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Abstract

This work presents the design, analysis and implementation of the first searchable symmetric
encryption (SSE) protocol that supports conjunctive search and general Boolean queries on
outsourced symmetrically-encrypted data and that scales to very large databases and arbitrarily-
structured data including free text search. To date, work in this area has focused mainly on
single-keyword search. For the case of conjunctive search, prior dedivated SSE constructions
(not using generic technique such as FHE or ORAM) required work linear in the total number of
documents in the database and provided good privacy only for structured attribute-value data,
rendering these solutions too slow and inflexible for large practical databases.

In contrast, our solution provides a realistic and practical trade-off between performance
and privacy by efficiently supporting very large databases at the cost of moderate and well-
defined leakage to the outsourced server (leakage is in the form of data access patterns, never
as direct exposure of plaintext data or searched values). Our design follows a careful process
of trading security for efficiency which are both quantified via rigorous analysis. We present a
detailed formal cryptographic analysis of the privacy and security of our protocols and establish
precise upper bounds on the allowed leakage. To demonstrate the real-world practicality of our
approach, we provide performance results of a prototype applied to several large representative
data sets, including encrypted search over the whole English Wikipedia (and beyond).
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1 Introduction

Outsourcing data storage to external servers (“the cloud”) is a major industry trend that offers
great benefits to database owners. At the same time, data outsourcing raises confidentiality and
privacy concerns. Simple encryption of outsourced data is a hindrance to search capabilities such as
the data owner wanting to search a backup or email archive, or query a database via attribute-value
pairs. This problem has motivated much research on advanced searchable encryption schemes that
enable searching on the encrypted data while protecting the confidentiality of data and queries.

Searchable symmetric encryption (SSE) is a cryptographic primitive addressing encrypted
search. To securely store and search a database with an SSE scheme, a client first uses a special
encryption algorithm which produces an encrypted version of the database, including encrypted
metadata, that is then stored on an external server. Later, the client can interact with the server
to carry out a search on the database and obtain the results (this is called the symmetric setting
as there is only one writer to the database, the owner, who uses symmetric encryption – the public
key variant of the problem has also been extensively studied, see further related work).

An important line of research (e.g., [36, 19, 13, 15, 14, 27]) gives practical constructions of SSE
that support searching for documents that contain a single specified keyword. In these schemes,
the server’s work scales with the size of the result set (independently of the database size) and
the leakage to the server is limited to the set of returned (encrypted) documents and a few global
parameters of the system, such as total data size and number of documents. While efficient and
offering good privacy, all of these SSE schemes are severely limited in their expressiveness during
search: A client can only specify a single keyword to search on, and then it receives all of the docu-
ments containing that keyword. In practical settings, like remotely-stored email or large databases,
a single-keyword search will often return a large number of documents that the user must then
download and filter herself to find the relevant results.

Conjunctive and Boolean Search. To provide a truly practical search capability, a system
needs to at least support conjunctive search, namely, given a set of keywords find all documents
that contain all these keywords. Clearly, this problem can be reduced to the single-keyword case
by performing a search for each individual keyword and then letting the server or client do the
intersection between the resultant document sets. This often results in inefficient searches (e.g.,
half the database size if one of the conjunctive terms is “gender=male”) and significant leakage
(e.g., it reveals the set of documents matching each keyword). Yet, this näıve solution is the only
known sublinear solution to SSE conjunctive search (other than those using generic techniques such
as FHE or ORAM). All other dedicated solutions require server work that is linear in the size of the
database. Of these solutions, the one that provides the best privacy guarantees is due to Golle et al.
[21], with variants presented in later work, e.g., [3, 11]. They show how to build for each conjunctive
query a set of tokens that can be tested against each document in the database (more precisely,
against an encoded version of the document’s keywords) to identify matching documents. These
solutions only leak the set of matching documents (and possibly the set of attributes being searched
for) but are unsuited for large databases due to the O(d) work incurred by the server, where d is
the number of documents or records in the database. This cost is paid for every search regardless
of the size of the result set or the number of documents matching each individual conjunctive term.
Moreover, these solutions require either O(d) communication and exponentiations between server
and client or O(d) costly pairing operations (as well as dedicated cryptographic assumptions).
Another serious limitation of this approach is that it works only for structured attribute-value type
databases and does not support free text search. In addition, none of the above solutions extend
to general Boolean queries.
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The challenge of large databases and the challenge of being imperfect. In this work we
investigate solutions to conjunctive queries and general Boolean queries that can be practical even
for very large databases where linear search is prohibitively expensive. Our application settings
include databases that require search over tens of millions documents (and billions of document-
keyword pairs), with search based on attribute-value pairs (as in relational databases) and free text
- see below for specific numbers used in evaluating our prototype. To support such scale in a truly
practical way one needs to relax absolute privacy and allow for some leakage beyond the result set.

As an example, compare the case of a conjunction of two highly-frequent keywords whose
intersection returns a small number of documents but whose individual terms are very frequent
(e.g., search for “name=David AND gender=Female”), with the case of a conjunction that returns
the same number of documents but all the individual terms in the conjunction are themselves
infrequent. Search complexity in these two cases, even in the case of plaintext data (hence in any
encrypted solution), is likely to be different and noticeable to the searching server, except if searches
are artificially padded to a full database search hence leading to O(d) complexity1. Note that even
powerful tools, such as ORAM, that can be used to search on encrypted data in smaller-scale
databases already incur non-trivial leakage if the search performance is to be sublinear. Indeed,
the mere computational cost, in number of ORAM operations, of a given search is sufficient to
distinguish between the two cases above (of all high-frequency conjunctive terms vs. all small-
frequency terms) unless the searches are padded to the maximal search size, resulting in O(d)
search cost. Thus, resorting to weaker security guarantees is a necessity for achieving practical
conjunctive search. Not only this presents design challenges but also raises non-trivial theoretical
challenges for analyzing and characterizing in a precise way the form and amount of leakage incurred
by a solution.

Ideally, we would like to run the search with complexity proportional to the number of matches of
the least frequent term in the conjunction, which is the standard of plaintext information retrieval
algorithms. In addition, the computational efficiency of database processing and of search is of
paramount importance in practice. Generic tools such as FHE [18] or ORAM [20] are too costly
for very large databases, although they may be used as sub-components of a solution if applied to
small data subsets.

Our Contributions. We develop the first non-generic sublinear SSE schemes supporting con-
junctive keyword search (and more general Boolean queries, see below) with a non-trivial com-
bination of security and efficiency. The schemes performance scales to very large datasets and
arbitrarily-structured data, including free-text search. We attain efficiency by allowing some forms
of access-pattern leakage, but with a much better leakage profile than the näıve solution implied by
single-keyword SSE, as discussed above. Further, we establish the security of our solution via an
explicit and precise leakage profile and a proof that this is all the leakage incurred by this solution.
Our formal setting follows a simulation-based abstraction that adapts the SSE models of Curtmola
et al. [15] and Chase and Kamara [14], and assumes an adaptive adversarial model. The essence
of the security notion is that the view of the server (the attacker in this setting) can be efficiently
simulated given a precisely-defined leakage profile but without access to the actual plaintext data.
Such a profile may include leakage on the total size of the database, on access patterns (e.g., the
intersection between two sets of results) and on queries (e.g., repetition of queries), but never the
direct exposure of plaintext data or searched values. Thus, a protocol proven secure ensures that
the server holding the encrypted data and serving the queries does not learn anything about the
data and queries other than what can be deduced from the specified leakage2. The characterization

1A costly alternative is to pre-compute all n-term conjunctions in time O(|W|n).
2 See the discussion in Section 9 on “semantic leakage”.
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of leakage and the involved proof of security that we present are central technical contributions
that complement our protocol design work.

The centerpiece of the protocol design is a “virtual” secure two-party protocol in which the
server holds encrypted pointers to documents, the client holds a list of keywords, and the output
of the protocol is the set of encrypted pointers that point to documents containing all the client’s
keywords. The client is then able to decrypt these pointers and obtain the matching (encrypted)
documents but the server cannot carry this decryption nor can it learn the keywords in the client’s
query. While this underlying protocol is interactive, the level of performance targeted by our
solutions requires avoiding multiple rounds of interaction. We achieve this by a novel approach
that pre-computes parts of the protocol messages and stores them in encrypted form at the server.
Then, during search, the client sends information to the server that allows to unlock these pre-
computed messages without further interaction. Our implementation of this protocol, which we
name OXT, uses only DH-type operations over any Diffie-Hellman group which enables the use
of the secure and most efficient DH elliptic curves (with additional common-base optimizations).3

The complexity of our search protocols is independent of the number of documents in the database.
To search for documents containing w1, . . . , wn, the search complexity of our scheme scales with
the number of documents matching the estimated least frequent keyword in the conjunction. We
note that while building a search based on term frequency is standard in information retrieval, our
solution seems to be the first to exploit this approach in the encrypted setting. This leads not only
to good performance but also improves privacy substantially. All our solutions support search on
structured data (e.g., attribute-value databases) as well as on free text, and combinations of both.

Boolean queries. Our solution to conjunctive queries extends to answer any Boolean query. This
includes negations, disjunctions, threshold queries, and more. The subset of such queries that we
can answer efficiently includes any expression of the form “w1∧φ(w2, . . . , wm)” (intended to return
any document that matches keyword w1 and in addition satisfies the (unconstrained) formula φ
on the remaining keywords)4. The search complexity is proportional to the number of documents
that contain w1. Surprisingly, the leakage profile for such complex expressions can be reduced to
the leakage incurred by a conjunction with the same terms w1, w2, . . . , wn, hence allowing us to
re-use the analysis of the conjunctive case to the much more general boolean setting. Finally, any
disjunction of the above forms can also be answered with an additive cost over the disjunction
expressions.

Further extensions. In [12] we report on further practical enhancements to our protocols, includ-
ing support for dynamic databases (i.e., allowing additions, deletions and modification of documents
in the database) and increased scalability. Our protocols can also be applied to the multi-client
setting [14, 25, 26] where a data owner outsources its encrypted data to an external server and en-
ables other parties to perform queries on the encrypted data by providing them with search tokens
for specific queries. In this case, one considers not only leakage to the server but also leakage to
clients beyond the information that their tokens are authorized to disclose. In subsequent work [24]
we address issues of authorization in this setting as well as the challenging problem of hiding the
queries not only from the server but also from the token provider - see for example IARPA’s SPAR
program [22] and its requirement for supporting private queries on very large databases. See also
[31] for an independent, concurrent work in the latter setting from which a solution to the SSE
problem can also be extracted. Finally, in ongoing work, we are extending the set of supported

3 We also present a scheme (BXT in Section 3.1) that only uses symmetric-key operations but provides less privacy,
and a pairings-based scheme (PXT in Section C) that optimizes communication at the expense of more computation.

4 An example of such query on an email repository is: Search for messages with Alice as Recipient, not sent by
Bob, and containing at least two of the words {searchable, symmetric, encryption}.
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queries with range queries, substring matching, and more.

Implementation. To show the practical viability of our solution we prototyped OXT and ran
experiments with three data sets: a 100,000 record relational database synthesized from census
data; the Enron email data set [16] with more than 1.5 million documents (email messages and
attachments) where all words, including attachments and envelope information, have been indexed;
and the ClueWeb09 [29] collection of crawled web-pages from which we extracted several databases
of increasing size with the largest one consisting of 13 million documents (0.4TB of HTML files).
Approximately one third of the latter database is a full snapshot of the English Wikipedia. The
results of these tests show not only the suitability of our conjunction protocols for data sets of
medium size (such as the Enron one) but demonstrate the scalability of these solutions to much
larger databases (we target databases of one or two orders of magnitude larger). Existing solutions
that are linear in the number of documents would be mostly impractical even for the Enron dataset.
Refer to Section 7 for more information on implementation and performance. More advanced
results are reported in [12], including ways to handle data updates in dynamic databases as well
as supporting DBs of up to two orders of magnitude above the experiments reported here while
preserving the full Boolean query functionality.

Other related work and research questions. See Section 8 for more discussion on related
work and Section 9 for several interesting research questions arising from our work.

2 Definitions and Tools

Notation. We write [n] for the set {1, . . . , n}. For a vector v we write |v| for the dimension
(length) of v and for i ∈ [|v|] we write v[i] for the i-th component of v. All algorithms (including
adversaries) are assumed to be randomized polynomial-time unless otherwise specified. If A is
an algorithm, then y ← A(x) means that the y is the output of A when run on input x. If A
is randomized then y is a random variable. For sets X,Y we write Fun(X,Y ) for the set of all
functions from X to Y , and Perm(X) for the set of all permutations on X.

2.1 SSE Syntax and Security Model

Searchable symmetric encryption. A database is composed of a collection of d documents,
each comprised of a set of keywords Wi (we use “documents” generically; they can represent text
documents, records in a relational database - in which case keyword are represented as attribute-
value pairs, a combination of both, etc.). The output from the SSE protocol for a given search
query are indices (or identifiers) ind corresponding to the documents that satisfy the query. A client
program can then use these indices to retrieve the encrypted documents and decrypt them. This
definition allows to decouple the storage of payloads (which can be done in a variety of ways, with
varying types of leakage) from the storage of metadata that is the focus of our protocols.

SSE scheme syntax and correctness. Let λ be the security parameter. We will take iden-
tifiers and keywords to be bit strings. A database DB = (indi,Wi)

d
i=1 is represented as a list

of identifier/keyword-set pairs, where indi ∈ {0, 1}
λ and Wi ⊆ {0, 1}

∗. We will always write
W =

⋃d
i=1Wi (we think of the ind values as identifiers that can be revealed to the outsourced

server, e.g., a randomization of the original document identifiers; in particular these are the identi-
fiers that will be used to retrieve query-matching documents). A query ψ(w̄) is specified by a tuple
of keywords w̄ ∈ W∗ and a boolean formula ψ on w̄. We write DB(ψ(w̄)) for the set of identifiers
of documents that “satisfy” ψ(w̄). Formally, this means that indi ∈ DB(ψ(w̄)) iff the formula ψ(w̄)
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evaluates to true when we replace each keyword wi with true or false depending on if wi ∈ Wi or
not. Below we let d denote the number of documents in DB, m = |W| and N =

∑
w∈W |DB(w)|.

A searchable symmetric encryption (SSE) scheme Π consists of an algorithm EDBSetup and a
protocol Search between the client and server, all fitting the following syntax. EDBSetup takes
as input a database DB, and outputs a secret key K along with an encrypted database EDB. The
search protocol is between a client and server, where the client takes as input the secret key K
and a query ψ(w̄) and the server takes as input EDB. At the end of the protocol the client outputs
a set of identifiers and the server has no output. We say that an SSE scheme is correct if for

all inputs DB and queries ψ(w̄) for w̄ ∈ W∗, if (K,EDB)
$
← EDBSetup(DB), after running Search

with client input (K,ψ(w̄)) and server input EDB, the client outputs the set of indices DB(ψ(w̄)).
We consider a computational relaxation of this notion, expressed via the following game. For an
adversary A and an SSE scheme Σ, we define the game CorΠA(λ), which lets A choose DB, generates
(K,EDB) ← EDBSetup(DB), gives EDB to A, which adaptively chooses queries ψ(w̄), for each of
which the game runs the Search protocol with client input (K,ψ(w̄)) and server input EDB. If in any
execution the client outputs something other than DB(ψ(w̄)), the game outputs 1, and otherwise
it outputs 0. We say that a scheme Π is computationally correct if for all efficient adversaries A,
Pr[CorΠA(λ) = 1] ≤ neg(λ).

Security of SSE. We recall the semantic security definitions from [15, 14]. The definition is
parametrized by a leakage function L, which describes what an adversary (the server) is allowed
to learn about the database and queries when interacting with a secure scheme. Formally, security
says that the server’s view during an adaptive attack (where the server selects the database and
queries) can be simulated given only the output of L.

