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Abstract

In this paper, we make attacks on DBL (Double-Block-Length) hash modes of block ciphers with n-bit
key and n-bit block. Our preimage attack on the hash function of MDC-4 scheme requires the time
complexity 23n/2, which is significantly improved compared to the previous results. Our collision attack
on the hash function of MJH scheme has time complexity less than 2124 for n = 128. Our preimage
attack on the compression function of MJH scheme find a preimage with time complexity of 2n. It is
converted to a preimage attack on the hash function with time complexity of 23n/2+2. Our preimage
attack on the compression function of Mennink’s scheme find a preimage with time complexity of 23n/2.
It is converted to a preimage attack on the hash function with time complexity of 27n/4+1.

These attacks are helpful for understanding the security of the hash modes together with their
security proofs.
Key words: Hash Function, Hash Mode, Collision, Preimage

1 Introduction

Block ciphers and hash functions are the most widely used primitives for cryptographic applications.
For secure building, hash functions are often designed based on block-cipher-like components. Preneel,
Govaerts, and Vandewalle [19] analyzed the securities of 64 ways to make a compression function with 2n-
bit input and n-bit output from a single call of the underlying block cipher with n-bit block and n-bit key,
under the assumption of the use of Merkle-Damg̊ard domain extender, and suggested 12 of them as secure
ones. Later, their objects are called PGV schemes. Black et al. [2] proved that the 12 schemes suggested
in [19] make compression functions collision-resistant and preimage-resistant upto O(2n/2) queries to the
underlying block cipher in the ideal cipher model, and showed that for 8 of the remaining 52 schemes,
the resulting compression functions are weak but the resulting hash functions by using Merkle-Damg̊ard
domain extender are collision-resistant and preimage-resistant upto O(2n/2) queries to the underlying
block cipher in the ideal cipher model. In [20], Stam extended Black et al.’s work to more generalized
version of PGV schemes. Since [2], most researches for provable security of hash modes have used the
assumptions of Merkle-Damg̊ard domain extender and ideal cipher model.

Since the length of the hash value from PGV hash modes is the same as the block length of the
underlying block cipher and block ciphers usually have too short block length to provide conventional
securities for hash functions, double-block-length (DBL) hash modes have often been researched. Abreast-
DM [11], Tandem-DM [11], and Hirose’s [6] schemes make the compression functions with 3n-bit input
and 2n-bit output from two calls of the underlying block cipher with n-bit block and 2n-bit key. These
DBL hash modes are proved to have the security bounds of O(2n) for collision resistance [6, 12, 13] and the
security bounds close to 22n for preimage resistance [1], so they are very secure as long as the underlying
block cipher is secure.

On the other hand, it seems to be more difficult to build secure hash modes from the block cipher
with n-bit block and n-bit key. We can model MDC-2 and MDC-4 schemes [7, 17] as such cases, although
the original ones used DES [4], which is the block cipher with 64-bit block and 56-bit key. MDC-2 scheme
makes the compression function with 3n-bit input and 2n-bit output from two calls of the underlying
block cipher with n-bit block and n-bit key, and MDC-4 scheme does the similar work from four calls of
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the underlying block cipher. MDC-2 and MDC-4 schemes are proved to have the security bound O(23n/5)
for collision resistance [21, 5]. MJH [14] and Mennink’s [16] schemes are recently proposed DBL hash
modes. The designers of MJH proved that it has security bound O(22n/3−log n) for collision resistance.
Mennink proved his scheme has security bound O(2n) for collision resistance and security bound O(23n/2)
for preimage resistance.

Note that the except Mennink’s scheme, the above mentioned DBL hash modes of the underlying
block cipher with n-bit block and n-bit key have security bound not close to the conventional level n bits
of collision resistance required for hash functions. Even Mennink’s scheme does not reach the conventional
level 2n bits of preimage resistance required for hash functions. Some one may use those hash modes by
considering the block length suitable for certain security goals. However, what we want to address is that
the proofs providing partial security do not give us any knowledge about the security for the adversary
with much more query access than the bounds.

