
On the Applicability of Time-Driven Cache Attacks
on Mobile Devices
(Extended Version?)

Raphael Spreitzer and Thomas Plos

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Inffeldgasse 16a, 8010 Graz, Austria
{raphael.spreitzer,thomas.plos}@iaik.tugraz.at

Abstract. Cache attacks are known to be sophisticated attacks against crypto-
graphic implementations on desktop computers. Recently, also investigations of
such attacks on testbeds with processors that are employed in mobile devices have
been done. In this work we investigate the applicability of Bernstein’s [4] timing
attack and the cache-collision attack by Bogdanov et al. [6] in real environments
on three state-of-the-art mobile devices. These devices are: an Acer Iconia A510,
a Google Nexus S, and a Samsung Galaxy SIII. We show that T-table based im-
plementations of the Advanced Encryption Standard (AES) leak enough timing
information on these devices in order to recover parts of the used secret key using
Bernstein’s timing attack. We also show that systems with a cache-line size larger
than 32 bytes exacerbate the cache-collision attack by Bogdanov et al. [6].

Keywords: AES, ARM Cortex-A series processors, time-driven cache attacks,
cache-collision attacks.

1 Introduction

Cache attacks are a specific form of implementation attacks that focus on the exploita-
tion of variations within the execution time of a cryptographic algorithm. Variations in
the execution time occur due to different access times within the memory hierarchy.
For instance, the central-processing unit (CPU) is able to access data within the CPU
cache an order of magnitude faster than data within the main memory. Today’s mobile
devices also employ CPU caches and investigations of implementation attacks—and
cache attacks in particular—are necessary in order to ensure the user’s privacy and se-
curity on these devices. However, until recently these attacks mainly focused on desktop
machines [4, 8, 10, 14]. Only minor efforts have been made towards the investigation of
these attacks on mobile devices [12], where mainly testbeds simulating specific mobile-
device configurations [6, 7, 15] have been used. Due to the wide-spread usage of mobile
devices, e.g., smartphones and tablet computers, and their manifold application scenar-
ios, security and privacy issues on these devices are of utmost importance. Additional
applications and widgets allow for further enhancements of capabilities on these de-
vices and might contain security-relevant algorithms. Since these algorithms might be
? This paper is an extended version of a short paper accepted at NSS 2013 [13].

vulnerable to implementation attacks, the investigation of such attacks shall raise the
awareness of implementation attacks among developers, leading to more secure systems
in general. The aim of this work is to analyze whether T-table based implementations
of the Advanced Encryption Standard (AES) on state-of-the-art Android-based mobile
devices, i.e., featuring a full-blown operating system, leak enough timing information
to deduce the used secret keys. Therefore, we launch the attack of Bernstein [4] as well
as the attack of Bogdanov et al. [6] on three mobile devices, namely an Acer Iconia
A510, a Google Nexus S, and a Samsung Galaxy SIII.

The presented paper is organized as follows. In Section 2 we outline related work
and give a short motivation for the analysis of cache attacks on mobile devices. Section 3
briefly introduces the required preliminaries for the investigation of cache attacks on
mobile devices. We state the main concepts of the two investigated cache attacks in
Section 4 and the main findings regarding the analysis of these two attacks on mobile
devices in Section 5. Finally, we conclude this work in Section 6.

2 Related Work and Motivation

Cache attacks can be separated into three main categories: (1) time-driven attacks, (2)
access-driven attacks, and (3) trace-driven attacks. Time-driven attacks [4] focus on
the exploitation of the overall encryption time and, thus, require many measurement
samples. In contrast, access-driven attacks [8, 14] and trace-driven attacks [5] focus on
more fine-grained information leakage and require far less measurement samples than
time-driven attacks. However, access-driven attacks and trace-driven attacks require so-
phisticated knowledge about the hardware as well as the software under attack.

Cache attacks have been analyzed extensively in desktop environments and the
wide-spread usage of mobile devices stresses the importance of the investigation of
cache attacks also on these devices. Though, only minor efforts have been made towards
the analysis of cache attacks on mobile devices so far. In 2010, Bogdanov et al. [6] pro-
posed a cache-collision attack by exploiting collisions between consecutive encryptions
of pairs of chosen plaintexts. The attack environment was an ARM9 board configured as
a server that runs an AES implementation of OpenSSL [11]. This implementation was
queried by the authors via an Ethernet interface. Gallais and Kizhvatov [7] investigated
trace-driven cache attacks on an ARM7 microcontroller.