Definition 1 Let Π = (EDBSetup,Search) be an SSE scheme and let L be a stateful algorithm.
For algorithms A and S, we define experiments (algorithms) RealΠA(λ) and IdealΠA,S(λ) as follows:

RealΠA(λ) : A(1λ) chooses DB. The experiment then runs (K,EDB) ← EDBSetup(DB) and gives
EDB to A. Then A repeatedly chooses a query q. To respond, the game runs the Search

protocol with client input (K, q) and server input EDB and gives the transcript and client
output to A. Eventually A returns a bit that the game uses as its own output.

IdealΠA,S(λ) : The game initializes a counter i = 0 and an empty list q. A(1λ) chooses DB. The
experiment runs EDB ← S(L(DB)) and gives EDB to A. Then A repeatedly chooses a query
q. To respond, the game records this as q[i], increments i, and gives to A the output of
S(L(DB,q)). (Note that here, q consists of all previous queries in addition to the latest query
issued by A.) Eventually A returns a bit that the game uses as its own output.

We say that Π is L-semantically-secure against adaptive attacks if for all adversaries A there exists
an algorithm S such that Pr[RealΠA(λ) = 1]− Pr[IdealΠA,S(λ) = 1] ≤ neg(λ).

We note that in the security analysis of our SSE schemes we include the client’s output, the set
of indices DB(ψ(w̄)), in the adversary’s view in the real game, to model the fact that these ind’s
will be used for retrieval of encrypted document payloads. In Appendix B we include a version of
this security notion to non-adaptive adversaries.

2.2 T-Sets

We present a definition of syntax and security for a new primitive that we call a tuple set, or T-set.
Intuitively, a T-set allows one to associate a list of fixed-sized data tuples with each keyword in
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the database, and later issue keyword-related tokens to retrieve these lists. We will use it in our
protocols as an “expanded inverted index”. Indeed, prior single-keyword SSE schemes, e.g. [15, 14],
can be seen as giving a specific T-set instantiation and using it as an inverted index to enable search
– see Section 2.3. In our SSE schemes for conjunctive keyword search, we will use a T-set to store
more data than a simple inverted index, and we will also compose it with other data structures.
The abstract definition of a T-set will allow us to select an instantiation that provides the best
performance for the size of the data being stored. One specific T-set instantiation is shown in
Section 6.

T-Set syntax and correctness. Formally, a T-set instantiation Σ = (TSetSetup,TSetGetTag,
TSetRetrieve) will consist of three algorithms with the following syntax: TSetSetup will take as input
an array T of lists of equal-length bit strings indexed by the elements of W. In other words, for any
function n(λ) of the security parameter λ, for each w ∈W, T[w] is a list t = (s1, . . . , sTw

) of strings
s.t. each si is of length n(λ), but Tw = |T[w]| may vary with w. (In our applications of T-set, T[w]
will contain one tuple per each DB document which matches w, i.e. Tw = |DB(w)|.) The TSetSetup
procedure outputs a pair (TSet,KT ). TSetGetTag takes as input the key KT and a keyword w
and outputs stag. TSetRetrieve takes the TSet and an stag as input, and returns a list of strings.
We say that Σ is correct if for all W, T, and any w ∈ W, TSetRetrieve(TSet, stag) = T[w] when
(TSet,KT ) ← TSetSetup(T) and stag ← TSetGetTag(KT , w). Intuitively, T holds lists of tuples
associated with keywords and correctness guarantees that the TSetRetrieve algorithm returns the
data associated with the given keyword. As in the case of SSE, we consider a computational
relaxation of this perfect correctness notion: For adversary A and a T-set instantiation Σ, we
define a game AdvCorΠA(λ), where A chooses T, the game generates (TSet,KT )← TSetSetup(T),
gives TSet to A, which adaptively chooses keywords w, for each of which the game generates
stag ← TSetGetTag(KT , w) and tw ← TSetRetrieve(TSet, stag). The game outputs 1 if for any
w we have tw 6= T[w], and 0 otherwise. We say that a T-set instantiation Π is computationally
correct if for all efficient adversaries A, AdvCorΠA(λ), defined as the probability that the above
game outputs 1, is a negligible function of λ.

T-Set security and instantiation. The security goal of a T-set instantiation is to hide as much
as possible about the tuples in T and the keywords these tuples are associated to, except for vectors
T[w1],T[w2], . . . of tuples revealed by the client’s queried keywords w1, w2, . . .. (For the purpose
of T-set instantiation we equate client’s query with a single keyword.) Since the list of tuples
associated to searched keywords can be seen as information provided to the server, this information
is provided to the simulator in the security definition below.

We parametrize the T-set security definition with a leakage function LT that describes what else
the adversary is allowed to learn by looking at the TSet and stag values. For most instantiations
this leakage will reveal something about the structure of T, and consequently also the structure of
DB. For example, an instantiation could reveal the size of T, which is the number of keywords in
DB, or the length of each list T[w] in T, which reveals the number of occurrences of each keyword
w in DB. Our more careful instantiation given in Section 6 can be shown to leak significantly less,
namely only N =

∑
w∈W |T[w]|, the total number of keyword occurrences in DB.

Definition 2 Let Σ = (TSetSetup,TSetGetTag,TSetRetrieve) be a T-set instantiation, and let A,S
be an adversary and a simulator, and let LT be a stateful algorithm. We define two games, RealΣA
and IdealΣA as follows.

RealΣA(λ) : A(1λ) outputs W,T with the above syntax. The game computes (TSet,KT )← TSetSetup(T)
and gives TSet to A. Then A repeatedly issues queries q ∈W, and for each q the game gives
stag← TSetGetTag(K, q) to A. Eventually A outputs a bit which the game uses as its output.
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IdealΣA,S(λ) : The game initializes a counter i = 0 and an empty list q. A(1λ) outputs W,T as
above. The game runs TSet ← S(LT (T)) and gives TSet to A. Then A repeatedly issues
queries q ∈ W, and for each q the game stores q in q[i], increments i, and gives to A the
output of S(LT (T,q),T[q]). Eventually A outputs a bit which the game uses as its output.

We say that Σ is a LT -adaptively-secure T-set instantiation if for all adversaries A there exists an
algorithm S such that Pr[RealΣA(λ) = 1]− Pr[IdealΣA,S(λ) = 1] ≤ neg(λ).

A non-adaptive version of this definition is a straightforward modification of the above game
where the adversary provides all of the queries at the start of the game.

2.3 T-Sets and Single Keyword Search

Here we show how a T-set can be used as an “secure inverted index” to build an SSE scheme for
single-keyword search. The ideas in this construction will be the basis for our conjunctive search SSE
schemes later, and it essentially abstracts prior constructions [15, 14]. The details of the scheme,
called SKS, are given in Figure 1. It uses as subroutines a PRF F : {0, 1}λ × {0, 1}λ→ {0, 1}λ,
and a CPA secure symmetric encryption scheme (Enc,Dec) that has λ-bit keys. When combined
with the specific adaptively-secure T-set construction shown in Section 6, the SKS protocol results
in a single-keyword SSE scheme that achieves the best storage and search performance among
existing adaptive SSE protocols. Whereas our EDB stores c ∗ N short ciphertexts for a small
constant c ≤ 3, where N =

∑
w∈W |DB(w)|, i.e. the total number of keyword occurrences in DB,

the adaptive SSE scheme of [15] needs d∗max storage where d is the number of documents and max

is the maximum number of keywords in any document, while the adaptive SSE scheme for keyword
search of [14] needs m∗max′ storage where m is the number of keywords and max′ is the maximum
number of documents matching any keyword. Consequently our T-set implementation improves
over adaptive single-keyword SSE of [15] by factor equal to the proportion between maximum
number of keywords in any document to the average number of keywords per document, and
it improves over adaptive single-keyword SSE of [14] by factor equal to the proportion between
maximum number of documents matching any keyword to the average number of documents per
keyword.5 Finally, the storage complexity of [27] is similar to ours, but their search procedure
cannot be parallelized on the server because they represent a T-set as a linked list, and their
reliance on the ROM model for security seems harder to do away with. (On the other hand, the
scheme of [27] enables updates without growth in the data structure size and search time.)

Recent work [12] improves on our Tset construction offfering a two-level scheme that optimizes
both disk access and memory load factors scaling to almost two orders of magnitude larger DBs
than in the present work (while also providing support for dynamic databases).

3 SSE Schemes for Conjunctive Keyword Search

Existing SSE schemes for conjunctive queries ([21] and subsequent work) work by encoding each
document individually and then processing a search by testing each encoded document against a set
of tokens. Thus the server’s work grows linearly with the number of documents, which is infeasible

5As for communication costs, the adaptive scheme of [15] has O(d) communication as stated, but it can be easily
reduced to O(|DB(w)|), the size of the result set. The scheme of [14] has O(max′) communication, i.e. O(|DB(w)|)
for the worst case w. The schemes of [15, 14] do not rely on ROM, but our T-set implementation can also avoid
ROM if instead of a single value strap the client streams to the server consecutive values F (strap, 1), F (strap, 2), . . .
until receiving server’s signal to stop.
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EDBSetup(DB)

• Select key KS for PRF F , and parse DB as (indi,Wi)
d
i=1.

• Initialize T to an empty array indexed by keywords from W = ∪di=1Wi.

• For each w ∈W, build the tuple list T[w] as follows:

– Initialize t to be an empty list, and set Ke ← F (KS , w).

– For all ind ∈ DB(w) in random order: e
$
← Enc(Ke, ind); append e to t.

– Set T[w]← t.

• (TSet,KT )← TSetSetup(T).

• Output the key (KS ,KT ) and EDB = TSet.

Search protocol

• The client takes as input the key (KS ,KT ) and a keyword w to query.
It computes stag← TSetGetTag(KT , w) and sends stag to the server.

• The server computes t← TSetRetrieve(TSet, stag), and sends t to the client.

• Client sets Ke ← F (KS , w); for each e in t, it computes ind← Dec(Ke, e) and outputs ind.

Figure 1: SKS: Single-Keyword SSE Scheme

for large databases. In addition, these schemes only work for attribute-value type databases (where
documents contain a single value per attribute) but not for unstructured data, e.g., they cannot
search text documents.

Here we develop the first sub-linear conjunctive-search solutions for arbitrarily-structured data,
including free text. In particular, when querying for the documents that match all keywords
w1, . . . , wn, our search protocol scales with the size of the (estimated) smallest DB(wi) set among
all the conjunctive terms wi.

The näıve solution. To motivate our solutions we start by describing a straightforward extension
of the single-keyword case (protocol SKS from Figure 1) to support conjunctive keyword searching.
On input a conjunctive query w̄ = (w1, . . . , wn), the client and server run the search protocol from
SKS independently for each term wi in w̄ with the following modifications. Instead of returning the
lists t to the client, the server receives Kei , i = 1, ..., n, from the client and decrypts the e values to
obtain a set of ind’s for each wi. Then, the server returns to client the ind values in the intersection
of all these sets. The search complexity of this solution is proportional to

∑n
i=1 |DB(wi)| which

improves, in general, on solutions whose complexity is linear in the number of documents in the
whole database. However, this advantage is reduced for queries where one of the terms is a very
high-frequency word (e.g., in a relational database of personal records, one may have a keyword
w = (gender,male) as a conjunctive term, thus resulting in a search of, say, half the documents
in the database). In addition, this solution incurs excessive leakage to the server who learns the
complete sets of indices ind for each term in a conjunction.

Our goal is to reduce both computation and leakage in the protocol by tying those to the less frequent
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terms in the conjunctions (i.e., terms w with small sets DB(w)).

Text in red indicates changes from SKS, Figure 1
EDBSetup(DB)

• Select keys KS and KX for PRF F ; parse DB as (indi,Wi)
d
i=1.

• Initialize T to an empty array indexed by keywords from W.

• Initialize XSet to an empty set.

• For each w ∈W, build the tuple list T[w] and XSet elements as follows:

– Initialize t to be an empty list, and set Ke ← F (KS , w).

– Compute xtrap← F (KX , w)

– For all ind in DB(w) in random order:

∗ Compute e← Enc(Ke, ind) and append e to t.

∗ xtag← f(xtrap, ind) and add xtag to XSet.

– T[w]← t.

• (TSet,KT )← TSetSetup(T).

• Output the key (KS ,KX ,KT ) and EDB = (TSet,XSet).

Search protocol

• The client takes as input the key (KS ,KX ,KT ) and keywords w1, . . . , wn to query.
It computes its messages as

– Ke ← F (KS , w1), stag← TSetGetTag(KT , w1), then

– For each i = 2, . . . , n, it sets xtrapi ← F (KX , wi).

– It sends (stag,Ke, xtrap2, . . . , xtrapn) to the server.

• The server has input (TSet,XSet). It responds as follows.

– It sets t← TSetRetrieve(TSet, stag).

– For each ciphertext e in t, it computes

∗ ind← Dec(Ke, e)

∗ If f(xtrapi, ind) ∈ XSet for all i = 2, . . . , n, it sends ind to the client.

• The client outputs all of the received inds.

Figure 2: BXT: Basic Cross-Tags Protocol
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3.1 Basic Cross-Tags (BXT) Protocol

To achieve the above goal we take the following approach that serves as the basis for our main SSE-
conjunctions scheme OXT presented in the next subsection. Here we exemplify the approach via a
simplified protocol, BXT. Assume (see Section 3.1.1) that the client, given w̄ = (w1, . . . , wn), can
choose a term wi with a relatively small DB(wi) set among w1, . . . , wn; for simplicity assume this
is w1. The parties could run an instance of the SKS search protocol for the keyword w1 after which
the client gets all documents matching w1 and locally searches for the remaining conjunctive terms.
This is obviously inefficient as it may require retrieving many more documents than actually needed.
The idea of BXT is indeed to use SKS for the server to retrieve TSet(w1) but then perform the
intersection with the terms w2, . . . , wn at the server who will only return the documents matching
the full conjunction. We achieve this by augmenting SKS as follows.

During EDBSetup(DB), in addition to TSet, a set data structure XSet is built by adding to
it elements xtag computed as follows. For each w ∈ W, a value xtrap = F (KX , w) is computed
where KX is a PRF key chosen for this purpose; then for each ind ∈ DB(w) a value xtag =
f(xtrap, ind) is computed and added to XSet where f is an unpredictable function of its inputs
(e.g., f can be a PRF used with xtrap as the key and ind as input). The Search protocol for
a conjunction (w1, . . . , wn), chooses the estimated least frequent keyword, say w1, and sets, as
in SKS, Ke ← F (KS , w1), stag ← TSetGetTag(KT , w1). Then, for each i = 2, . . . , n, it sets
xtrapi ← F (KX , wi) and sends (Ke, stag, xtrap2, . . . , xtrapn) to the server. The server uses stag to
retrieve t = TSetRetrieve(TSet, stag). Then, for each ciphertext e in t, it decrypts ind = Dec(Ke, e)
and if f(xtrapi, ind) ∈ XSet for all i = 2, . . . , n, it sends ind to the client.6

Correctness of the BXT protocol is easy to verify. Just note that a document indexed by
ind includes a word w represented by stag if and only if xtag = f(xtrap, ind) ∈ XSet. Regarding
implementation of XSet, it can use any set representation that is history-independent, namely, it
is independent of the order in which the elements of the set were inserted. For TSet security and
implementation see Section 2.

Terminology (s-terms and x-terms): We will refer to the conjunctive term chosen as the estimated
least frequent term among the query terms as the s-term (‘s’ for SKS or “small”) and refer to other
terms in the conjunction as x-terms (‘x’ for “cross”); this is the reason for the ‘s’ and ‘x’ in names
such as stag, xtag, stag, xtrap, etc.

