud SPA

Local machine input: Capability to obtain a larger amount of information (i.e. k -bits, which
would be hard for a human to input) from another machine. For example, the device could use
its camera to scan and decode a barcode displayed on Alice’s monitor, or use its microphone
to record and analyze audio, or connect to Alice’s computer through Bluetooth/Wi-fi/USB.

Remote machine input: Capability to obtain a larger amount of information (i.e. k -bits, which
would be hard for a human to input) from another machine. This can be through a direct
Internet connection, an indirect Internet connection (through Bluetooth/Wi-fi/USB), or SMS.

Our mobile construction requires local human input and output capabilities from the mobile
device. We additionally require local or remote machine input capabilities.

A naive solution for the mobile SPA protocol would be for Alice to lock her mobile device with
a password/pattern/PIN, and then store her login password (even in an encrypted fashion) on it.
However, if an adversary captures her mobile device, the login password is easily leaked, even when
encrypted by the device. Recent research on popular smartphones with popular operating systems
shows that an attack can recover the stored data within as little as 6 minutes [32, 2].

In our solution, the mobile device stores ssk encrypted using Alice’s persistent password as
the encryption key, without relying on any PIN or similar mechanism to lock the device. During
authentication, Alice enters her password via some local human input mechanism, and forwards
the online service’s challenge via some local or remote machine input mechanism. The device
performs the necessary computation to respond to the challenge, and then erases the password
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once authentication is complete. In the case the device is stolen and the robber is not Bob, Alice’s
password and the secrets are not disclosed. If Bob manages to steal the device, then it is as if
the storage provider and the server are colluding, and hence we cannot protect against dictionary
attacks (see Section 6 for possible measures against collusion).

We will not worry about the use of identifiers in the mobile SPA protocols, as Alice is the only
user of her mobile device; she can select the appropriate account on the device directly. Alterna-
tively, Alice may pick a random id for every server, send it to the server during registration, and
then during authentication the online service could prepend an id to the challenge and the mobile
device could use it to look up the appropriate stored ciphertext. This way, anonymity of Alice is
protected even when the device is stolen, since identifiers are random values (and unlinkability is
not necessary in the mobile SPA scenario).

All flavors of our protocol are provably secure according to the definitions in Section 3.1. Security
proofs for our mobile SPA schemes assume that the MAC scheme used is unforgeable and its secret
keys are computationally indistinguishable from random; the password-based encryption used is
secure as per Definition 2; and the hash function is modeled as a Random Oracle. Furthermore,
we assume that the communication channels are secure and authenticated (e.g., SSL connection
between the client and the server, and physical security of the client-device interaction).

Figure 5: Mobile SPA flavors

Our construction, shown in Figure 5, assumes the helper device has local human input and
output, and local or remote machine input capabilities. During PreAuth, the online service
sends the client a challenge. This can be done via the device’s camera or microphone, or even
using SMS since the communication channel between the mobile device and the server does not need
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to be secure. The device MACs the challenge using Alice’s secret key ssk to generate a response
response ′. Then the device calls a function Trim(1m<<k, response ′) to abbreviate the MAC from
the usual k bits to m bits, and outputs the result in human-friendly form (e.g., displays m-bits as
5−8 characters). Alice uses this trimmed response as her one-time password. As long as the online
service limits the number of guesses a user can make to answer a particular challenge, protection
against even active real-time attacks is provided.

Register: {Client(1k ,name, pwd)} → {Client(K ), Server(name,K )}

1. The client computes a MAC key K ← MACKeyGen(1k).

2. The client sends (name,K ) to the server. The client keeps for storage K .

Store: {Client(pwd ,K )} → {Storage(ctext)}

1. The client sends the encrypted MAC key ctext ← Encrypt(Hash(pwd),K ) to the storage,
and forgets it.

PreAuth: {Client(name, pwd), Server(⟨name,K ⟩)} → {Client(chal), Server(K , chal)}

1. The client sends name to the server.

2. The server looks up the key K associated with the name in its database. It picks a
random challenge chal ← {0, 1}k, and sends it to the client as readable by the mobile
device (e.g., barcode image, audio file). Alternatively, the challenge may be sent to the
registered mobile device of the user directly (e.g., via SMS).

3. The server remembers (K , chal) while the client obtains chal .

Retrieve: {Client(pwd , chal), Storage(ctext)} → {Client(response)}

1. The user provides the storage device with the challenge chal via the local machine input
mechanism, if the remote input mechanism was not directly used in PreAuth step.

2. The user provides the storage device with the password pwd using the local human input
mechanism.

3. The storage device recovers the key K ← Decrypt(Hash(pwd), ctext). It computes the
response response ′ ← MAC(K , chal), and trims it to get the short one-time password
response = Trim(1m≪k, response ′). Finally, it outputs response in human-friendly form
using local human output mechanism.

Authenticate: {Client(response),Server(K , chal)} → {Server(accept/reject)}

1. The user types response into the client, which sends it over to the server.

2. The server accepts iff Trim(1m≪k,MAC(K , chal)) = response.

Theorem 5. Mobile SPA is a secure mobile SPA scheme.

Proof. Mobile Honeypot Security is trivial since the view of the online service is completely inde-
pendent of the password pwd .
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Mobile Storage Security follows from unforgeability of MACs and security of the password-based
encryption scheme. Once the mobile device is corrupted, all it has is a (database of) ciphertext
values ctext = Encrypt(Hash(pwd),K ). If the adversary is able to create a valid MAC on the
challenge chal , then it either has forged a MAC or violated the security of the password-based
encryption scheme. We omit the full reduction in consideration for space.