In 2012, Weiß et al. [15] investigated the applicability of Bernstein’s [4] time-driven
cache attack on a Beagleboard employing an ARM Cortex-A8 processor, running the
Fiasco.OC microkernel and the L4Re runtime environment on top. Given this setting
they considered the attack of a specifically designed authentication protocol between
an application running in a Trusted Execution Environment (TEE) and a remote back-
end server. The untrusted world acts as a relay in order to forward messages from the
TEE to the outside world and vice versa. They claim that by overtaking the untrusted
world with specific malware, it is possible to break the authentication protocol using
Bernstein’s timing attack. Additionally, they use this scenario to compare the vulnera-
bility of different AES implementations. Nevertheless, Weiß et al. [15] claim that noise
makes the attack difficult and, hence, further research regarding the impact of real noise
is necessary.

2

Recent investigations of cache attacks on mobile devices and embedded devices
have been mainly done in laboratory constraints and environments. In this work, we
focus on the investigation of such time-driven cache attacks in more realistic environ-
ments by analyzing the applicability of the attack by Bernstein [4] and the attack by
Bogdanov et al. [6] on three Android-based mobile devices.

3 Requirements

In this section we briefly outline the main concept of the Advanced Encryption Standard
and the ARM Cortex-A series architecture.

3.1 Advanced Encryption Standard

The Advanced Encryption Standard (AES) [9], designed by J. Daemen and V. Rij-
men as Rijndael, is a block cipher operating on a 128-bit state. We denote the state
as a series of bytes S = {s0, . . . , s15}, which are usually represented as a matrix of
four rows and four columns, respectively. The AES consists of four round transfor-
mations: SubBytes, ShiftRows, MixColumns, and AddRoundKey. Due to performance
reasons SubBytes usually uses precomputed S-Boxes in order to substitute each byte
of the state with a precomputed byte value. Since MixColumns also performs complex
mathematical operations, software implementations usually operate on look-up tables
(T0, . . . ,T4) which hold precomputed values for these two round transformations. With
these look-up tables the encryption can be performed by look-up operations in combina-
tion with XOR operations. In the following we denote the initial state as si = pi ⊕ ki,
where P = {p0, . . . ,p15} represents the plaintext and K = {k0, . . . ,k15} the initial
round key.

The fact that these look-up tables—each consisting of 256 4-byte values—are par-
tially cached during the encryption and the fact that the look-up indices are key depen-
dent leads to AES implementations which are highly susceptible to cache attacks.

3.2 ARM Architecture

The ARM Cortex-A series processors [3] are employed in many modern mobile de-
vices, e.g., smartphones and tablet computers. Like common desktop processors, these
processors utilize CPU caches in order to hold close data used recently and data proba-
bly to be used in the near future. The Cortex-A8 and the Cortex-A9 processors employ
a 4-way set-associative data cache with a cache-line size of either 32 or 64 bytes and a
total size of 32 KB. Since the cache memory is smaller than the main memory, multi-
ple locations from the main memory are mapped to the same location within the cache
memory. In case of so-called set-associative caches a specific location within the mem-
ory is mapped to a specific cache set and can be placed within any cache line of this
specific cache set. Thus, a mechanism is required in order to evict a cache line from
such a specific cache set to free up space for new data to be cached. Due to reasons
of simplicity ARM processors usually evict a cache line from a cache set randomly. In
contrast, most desktop CPU caches employ a deterministic replacement policy. Since

3

time-driven cache attacks rely on statistical analysis of measurement samples, the ran-
dom replacement policy might have a negative impact on the number of required mea-
surement samples.

The ARM Cortex-A series also features performance-monitor registers [2], imple-
mented within a special coprocessor. These registers include a so called Cycle Count
Register, which is a 32-bit register capable of counting clock cycles. This register is
used to measure execution times on a cycle-accurate basis, which allows distinguishing
main-memory accesses from cache-memory accesses.

4 Time-Driven Cache Attacks

The basic idea of time-driven cache attacks is to exploit the overall encryption time of
cryptographic algorithms employing precomputed look-up tables. The main problem
of such implementations is that specific look-up operations leak different timing infor-
mation based on where the corresponding data is located within the memory hierarchy.
Since the cache is a shared resource and many different locations from the main mem-
ory are mapped to the same location within the cache memory, manipulations of the
cache memory happen rather frequently.

In the following subsections we briefly outline the basic concept of Bernstein’s [4]
time-driven cache attack and the concept of the cache-collision attack suggested by
Bogdanov et al. [6].