The server’s work in BXT scales with n · |DB(w1)|, where w1 is the conjunction’s s-term. This
represents a major improvement over existing solutions which are linear in |DB| and also a sig-
nificant improvement over the näıve solution whenever there is a term with relatively small set
DB(w1) that can be identified by the client, which is usually the case as discussed in Section 3.1.1.
Communication is optimal (O(n)-size token plus the final results set) and computation involves
only PRF operations.

Security-wise this protocol improves substantially on the above-described näıve solution by
leaking only the (small) set of ind’s for the s-term and not for x-terms. Yet, this solution lets the
server learn statistics about x-terms by correlating information from different queries. Specifically,
the server can use the value xtrapi received in one query and check it against any ind found through
an s-term of another query. But note that direct intersections between x-terms of different queries
are not possible other than via the s-terms (e.g., if two queries (w1, w2) and (w′

1, w
′
2) are issued,

the server can learn the (randomly permuted) results of (w1, w
′
2) and (w′

1, w2) but not (w2, w
′
2).

In settings where computation and communications are very constrained BXT may provide for

6 While in SKS one can choose to let the server decrypt the ind’s directly instead of the client, in BXT this is
necessary for computing the xtag’s.
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an acceptable privacy-performance balance. In general, however, we would like to improve on the
privacy of this solution even if at some performance cost. We do so in the next section with the
OXT protocol, so we omit a formal analysis BXT – we note that the security of BXT needs the set
of ind’s to be unpredictable, a condition not needed in the other protocols.

3.1.1 Choosing the s-term

The performance and privacy of our conjunction protocols improves with “lighter” s-terms, namely,
keywords w whose DB(w) is of small or moderate size. While it is common to have such terms in
typical conjunctive queries, our setting raises the question of how can the client, who has limited
storage, choose adequate s-terms. In the case of relational databases one can use general statistics
about attributes to guide the choice of the s-term (e.g., prefer a last-name term to a first-name
term, always avoid gender as the s-term, etc.). In the case of free text the choice of s-term can
be guided by term frequency which can be made available, requiring a small state stored at the
client or retrieved from the server. Indeed, it is the common case that the number of very frequent
words in a document collection is relatively small. This means that the client can keep a small
state with sufficient information to choose light s-terms. For example, in the Enron data set [16]
used in our testing, only 4% of 1,176,222 distinct words from 1,551,675 documents appear in more
than 100 documents. With a state of less than 100 Kbyte a client can keep information, e.g., via a
Bloom filter, to differentiate between keywords with less than 100, 1000, 10,000, 100,000, matching
documents, respectively (and if one omits the ‘> 100’ category then the storage requirement reduces
to less than 25KB). We note that on our experimental platform, any TSet(w) with less than 1000
tuples is retrieved in less than a tenth of a second, so the level of granularity for the above tables
can be tuned depending on the data and setting. A client that cannot afford storing a state of the
above size, can retrieve it from the server (where this state is stored encrypted) at the beginning
of a search session. And there is always the option to cap the number of searched and/or retrieved
documents (after which the client may choose to refine its search). Finally, we observe that in the
case of multi-client SSE setting [14] discussed in the introduction, the data owner, who provides
tokens to clients, will usually have enough storage to make optimal (or close-to-optimal) choices of
s-terms.

3.2 Oblivious Cross-Tags (OXT) Protocol

The BXT scheme is vulnerable to the following simple attack: When the server gets xtrapi for a
query (w1, . . . , wn), it can save it and later use it to learn if any revealed ind value is a document
with keyword wi by testing if f(xtrapi, ind) ∈ XSet. This allows an honest-but-curious server to
learn, for example, the number of documents matching each queried s-term with each queried x-
term (even for terms in different queries). This attack is possible because BXT reveals the keys
that enable the server to compute f(xtrapi, ·) itself.

One way to mitigate the attack is to have the client evaluate the function for the server instead
of sending the key. Namely, the server would send all the encrypted ind values that it gets in
t (from the TSet) to the client who will compute the function f(xtrapi, ind) and send back the
results. However, this fix adds a round of communication with consequent latency, it allows the
server to cheat by sending ind values from another query’s s-term (from which the server can
compute intersections not requested by the client), and is unsuited to the multi-client SSE setting
[14] discussed in the introduction (since the client would learn from the inds it receives the results
of conjunctions it was not authorized for). Note that while the latter two issues are not reflected
in our current formal model, avoiding them expands significantly the applicability of OXT.
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EDBSetup(DB)

• Select key KS for PRF F , keys KX , KI ,KZ for PRF Fp (with range in Z∗
p), and parse DB

as (indi,Wi)
d
i=1.

• Initialize T to an empty array indexed by keywords from W.

• Initialize XSet to an empty set.

• For each w ∈W, build the tuple list T[w] and XSet elements as follows:

– Initialize t to be an empty list, and set Ke ← F (KS , w).

– For all ind in DB(w) in random order, initialize a counter c← 0, then:

∗ Set xind← Fp(KI , ind), z ← Fp(KZ , w ‖ c) and y ← xind · z−1.

∗ Compute e← Enc(Ke, ind), and append (e, y) to t.

∗ Set xtag← gFp(KX ,w)·xind and add xtag to XSet.

– T[w]← t.

• (TSet,KT )← TSetSetup(T).

• Output the key (KS ,KX ,KI ,KZ ,KT ) and EDB = (TSet,XSet).

Search protocol

• The client’s input is the key (KS ,KX ,KI ,KZ ,KT ) and query w̄ = (w1, . . . , wn).

It sends to the server the message (stag, xtoken[1], xtoken[2], . . .) defined as:

– stag← TSetGetTag(KT , w1).

– For c = 1, 2 . . . and until server sends stop

∗ For i = 2, . . . , n, set xtoken[c, i]← gFp(KZ ,w1 ‖ c)·Fp(KX ,wi)

∗ Set xtoken[c] = xtoken[c, 2], . . . , xtoken[c, n].

• The server has input (TSet,XSet). It responds as follows.

– It sets t← TSetRetrieve(TSet, stag).

– For c = 1, . . . , |t|

∗ retrieve (e, y) from the c-th tuple in t

∗ if ∀i = 2, . . . , n : xtoken[c, i]y ∈ XSet then send e to the client.

– When last tuple in t is reached, send stop to C and halt.

• Client sets Ke ← F (KS , w1); for each e received, computes ind ← Dec(Ke, e) and outputs
ind.

Figure 3: OXT: Oblivious Cross-Tags Protocol
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These issues suggest a solution where we replace the function f(xtrap, ·) (where xtrap = F (KX , w))
with a form of oblivious shared computation between client and server. A first idea would be to
use blinded exponentiation (as in Diffie-Hellman based oblivious PRF) in a group G of prime order
p: Using a PRF Fp with range Z∗

p (and keys KI ,KX), we derive a value xind = Fp(KI , ind) ∈ Z
∗
p

and define each xtag to be gFp(KX ,w)·xind. The shared computation would proceed by the client
first sending the value gFp(KX ,wi)·z where z ∈ Z∗

p is a blinding factor; the server would raise this
to the power xind and finally the client would de-blind it by raising to the power z−1 mod p to
obtain gFp(KX ,wi)·xind. Unfortunately, this idea does not quite work as the server would learn
xtag = gFp(KX ,wi)·xind and from this, and its knowledge of xind, it would learn gFp(KX ,wi), which
allows it to carry out an attack similar to the one against BXT. This also requires client-server
interaction on a per-xind basis, a prohibitive cost.

In the design of OXT we address these two problems. The idea is to precompute (in EDBSetup)
the blinding part of the oblivious computation and store it in the EDB. I.e., in each tuple corre-
sponding to a keyword w and document xind, we store a blinded value yc = xind · z−1

c , where zc is
an element in Z∗

p derived (via a PRF) from w and a tuple counter c (this counter, incremented for
each tuple in t associated with w, serves to ensure independent blinding values z).

During search, the server needs to compute the value gFp(KX ,wi)·xind for each xind corresponding
to a match for w1 and then test these for membership in XSet. To enable this, the client sends,
for the c-th tuple in t, a n-long array xtoken[c] defined by xtoken[c, i] := gFp(KX ,wi)·zc , i = 1, . . . , n,
where zc is the precomputed blinding derived by from w (via a PRF) and the tuple counter c. The
server then performs the T-set search to get the results for w1, and filters the c-th result by testing
if xtoken[c, i]yc ∈ XSet for all i = 2, . . . , n. This protocol is correct because

xtoken[c, i]yc = gFp(KX ,wi)·zc·xind·z
−1
c = gFp(KX ,wi)·xind,

meaning that the server correctly recomputes the pseudorandom values in the XSet.
Putting these ideas together results in the OXT protocol of Figure 3. Note that the client sends

the xtoken arrays (each holding several values of the form gFp(KX ,wi)·z) until instructed to stop by
the server. There is no other communication from server to client (alternatively, server can send the
number of elements in TSet(w) to the client who will respond with such number of xtoken arrays).7

Note that while the description above is intended to provide intuition for the protocol’s design,
assessing the security (leakage) of OXT is non-trivial, requiring an intricate security analysis that
we provide in Section 5.

OXT consists of a single round of interaction, where the message sent by the client is of size
proportional to |DB(w1)|,

8 and the response to the client is minimal, consisting only of the result
set (i.e., the set of encrypted ind’s matching the query). The computational cost of OXT lies in
the use of exponentiations, however, thanks to the use of very efficient elliptic curves (we only
require the group to be DDH) and fixed-base exponentiations, this cost is practical even for very
large databases as demonstrated by the performance numbers in Section 7.

OXT leaks much less information to the server than BXT. Indeed, since the server, call it S,
learns neither the ind values nor xtrapj, j = 2, . . . , n, its ability to combine conjunctive terms from
one query with terms from another query is significantly reduced. In particular, while in BXT

S learns the intersection between s-terms of any two queries, in OXT this is possible only in the

7 The same protocol supports single-keyword search (or 1-term conjunctions) by skipping the c = 1, 2, . . . at both
client and server, hence falling back to the SKS protocol of Figure 1.

8 For typical choices of w1, such message will be of small or moderate size. For large values of |DB(w1)| one can
cap the search to the first k tuples for a threshold k, say 1000. For example, in the case of a 3-term conjunction and
xtag values of size 16 bytes, this will result in just 32 Kbyte message.
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following case: the two queries can have different s-terms, but same x-term and there is a document
containing both s-terms (the latter is possible since if the s-terms of two queries share a document
ind and an x-term xtrap then the xtag value f(xtrap, ind) will be the same in both queries indicating
that ind and xtrap are the same). The only other leakage via s-terms is that S learns when two
queries have the same s-term w1 and the size of the set DB(w1). Finally, regrading intra-query
leakage if C responds with the values xtagj, j = 2, . . . , n, in the same order for all ind’s, then in case
n > 2, S learns the number of documents matching any sub-conjunction that includes w1 and any
subset of w2, . . . , wn. If, instead, C randomly permutes the values xtagj , j = 2, . . . , n before sending
these values to S, then S learns the maximal number of satisfied terms per tuple in TSet(w1), but
not the size of sets matching w1 ∧ wi, i = 1, . . . , n, or any other proper sub-conjunctions (except
for what can be learned in conjunction with other leakage information). In Section 5 we formally
analyze the security of OXT making the above description of leakage precise.

As noted before, even a leakage profile as the above that only reveals access patterns can still
provide valuable information to an attacker that possesses prior information on the database and
queries. We don’t discuss here specific countermeasures for limiting the ability of an attacker to
perform such statistical inference – see [23] for an example of potential masking techniques.

4 Processing Boolean Queries with OXT

We describe an extension to OXT that can handle arbitrary Boolean query expressions, but are
efficient for a sub-class of expressions. We first consider conjunctions with negated terms.

Conjunction with negated terms. In the context of keyword-based search we refer to a “negated
term” as one that returns documents that do not contain the given keyword. Consider a conjunction
of n terms in which there is at least one non-negated term. To search for such a conjunction we
modify OXT as follows.

• The Client chooses one of the non-negated terms as the s-term, and computes stag and xtraps
(i.e. the xtoken arrays) as in OXT. It then sends the stag and the xtraps to the Server, but
indicating which xtraps are for negated terms.

• The Server’s computation is exactly as in OXT, except that for negated terms it checks if the
corresponding (xtoken[c, i])y is not in the XSet (i.e. instead of checking if it is in the XSet).

A conjunction where all terms are negated cannot be executed as above since the Client cannot
choose a negated term as s-term. We will see how we can accommodate, though inefficiently, such
searches below. (Note that in most cases a negated term will have a very large number of matching
documents; if this is the case for all the terms in the conjunction then efficient search, even on
plaintext data, is not possible.)

Boolean expressions in Searchable Normal Form (SNF). We say that a Boolean expression
in n terms is in Searchable Normal Form (SNF) if it is of the form w1 ∧ φ(w2, . . . , wn) where φ is
an arbitrary Boolean formula (e.g., “w1 ∧ (w2 ∨ w3 ∨ ¬w4)”). Protocol OXT can be extended to
answer such queries; the needed modifications are similar to those described above for the case of
conjunctions with at least one non-negated term (a special case of SNF). Specifically, on input a
query of the form w1 ∧ φ(w2, . . . , wn), the client creates a modified boolean expression φ̂ in new
boolean variables vi (i = 2, . . . , n), which is just φ but with each wi replaced by vi. Thus, the client
uses w1 as the s-term and computes its stag as in OXT, and computes the xtrap (i.e. the xtoken

array) for all the other terms wi (i > 1). It then sends the stag and the xtraps in the order of their
index. It also sends the Server the above modified boolean expression φ̂.
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The Server fetches the TSet corresponding to the stag as in OXT. It also computes the xtag

corresponding to each x-term, also as in OXT. But, it decides on sending (to the Client) the
encrypted ind corresponding to each tuple in the TSet based on the following computation (which
is the only different part from OXT): for each i = 2, . . . , n, the Server treats the variable vi as a
boolean variable and sets it to the truth value of the expression (xtoken[c, i])y ∈ XSet. Then it
evaluates the expression φ(v2, . . . , vn). If the result is true, it returns the e value in that tuple to
the Client.

Responding to arbitrary Boolean queries. OXT can be also be extended to answer any
Boolean query by adding to the database a field true which all documents satisfy. Then a search
for any expression φ(w1, . . . , wn) can be implemented as “true ∧ φ(w1, . . . , wn)”, which is in SNF
and can be searched as in the SNF case above. Clearly, this will take time linear in the number of
documents but it can be implemented if such functionality is considered worth the search complexity.

Disjunctions. A disjunction of expressions that have efficient search under OXT or the extended
OXT as described above can also be searched efficiently by running OXT (or the extended OXT) in
each disjunct separately, and the client requesting the union of the sets of decrypted ind’s for each
disjunct.

5 Security Analysis of OXT

In this section we describe the OXT leakage profile L and analyze its security. While our ultimate
goal is to prove adaptive security for boolean queries, we start by analyzing non-adaptive security
for the special case where all queries are conjunctions of two keywords. This special case already
captures essentially all of the difficulties in the analysis and dispenses with several distracting
notational issues. Then we show how to extend the leakage profile to boolean queries (in particular
for conjunctions with any number of terms) in Section 5.3, where we also analyze adaptive security.

5.1 Hardness assumptions

Decision Diffie-Hellman. Let G = Gλ be a prime order cyclic group of order p = p(λ) generated
by g. We say that the decision Diffie-Hellman (DDH) assumption holds in G if Advddh

G,A(λ) is
negligible for all efficient adversaries A, where

Advddh
G,A(λ) = Pr[A(g, ga, gb, gab) = 1]− Pr[A(g, ga, gb, gc) = 1]

where the probability is over the randomness of A and uniformly chosen a, b, c from Z∗
p .