Note that Alice should not reuse the same key K for different servers, otherwise any such server
can impersonate Alice against other servers. Therefore, this construction requires storage on the
mobile device linear in the number of servers. If linear storage is not desired, then one may only
store a pseudorandom function key at the device, and then use the (name, servername) pair as
input to the pseudorandom function to re-generate the same MAC key every time that is needed.
This presents a trade-off between storage and computation. Yet, since a MAC key is 128 bytes,
then with just 1 MB of storage, the mobile device can store login information for more than
8000 servers. Therefore, using current standard mobile devices, linear storage is not an issue.

6 Extensions and Conclusion

We presented a complete system for single-password authentication, and provided multiple flavors
of our system under different performance-privacy-usability considerations. Our solutions deal with
server/storage efficiency, and client privacy, as well as mobile-device capability issues.

Our schemes thwart honeypot attacks since the server can no longer learn the client’s
password, or any deterministic function of it. Similarly, a phishing website will not be able to
obtain the user’s password (though may still obtain credit card information). Further measures
against phishing may rely on combining our mobile SPA protocols with some phishing prevention
protocols working on mobile devices [46, 41].

Moreover, malware or malicious code damage is minimized using our schemes. In our
cloud SPA model, malicious code may lead to leakage of Alice’s password. But using our mobile
SPA scheme, only the session information is leaked. Thus, Alice’s long-term secrets (e.g., password)
remains safe using a mobile helper device, even when she does not trust the PC she is using during
authentication (e.g., using a public terminal), and even when the mobile device is stolen.
The best an active adversary can do is to gain control of the session, but no future sessions. An
adversary that is passive during the session learns no useful information.

To protect Alice from such attacks, we must enlist the aid of the browser and/or operating
system (OS). Just as modern operating systems present the user with an OS-generated window
warning about potentially dangerous interactions, the browser and/or OS should obtain Alice’s
password in a secure window and run the SPA protocol on her behalf. This requires a change to
the browser code or a plug-in. But unlike previous browser extensions [48, 30, 54], our protocols
provide provable security against dictionary attacks.

In the mobile SPA setting, indeed a one-time password is given to the browser instead of the
long-term password to limit the risk. In cases where TLS is not feasible or the user is fooled into
connecting to an impersonating server even over TLS, and assuming the sessions are short-lived
compared to the time it takes to crack this one-time password, the adversary is forced to deploy
an active real-time attack, or the adversary must store all the encrypted session information and
perform an offline attack. Even under such an attack, mobile SPA protects Alice’s long-term
secret and password, and prevents the adversary from impersonating Alice. Note that using a
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one-time password together with the password on the same device, as in many current scenarios (e.g.,
Internet banking), still may leak the password on an infected device; that is why Alice never enters
her password on an untrusted device in our system. Furthermore, in most current systems, the one-
time password is sent as an SMS in clear, which means an active attacker is almost guaranteed to
succeed. In our system, only the challenge is sent in clear, and the one-time password is constructed
using the password, which means even an active attacker must keep guessing it online. When the
mobile SPA is integrated with the browser, rather than being part of a potentially malicious web
page code, it protects the per-session secret as well.

Our constructions assume that the online service and the storage provider do not collude. Oth-
erwise, as shown by Boyen [14], it is impossible to prevent a dictionary attack. Alice can protect
herself from collusion of the storage and the server by using threshold secret-sharing schemes
[51, 9], or password-protected secret-sharing schemes [3], to employ multiple storage providers. The
basic idea is to split her secret key ssk (or K ) into m secrets ssk i and store each one at a different
storage provider in encrypted form. Alice can successfully authenticate as long as a (k out of n)
quorum of storage providers are available, and now such a quorum would need to collude with the
online service in order to learn Alice’s password.2

Another important property of our protocol is that, each client can choose her own security
parameter and cryptographic primitive employed. For example, Alice can decide to share her
signing key among 10 storage servers and use AES-256, whereas Amanda can decide that it is
enough to use a single storage and AES-128. We expect to see a variety of online services and
storage providers offering different levels of security (e.g., stronger security and privacy level for
important services like banking).

Our constructions minimize the amount of modification that needs to be made to existing online
services. While a service needs to execute some novel code to achieve SPA, it can be performed at
the javascript/CGI script level. All subsequent communication proceeds as usual. Moreover, Alice’s
view in terms of her login experience need not change in the Cloud SPA setting, possibly with some
help from browsers. Furthermore, if Kerberos-like token-based (possibly anonymous) credential
schemes or single-signon services (where authentication and service providers are separate [33]) are
used, then only the client and the authentication software need to be modified, while the
server software may remain intact. SPA would run only between the user and the Kerberos
server leaving the rest of the protocol unmodified. Such services that are widely-used today include
Windows Active Directory services running at enterprise networks, Facebook accounts used to login
to many other sites, and Open ID (e.g., Google accounts).

Considering all the benefits of our constructions (provable security against dictionary at-
tacks and honeypots, anonymity and unlinkability measures, mobility, extra protection
against malware and phishing) as well as relative ease of deployment as discussed above, we
truly hope that our schemes will be available soon as browser extensions, mobile phone applications,
and implemented on popular single-signon services such as Microsoft Passport, Google Accounts,
and Facebook.
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