4.1 Timing Attack

In 2005, Bernstein [4] suggested a time-driven cache attack against the AES T-table
implementation of OpenSSL [11]. Bernstein’s idea is based on the assumption that the
overall encryption time correlates with the timing leakage of specific T-table look-up
operations, e.g., T0[p0⊕ k0]. He claims that by gathering the encryption times of many
samples of plaintexts it is possible to recover the secret key. Therefore, he gathers many
measurement samples of encryptions under a known key K and correlates this tim-
ing information with measurement samples under an unknown key K̃. Initially, Bern-
stein aimed at recovering the used secret key of a remote server. However, Neve [10]
performed further investigations of this time-driven attack and suggested to launch it
against a local encryption function. Neve furthermore claims that cache evictions do
not happen completely random. Instead, most of the cache evictions occur at specific
locations within the cache. Thus, these cache evictions induce timing variations which
allow attackers to deduce the secret key. In this work we stick to the approach suggested
by Neve and perform the attack on a local machine, more precisely on Android-based
mobile devices.

Attack Concept. The basic concept of Bernstein’s time-driven cache attack consists
of four different phases: (1) study phase, (2) attack phase, (3) correlation phase, and
(4) exhaustive key-search phase. These four phases are briefly described within the
following paragraphs. For further details about this attack we refer to [4, 10].

4

Study Phase. In this phase the attacker gathers the encryption times of multiple ran-
dom plaintexts P under a known secret key K. The resulting timing information, i.e.,
the encryption time of a specific plaintext P, is stored in a data structure t[i][b]. More
formally, t[i][b] holds the total of all encryption times where the plaintext byte pi = b.
In addition, n[i][b] counts the number of encrypted plaintexts where pi = b. For reasons
of simplicity, we assume the known key ki to be 0x00 for 0 ≤ i < 16. According
to Neve [10], given this information the attacker computes the so called plaintext-byte
signature as outlined in Equation 1.

v[i][b] =
t[i][b]
n[i][b]

−
∑

i

∑
b t[i][b]∑

i

∑
b n[i][b]

(1)

Attack Phase. In this phase the attacker sends multiple random plaintexts P̃ to the en-
cryption function, which encrypts these plaintexts under an unknown key K̃. Again, the
corresponding information is stored in t̃[i][b] as well as ñ[i][b], and the attacker com-
putes the plaintext-byte signature ṽ as outlined above, except that t and n are replaced
by t̃ and ñ, respectively.

Correlation Phase. Within this phase the attacker correlates the gathered timing profiles
from the study phase v with the timing profiles from the attack phase ṽ. Neve [10]
introduced the following heuristic: If pairs of plaintext bytes and key bytes in the study
phase (pi, ki) and the attack phase (p̃i, k̃i) have the same difference, i.e., pi ⊕ ki =
p̃i ⊕ k̃i, then the timing profiles are similar. Thus, computing the correlations for all
indices i and all possible byte values b as outlined in Equation 2 reveals potential key
candidates. The resulting correlations are sorted in a decreasing order and a threshold
based on the computed variance is used to determine the most likely key candidates. The
higher the correlation c[i][b] the more likely the corresponding byte value b represents
the real key byte. Note that we assume the known key K to be zero and hence we do
not have to consider K here.

c[i][b] =

255∑
j=0

v[i][j] · ṽ[i][j ⊕ b] (2)

Exhaustive Key-Search Phase. Since the correlation phase usually yields multiple key
candidates per key byte k̃i an exhaustive key search on the remaining key space has to
be performed.

4.2 Collision Attack

As the name already suggests, cache-collision attacks focus on the exploitation of colli-
sions between look-up indices of intermediate state bytes. Given information about such
collisions one tries to infer relations between key bytes. Bogdanov et al. [6] suggested to
focus on cache collisions between the encryption of two plaintexts which are chosen in
a specific manner. Their intention is to choose pairs of plaintexts (P1,P2) such that five

5

Fig. 1. Intermediate states of a plaintext pair (P1, P2) leading to a wide collision, assuming a′1 =
e′1 and hence a′′1 = e′′1 also holds true.

S-Box look-ups1 (SubBytes transformations) within the encryption of P2 collide with
S-Box look-ups of P1. This is what they call a wide collision. Supposing an initially
empty cache the encryption of plaintext P1 loads the necessary S-Box elements into the
cache. The encryption of the second plaintext P2 will be performed faster if look-up
indices collide, i.e., are equal between the first and the second encryption and thus are
already located within the CPU cache. Hence, the encryption time of the plaintext P2 is
used as an indicator to determine whether such a wide collision occurred.