For vectors a ∈ (Z∗
p )

α,b ∈ (Z∗
p)

β let ga = (ga[1], . . . , ga[α]) ∈ Gα and gab
T
be the matrix in

Gα×β where the (i, j)-th entry is ga[i]·b[j]. We will use the following standard lemma in our security
proof.

Lemma 3 Suppose the DDH assumption holds for in G. Then, for any integers α, β (polynomial
in λ) any efficient adversary A, we have

Pr[A(g, ga, gb, gab
T
) = 1]− Pr[A(g, ga, gb,M) = 1] ≤ neg(λ),

where a is uniform over (Z∗
p)

α, b is uniform over (Z∗
p)

β , and M is uniform over Gα×β .

PRF Security. Let X and Y be sets, and let F : {0, 1}λ ×X→Y be a function. We say that F

is a pseudorandom function (PRF) if for all efficient adversaries A, Advprf
F,A(λ) is negligible, where

Advprf
F,A(λ) = Pr[AF (K,·)(1λ) = 1]− Pr[Af(·)(1k) = 1]
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where the probability is over the randomness of A, K
$
← {0, 1}λ, and f

$
← Fun(X,Y ).

IND-CPA Encryption Security. A symmetric encryption scheme (Enc,Dec) is a pair of algo-
rithms, the first randomized and the second deterministic. Enc takes as input a key K ∈ {0, 1}λ

and a message M ∈ {0, 1}∗, and outputs a ciphertext C. Dec takes as input a key K ∈ {0, 1}λ and
a ciphertext C and outputs a message M . We require the usual correctness for all possible keys K
and messages M .

We say that Σ = (Enc,Dec) is IND-CPA secure if for all efficient adversaries A Advind−cpa
Σ,A (λ)

is negligible, where

Advind−cpa
Σ,A (λ) = Pr[AO(K,0,·,·)(1λ) = 1]− Pr[AO(K,1,·,·)(1k) = 1],

where K is chosen at random from {0, 1}λ and the oracle O(K, b,M0,M1) returns ⊥ if |M0| 6= |M1|,
and otherwise it samples Enc(K,Mb) and returns the result.

5.2 Warm up: Analysis for non-adaptive 2-conjunctions

We start by describing the function Loxt that describes the leakage of the OXT (beyond the T-set
leakage) protocol under a simpler scenario where all queries are non-adaptive and are for conjunc-
tions of two keywords only. This setting already confronts most of the intuitive difficulties in our
leakage profile and proof, but is less cluttered than the full setting, which we present in the next
subsection.

Below our security theorem will show that this, in addition to the leakage from LT which is
defined by the T-set implementation, is all of the information leaked by our protocol.

We represent a sequence of Q non-adaptive 2-conjunction queries by q = (s,x) where an
individual query is a 2-term conjunction s[i] ∧ x[i] which we write as q[i] = (s[i],x[i]). Loxt(DB,q)
gets DB = (indi,Wi)

d
i=1 and q = (s,x) as input and outputs (N, s,SP,RP, IP), which are defined

below.

• N =
∑d

i=1 |Wi| is the total number of appearances of keywords in documents.

• s ∈ [m]Q is the equality pattern of s ∈ WQ indicating which queries have the equal s-terms.
Formally, s ∈ [m]Q is formed by assigning each keyword an integer in [m] determined by the
order of appearance in s. For example, if s = (a, a, b, c, a, c) then s = (1, 1, 2, 3, 1, 3). To
compute s[i] one finds the least j such that s[j] = s[i] and then lets s[i] = |{s[1], . . . , s[j]}| be
the number of unique keywords appearing at indices less than or equal to j.

• SP is the size pattern of the queries, which is the number of documents matching the first
keyword in each query. Formally, SP ∈ [d]Q and SP[i] = |DB(s[i])|.

• RP is the results pattern of the queries, which are the indices of documents matching the
entire conjunction. Formally, RP is vector of size Q with RP[i] = DB(s[i])∩DB(x[i]) for each
i.

• IP is the conditional intersection pattern, which is formally a Q by Q table defined by

IP[i, j] =

{
DB(s[i]) ∩ DB(s[j]) if i 6= j and x[i] = x[j]
∅ otherwise

Understanding the leakage components. The parameter N can be replaced with an upper
bound given by the total size of EDB but leaking such a bound is unavoidable. The equality pattern
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s leaks repetitions in the s-term of different queries; this is a consequence of our optimized search
that singles out the s-term in the query. This leakage can be mitigated by having more than one
TSet per keyword and the client chosing different incarnations of the Tset for queries with repeated
s-terms. SP leaks the number of documents satisfying the s-term in a query and is also a direct
consequence of our approach of optimizing search time via s-terms; it can be mitigated by providing
an upper bound on the number of documents rather than an exact count by artificially increasing
Tset sizes. RP is the result of the query and therefore no real leakage in the context of SSE. Finally,
the IP component is the most subtle and it means that if two queries have different s-terms but same
x-term, then if there is a document satisfying both s-terms then the set of indexes matching both
s-terms is leaked (if no document matching both s-terms exist then nothing is leaked). It can be
seen as the price we pay for the rich functionality enabled by our x-terms and XSet approach that
allows for the computation of arbitrary boolean queries. Note, however, that since the s-terms are
meant to be the least-frequently matched keywords, the number of instances with s-terms having
a non-empty intersection of documents containing both terms can be minimized. Moreover, in
searches where the s-term is a unique per-document term (e.g., a last name on a database with a
last-name field) the IP leaks nothing about the searches or database, as all the Si are empty.

It also helps to compare the above leakage to the leakage incurred by the näıve solution that
simply sends tokens for each keyword in the conjunction. In that case, the server would learn
DB(s[i]) and DB(x[i]) for every i, as it would see the results of the individual searches (instead
of just the results pattern, which would be ideal). This means it would learn the relationships
between all of the documents matching the individual keywords, and this is information is exactly
what OXT is designed to minimize.

We also remark that d, the number of documents in DB is not leaked in the above profile but
would like be leaked in an implementation that stores the encrypted documents. This is outside
the formal model analyzed here but could be easily incorporated at the cost of extra notation, as
some prior works did.

OXT security theorem for two-term conjunctions. Theorem 5 below that states the security
of OXT for two-term conjunctions requires the following lemma that establishes a bound on the
correctness of the protocol, which for OXT means the probability that a document that does not
match a query will be returned to the client. The next lemma shows that this happens only with
negligible probability. See Section 5.1 for standard assumptions (PRF, DDH) used in the theorem.

Lemma 4 For every adversary A there exists adversaries B and B′ which run in essentially the
same time as A, such that

Pr[CorOXT
A (λ) = 1] ≤ 2 ·Advprf

Fp,B
(λ) +AdvCorΠB′(λ) +N2/(p − 1) +N/p,

where N = Σd
i=1|Wi| is the total number of appearances of keywords in all documents, p is the order

of the group G, and Π is the T-set implementation.

The proof appears in Appendix A. Intuitively, the only way a failure in correctness can occur
is if either the T-set fails or if two keyword-identifier pairs from DB map to the same xtag using
Fp(KI , ·) and Fp(KX , ·). But since these values are pseudorandom over a large set, the chance of
this happening is negligible.

The statement of our generic security theorem for a generic T-set is somewhat cumbersome due
to an issue with how leakages compose, and is given in Section B. For the case of OXT that uses our
T-set implementation from Section 6, which is of primary interest, we have that Loxt constitutes
all of the leakage.
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Theorem 5 Let Loxt be as defined above, and suppose that the T-set implementation Σ from
Section 6. Then SSE scheme OXT is Loxt-semantically-secure against non-adaptive attacks where
are all queries are 2-conjunctions, assuming that the DDH assumption holds in G, that F and Fp

are secure PRFs, that (Enc,Dec) is an IND-CPA secure symmetric encryption scheme, and the
conditions from Theorem 7 hold.

Proof sketch. The proof of the theorem is delicate and lengthy, and is given in Appendix B for
the more general formulation in Theorem 9. To get some intuition for why the scheme is secure, we
start by examining why each of the outputs of L is necessary for a correct simulation. Of course,
this does nothing to show that they are sufficient for simulation, but it will be easier to see why
this is all of the leakage once their purpose is motivated.

The size of the XSet is equal to the value N leaked. The equality pattern for s, s, (or something
computationally equivalent to it) is necessary due to the fact that the stag values are deterministic,
so a server can observe repetitions of stag values to determine if s[i] = s[j] for all i, j. The size
pattern is also necessary as the server will always learn the number of matches for the first keyword
in the conjunction by observing the number of tuples returned by the T-set. We include the results
pattern to enable the simulator to produce the client results for queries in way consistent the
conditional intersection pattern.

The final and most subtle part of the leakage is the conditional intersection pattern IP. The
IP is present in the leakage because of the following passive attack. During the computation of
the search protocol, the values tested for membership in the XSet by the server have the form
gFp(KX ,wi)·Fp(KI ,ind), where wi is the i-th keyword from a search and ind is an identifier for a
document that matched the s-term (but may or may not match the remaining keywords). The
leakage comes from the fact that the values will sometimes repeat (when two queries repeat the
same wi and match the same ind with their s-terms) and they are all known to the adversary. The
IP describes exactly what can be learned from this attack.

Our proof makes formal the claim that the output of L is sufficient for a simulation. We outline
a few of the technical hurdles in the proof without dealing with the details here. For this discussion,
we assume that reductions to PRF security and encryption security go through easily, allowing us
to treat PRF outputs as random and un-opened ciphertexts as encryptions of zeros.

We first handle the information leaked by the XSet. An unbounded adversary could compute
the discrete logarithms of the XSet elements and derive information about which documents match
which keywords. We want to show however that a poly-time adversary learns nothing from the
XSet due to the assumed hardness of the DDH problem. Formally, we need to show that we can
replace the elements of XSet with random elements that carry no information about the database,
but there is a technical difficulty: some of the exponents (specifically, the xind values) that will play
the roll of hidden exponents in the DDH reduction are used in the computation of the xtrap values,
and these are revealed in the transcripts. A careful rearrangement of the game computation will
show that this is not as bad as it seems, because the xind values are “blinded out” by the z values.
We stress that this requires some care, because the z values are also used twice, and we circumvent
this circularity by computing the XSet first and then computing the transcripts “backwards” in
way that is consistent with the XSet. Now a reduction to DDH becomes clear, as the XSet values
can be dropped in obliviously as real-or-random group elements.

With the XSet leakage eliminated, the rest of the work is in showing that the simulator can
arrange for a correct-looking pattern of “repeats” in the documents matched and in the values
tested against the XSet. While riddled with details, this is intuitively a rather straightforward task
that is carried out in the latter games of the proof.
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5.3 Analysis for boolean queries

In this section we give the leakage profile for OXT under adaptive attacks where any boolean query
in searchable normal form (SNF), i.e., of the form ψ(s, x1, . . . , xn) = s ∧ φ(x1, . . . , xn), is allowed
(n can vary between queries). In particular, this leakage profile extends the one in the previous
section to conjunctions with any number of terms. As before, for simplicity we describe the leakage
profile when OXT is used with our specific T-set implementation from Section 6.

The new leakage profile L is a stateful algorithm that responds to inputs as defined in Defi-
nition 1. On the initial input DB, it outputs N =

∑d
i=1 |Wi|. Later inputs consist of a vector of

queries q = (Φ, s,x1, . . . ,xn), where Φ is a vector of boolean formulae and s,x1, . . . ,xn are vectors
of keywords, all populated according to the queries issued so far in the straightforward way9. The
leakage function L outputs (N,Φ, s,SP,XP,RP, IP)), where N, s,SP are computed as in Section 5.2
and Φ is from q. It computes the remaining elements as follows:

• The vector XP has XP[i] set to the number of x-terms in the i-th query.

• The results pattern RP is a vector, where for each i, RP[i] is the identifiers matching the i-th
query.

• The conditional intersection pattern IP is intuitively the IP from the 2-conjunction case for
every pair of x-term indices. Formally, IP is indexed by (i, j, α, β) where 1 ≤ i, j ≤ Q and
1 ≤ α, β ≤ n (where n is the maximum number of x-terms in any query). The entries in IP

are defined by

IP[i, j, α, β] =

{
DB(s[i]) ∩ DB(s[j]) if i 6= j, α 6= β and xα[i] = xβ[j]
∅ otherwise

Theorem 6 Let L be the leakage function defined above. Then OXT, when implemented using the
T-set implemenation from Section 6, is L-semantically-secure against adaptive attacks, assuming
that the DDH assumption holds in G, that F and Fp are secure PRFs, that (Enc,Dec) is an IND-
CPA secure symmetric encryption scheme, and that the conditions in Theorem 7 are satisfied.

The proof of this theorem is an extension of the non-adaptive theorem in two ways. First, the
proof must handle the simulation of more complicated general queries, and second it must do this
adaptively. Handling general queries introduces few complications because the leakage of Φ and
the new IP gives the simulator enough information to properly program the results and the XSet

in a way that generalizes what is done in the proof for 2-conjunctions. Thus we focus on how to
handle adaptivity.

The adaptive simulator works as follows. To generate EDB = (TSet,XSet), the simulator invokes
the adaptive TSet simulator from the proof of Theorem 7 on input N and it generates XSet by
choosing N random group elements and adding them to XSet.

To simulate queries responses, the simulator will adaptively “assign” elements of the XSet to
keyword-ind pairs. This is in contrast with the non-adaptive simulator, which achieved this by
initializing the array H and then adding the elements to the XSet as determined by the leakage.
Here, the simulator is choosing the XSet values, and then initializing H entries adaptively, using
either elements of XSet (with the proper repetitions) or independent random elements (again, with
the proper repetitions).

9Formally, n is the maximum number of x-terms in any query, with smaller queries padded up with a special
dummy symbol. Hence, if the i-th query uses boolean formula φ on n′ + 1 inputs then we have Φ[i] = φ and the
input is represented by (s[i],x1[i], . . . ,xn[i]) where the last n− n′ terms are set to the dummy symbol.
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6 T-Set Instantiation

We show an efficient instantiation of a T-set, whose syntax and security are defined in Section 2.
We instantiate a T-set as a hash table with B buckets of size S each. The TSetSetup(T) procedure
sets the parameters B and S depending on the total number N =

∑
w∈W |T[w]| of tuples in T in

such a way so that (1) the probability of an overflow of any bucket after storing N elements in this
hash table is a sufficiently small constant; and (2) the total size B · S of the hash table is O(N).

Figure 4 shows our T-set instantiation Σ = (TSetSetup,TSetGetTag,TSetRetrieve). We use the
following notation: λ is a security parameter, n(λ) is the bit length of strings si in each vector T,
record is a record type with two fields, label, storing bit strings of length λ, and value, storing bit
strings of length n(λ) + 1. Each entry TSet[i], for i = 1, ..., B, of array TSet, is itself an array of S
records of type record. We denote the j-th element in the array TSet[i] as TSet[i, j]. The protocol
uses PRFs F, F̄ and a hash function H, which for adaptive security is modeled as a random oracle
in the analysis, where F maps integers between 1 and maxw |D[w]| onto {0, 1}λ, F̄ maps the set W
onto the key space of F , and H maps {0, 1}λ onto {1, ..., B} × {0, 1}λ × {0, 1}n(λ)+1.