There exist some attacks on MDC-2 and MDC-4. [10] and [18] presented several attacks on MDC-2
and MDC-4 schemes with DES, which are translated for the underlying block cipher with n-bit block and
n-bit key into, as follows: collision attacks on compression functions of MDC-2 and MDC-4 schemes with
time complexities 2n/2 and 23n/4, resp.; preimage attacks on compression functions of MDC-2 and MDC-4
schemes with 2n and 23n/2, resp.; preimage attacks on hash functions of MDC-2 and MDC-4 schemes with
23n/2+1 and 27n/4+1, respectively. Knudsen et al. [9] presented the collision attack on the hash function
of MDC-2 scheme with the time complexity 2124.5 for n = 128, and the preimage attack on the hash
function of MDC-2 scheme with the time complexity 2n. These results are helpful for understanding the
security of the hash modes together with the proofs. For example, for n = 128 Steinberger’s proof of the
collision resistance of MDC-2 implies any adversary making less than 276.8 has only a negligible chance of
finding a collision in the ideal cipher model, but Knudsen’s attack shows an adversary computing 2124.5

compression functions can find a collision with high probability.
In this paper, we present some attacks on MDC-4, MJH, and Mennink’s schemes as follows.

1. Preimage attack on MDC-4 scheme: It requires the time complexity 23n/2, which is significantly
improved compared to the previous result [10, 18].

2. Collision and preimage attacks on MJH scheme: Our collision attack on the hash function of MJH
scheme has time complexity less than 2124 for n = 128. We show that a preimage is found for
the compression function of MJH scheme with time complexity of 2n. This preimage attack on the
compression function is converted to a preimage attack on the hash function with time complexity
of 23n/2+2.

3. Preimage attack on Mennink’s scheme: We make a preimage attack on the compression function
in a different way from the previous one in [16], and convert it to a preimage attack on the hash
function with time complexity of 27n/4+1.

2 Description of DBL Hash Modes

In this section, we give a brief description of MDC-4, MJH and Mennink’s schemes. We assume Merkle-
Damg̊ard domain extender is used for constructing the hash function from the compression functions of
DBL schemes. Let EK(P ) denote the encryption of a plaintext P using a key K with the block cipher E,
which is assumed to be secure. If X is an n-bit string, then we let XL denote the leftmost n/2 bits of X,
and XR denote the rightmost n/2 bits of X.

For i-th call of the compression function CF : {0, 1}n × {0, 1}n × {0, 1}n → {0, 1}n × {0, 1}n in
Merkle-Damg̊ard domain extender, we consider the input chaining variable (Hi, Si) ∈ {0, 1}n × {0, 1}n,
the message block Mi ∈ {0, 1}n, and the output chaining variable (Hi+1, Si+1) ∈ {0, 1}n × {0, 1}n.

Then, for the message blocks M0,M1, ...,M`−1 ∈ {0, 1}n after padding the message and the initial
value (H0, S0), Merkle-Damg̊ard domain extender iterates the compression function CF to produce the
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Figure 1: CFMDC-4(Hi, Si,Mi) = (Hi+1, Si+1)

hash value (H`, S`) as follows:

(Hi+1, Si+1)← CF(Hi, Si,Mi) 0 ≤ i ≤ `− 1.

We consider the padding rule following MD strengthen [15].

2.1 MDC-4 Scheme

MDC-4 scheme [7, 17] was originally defined using DES [4] as the underlying block cipher, but we assume
that the underlying block cipher E has n-bit block and n-bit key. Given a block cipher E, the MDC-
4 compression function CFMDC-4 has 2n-bit chaining variable and n-bit message block. For the input
chaining variable (Hi, Si) and the message block Mi, (Hi+1, Si+1) = CFMDC-4(Hi, Si,Mi) is computed as
follows:

A ← EHi(Mi)⊕Mi;
B ← ESi(Mi)⊕Mi;
C ← BL‖AR;
D ← AL‖BR;
X ← EC(Hi)⊕Hi;
Y ← ED(Si)⊕ Si;

Hi+1 ← YL‖XR;
Si+1 ← XL‖YR.