Considering the plaintext as a matrix of 4 × 4 bytes, we investigate the main di-
agonal from the top left to the bottom right for the explanation. For the actual attack
all four diagonals, i.e., state bytes which are shifted to the same column after the first
ShiftRows transformation, must be considered because one diagonal can only reveal
four key bytes. Figure 1 outlines the two plaintexts P1 and P2, with the main diagonals
A = {a0, a1, a2, a3} and E = {e0, e1, e2, e3} being pairwisely different. According to
the notation of Bogdanov et al. [6] we illustrate bytes which are pairwisely equal be-
tween P1 and P2 brighter, whereas bytes which are pairwisely different are illustrated
darker. In order to provoke wide collisions the attacker chooses two diagonals (A,E)
randomly and pairwisely different, such that ai 6= ei for 0 ≤ i < 4. The rest of both
plaintexts is also chosen randomly but pairwisely equal. Now, we simply follow the
round transformations labeled within Figure 1. At the end of round 1, after performing
the MixColumns and the AddRoundKey transformation, one might observe collisions of
the state bytes within the first column, i.e., a′i = e′i for some i. If such a collision occurs,
then these bytes are shifted to the same column within the second round and hence af-
ter the round transformations of the second round pairwisely equal columns occur. The
example in Figure 1 assumes that the state bytes a′1 = e′1, and thus the last column
contains pairwisely equal state bytes after the second round. In this case 5 additional
S-Box collisions occur during the encryption of the second plaintext P2, i.e., one for
the look-up of e′1 within the first round and four collisions for the look-up of the values
within the last column in the third round. If such a wide collision occurs, the average

1 Though S-Box collisions are considered for the explanation of wide collisions, this attack also
works for the common T-table implementation.

6

encryption time of the second plaintext is assumed to be faster than in case such a wide
collision does not occur.

Attack Concept. The attack consists of three different phases: (1) online phase, (2)
collision-detection phase, and (3) key-search phase, which are outlined within the fol-
lowing paragraphs. For further details regarding this attack we refer to [6].

Online Phase. Basically, the attacker performs three loops. Within the outermost loop
one chooses the diagonal pairs (A,E) as outlined above N times. Within the second
loop the attacker chooses the rest of the two plaintexts pairwisely equal I times, and
the innermost loop encrypts the same two plaintexts (P1,P2) R times in order to lower
the impact of noise. Additionally, one might also consider to evict all data from the
cache before encrypting P1 to initialize the cache, i.e., to evict all T-table elements
from previous runs. The output of this phase consists of the diagonal pairs (A,E) along
with a statistical value related to the encryption time of the second plaintext P2.

Collision-Detection Phase. Given the output of the previous phase the intention of this
phase is to determine which pairs of diagonals lead to wide collisions. Therefore, we
take n diagonal pairs (A,E) with the lowest encryption times—according to the se-
lected statistical metric—of plaintext P2, computed in the previous phase, and consider
these diagonal pairs to lead to wide collisions.

Key-Search Phase. For each possible collision of state bytes between the encryption of
P1 and P2 after the first round one can form equations which hold for specific subkeys.
For instance, consider a collision between a′1 = e′1, as illustrated in Figure 1, then Equa-
tion 3 must hold for specific subkeys (k0, k5, k10, k15). Thus, the attacker establishes a
system of four equations (ai = ei for 0 ≤ i < 4) in order to evaluate for which 4-byte
subkeys a′i = e′i holds. Since this leads to a system of equations with four unknowns,
at least four diagonal pairs (A,E) that lead to wide collisions are necessary. The evalu-
ation of this system of equations is done by iterating over all possible 4-byte subkeys.
Subkeys that lead to a collision are stored for the following exhaustive key search.

01 · Sbox(a0 ⊕ k0)⊕ 02 · Sbox(a1 ⊕ k5)⊕ 03 · Sbox(a2 ⊕ k10)⊕ 01 · Sbox(a3 ⊕ k15)

= (3)

01 · Sbox(e0 ⊕ k0)⊕ 02 · Sbox(e1 ⊕ k5)⊕ 03 · Sbox(e2 ⊕ k10)⊕ 01 · Sbox(e3 ⊕ k15)

After performing these four steps for all four diagonals, the subsequent exhaustive key
search on the 4-byte subkeys of each diagonal should reveal the whole secret key.

5 Analysis and Practical Results

Instead of using specific testbeds, as done in [6, 15], we launch these attacks on state-of-
the-art Android-based mobile devices2: (1) an Acer Iconia A510 tablet computer, (2) a
Google Nexus S, and (3) a Samsung Galaxy SIII. These devices feature fully-functioning

2 For a detailed specification of these devices see Table 4 in Appendix A.

7

Table 1. Sample output of Bernstein’s time-driven cache attack on a Samsung Galaxy SIII.

of key candidates Key byte Possible values

3 0 b5 b4 b8
125 1 00 a2 be c2 b8 1d f6 ... 93 ...
165 2 87 03 51 17 1b 1f c7 ... 11 ...

2 3 66 67
104 4 59 1d 10 a5 34 06 50 ... af ...