T-Set correctness. Note that procedure TSetSetup places the i-th element si of T[w] into bucket
TSet[b] where b is the first element in tuple (b, L,K) = H(F (stag, i)), for stag = F̄ (KT , w). There-
fore the search procedure TSetRetrieve(TSet, stag) will recover the same bucket B = TSet[b] for
stag ← TSetGetTag(KT , w). Since that i-th element si was placed in a record r in TSet[b] s.t.
r.label = L, the same record is found in the TSetRetrieve procedure as B[j], unless bucket B

contains some other record with the same label field L. However, the probability that this ever
happens can be bounded by BS22−λ (plus at most a negligible quantity bounding the maximal
distinguishing advantage between pseudorandom functions F and F̄ and true random functions).
If the correct record r is found then the TSetRetrieve procedure uncovers the correct bit β and
string si from r.value because it is xored by the same one-time pad K, the third element in the
same triple (b, L,K), with which (β|si) was encrypted in r.value during TSetSetup. Since β = 0 if
and only if si is the last string in list T[w], TSetRetrieve finds all elements of T[w] and terminates
when t = T[w].

Note that since a single attempt to build the TSet table by procedure TSetSetup takes O(m)
steps, and parameters B,S are set so that a single attempt fails with at most a constant probability
over the choice of the key KT of PRF F̄ , the expected time for the TSetSetup procedure is O(m).

T-Set security. The only leakage incurred by the T-set instantiation of Figure 4 is the total
number N =

∑
w∈W |T[w]| of tuples in T, which in our SSE applications equals the total number∑

w∈W |DB(w)| of keyword occurrences in database DB.

Theorem 7 For any keyword sequence q, including an empty sequence, define LT (T,q) as
∑

w∈W

|T(w)|, where W is the set of keywords used by T. The T-set instantiation Σ in Figure 4 is
LT -adaptively-secure assuming that F and F̄ are secure PRFs and that H is a random oracle.

Dispensing of the random oracle. Theorem 7 is the only result in this paper that uses the random
oracle model. The model is used to prove adaptive security (and indeed to avoid the lower bound
of [14] on token lengths). For non-adaptive security, we can prove security for a version of the
protocol with H replaced with another PRF (and an additional key stored at the client). Moreover,
it is possible to prove adaptive security without a random oracle at the cost of added communication.
For this we dispense of H and let the client send the values F (stag, i) instead of stag. This increases
the amount of communication, but when used with our OXT protocol it is not a dramatic increase.
As with OXT, the server can send a “stop” message when the client has sent enough F (stag, i)
values.
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TSetSetup(T)

• Initialize an array TSet of size B whose every element is an array of S records of type record.

• Initialize an array Free of size B whose elements are integer sets, initially all set to {1, ..., S}.

• Choose a random key KT of PRF F̄ .

• Let W be the set of keywords in DB. For every w ∈W do the following:

– Set stag← F̄ (KT , w) and t← T[w].

– For each i = 1, ..., |t|, set si as the i-th string in t, and perform the following steps:

∗ Set (b, L,K)← H(F (stag, i)).

∗ If Free[b] is an empty set, restart TSetSetup(T) with fresh key KT .

∗ Choose j
$
← Free[b] and remove j from set Free[b], i.e. set Free[b]← Free[b] \ {j}.

∗ Set bit β as 1 if i < |t| and 0 if i = |t|.

∗ Set TSet[b, j].label← L and TSet[b, j].value← (β|si)⊕K.

• Output (TSet,KT ).

TSetGetTag(KT , w)

• Output stag← F̄ (KT , w)

TSetRetrieve(TSet, stag)

• Initialize t as an empty list, bit β as 1, and counter i as 1.

• Repeat the following loop while β = 1:

– Set (b, L,K)← H(F (stag, i)) and retrieve an array B← TSet[b]

– Search for index j ∈ {1, ..., S} s.t. B[j].label = L.

– Let v ← B[j].value⊕K. Let β be the first bit of v, and s the remaining n(λ) bits of v.

– Add string s to the list t and increment i.

• Output t.

Figure 4: T-Set Instantiation Σ

Achieving optimal leakage. The leakage LT (T,q) =
∑

w∈W |T(w)| can be relaxed to only disclose
an upper bound on the latter quantity by filling in all empty locations in all buckets with (pseudo)
random values. In that way, the only leakage is the size of the full hash table which is optimal.

Proof sketch. To prove Theorem 7, we start with the simulator algorithm S. The simulator’s
initial input is N = LT (T) =

∑
w∈W |DB(w)|, and for each query q the adversary makes, the

simulator gets the corresponding vector T[q], and no additional leakage. At initialization S(N)
creates TSet as a B × S table (note that parameters B,S are determined by N) just like the
TSetSetup algorithm, but S populates this table by choosing m random locations in it and filling
them up with random entries. In other words, for each i = 1, . . . ,m, S randomly chooses a block
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b and a free location j within this block, and assigns TSet[b, j] to a record whose label and value

fields are random bitstrings of appropriate length. S hands this table TSet over to A, but locally it
marks all these m records in TSet as “unrevealed”. In the Random Oracle Model for hash function
H, S also simulates the outputs of H for A, initially setting H(x) for every query x at random.
On every query q which adversary A makes, S receives a list t = (s1, . . . , s|d|) s.t. t = T[q]. (Note
that function LT does not include any further leakage to S.) S(t) picks value stag′ at random in
the key space of PRF F , chooses |t| random unrevealed records r1, . . . , r|t| in TSet, locally marking
them all as revealed, and for each i = 1, . . . , |t|, S sets H(F (stag′, i)) to a tuple (b, L,K) defined
as follows: Bucket b is set to the bucket where record ri is, label L is set to ri.label, and key K is
set to (ri.value) ⊕ (β|si) where β is set to 1 if i < |t| and 0 if i = |t|. If H was queried on any of
the points F (stag′, i) before, S aborts. Otherwise, S outputs stag′ to A as its response to t = T[q].

First, note that by the PRF property of F̄ , the real game is indistinguishable from a modification
in which values stag′w for all w ∈ W are replaced by random elements of the range of F̄ , which is
the keyspace of PRF F . Secondly, because of the PRF property of F , this keyspace must be large
enough so that there only negligible probability that A queries H on (stag′w, i) for any w ∈W and
any i before A sees the corresponding stag′w value. Finally, since records corresponding to any given
T[q] sequence are assigned at random to the TSet table, under the condition that H isn’t queried
on any point (stag′, i) before S releases the corresponding stag′ value to A, the adversary’s view
of each (b, L,K) = H(F (stag′, i)) tuple and the corresponding record ri is identical in the above
simulation and the execution modified above, because in both cases b, L,K are random, ri.label = L
and ri.value = K ⊕ (β, si) where β = 1 for i < |t| and 0 for i = |t|. This completes the argument
for adaptive security of our T-set instantiation.

Overflow probability. Here we provide some examples of overflow probabilities for a given
number of buckets and their size. Consider a hash table with B buckets, each with space for S
equal-sized items. Let there be N items, which are inserted randomly and independently into
the hash table buckets. Let Xj

i denote the indicator variable for the event that the i-th item
was inserted in j-th bucket. Then, for each bucket j, the event W j that it overflows is given by∑

i=1..N X
j
i > S. First note that for all i, j, Pr[Xj

i = 1] = 1/B. Thus, by linearity of expectation,

for each j, E[
∑

i=1..N X
j
i ] = N/B. If k, the space-overhead, is defined as B · S/N , then the above

expectation is S/k. Now by Chernoff bound [2], for k ≥ 1,

Pr[W j] = Pr[
∑

i=1..N

Xj
i > k · (S/k)] < [ek−1k−k]S/k < (e1−1/k/k)S .

By the union bound, the probability that any of the B buckets overflows is at most B · (e/k)S

which in turn equals Nk
S · (e

1−1/k/k)S . To illustrate the overflow probability with specific numerical
examples we consider N = 230. Then with k = 3, S = 80 one gets overflow probability of less
than 2−21 (and with S = 100 less than 2−37). With k = 2, S = 160 the probability is 2−21 (and
with S = 200 less than 2−32). With k = 1.5, S = 400 the probability is about 2−20 (and with
S = 500 less than 2−30). Finally, if one uses moderately large buckets, then even with a mere 10%
increase in database size one can get very low overflow probabilities; e.g., with k = 1.1, S = 6000
the probability is 2−20 (and with S = 8000 less than 2−33).

Note that this is the probability that pre-processing fails and needs to be re-started; this prob-
ability is not adversarially controlled and has no security consequences.
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7 OXT Implementation and Experimental Results

This section reports the status of the OXT implementation and some results from using our proto-
type with three different data sets. The latency and scalability measurements included here should
be viewed as providing empirical proof to the performance and scalability claims made earlier in
the paper. The section starts with a brief description of the prototype that focuses on the TSet and
XSet generation and their use in the query processing, which are the biggest challenges in imple-
menting OXT. Next, the data sets are described followed by latency and scalability measurements.
The section concludes with our plans for improving the protocol performance.

Prototype. The prototype consists of two main components, one for data set pre-processing and
the other for query execution, in addition to a relatively simple client program used for testing
and performance measurements. The three programs use the same cryptographic primitives, which
leverage the OpenSSL 1.0.1 library. To realize the cryptographic primitives mentioned in Section 2,
we use the NIST 224p elliptic curves for group operations, AES-FFX [5] for permutations and,
depending on platform characteristics, AES-CMAC or HMAC for PRFs. Encryption optimized for
small storage overhead is achieved with a stateful and position-based variant of AES in CTR mode.
The overall C code, including test programs, measures roughly 16k lines.

The pre-processing generates the TSet and XSet data structures (or EDB) for the query com-
ponent as flat files together with the meta-data describing the EDB. During initialization, the
query-execution component reads the EDB meta-data, retrieves the RAM-resident structures from
the flat files and, subsequently, answers queries from clients, one query at a time.

The design of the TSet and XSet data structures is driven by the scalability requirement, to
data sets well beyond to RAM capacity of high-end servers or even of server clusters, and by our
goal of minimizing query execution time. To achieve the latter, the design maximizes the use of
the available RAM and leverages domain characteristics, such as tolerance to small false positive
rates. In addition, the data structures had to be designed to properly handle the protocol-induced,
strictly random disk I/O operations without introducing implementation-induced leakage.

For scalability, the TSet is realized as a disk-resident paged hash table. To maximize data
retrieval per disk I/O operation, each tuple list T[w] in the TSet is segmented into fixed-size blocks
of tuples keyed by a tag stagc. This tag is derived by a PRF from the list’s stag and a segment
counter. Tuple blocks are grouped, based on their tags, in (hash table) pages, which occupy
contiguous disk areas. The unused blocks in each page are filled with random bits to make them
indistinguishable from the blocks used to store tuples. The used/unused type of a block remains
unknown to the query execution component until the block’s tag gets generated in a client query.

The page size is set to the stride size of the underlying RAID-5 array. Similarly, the (inter-
mediate) ext4 file system is configured based on the RAID characteristics. The query execution
component uses page-level direct I/O to prevent buffer cache pollution in the OS, as the hash table
pages are inherently uncachable. In addition, this component parallelizes disk accesses using asyn-
chronous I/O (aio * system calls). As a result, each page access is handled by a single hard disk
drive and each drive has several outstanding page requests, which achieves the maximum possible
parallelism and I/O depth in the storage system. Note that due to the inherent (and intended) ran-
dom nature of the TSet accesses, neither the underlying file system nor the storage subsystem can
leverage standard acceleration techniques, such as pre-fetching, to improve system performance.

The much smaller XSet is realized as a RAM-resident Bloom filter [6], which enables the sizing
the false positive rate to the lowest value that the server’s RAM allows. In the the current prototype,
we set the false positive rate to 2−20 and the resulting Bloom filter XSet still occupies only a small
fraction of our server RAM. During query execution, disk accesses are overlapped with the xtag

generation and Bloom filter query operations, which are both parallelized across all the available
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CPU cores.

Data Sets. To show the practical viability of our solution we run tests on three data sets: a 100,000
record (attribute-value) database synthesized from census data, where each record is treated as a
separate document d, attribute values are atomic, and where each pair (attributei, value) is treated
as Wi, in an arbitrary ordering of attribute names; the Enron email data set [16] with more than
1.5 million documents (email messages and attachments) where all words, including attachments
and envelope information, have been indexed resulting in about 1.2 million distinct words; and
the ClueWeb09 [29] collection of crawled web-pages from which we extracted several databases
of increasing size where the largest one was based on 0.4TB of HTML files with almost 3 billion
of per-document-distinct words. The results of these tests show not only the suitability of our
conjunction protocols for data sets of medium size (such as the Enron one) but demonstrate the
scalability of these solutions to much larger databases (we target databases of one or two orders of
magnitude larger). Existing solutions that are linear in the number of documents would be mostly
impractical even for medium-size sets as the Enron case.

The pre-processing component accesses the three data sets as MySQL databases. The census
data set is realized as a 100,000 record table, with one column for each attribute name. For the
other two data sets, we wrote a set of Perl scripts to clean, stem, and convert the Enron emails
and their attachments as well as the ClueWeb09 HTML files into separate MySQL tables. This
transformation allow us to leverage the same pre-processing component for all data sets and it sets
the foundation for handling more elaborate data sets such as XML document collections.

For the largest database derived from the ClueWeb09 data set based on 0.4 TB of HTML files,
the sizes of the TSet hash table and XSet Bloom filter are 144.4 GB and 9.7 GB, respectively. The
corresponding sizes for Enron and the census data are 12.4 GB and 0.6 GB, and 252 MB and 5 MB,
respectively. For the multi-client configuration, in which each tuple includes the record decryption
key encrypted with a key derived from the s-trap, the TSet size increases by 47%.

Experimental Results. The generation and retrieval of the DC (document cipher text) are
straightforward and hence the measurements reported here cover only the protocols up to the
discovery and decryption by the client of the rinds of the result set.

Figure 5 shows the latency of queries on one-term, called v, and three variants of two-term
conjunctive queries on the Enron data set. In one-term queries, the selectivity of v varies from
3 to 690, 492 documents. As this query consists only of an s-term, the figure illustrates that its
execution time is linear in the cardinality of the corresponding TSet. The two-term conjunctive
queries combine the previous queries with a fixed reference term. In the first of these queries, the
fixed term acts as an x-term: each tuple retrieved from the TSet is checked against the XSet at
the cost of an exponentiation. However, as we perform these operation in parallel to retrieving
the TSet buckets from the disk, their cost is completely hidden by the disk I/O latency. Micro-
benchmarks show that the average cost of retrieving a bucket which has a capacity of 10 tuples is
comparable to ∼1, 000 single-threaded exponentiations. Similarly, the client-side exponentiation in
the OXTprotocol can be overlapped with disk and network I/O. It illustrates the for many surprising
fact that even public-key cryptography, considered by many as expensive, can be surprisingly cheap
when compared to the cost of accessing storage systems. The last two conjunctive queries use two
fixed terms with different selectivity, α and β, as s-terms. Their invariable execution time is
dominated by the cost of retrieving the TSet tuples corresponding to their s-terms, irrespective the
variable selectivity of the xterm v: the two horizontal lines intersect with the single-term curve
exactly where v corresponds to α and β, respectively. This illustrates the importance of s-term
selection, as discussed in Section 3.1.1. Experiments on the census data show similar characteristics.
All experiments were run on IBM Blades HS22 attached to a commodity SAN system.
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Figure 5: Enron Performance Measurement: Single Term & Conjunction

To further assess the scalability of our query engine, we generated several EDBs from increasingly
larger subsets of the ClueWeb09 data set ranging from 408, 450 to 13, 284, 801 HTML files having a
size from 20 to 410 GBs and from 142, 112, 027 to 2, 689, 262, 336 per-document-distinct words. To
make these databases comparable, we injected some artificial and non-conflicting query terms to
randomly selected documents simulating words of various selectivity. We then queried these terms
in the various databases. Figure 6 shows the results and confirms that our implementation matches
the scalability of our (theoretical) algorithms even when our databases exceed the size of available
RAM: If the size of the result set is constant, then query time is largely independent of the size
of the database and for result sets where the size is proportional to the database size, the cost is
linear in the database size.