2.2 MJH Scheme

MJH scheme [14] has two auxiliary components σ and ·θ. σ is an involution on {0, 1}n with no fixed point,
and ·θ is a multiplication by a constant θ 6= 0, 1 in GF (2n). The MJH compression function CFMJH has
2n-bit chaining variable and n-bit message block, based on the block cipher E with n-bit block and n-bit
key. For the input chaining variable (Hi, Si) and the message block M , (Hi+1, Si+1) = CFMJH(Hi, Si,Mi)
is computed as follows:

X ← Hi ⊕Mi;
Hi+1 ← ESi(X)⊕X;

Y ← ESi(σ(X))⊕ σ(X);
Si+1 ← (Y · θ)⊕Hi.
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2.3 Mennink’s Scheme

Mennink’s scheme [16] comprises three calls of the underlying block cipher E and a 4× 4 matrix A over
GF (2n), defined as follows:

A =


a11 a12 a13 0
a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 .

Note that A is invertible and a24, a44 6= 0.
For clarity, we use the notations a1 = (a11, a12, a13), a3 = (a31, a32, a33) ∈ GF (2n)3, a2 = (a21, a22, a23, a24), a4 =

(a41, a42, a43, a44) ∈ GF (2n)4 in the description. The compression function CFMennink of Mennink’s scheme
has 3n-bit input and 2n-bit output. For the input (U, V,W ), (Y, Z) = CFMennink(U, V, W ) is computed
as follows:

X ← EU (V );
K1 ← a1 · (U, V,X);
P1 ← a2 · (U, V,X,W );
Y ← EK1(P1)⊕ P1;

K2 ← a3 · (U, V,X);
P2 ← a4 · (U, V,X,W );
Z ← EK2(P2)⊕ P2.

In [16], it was not specified how to correspond the variables (Hi, Si,Mi) and (Hi+1, Vi+1) to (U, V,W )
and (Y, Z), respectively. We will consider some cases for it in our attack.
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3 Preimage Attack on MDC-4 Hash Function

Consider CFMDC-4(Hi, Si,Mi) = (Hi+1, Si+1). If the following equation

(EHi(Mi)⊕Mi)L = (ESi(Mi)⊕Mi)L (1)

holds, then we can write

EEHi
(Mi)⊕Mi

(Hi)⊕Hi = X;

EESi
(Mi)⊕Mi

(Si)⊕ Si = Y,

where A and B are n-bit values such that

X = (Si+1)L‖(Hi+1)R;
Y = (Hi+1)L‖(Si+1)R.

Note that the match in (1) is for n
2 bits. That is, the event occurs with the probability of 2−n/2.

Using the above observation, we construct a preimage attack on MDC-4 hash function with time
complexity of 2

3n
2 as follows, which is also based on the time-memory trade-off preimage attack which

Knudsen et al. proposed for MDC-2 [9].

1. Choose 2
n
2
+1 n-bit message blocks M . For each M , compute

EEx(M)⊕M (x)⊕ x for all x ∈ {0, 1}n

and store the results in the table TM . After this precomputation, we get 2
n
2
+1 tables {TM}, where

each has 2n entries.

2. Compute X and Y for the target hash value (H`, S`), and look up the tables to get the solution
(a, b) to the following equations:

EEa(M)⊕M (a)⊕ a = X;
EEb(M)⊕M (b)⊕ b = Y.

On average, it is expected that at least 2
n
2
+1 solutions are found. Finally, it is expected that there

are two solutions satisfying
(Ea(M)⊕M)L = (Eb(M)⊕M)L .

With this solution, two child nodes of (H`, S`) are made by letting H`−1 = a and S`−1 = b and
labeling the each edge with the corresponding message block M .

3. For the new nodes, make their child nodes with the same tables. Repeat this procedure until 2n

leaves are produced.

4. If the tree with 2n leaves has the depth t, take ` = t + 1, and perform a brute force search starting
from the initial value (H0, S0) to find a match of (H1, S1) and the 2n targets. If a match is found,
then a preimage is comprised of the corresponding message blocks.

The time complexity of the above attack is 23n/2 and the memory requirement is about 23n/2 cells for
2n-bit values.

5



4 Collision Attack on MJH

4.1 Collision Attack on MJH Compression Function

We find that we do not need to consider the right half of the hash value in the collision attack for the MJH
compression function, because after finding a collision for the left half of the hash value, we can easily
compute the left halves of the input chaining variable and the message blocks such that they give a same
hash value. The following collision attack on the MJH compression function reflects on our observation.