6 5 bc bd b9 b8 ba bb
8 6 cc cd ca cf cb c8 ce c9
2 7 8d 8c

115 8 1e ea c9 ee e6 11 12 cc 02 ...
2 9 b8 b9

153 10 76 7d 56 b3 5b 4b 3c ... 55 ...
2 11 12 13

23 12 83 9f 82 96 94 97 92 9d 98 ...
2 13 4a 4b

40 14 6a 7a 7b 74 61 7c 64 6b 78 ...
2 15 9c 9d

operating systems and the only restriction is that these devices must be rooted in order
to load a specific kernel module. This is necessary since we use a kernel module to set
the appropriate bit within a control register to grant unprivileged applications access
to the cycle-count register. However, for the sake of clarity we have to mention that
we only need to load this kernel module once after powering up the device. The attack
itself runs in unprivileged mode and the attacked AES implementation is the standard
C implementation of OpenSSL [11] employing T-tables.

The purpose of this work is to analyze whether realistic environments on mobile
devices leak enough timing information such that the used secret AES key can be re-
covered, at least partially. We performed both attacks within a single application, as
already suggested by Neve [10] for the analysis of Bernstein’s [4] attack. This means
that we simply call an encryption function that was implemented within the attack ap-
plication itself. More formally, the attack application performs the encryptions, gathers
the required information, and computes the relevant information as outlined above. In
this section we briefly state the main findings of the conducted attacks on the three
mobile devices.

5.1 Timing Attack

Since time-driven cache attacks perform statistical analysis on gathered measurement
samples, a large number of measurement samples is required. Performing the timing
attack with 230 measurement samples in both phases—study and attack phase—takes
about 6 hours on the Google Nexus S smartphone and about 4 hours on the Acer Iconia
A510 and the Samsung Galaxy SIII. In Table 1 we illustrate a sample output of the
correlation phase on the Samsung Galaxy SIII. The first column outlines the number of
remaining key candidates for each possible key byte. The second column denotes the
index of the key byte and the third column states all possible key bytes, with the correct
key marked in bold. The possible key candidates are sorted according to the computed

8

correlation and, thus, the position also indicates the probability of the corresponding key
candidate being the correct key byte. A series of dots illustrates omitted key bytes. One
clearly observes that timing information is leaking. However, the number of remaining
key bits is still too large for an exhaustive key search. In this case the complexity of
the remaining key-search phase corresponds to 258 AES encryptions, which is still im-
practical. Considering only the first round of the AES the key space cannot be reduced
enough in order to perform an exhaustive key search. Note that only the study phase
as well as the attack phase must be executed on the mobile device itself, the following
exhaustive key-search phase might be executed on a more powerful machine, perhaps
supporting AES New Instructions [1] (AES-NI). However, even with the introduction of
AES New Instructions in Intel’s most recent Westmere platform, 258 AES encryptions
are still impractical. In order to retrieve more key bits one might apply the second round
attack as suggested by Neve [10]. Nevertheless, we did not investigate the second round
since the only purpose of this analysis was to determine whether timing information
also leaks in more realistic scenarios on mobile devices and whether we can exploit this
timing leakage.

From Table 1 we also observe that for some key bytes the number of possible key
candidates has been reduced significantly, e.g., to only 2 key candidates. However, some
key bytes have not been reduced significantly. In contrast, we also observed runs where
the key space was reduced but the correct key byte was not present among the possi-
ble key candidates anymore. Weiß et al. [15] also presented such an output where the
correct key byte is shown within the first position3 of all key bytes. Though we also
observed runs where the correct key byte is at the first position for most of the 16 key
bytes, we do not consider this the usual case. For the sake of completeness we have to
mention that Weiß et al. [15] presented an output of a different AES implementation,
which is based on Bernstein’s Poly1305-AES message-authentication code. This im-
plementation uses one large look-up table. Weiß et al. consider this implementation to
be the most vulnerable AES implementation regarding time-driven cache attacks.

In order to generate the required cache evictions memory accesses at constant cache
locations must be performed. These cache evictions induce timing variations within
subsequent encryptions and thus lead to exploitable information leakage. Bernstein [4]
simply generated the required cache evictions by sending data of different length to the
server and the server in turn performed memory accesses on the transmitted data. Obvi-
ously, these memory accesses result in cache evictions at constant cache sets. We also
launched this attack in a more realistic scenario where we mounted the attack while
watching videos or while watching an image slideshow on the mobile devices. Never-
theless, running external applications on purpose did not leak more information and,
hence, did not further reduce the key space. We conclude that these external applica-
tions either affected the wrong cache sets or lead to uncontrollable noise and hence
corrupted the timing measurements. Furthermore, on multi-core devices, e.g., the Acer
Iconia A510 and the Samsung Galaxy SIII, the two applications might be executed on
different cores. Thus, a fairly realistic approach would be to wrap the attack in a fine-

3 The possible key candidates are sorted according to the computed correlation values. Thus, the
first position represents the most likely key candidate.