To quantify the ’performance cost’ of the query and data privacy that our system provides,
we measured the execution times of the same queries when run by a MySQL server (release 5.5)
using its full text search capability on the Enron data set. To get a fair comparison, we measure
execution times using a “cold” MySQL server, where we restarted the server and flushed the file-
system caches before each query. In this scenario, our implementation is very competitive: on
single term queries it is faster, sometimes significantly, for queries with small result sets and only
slower (by a factor of 2) for terms with very poor selectivity, such as the very commom keyword
’enron’. For two-term conjunctions, the OXT prototype is slower than MySQL when the s-term
is badly chosen. However, a good s-term selection results in consistently better performance than
(cold) MySQL, in some cases by an order of magnitude.
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As the Enron data set is much smaller than our server’s RAM, a significant fraction of the data
set and associated indexes get pre-fetched and cached in the MySQL and file system buffers after
the first query. Not surprisingly, MySQL with warm caches is faster by one order of magnitude
or more on most queries. We expect an alternative OXT prototype optimized for small data sets,
namely using a RAM-resident TSet implementation, will be competitive with MySQL in warm
cache scenarios. Finally, we need to emphasize that our prototype supports only a small subset of
the query capabilities of a commercial database server, such as MySQL.

As our future work aims for even larger databases, we plan to investigate alternative strategies
for realizing efficient disk-resident XSets.

8 Related Work

We discuss here the most directly relevant papers to our work [15, 14, 21, 3, 11]. For more on related
work see [15, 14]. Most work on SSE has focused on single-keyword search. After several solutions
with complexity linear in the number of documents, Curtmola et al. [15] present the first sublinear
solution for single-keyword search whose complexity is linear in the number of matching documents
(hence optimal). They also improve on previous security models, in particular by providing an
adaptive security definition and solutions in this model. The SKS protocol from Figure 1 essentially
follows their approach. Chase and Kamara [14] extend and generalize the security model to more
complex data (e.g., graphs) and introduce the notion of associated data that allows to compose
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different components of the protocol. We follow their model and modular approach. In addition,
[14] introduce the notion of “controlled disclosure” that models the multi-client scenario mentioned
above (see also the related “virtual private storage” setting of [25, 26]). Recently [28] introduced
a strong security model of universal composability for searchable encryption, but their scheme
supports only single-keyword search and it runs in time linear in the database size.

Conjunctions in the SSE setting were first considered by Golle, Staddon and Waters [21]. Their
solutions are linear in the number d of all documents in the database, requiring O(d) communication
and same number of regular exponentiations at client and server, or communication that is only
linear in the number of conjunctive terms but requires O(d) pairing operations at the server. These
solutions apply to structured (attribute-value) data only and leak the attributes being searched.
On the positive side, they avoid leakage of keyword repetitions or access patterns other than the
ciphertexts of matching documents. This work was followed up by Ballard et al. [3] and Byun
et al. [11] but the above restrictions (linear in d complexity and application to structured-only
data) remain. It needs to be noted that while our solutions have some crucial advantages in terms
of performance and generality (applying to arbitrary data), they pay a price on privacy allowing
significantly more leakage than [21, 3, 11]; on the other hand, a privacy advantage of our solutions
is that they don’t disclose the searched attributes. An alternative SSE solution to conjunctions,
also linear in the number of documents, can be obtained from [34, 30]; it uses per-document Bloom
filters to decide for each document whether it contains all keywords in the conjunction.

CryptDB [33] supports most of SQL, including general boolean queries, over encrypted data
and hence considerably more functionality than our work. It offers, though, also less privacy as
CryptDB leaks statistical information on the whole queried column, not only related to matching
rows, and this leakage can reveal significant information such as repeated values in the column (due
to the use of deterministic encryption). Performance-wise, the schemes are hard to compare: All
provided benchmarks in [33] were on databases which are several orders of magnitude smaller than
ours and easily fit into RAM. Having small databases fitting into RAM side-steps the considerable
challenge of efficiently dealing with high-latency storage, unavoidable for truly large databases.10

A related issue arises also with protocols based on the non-adaptive version of [15] which relies on
a sequential linked-list implementation for the inverted index: the required inherently sequential
list traversal will cause considerably latency on queries and limit scalability as soon as indices
exceed the available RAM. Our implementation allows parallel list access which can hide these
latency costs in overlapping network and computation costs to a mostly constant rather than linear
factor. Lastly, we like to point out that our scheme could replace CryptDB’s use of the linear SSE
scheme [36] for full-text search and, with corresponding support in the query optimizer, for less
leaky boolean (sub-)expressions on single tables.

Another line of work on searchable encryption addresses support for efficient updates of the
encrypted database [38, 27], but so far only single-keyword search was considered in this setting.
Our OXT protocol, and its boolean query capabilities, can be extended to support efficient database
updates at the cost of increased EDB size and partial leakage that can help differentiating between
old and new documents [12].

Searchable encryption has also been investigated in the public-key domain [9, 39, 1, 4, 10, 35]
allowing parties other than the data owner to encrypt into the database, but the cost of public
key solutions makes the practical application of these techniques more limited (e.g., to a relatively
small selection of tags or keywords). The case of conjunctive queries in the PK setting has been
studied in [10].

10Recent work [37] extends CryptDB and demonstrates good performance also with bigger datasets, although still
considerably smaller than the ones used in our own benchmarks and follow-up work [12].
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9 Conclusions and Research Questions

The premise of this work is that in order to provide truly practical SSE solutions one needs to accept
a certain level of leakage; therefore, the aim is to achieve an acceptable balance between leakage
and performance, with formal analysis ensuring upper bounds on such leakage. Our solutions strike
such a practical balance by offering performance that scales to very large data bases; supporting
search in both structured and textual data with general Boolean queries; and confining leakage
to access (to encrypted data) patterns and some query-term repetition only, with formal analysis
defining and proving the exact boundaries of leakage. We stress that while in our solutions leakage
never occurs in the form of direct exposure of plain data or searched values, when combined with
side-information that the server may have (e.g., what are the most common searched words), such
leakage can allow for statistical inference on plaintext data. Nonetheless, it appears that in many
practical settings the benefits of search would outweigh moderate leakage (especially given the
alternatives of outsourcing the plaintext data or keeping it encrypted but without the ability to
run useful searches).

Our report on the characteristics and performance of our prototype points to the fact that
scalability can only be achieved by low-complexity protocols which admit highly parallelizable
implementations of their computational and I/O paths. Our protocols are designed to fulfill these
crucial performance requirements.

There are interesting design and research challenges arising from this work. What we call “the
challenge of being imperfect” calls for trade-offs between privacy and performance that can only
be evaluated on the basis of a formal treatment of leakage. Understanding the limits of what is
possible in this domain and providing formal lower bounds on such trade-offs appears as a non-
trivial problem that deserves more attention. Some of these problems may still be unresolved
even for plaintext data. The seemingly inherent difference pointed out in the introduction between
the complexity of resolving conjunctions with high-frequency terms versus conjunctions with low-
frequency terms, but with a similar-size result set, may be such a case. We do not know of a
proven lower bound in this case although the work of Patrascu [32], for example, may point to
some relevant conjectured bounds.

Another important evaluation of leakage is what we refer to as “semantic leakage.” How much
can an attacker learn from the data given the formal leakage profile and side knowledge on the
plaintext data? Clearly, the answer to this question is application-dependent but one may hope for
some general theory in which these questions can be studied. The success of differential privacy in
related domains opens some room for optimism in this direction. Demonstrating specific attacks
in real-world settings is also an important direction to pursue. We note that in some settings just
revealing the size of the number of documents matching a query may leak important information
on the query contents (e.g., [23]). Therefore, developing masking techniques that include dummy
or controlled data to obscure statistical information available to the attacker seems as an important
research direction to strengthen the privacy of solutions as those developed here. ORAM-related
techniques can be certainly help in this setting, especially given the progress on the practicality of
these techniques in last years.

Yet another research direction is to characterize plaintext-search algorithms that lend themselves
for adaptation to the encrypted setting. The s-term and x-term based search that we use is such
an example: It treats data in “black-box” form that translates well to the encrypted setting.
In contrast, search that looks at the data itself (e.g., sorting it) may not work in this setting or
incur in significantly increased leakage (e.g., requiring order-preserving or deterministic encryption).
Finally, it would be interesting to see more examples (in other two-party, or multi-party, protocols)
of our approach, which is central to the design of OXT, of removing interaction from protocols by
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pre-computing and storing some of the protocol messages during a pre-computation phase.
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A Proof of Lemma 4

Let A be an adversary and Π be the OXT protocol, and let G0 = CorΠA(λ). We want to show

Pr[G0 = 1] = neg(λ).

We first modify G0 to output 1 if the T-set ever errs in returning the correct data t when the
server is processing a search in the game. It is straightforward to construct an adversary B′ such
that

Pr[G1 = 1]− Pr[G0 = 1] = AdvCorΠB′(λ).

Next we consider a modification of G0 that starts by choosing random functions fX , fI mapping
{0, 1}∗ to Z∗

p , and then replaces all evaluations of Fp(KX , ·) and Fp(KI , ·) with evaluations of fX(·)
and fI(·) respectively.

Call this modification G2. By a straightforward reduction the PRF security of Fp and a hybrid
argument, we can build an efficient adversary B such that

Pr[G2 = 1]− Pr[G1 = 1] ≤ 2 ·Advprf
Fp,B

(λ).

We complete the proof by showing that

Pr[G2 = 1] ≤ N2/(p− 1) + (d+m)/p

and combining and rearranging the inequalities.
In G2, let w̄ = (w1, w2) be the query chosen by A after seeing EDB. The game will output 1 only

if the simulated search protocol causes the client to have output not equal to the permuted results
in DB(w̄). Let us examine the search protocol computation in more detail. By the correctness of
the T-set implementation, the vector t computed by the server consists of ciphertexts decrypting
exactly to the set DB(w1). Of these, the server returns those that satisfy gfI (ind)·fX(w2) ∈ XSet. If
ind ∈ DB(w2) then this will clearly be the case, so we only need to rule out the possibility that a
false positive occurs and the test with the XSet is true but ind /∈ DB(w2) for this to happen, there
would have to be some (ind′, w′) 6= (ind, w2) such that

gfI (ind)·fX(w2) = gfI (ind
′)·fX(w′).

Assume that for every ind, fI(ind) 6= 0 and for every keyword w, fX(w) 6= 0. (This is true with
all but (d+m)/p probability.) Then the above question holds with probability 1/(p − 1) over the
choice of fI and fX . The desired bound follows from taking a union bound over all N2 possibilities
for (ind, w2) and (ind′, w′), and by adding the probability AdvCorΠA that in the SSE correctness
game with adversary A there occurs a correctness break in the underlying T-set implementation Π.
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B Proof of Theorem 5

Here we prove Theorem 5. More precisely, we prove a more general version of it that considers a
generic instantiation of TSet. See Theorem 9 below.

We recall the non-adaptive security definition used in the theorem.

Definition 8 Let Π = (EDBSetup,Search) be an SSE scheme and let L be an algorithm. For
efficient algorithms A and S, we define experiments (algorithms) RealΠA(λ) and IdealΠA,S(λ) as
follows:

RealΠA(λ) : A(1λ) chooses DB and a list of queries q. The experiment then runs (K,EDB) ←
EDBSetup(DB). For each i ∈ |q|, it runs the Search protocol with client input (K,q[i]) and
server input EDB and stores the transcript and the client’s output in t[i]. Finally the game
gives EDB and t to A, which returns a bit that the game uses as its own output.

IdealΠA,S(λ) : A(1λ) chooses DB and a list of queries q. The experiment then runs S(L(DB,q))
and gives its output to A, which returns a bit that the game uses as its own output.

We say that Π is L-semantically-secure against non-adaptive attacks if for all efficient adversaries
A there exists an algorithm S such that Pr[RealΠA(λ) = 1]− Pr[IdealΠA,S(λ) = 1] ≤ neg(λ).

We describe the leakage function L that uses Loxt along with the T-set leakage function LT .
On input DB and (s,x), it computes the vector T via

For w ∈ W do

K
$

← {0, 1}λ ; t← ⊥

For c = 1, . . . , Tw do y
$

← Z∗
p ; e← Enc(K, 0λ) ; t[c]← (y, e)

T[w]← t
End.

Then it outputs (Loxt(DB, (s,x)),LT (T, s),T[s]), where the notation T[s] = (T[s[1], . . . ,T[s[Q]]).

Theorem 9 Let L be the leakage function defined above. Then SSE scheme OXT is L-semantically-
secure against non-adaptive attacks where are all queries are 2-conjunctions, assuming that the DDH
assumption holds in G, that F and Fp are secure PRFs, that (Enc,Dec) is an IND-CPA secure
symmetric encryption scheme, and that Σ is a (non-adaptively) LT -secure and computationally
correct T-set instantiation.

Proof.We structure our proof using several games G0, G1, . . .. In each game, A starts by supplying
DB,q, which is then given to an Initialize routine that produces an output, which is given to A who
then outputs a bit that becomes the game output. Game G0 is designed to generate exactly the
same distribution as RealΠA(λ) (assuming no false positives occur) and the final game is structured
so that it is easy to simulate exactly given the leakage profile instead of the actual DB,q input. By
relating the games, we can argue that the final simulator satisfies Definition 8 with OXT, completing
the proof. For simplicity only, these games all model a version of the protocol where the client sends
the maximum-sized xtrap (say, T group elements where T is some publicly known upper bound) on
each query, and the proof is easily generalizable to the version where the server interactively tells
the client to stop.

Game G0. The first game G0, which uses the routines in Figure 7, is an implementation of the real
game with some minor changes that will make the analysis easier later. The game starts by running
Initialize, which passes (DB, s,x) from A and simulates EDBSetup(DB), with a minor bookkeeping
changes. In particular, while building the T it records the permutations σ in a vector WPerms

indexed by keywords.
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Initialize(DB, s,x) // G0

KS ,KI ,KX ,KZ
$

← {0, 1}λ

(indi,Wi)
d
i=1 ← DB

For w ∈W

(ind1, . . . , indTw
)← DB(w)

σ
$

← Perm([Tw]) ; WPerms[w]← σ
Ke ← F (KS , w) ; t← ⊥
For c = 1, . . . , Tw do

e← Enc(Ke, indσ(c)) ; xind← Fp(KI , indσ(c))
z ← Fp(KZ , w ‖ c) ; y ← xind · z−1 mod p
t[c]← (y, e)

End
T[w]← t

End
(TSet,KT )← TSetSetup(T)
For i = 1, . . .Q do STags[i]← TSetGetTag(KT , s[i])
XSet← XSetSetup(KX ,KI ,DB)
EDB← (TSet,XSet)
For i = 1, . . . , Q do

t[i]← GenTrans(KX ,KZ , s[i],x[i], STags[i])
Return (EDB, t)

XSetSetup(KX ,KI ,DB) // G0

(indi,Wi)
d
i=1 ← DB ; XSet← ∅

For each w ∈W and ind ∈ DB(w) do
e← Fp(KX , w)
xind← Fp(KI , ind) ; h← ge·xind

XSet← XSet ∪ {h}
End
Return XSet

GenTrans(EDB,KX ,KZ , s, x, stag) // G0

e← Fp(KX , x)
For c = 1, . . . , T do

z ← Fp(KZ , s ‖ c) ; xtoken[c]← ge·z

Res← ServerSearch(EDB, (stag, xtoken))
ResInds← DB(s) ∩DB(x)
Return ((stag, xtoken),Res,ResInds)

Figure 7: Game G0.