9

Table 2. Results of Bernstein’s time-driven attack on the three mobile devices.

Device Samples in Remaining key space
study phase attack phase

Acer Iconia A510 230 227 73 bits
230 229 78 bits

Google Nexus S 230 229 65 bits
229 228 69 bits

Samsung Galaxy SIII 230 229 58 bits
230 230 61 bits

grained application and to control the memory accesses and potentially also the number
of active cores within this application.

In Table 2 we state two of the best runs, i.e., runs with the lowest number of remain-
ing key bits, of Bernstein’s attack for each of the three mobile devices. The number
of measurement samples within the study phase as well as the attack phase are also
listed in this table. We consider the number of generated measurement samples to be
a crucial part. For the same number of measurement samples we observed runs where
the key space was not reduced significantly and runs where the key space was reduced
too much, i.e., the correct key byte was not present anymore. Thus, more measurement
samples do not necessarily lead to better results in terms of remaining key bits.

According to our observations noise must be generated carefully and might even
disturb the measurement results and thus lead to non-recoverable key bytes. Generating
noise within external applications, e.g., launching a web browser or an image slideshow,
did not improve our attacks. We conclude that either the wrong cache sets are affected
or that noise disturbs our measurement results completely. Thus, this attack is heavily
susceptible to noise generated by other applications running in parallel on the same
CPU. Another problem we observed is that sometimes the key space is reduced too
much and sometimes the key space is not reduced at all. While the former means that
the correct key byte is not present within the list of key candidates anymore, the latter
means that the key space still contains nearly all possible key bytes.

We also have to mention that time-driven attacks in general require a huge number
of measurement samples and this in turn might drain the battery drastically. As already
mentioned above, generating 2 · 230 measurement samples on the Google Nexus S takes
about 6 hours. However, for scenarios where the attacker is in possession of the mobile
device4 time might not be a critical factor. Another reasonable assumption might be to
launch the attack while the user charges the mobile device.

5.2 Collision Attack

The critical part of this attack is the detection of diagonal pairs (A,E) that lead to
wide collisions. Since there must be at least 4 real wide collisions among the n chosen

4 In some scenarios the attacker might even be the owner of the mobile device.

10

Fig. 2. Histogram of encryption times for a 3-
round AES implementation. Encryption times
for wide collisions and wide non collisions are
visualized in light gray and dark gray, respec-
tively.

Fig. 3. Detection of wide collisions for a 3-
round AES implementation.

diagonal pairs (A,E), a high expectation rate of false positives5 must be overcome by
taking more of these diagonal pairs into consideration.

On the ARM Cortex-A8 processor we observed that the detection of diagonals
(A,E) which lead to wide collisions is a challenging task, at least for the full 10 rounds
of the AES. Thus, we started with a reduced 3-round AES implementation. Figure 2
illustrates the histogram of encryption times of five diagonal pairs which lead to wide
collisions in light gray and five diagonal pairs which do not lead to wide collisions in
dark gray. Due to reasons of noise each chosen diagonal pair (A,E) is encrypted I ·R
times (I = 400, R = 20). We clearly observe that the encryption times of plaintexts
which lead to wide collisions and encryption times of plaintexts which do not lead to
wide collisions can be separated easily and by considering, e.g., n = 6 diagonal pairs
(A,E) with the lowest average encryption time we detected 4 diagonal pairs which
indeed lead to wide collisions. Figure 3 visualizes this approach. For each of the N ran-
domly chosen diagonal pairs (A,E) this plot shows the mean encryption time without
noise, i.e., averaged over I · R encryption times below a predefined threshold6. These
figures look similar for the ARM Cortex-A9 processors, at least for the 3-round AES
implementation.

In contrast, if we investigate the encryption times of a 7-round AES implementa-
tion as outlined in Figure 4, we observe that the encryption times of plaintexts that lead
to wide collisions and plaintexts that do not lead to wide collisions cannot be distin-
guished anymore. Obviously, as outlined in Figure 5, the detection of wide collisions
fails. Among the n = 10 chosen diagonal pairs, which are supposed to lead to wide col-
lisions according to their encryption time, there is not even a single diagonal pair which

5 False positives are diagonal pairs which are supposed to lead to wide collisions due to their
encryption time, but in fact do not lead to wide collisions.

6 The threshold might be determined in a preprocessing stage by averaging over multiple en-
cryptions.

11

Fig. 4. Histogram of encryption times for a 7-
round AES implementation. Encryption times
for wide collisions and wide non collisions are
visualized in light gray and dark gray, respec-
tively.

Fig. 5. Detection of wide collisions for a 7-
round AES implementation.

indeed resulted in a wide collision. As already outlined above, a system of four equa-
tions with four unknowns must be solved. Hence, among the n chosen diagonal pairs
there must be at least four real wide collisions in order for the attack to be successful.

The reason for this attack to fail on the ARM Cortex-A8 processor seems to be the
larger cache-line size of 64 bytes. In contrast, Bogdanov et al. [6] launched the attack
on an ARM9 board with a cache-line size of 32 bytes. Given the fact that each T-table
is composed of 256 4-byte elements, a 32-byte cache line holds 8 T-table elements,
whereas a 64-byte cache line holds 16 T-table elements. This means that in case of a
cache miss the Cortex-A8 loads 16 consecutive T-table elements into the cache, whereas
the ARM9 board loads only 8 elements into the cache at once. If we take probability
theory into consideration the problem becomes clear. Since the last round of the AES
T-table implementation usually employs a different T-table, there are 4 ·9 look-up oper-
ations into the same T-table within the rounds 1–9. Equation 4 outlines the probability
for a specific block of T-table elements, i.e., δ consecutive elements, still not being
cached after one encryption.

A := Block of table elements still not in cache after one encryption.

δ := Number of table elements per cache line.

P (A) =

(
1− δ

256

)4·9
(4)

In case of δ = 16 this yields a probability of 0.098 that a specific block of T-table
elements is still not being cached after one encryption. In case of δ = 8 this yields a
probability of 0.319. Hence, the probability for a specific T-table element already being
cached after the first encryption is 1 − 0.098 = 0.902 and 1 − 0.319 = 0.681. This in
turn means that the probability for additional cache collisions, besides the required wide
collisions, is far greater on systems with a cache-line size of 64 bytes. Thus, the overall
encryption time of P2 decreases and this makes wide collisions nearly indistinguishable
from non wide collisions. We conclude that the larger cache-line size of 64 bytes on the

12

Table 3. Sample result of Bogdanov et al.’s cache-collision attack on two mobile devices.

Device Diagonal pairs Parameters

Acer Iconia A510 n = 7 C = 2000, N = 1024, I = 800, R = 20
n = 8 C = 2000, N = 1024, I = 800, R = 40

Samsung Galaxy SIII n = 7 C = 1200, N = 1024, I = 1000, R = 20
n = 9 C = 1800, N = 1024, I = 1000, R = 20

ARM Cortex-A8 exacerbates the detection of wide collisions and thus the applicability
of this attack in general. Due to this observation we do not consider the ARM Cortex-A8
processor within the following analysis.

There are many different dimensions along which we can consider the detection
of wide collisions. Firstly, we need to find the appropriate parameters, i.e., C, I , and
R, where C denotes the maximum number of cycles one encryption is supposed to
take. Encryptions consuming more than C cycles are ignored. I denotes how often
the remaining bytes, which do not belong to the chosen diagonal, of the plaintext are
chosen randomly. Finally, R denotes how often a specific pair of plaintexts (P1,P2) is
encrypted in order to achieve stable measurement results. Secondly, there are different
statistical values (metrics) which might be used to distinguish wide collisions from non
wide collisions.

Table 3 shows two runs of Bogdanov et al.’s cache-collision attack with the corre-
sponding parameters on the two Cortex-A9 devices. According to our observations we
did not find any parameter configuration to detect enough wide collisions among n ≤ 6
chosen diagonal pairs on both Cortex-A9 devices. One might overcome a high expecta-
tion rate of false positives with a larger number n of chosen diagonal pairs (A,E) within
the collision-detection phase, but this drastically increases the complexity of the follow-
ing 4-byte subkey search and the final exhaustive key search. This results from the fact
that from all n chosen diagonal pairs the key-search phase considers all possible combi-
nations of 4 diagonal pairs out of the n chosen diagonal pairs. According to Bogdanov et
al. [6] the number of expected 4-byte subkeys per diagonal is

(
n
4

)
· 256. Since these

subkeys must be enumerated exhaustively for all four diagonals this yields an overall
complexity of

((
n
4

)
· 256

)4
AES encryptions. For n ≤ 6, i.e.,

((
6
4

)
· 256

)4 ≈ 247.6

AES encryptions, this is feasible in a few days by employing AES New Instructions [1].
However, for n = 7 this results in about 252 AES encryptions which is impractical.

Our main observation regarding the applicability of Bogdanov et al.’s cache-collision
attack is that a cache-line size of 64 bytes exacerbates this attack. Furthermore, the de-
tection of at least four wide collisions among a small number of chosen diagonal pairs,
e.g., n ≤ 6, is a challenging task and a larger number of n drastically increases the
remaining brute-force complexity.