Before generating the transcripts, the game computes an array STags of all of the stag values
used in the game. For each i = 1, . . . , Q it lets STags[i] ← TSetGetTag(KT , s[i]). To compute the
transcript array t, for i = 1, . . . , Q it sets t[i] to the output of GenTrans(EDB,KX ,KZ , s[i],x[i],
STags[i]), which is defined in the figure. There we use subroutine ServerSearch which we take to be
the server’s computation defined in OXT in response to the first client message.

The routine GenTrans generates a transcript as in the real game, except that it computes the
ResInds array differently: Instead of decrypting the ciphertexts returned with Res, it looks up the
ind values that correspond to the results (specifically, it computes DB(s[i]) and then finds the ind

values amongst them that are also in DB(x[i])).
By design, G0 is exactly RealΠA(λ), except that false positives are assumed to never happen.

By Theorem 4, assuming that Fp is a secure PRF, we have

Pr[G0 = 1] ≤ Pr[RealΠA(λ) = 1] + neg(λ).

Game G1. In the next game, G1, is exactly the same except we replace every evaluation of
F (KS , ·), Fp(KX , ·), Fp(KI , ·), Fp(KZ , ·) with evaluations of independent random functions with the
appropriate domain and range. It is described in Figure 8. Note that since F (KS , ·) is never eval-
uated on the same input twice, we can equivalently replace its evaluations with random selections
from the range (this is done in Initialize when selecting Ke). By a standard hybrid argument it is
easy to show that there exist efficient adversaries B1,1, B1,2, B1,3 such that

Pr[G1 = 1]− Pr[G0 = 1] ≤ Advprf
F,B1,1

(λ) + 3 ·Advprf
Fp,B1,2

(λ) +Advprp
P,B1,3

(λ)

We omit the tedious and standard details of the adversaries. The salient feature of the game is that
these keys are chosen at random, and then afterwards only used as key inputs to the corresponding
functions.
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Initialize(DB, s,x) // G1, G2

fI , fX , fZ
$

← Fun({0, 1}λ, Z∗
p )

(indi,Wi)
d
i=1 ← DB

For w ∈ W

(ind1, . . . , indTw
)← DB(w)

σ
$

← Perm([Tw]) ; WPerms[w]← σ

Ke
$

← {0, 1}λ ; t← ⊥
For c = 1, . . . , Tw do

e← Enc(Ke, indσ(c))

e← Enc(Ke, 0
λ)

xind← fI(indσ(c))
z ← fZ(w ‖ c)
y ← xind · z−1 mod p
t[c]← (y, e)

End
T[w]← t

End
(TSet,KT )← TSetSetup(T)
For i = 1, . . .Q do STags[i]← TSetGetTag(KT , s[i])
XSet← XSetSetup(fX , fI ,DB)
EDB← (TSet,XSet)
For i = 1, . . . , Q do

t[i]← GenTrans(fX , fZ , s[i],x[i], STags[i])
Return (EDB, t)

XSetSetup(fX , fI ,DB) // G1, G2

(indi,Wi)
d
i=1 ← DB

XSet← ∅
For each w ∈ W and ind ∈ DB(w) do

e← fX(w) ; xind← fI(ind) ; h← ge·xind

XSet← XSet ∪ {h}
End
Return XSet

GenTrans(EDB, fX , fZ , s, x, stag) // G1, G2

e← fX(x)
For c = 1, . . . , T do

z ← fZ(s ‖ c) ; xtoken[c]← ge·z

Res← ServerSearch(EDB, (stag, xtoken))
ResInds← DB(s) ∩ DB(x)
Return ((stag, xtoken),Res,ResInds)

Figure 8: Games G1 and G2. G2 includes the boxed code and G1 does not.

Game G2. In G2 we modify G1 to include the boxed code. This means that, during Initialize, the
ciphertext e is always overwritten with an encryption of 0λ (under the same key). We claim that
there exists an efficient adversary B2 such that

Pr[G2 = 1]− Pr[G1 = 1] ≤ m ·Advind−cpa
Σ,B2

(λ)

This follows by a standard hybrid argument over the m encryption keys used in building T for
TSetSetup. We omit the tedious details. We stress that the reduction is possible because the game
never invokes the decryption algorithm Dec of the scheme, meaning that the reduction does not
need to decrypt ciphertexts during the IND-CPA game.

Game G3. In game G3 (Figure 9) we alter the way the game is computed without changing its
distribution. Intuitively, it precomputes the values in the XSet as well as all of the group elements
that will be tested against the XSet, along with the group elements used xtoken arrays in transcripts
that do not correspond to possible matches.

In Initialize, two arrays H,Y are filled in for use in XSetSetup and GenTranscript. H is indexed
by an identifier (string in {0, 1}λ) and a keyword from W, and holds group elements from G, and
Y is indexed by a keyword and a number between 1 and T and also holds elements from G.

Now XSetSetup is modified to use the values from the H array. For a given w ∈ W and
ind ∈ DB(w), it adds the value H[ind, w] to XSet - This value is set to gfI (ind))·fX(w) during Initialize,
which is the same value that was computed in XSetSetup in game G2.

The H and Y arrays are both used in GenTranscript. We claim that, for any input DB and fixed
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randomness, each invocation of GenTranscript will return exactly the same output in G2 and G3.
Clearly the stag,Res,ResInds values will be the same, so we focus on the xtoken array.

In G2, for each c, GenTranscript(EDB, fX , fZ , s, x, stag) sets xtoken[c] to gfX (x)·fZ(s ‖ c). In G3,
GenTranscript(EDB, fX , fZ , s, x, stag) looks up σ = WPerms[s], DB(s) = (ind1, . . . , indTs

) and t.
By the correctness of the TSet instantiation we have t = (fI(indσ(c))/fZ(s ‖ c), ec)

Ts

c=1, for some

ciphertexts e1, . . . , eTs
, where the indc and σ as the same values as above.

Then for c = 1, . . . , Ts, y is set to fI(indσ(c))/fZ(s ‖ c) and xtoken[c] is set

H[indσ(c), x]
1/y = gfX (x)·fZ(s ‖ c),

which shows that the xtoken[c] value is the same in both games for c ≤ Ts. Note that here we have
crucially used the fact that the set DB(s) was parsed in the same canonical order in both places in
the game.

For c > Ts, G3 sets xtoken[c] to

Y [s, x, c] = gfX(x)·fZ(s ‖ c),

which is exactly the same as xtoken[c] in G2. This completes the claim that same value is returned
in either game, so we have

Pr[G3 = 1] = Pr[G2 = 1].

Game G4. Game G4 is exactly like G3 except that the boxed code is included: Now the game
simply sets every y value of the t arrays to be an independently chosen element of Z∗

p . We claim
that

Pr[G4 = 1] = Pr[G3 = 1].

This can be seen by observing that the random function fZ is chosen during Initialize and then
never evaluated in any of the other subroutines of G3, thanks to the modifications made in moving
to G3. Moreover, for any w ∈W and c = 1, . . . , Tw, the value of z = fZ(w ‖ c) is used exactly once
during Initialize, and this value is uniform and independent of the rest of the randomness in the
game. Thus the value fI(indσ(c))/fZ(w ‖ c) is also uniform and independent of the rest of the game,
which justifies the change to simply selecting y at random. We note that the random function fZ
is also evaluated in the loop below that computes Y , but this loop evaluates fZ(w ‖ c) for c > Tw,
meaning it uses different points of fZ .

Game G5. In G5, instead of computing the values of the H and Y arrays as before, they are all
selected at random from G. We claim there exist an efficient adversary B5 such that

Pr[G5 = 1]− Pr[G4 = 1] ≤ Advddh
G,B5

(λ)

Let A be an adversary running in G4 or G5. Using A, we build an adversary B5 for the DDH
problem. By Lemma 3, it suffices to build an adversary B′

5 that solves the extended version of
DDH defined in the lemma.

B′
5 takes as input (ga, gb,M) where ga ∈ Gm, gb ∈ Gd+T ·m and M ∈ Gm×(d+T ·m). Intuitively,

it will use the ga vector in place of the X array in the games, and the entries from gb will play two
rolls: The discrete logarithms of the first d entries will take the place of the xind values in the loop
computing the H array, and the discrete logarithms of the rest of the values will take the place of
the fZ(w ‖ c) values in the loop populating Y . This means that some entries of gb and M may not
be used, depending on the structure of the DB input.

B′
5 starts by runningA, which outputs (DB, (s,x)). B then simulates G5, except for the following

changes: It does not choose fX and fI , and the loop that populates the X and H arrays is instead
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Initialize(DB, s,x) // G3, G4 , G5

fI , fX , fZ
$

← Fun({0, 1}λ, Z∗
p)

(indi,Wi)
d
i=1 ← DB

For w ∈ W and each indi do
e← fX(w) ; X [w]← ge ; xind← fI(indi))
H [indi, w]← X [w]xind

H [indi, w]
$

← G

End
For w ∈ W

(ind1, . . . , indTw
)← DB(w)

Ke
$

← {0, 1}λ ; t← ⊥

σ
$

← Perm([Tw]) ; WPerms[w]← σ
For c = 1, . . . , Tw do

xind← fI(indσ(c))) ; z ← fZ(w ‖ c)
y ← xind · z−1 mod p

y
$

← Z∗
p ; e← Enc(Ke, 0

λ)

t[c]← (y, e)
End
T[w]← t
For u ∈W \ {w} do
For c = Tw + 1, . . . , T do

Y [w, u, c]← X [u]fZ(w ‖ c)

Y [w, u, c]
$

← G

End
End

End
(TSet,KT )← TSetSetup(T)
For i = 1, . . . , Q do

STags[i]← TSetGetTag(KT , s[i])
XSet← XSetSetup(DB, H)
EDB← (TSet,XSet)
For i = 1, . . . , Q do

t[i]← GenTrans(DB,EDB, H, s[i],x[i], STags[i])
Return (EDB, t)

XSetSetup(DB, H) // G3, G4, G5

(indi,Wi)
d
i=1 ← DB

XSet← ∅
For each w ∈W and ind ∈ DB(w) do

XSet← XSet ∪ {H [ind, w]}
Return XSet

GenTrans(DB,EDB, H, s, x, stag) // G3, G4, G5

t← TSetRetrieve(TSet, stag)

(ind1, . . . , indTs
)← DB(s) ; σ ←WPerms[s]

For c = 1, . . . , Ts do

(y, e)← t[c] ; xtoken[c]← H [indσ(c), x]
1/y

For c = Ts + 1, . . . , T do
xtoken[c]← Y [s, x, c]

Res← ServerSearch(EDB, (stag, xtoken))
ResInds← DB(s) ∩DB(x)
Return ((stag, xtoken),Res,ResInds)

Figure 9: Games G3, G4 and G5. G5 includes the doubly boxed code and singly boxed code, G4

includes only the singly boxed code, and G3 includes neither.

computed by taking the i-th keyword w (in arbitrary order), it places ga[i] in X[w], and for the
indj, it places M[i, j] in H[indi, w]. Finally, when computing the Y array, for the entry at (w, u, c),
where w is the i-th keyword in the outer loop (in the same order as the H array loop) and u is the
j-th keyword in the inner loop, it uses the value from M[i, d + j · T + c].

It simulates the rest of the game exactly as specified, and finally outputs whatever A outputs.
If the matrix M is computed as M = gab

T
, then it is apparent that B′

5 simulates G4 for A, and
thus

Pr[B′
5(g, g

a, gb, gab
T
) = 1] = Pr[G4 = 1].
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Initialize(DB, s,x) // G6, G7, G8

(indi,Wi)
d
i=1 ← DB

For w ∈W and i ∈ [d] do H [indi, w]
$

← G

For w ∈ s do WPerms[w]
$

← Perm([Ts])
For w ∈W do

K
$

← {0, 1}λ ; t← ⊥
For c = 1, . . . , Tw do

y
$

← Z∗
p ; e← Enc(K, 0λ) ; t[c]← (y, e)

End
T[w]← t

End
(TSet, STags)← ST (LT (DB, s),T[s])
XSet← XSetSetup(DB, H)
EDB← (TSet,XSet)
For i = 1, . . . , Q do

t[i]← GenTrans(DB,EDB, H, s[i],x[i], STags[i])
End
Return (EDB, t)

XSetSetup(DB, H) // G7, G8

XSet← ∅
For w ∈W and ind ∈ DB(w) do

If ∃i : ind ∈ DB(s[i]) ∧ x[i] = w then
XSet← XSet ∪ {H [ind, w]}

Else h
$

← G ; XSet← XSet ∪ {h}
End
Return XSet

GenTrans(DB,EDB, H, s, x, stag, i) // G8

t← TSetRetrieve(TSet, stag)

(ind1, . . . , indTs
)← DB(s) ; σ ←WPerms[s]

For c = 1, . . . , Ts do
(y, e)← t[c]

If indσ(c) ∈ DB(s) ∩ DB(x) then

xtoken[c]← H [indσ(c), x]
1/y

Else If ∃j 6= i : indσ(c) ∈ DB(s[j]) ∧ x[j] = x then

xtoken[c]← H [indσ(c), x]
1/y

Else

xtoken[c]
$

← G
End

For c = Ts + 1, . . . , T do xtoken[c]
$

← G
Res← ServerSearch(EDB, (stag, xtoken))
ResInds← DB(s) ∩DB(x)
Return ((stag, xtoken),Res,ResInds)

Figure 10: Games G6, G7, G8.

If instead M is selected at random from Gm×(d+mT ), then B′
5 simulates G5, so

Pr[B′
5(g, g

a, gb,M) = 1] = Pr[G5 = 1].

Subtracting these inequalities shows that B′
5 satisfies the desired relation.

Game G6. The Initialize code for G6 is described in Figure 10, and its other routines remain as
defined in G5. G6 deletes some irrelevant code (like selecting the random functions) and generates
the TSet using a simulator which we will show to be guaranteed to exist by the TSet security notion.

Before describing G6 in detail, we consider the following TSet adversary B6. In the T-set games,
B6 starts by generating (DB, s,T) exactly as described in G5. Upon receiving (TSet,STags) from its
game, B6 continues to simulate the game with these values until A halts, and it outputs whatever
A output. By the LT -security of the T-set instantiation, there exists an efficient simulator ST for
B6.

In game G6, we replace the call to TSetSetup and loop generating STags with a call to the
simulator ST on input (LT (DB, s),T[s]). By the construction of G5 and G6, we have that the T-set
real game with adversary B6 perfectly simulates G5, while the T-set ideal game with B6 perfectly
simulates G6. Thus a non-negligible difference in Pr[G6 = 1] and Pr[G5 = 1] would contradict the
assumed LT -security of the T-set instantiation, giving

Pr[G6 = 1]− Pr[G5 = 1] ≤ neg(λ).
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Games G7 and G8. Games G7 and G8 change the way the H array is accessed in order to enable
the final simulator to work with its given leakage. Intuitively, now whenever the game access the
H array at an index (ind, x), it first tests to see if the game will ever access that index in H again.
If it will come back to this position, it uses the value from H. It not, then the game replaces the
H access with a random choice. Since that was to be the only usage of that position of H during
the game, this doesn’t affect the distribution of the game.

We now describe how this is implemented. G7 only changes the way XSet works. Recall
that after H is populated, it is used in two places: In XSetSetup and in GenTranscript. The
routine XSetSetup will never repeat an access to H, so for an index (ind, w) it only needs to
test if GenTranscript will read this position. But GenTranscript will only read positions such that
ind ∈ DB(s[i]) and x = x[i] for some i, and this is exactly what XSetSetup tests for in G7. By this
observation and the discussion above, we have

Pr[G7 = 1] = Pr[G6 = 1].

For G8 we change the way GenTranscript accesses H. To detect a possible repeated access, it
must test if either XSetSetup will read that index, or if GenTranscript will read it again. In G7 we
modified XSetSetup so that it only accesses a position H[ind, w] if ind ∈ DB(s[i]) ∩DB(x[i]), so the
first “If” statement in the G8 version of GenTranscript tests for this. What remains to calculate
are the positions which GenTranscript will access twice. First, we have that a repeated position
must occur during two different calls to GenTranscript because one execution of the subroutine only
touches unique indices of H. So for an index (ind, x) to be accessed twice, we must have that
ind is a member of both DB(s[i]) and DB(s[j]), for some i 6= j. For the x to repeat, we must
have x[i] = x[j]. This condition for a repeated access is exactly what the “Else If” statement in
GenTranscript tests for. An argument similar to the one for the previous game transition gives

Pr[G8 = 1] = Pr[G7 = 1].

Simulator. We next give a simulator S that uses its leakage to compute the same distribution as
G8. By collecting the relations between the games, we will show that S satisfies the requirement
in the theorem.
S takes as input L(DB, s,x), which consists of (N, s,SP,RP, IP,LT (DB, s),T[s]) and must out-

put a simulated EDB = (TSet,XSet) and transcript array t.
Our simulator will first compute what we call the restricted equality pattern of x, denoted x̂.

Intuitively, x̂ describes which x-terms are “known” to be equal by the server.
The restricted equality pattern x̂ ∈ [m]Q is computed by S as follows. First it computes a

relation ≡ on [Q] by defining i ≡ j iff IP[i, j] 6= ∅, and then makes ≡ an equivalence relation by
taking its transitive closure. Then it sorts the partitions of the equivalence relation by their least
element, and assign x̂[i] the index of the partition containing i.

The utility of x̂ is encapsulated in the following lemma, which says that x̂ can work as the
“equality pattern” for x when certain conditions hold.

Lemma 10 Let DB = (indi,Wi)
d
i=1 be a database, s,x ∈ WQ, and let x̂ be the restricted equality

pattern. Then for all i, j ∈ [Q],

x̂[i] = x̂[j] ⇒ x[i] = x[j]

and
(x[i] = x[j]) ∧ (DB(s[i]) ∩ DB(s[j]) 6= ∅) ⇒ x̂[i] = x̂[j].
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The second assertion is obvious from the definition of x̂ and IP. For the first assertion, consider
i, j such that x̂[i] = x̂[j]. Then there must be indices k1, . . . , kt (for some t) with i = k1 and
j = kt and such that the adjacent indices are set equal by the starting definition ≡. This means
that IP[k1, k2], IP[k2, k3], . . . are all non-empty, which by the definition of IP implies that x[k1] =
x[k2],x[k2] = x[k3], . . ., so x[i] = x[k1] = x[kt] = x[j].

The simulator works as follows. On input (N, s,SP,RP, IP,LT (DB, s),T[s]), it starts by com-
puting x̂ as described above. It then proceeds:

For w ∈ x̂ and ind ∈
⋃

i=1 RP[i] do H [ind, w]
$

← G

For w ∈ s do WPerms[w]
$

← Perm([SP[i]])
(TSet, STags)← ST (LT (DB, s),T[s])
XSet← ∅ ; j ← 0
For w ∈ x̂ and ind ∈

⋃
i:x̂[i]=w RP[i] do XSet← XSet ∪ {H [ind, x̂[i]]} ; j ← j + 1

For i = j + 1, . . .N do h
$

← G ; XSet← XSet ∪ {h}.

This produces EDB = (TSet,XSet). Next it computes the transcript array t. To fill in t[i], S
computes the “revealed” indices for that query as R = RP[i]∪

⋃Q
j=1 IP[i, j]. It puts the indices in R

in canonical order, calling them (ind1, . . . , indT ′). Since every index in R is in DB(s[i]), we know that
|R| ≤ SP[i]. The simulator pads |R| up to size SP[i] by setting indk = ⊥ for k = T ′ + 1, . . . ,SP[i].
It takes the identifiers (ind1, . . . , indSP[i]) and computes

t← TSetRetrieve(TSet, stag[i]) ; σ ←WPerms[s[i]]
For c = 1, . . . , SP[i] do

(y, e)← t[c]

If indσ(c) 6= ⊥ then xtoken[c]← H [indσ(c), x̂[i]]
1/y

Else xtoken[c]
$

← G

For c = SP[i] + 1, . . . , T do xtoken[c]
$

← G. Res← ServerSearch(EDB, (stag, xtoken))
Output ((stag, xtoken),Res,RP[i]).

After computing each t[i] this way, the simulator outputs EDB = (TSet,XSet) and t.
We claim that the output of S has the same distribution as the output of Initialize in G8. To

show this, we first observe that the computed TSet and STags obviously have the same distribution,
as they are computed in exactly the same way. To prove the claim it is sufficient show that XSet

and all of the xtoken have the same distribution jointly consistent with TSet, STags, and each other.
When computing XSet, S first initializes H[ind, w] for each ind that appears as a result and w

in x̂. This differs from G8 in two ways: First, the w are integers from 1 to Q, not keywords as they
are in G8, and second, not all ind are initialized. Next it initializes WPerms at locations indexed
by entries in s, which are again integers instead of keywords.

We claim that both S and G8 produce XSet by choosing N uniform and independent group
elements. In S, in the first loop for initializing the XSet, the elements of H indexed by w ∈ x̂ and
ind that appear as results are added to XSet. It tracks how many additions are done this way with
the counter j, and after this loop is add elements until a total of N have been added. In G8, one
element is added for each w ∈W and each ind that contains w (i.e., ind ∈ DB(w), which means that∑

w∈W |DB(w)| = N elements are added. We stress that in both cases, no entry of H is reused.
We now examine how the xtoken are computed. The values of t, y, e are clearly identically

distributed (joint with everything so far). We also have that the permutations σ are distributed
identically: In both cases they are uniform and independent, except when the same permutation
is reused from WPerms. In G8 this happens when an s-term is repeated, and it will happen in S
when s repeats, meaning the same pattern of permutations are reused in either case.

Next we observe that in G8 the identifiers from DB(s[i]) are used in the random order determined
by σ. In the main loop over the identifiers, if that σ(c)-th identifier is in either DB(s[i]) ∩DB(x[i])
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or in the result set for another query with the same x-term, then the corresponding location in
H is read. Otherwise a random group element is chosen. In S the same logic is used, except the
identifiers that do not appear as relevant results are now dummy symbols.

Finally we must show that the entries used from H follow the same “reuse pattern” (when
generating the XSet as well as the xtoken) in G8 and in S.

Consider any two index/keyword pairs (ind1,x[i]) and (ind2,x[j]) read from H by G8. By the
construction of the game, we know that ind1 either matches the i-th query or another query with
the same x-term, and similarly for ind2 with the j-th query. The simulator will instead read H at
locations (ind1, x̂[i]) and (ind2, x̂[j]) with the same indices from either RP or IP. We claim that

(ind1,x[i]) = (ind2,x[j]) ⇐⇒ (ind1, x̂[i]) = (ind2, x̂[j]), (1)

which will show that the simulation is the same. To prove (1), consider any two such queries. The
⇐ direction is easy by Lemma 10. For the ⇒ direction, suppose that (ind1,x[i]) = (ind2,x[j]).
Then we have ind1 = ind2, and also that they are members of the set

(RP[i] ∪

Q⋃

k=1

IP[i, k]) ∩ (RP[j] ∪

Q⋃

k=1

IP[j, k])

because the games only ever use ind values from these sets as indices. But this means the ind value
is in DB(s[i]) ∩ DB(s[j]), meaning this intersection is not empty, and thus we have x̂[i] = x̂[j] by
the second conclusion in Lemma 10.

C Oblivious Cross-Tags Protocol PXT Using Bilinear Pairings

As we saw in the design of OXT in Section 3, the server stores in each tuple corresponding to a
keyword w and document xind, a blinded value yc = xind · z−1

c , where zc was derived from w and a
tuple counter c. This counter served to ensure independent blinding values zc. Similarly, the Client
needed to send an array of values xtokeni defined by xtoken[c, i] := gFp(KX ,wi)·zc .

A natural alternative to using counters to assure independence is to generate y ← gxind/z, where
z is now just derived from w (without any counters). The blinding can be removed from the Client-
supplied tokens by using bilinear pairings, if the underlying groups support such pairings. However,
we now run into another problem, as the bilinear pairings usually render the DDH assumption
invalid, unless we work in bilinear groups G1,G2,GT , with a pairing e : G1 × G2 → GT , and with no
easy homomorphism between G1 and G2. Such groups do still satisfy DDH, and the assumption is
well-known as the SXDH assumption (see [17]).

Thus, the Client can now just send a single xtrap PFp(KX ,wi)·z, where P is a generator of group
G2. However, the DDH assumption is not enough to randomize all y values corresponding to a w
(i.e. that have the same z in the exponent) as z is also in the exponent of the revealed xtrap for
some other w. It would be intriguing to see if one can build an SSE scheme with leakage limited
to what OXT leaks by using just the SXDH assumption, although it seems unlikely that it would
be as efficient as the one just described.

Surprisingly, we can show that the above scheme, which we call PXT and that is described
in detail in Figure 11, is secure with leakage exactly as for OXT by assuming something stronger
than SXDH. We call this stronger assumption the augmented SXDH assumption (SAXDH). This
augmented assumption remains static, as opposed to many other dynamic assumptions usually
employed to achieve efficiency (e.g. the strong Diffie-Hellman assumption [8], q-BDHI assumption
etc.). It is also straightforward to verify that it holds in the generic group model (in particular, it
is implied by the generalized DH-problem [7]).
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EDBSetup(DB)

• Select keys KS ,KX ,KI ,KZ , and parse DB as (indi,Wi)
d
i=1.

• Initialize T to an empty array indexed by keywords from W.

• Initialize XSet to an empty set.

• For each w ∈W, build the tuple list T[w] and XSet elements as follows:

– Initialize t to be an empty list, and set Ke ← F (KS , w).

– For all ind in DB(w) in random order, then:

∗ Set xind← Fp(KI , ind), z ← Fp(KZ , w) and y ← gxind/z.

∗ Compute e← Enc(Ke, ind), and append (e, y) to t.

∗ Set xtag← e(g,P)Fp(KX ,w)·xind and add xtag to XSet.

– T[w]← t.

• (TSet,KT )← TSetSetup(T).

• Output the key (KS ,KX ,KI ,KZ ,KT ) and EDB = (TSet,XSet).

Search protocol

• The client takes an input the key (KS ,KX ,KP ,KI ,KZ ,KT ) and keywords w1, . . . , wn to
query. It computes stag ← TSetGetTag(KT , w1) and then for i = 2, . . . , n, xtokeni ←
PFp(KZ ,w1)·Fp(KX ,wi).
Sends (stag, xtoken1, . . . , xtokenn) to the server.

• The server computes t← TSetRetrieve(TSet, stag). For each tuple (e, y) in t,
if e(y, xtokeni) ∈ XSet for all i = 2, . . . , n, it sends e to the client.

• The client setsKe ← F (KS , w1), and for each e received, the client computes ind← Dec(Ke, e)
and outputs ind.

Figure 11: PXT: Bilinear Pairings based Oblivious Cross-Tags Protocol

C.1 Augmented SXDH Assumption

Consider cyclic groups G1, G2 and GT , each of prime order p, with an efficient bilinear pairing
e : G1 × G2 → GT . The SXDH assumption says that the groups G1 and G2 are DDH groups (which
also implies that the target group GT is DDH). For our PXT construction we need a generalization
of the SXDH assumption which we call the symmetric augmented external Diffie-Hellman
assumption (SAXDH):
Let g and P be generators of groups G1 and G2 resp. The SAXDH statement requires that the
probability that any efficient algorithm can distinguish between the following two distributions is
negligible, where both distributions are on G41 × G

4
2 : the first distribution is obtained by choosing

x, s1, s2, i and j randomly and independently from Zp, and generating the tuple

〈gxs1 , gs1 , gx, gs2 ,P i/s1 ,P i/s2 ,Pj ,Pj/s2〉,
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and the second distribution is generated identically except that the first element gxs1 is replaced by
gy for a random y. The (symmetric) SAXDH assumption also requires that a similar assumption
hold when the roles of G1 and G2 (i.e. g and P) are reversed.

It is straightforward to see that the SAXDH assumption implies the SXDH assumption.

C.2 PXT Security Theorem

Recall the leakage function L defined as L(DB, (s,x)) = (Loxt(DB, (s,x)),LT (T, s)) (see the para-
graph just before Theorem 9).

Theorem 11 The 2-conjunctive query SSE scheme PXT over bilinear groups G1, G2 and GT is
L-semantically-secure against non-adaptive attacks, assuming that the SAXDH assumption holds
in G1, G2 and GT , that F and Fp are secure PRFs, P is a secure PRP, that (Enc,Dec) is an
IND-CPA secure symmetric encryption scheme, and that Σ is a (non-adaptively) LT -secure and
computationally correct T-set implementation.

The proof for this theorem will be given in the full version of the paper. However, it is instructive
to note some key differences from the security proof for OXT. The proof of Theorem 9 (Appendix B)
describes how the table H can be populated with gfX(w)·fI(π(ind)) values, and from this the xtoken

can be computed in reverse as xtoken[c]← H[indσ(c), x]
1/yc .

However, in PXT the values in the XSet are in the target group GT , i.e. computed using the
pairing, and hence there is no way to go back to get xtoken. Thus, the Simulation is more difficult
here, ad we describe the simulator in detail next.

C.3 The Simulator for SSE protocol PXT

Let ST be the simulator for the LT -secure T-set implementation. The SSE ideal game provides the
simulator Spxt with L(DB, (s,x)) = (Loxt(DB, (s,x)),LT (T, s)), which includes the total number
documents d, and sum N of the number of keywords in each document.

The simulator now maintains in addition to table H, two other tables I and Z, and starts by
filling all three of them with random and independent values.

It is worth pointing out here that the s does not reveal if two queries have the same x-term.
However, from the intersection pattern IP the following matrix Mx of size Q×Q can be obtained:
Mx[i, j] = 1 iff Si ∩ Sj 6= φ. Now note, Mx[i, j] = 1 iff q[i]x = q[j]x and Iπ(s[i]) ∩ Iπ(s[j]) 6= φ.
Thus, Mx reveals partial repetition pattern of x-terms conditional on IP. Similar to profile s, one
can also obtain a vector x from Mx as follows:

• Define µx(i) = j, where j is the least query number such that Mx[i, j] = 1.

• Define x[i] = z, where there are exactly z queries j, j ≤ i, s.t. µx(j) = j.

Using the leakage profiles IP and RP, Spxt does the following.

1. For each j in the range of s, define CCCj =
⋃

i:s[i]=j(Ri ∪ Si).

2. For each i ∈ [1..Q], it generates set t′[i] = {gI[r]/Z[s[i]]}r∈CCCs[i] .

3. It generates t[i] to be t′[i] union a set of random and independent values such that the total
number of entries in t[i] is SP[i] (which is same for all j s.t. s[i] = s[j] ).
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4. The simulator Spxt calls ST with LT (DB, s) and 〈t[i]〉i∈[1..Q], which in turn returns TSet and
STags, which Spxt outputs.

5. As a simulation of the i-th xtrap, Spxt outputs xtoken[i] = PZ[s[i]]·H[x[i]].

6. As a simulation of the XSet, Spxt outputs the indicator function of the union of the following
sets: for each i ∈ [1..Q], the set consists of e(gI[r]/Z[s[i]], xtoken[i]) for each r in Ri.

In the full version of the paper we will show that under the SAXDH assumption, the view of
the adversary in the SSE ideal game using Spxt is indistinguishable from the view of the adversary
in the real game using PXT.
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