6 Conclusion

Recent investigations of cache attacks on mobile devices mainly focused on specific
testbeds and stressed the importance of analyzing these attacks in more realistic en-

13

vironments. Thus, we investigated the applicability of two time-driven cache attacks
on state-of-the-art Android-based mobile devices. We observed that timing information
also leaks on these devices and can be used to reduce the key space of cryptographic al-
gorithms significantly. Though, time-driven cache attacks usually require an enormous
number of measurement samples which might drain the battery drastically, we con-
sider the attack of Bernstein [4] a threat for cryptographic implementations on mobile
devices. In addition, we analyzed the attack of Bogdanov et al. [6] according to its appli-
cability on mobile devices in more realistic environments. We showed that a cache-line
size of 64 bytes exacerbates this attack and even on systems with a cache-line size of
32 bytes the detection of wide collisions seems to be a challenging task. Our observa-
tions revealed that, in practice, encryptions where wide collisions occur and encryptions
where no wide collisions occur are hardly distinguishable. Even though a high number
of false positives might be overcome by taking more diagonal pairs into consideration,
this drastically increases the complexity of the following key-search phase.

Acknowledgements.

This work has been supported by the Austrian Science Fund (FWF) under grant num-
ber TRP 251-N23 (Realizing a Secure Internet of Things - ReSIT), and the Austrian
Research Promotion Agency (FFG) under grant number 836628 (SeCoS).

References

[1] K. Akdemir, M. Dixon, W. Feghali, P. Fay, V. Gopal, J. Guilford, E. Ozturk, G. Wolrich, and
R. Zohar. Breakthrough AES Performance with Intel AES New Instructions, Whitepaper,
2010.

[2] ARM Ltd. ARM Architecture Reference Manual, ARMv7-A and ARMv7-R ed., ARM DDI
0406 A, April 2007.

[3] ARM Ltd. Cortex-A Series. Available online at http://www.arm.com/products/
processors/cortex-a/index.php, 2012.

[4] D. J. Bernstein. Cache-timing attacks on AES. Available online at http://cr.yp.to/
antiforgery/cachetiming-20050414.pdf, 2005.

[5] G. Bertoni, V. Zaccaria, L. Breveglieri, M. Monchiero, and G. Palermo. AES Power Attack
Based on Induced Cache Miss and Countermeasure. In ITCC (1), pages 586–591, 2005.

[6] A. Bogdanov, T. Eisenbarth, C. Paar, and M. Wienecke. Differential Cache-Collision Tim-
ing Attacks on AES with Applications to Embedded CPUs. In CT-RSA, pages 235–251,
2010.

[7] J.-F. Gallais and I. Kizhvatov. Error-Tolerance in Trace-Driven Cache Collision Attacks.
In COSADE, pages 222–232, Darmstadt, 2011.

[8] D. Gullasch, E. Bangerter, and S. Krenn. Cache Games - Bringing Access-Based Cache
Attacks on AES to Practice. In IEEE SP, pages 490–505, 2011.

[9] National Institute of Standards and Technology (NIST). FIPS-197: Advanced Encryption
Standard, November 2001.

[10] M. Neve. Cache-based Vulnerabilities and SPAM Analysis. PhD thesis, UCL, 2006.
[11] OpenSSL Software Foundation. OpenSSL Project. Available online at http://www.

openssl.org/, 2012.

14

[12] R. Spreitzer and T. Plos. Cache-Access Pattern Attack on Disaligned AES T-Tables. In
COSADE 2013, LNCS. Springer, 2013. In press.

[13] R. Spreitzer and T. Plos. On the Applicability of Time-Driven Cache Attacks on Mobile
Devices. In NSS 2013, LNCS. Springer, 2013. In press.

[14] E. Tromer, D. A. Osvik, and A. Shamir. Efficient Cache Attacks on AES, and Countermea-
sures. Journal of Cryptology, 23(1):37–71, 2010.

[15] M. Weiß, B. Heinz, and F. Stumpf. A Cache Timing Attack on AES in Virtualization
Environments. In FC, pages 314–328. Springer Berlin Heidelberg, 2012.

A Device Specifications

Table 4. Detailed device specifications for the three mobile devices under attack.

Acer Iconia A510 Google Nexus S Samsung Galaxy SIII

Processor Cortex-A9 Cortex-A8 Cortex-A9
Processor implementation Nvidia Tegra 3 Quad 1.4 GHz Exynos 3 Single 1 GHz Exynos 4 Quad 1.4 GHz
Out-of-order execution yes no yes
L1 cache size 32 KB 32 KB 32 KB
L1 cache associativity 4 way 4 way 4 way
L1 cache-line size 32 byte 64 byte 32 byte
L1 cache sets 256 128 256
Operating system Android 4.0.4 Android 2.3.4 Android 4.0.4

15