1. Randomly choose Si and Si+1, and fix them.

2. Randomly choose r distinct X = Hi ⊕Mi: X(1), X(2), ..., X(r), compute H
(s)
i+1 = ESi(X

(s)) ⊕X(s)

for s = 1, ..., r, and then check whether there are at least one pair of (s, j) such that

Xs 6= Xj and H
(s)
i+1 = H

(j)
i+1. (2)

3. If a pair (s1, s2) satisfying (2) is found, then compute H
(s1)
i , H

(s2)
i , M

(s1)
i , and M

(s2)
i as follows:

H
(sj)
i = (ESi(σ(X(sj)))⊕ σ(X(sj))) · θ ⊕ Si+1 for j = 0, 1;

M
(sj)
i = H

(sj)
i ⊕M

(sj)
i for j = 0, 1.

4. Output (H(s1)
i , Si,M

(s1)
i ) and (H(s2)

i , Si,M
(s2)
i ) as a collision of the MJH compression function.

The time complexity of the above attack is dominated by r encryptions of the block cipher E. With
r = 2n/2, we expect at least one collision for MJH compression function, because the right half of the
hash value is fixed.

4.2 Collision Attack on MJH Hash Function

We provide a 2-block collision attack on MJH hash function. The first step to find a collision for MJH
hash function is similar to Knudsen et al.’s attack for MDC-2 [9]. We make a multi-collision for the right
half S1 of the 2n-bit output chaining value in the first block. The multi-collision from the first block fix
the key inputs to the block ciphers in the second step. In the second step, we take a different approach of
choosing X = M1 ⊕H1 at random, instead of M1. Due to the fixed key input, the computations in the
second block are almost independent of the first block. With this observation, we make a collision attack
on MJH hash function as follows.

1. Choose sufficiently many message blocks in the first block, and obtain an r-collision for S1. De-
note the corresponding left halves of the output chaining variable and the message blocks by
H

(1)
1 ,H

(2)
1 , ...,H

(r)
1 , and M

(1)
0 ,M

(2)
0 , ...,M

(r)
0 , respectively.

2. Choose randomly q distinct X = H1 ⊕M1: X(1), X(2), ..., X(q), compute H
(i)
2 = ES1(X

(i)) ⊕ X(i)

for i = 1, 2, ..., q, and collect the pairs of (i, j) such that i 6= j and H
(i)
2 = H

(j)
2 for 1 ≤ i, j ≤ q.

3. For the pairs of (i, j) colliding on H2, compute Y (k) for k = i and j as follows:

Y (k) = (ES1(σ(X(k)))⊕ σ(X(k))) · θ,

and check whether there is at least one pair of (u, v) for 1 ≤ u, v ≤ r such that u 6= v and
H

(u)
1 ⊕Y (i) = H

(v)
1 ⊕Y (j). For such a tuple (i, j, u, v), the same S2 is produced from H

(u)
1 ⊕Y (i) and

H
(v)
1 ⊕Y (j) or from H

(v)
1 ⊕Y (i) and H

(u)
1 ⊕Y (j). If such a tuple is found, output M

(u)
0 ‖(H

(u)
1 ⊕X(i))

and M
(v)
0 ‖(H

(v)
1 ⊕X(j)), or M

(v)
0 ‖(H

(v)
1 ⊕X(i)) and M

(u)
0 ‖(H

(u)
1 ⊕X(j)) as a collision.
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Table 1: Time complexity of the collision attack on MJH with an n-bit block cipher, compared to birthday
complexity, where TE

∼= TK .

n r Collision Attack Birthday Attack
64 8 260.58 264

128 14 2123.81 2128

256 23 2251.03 2256

Table 2: Time complexity of the collision attack on MJH with an n-bit block cipher, compared to birthday
complexity, where TE � TK .

n r Collision Attack Birthday Attack
64 9 261.01 264

128 15 2124.27 2128

256 25 2251.50 2256

For more precise estimation of time complexity, we separate the costs of encryption and key schedule
in a call of block cipher. We consider that the compression function of MJH requires two encryptions and
one key schedule operations. Let TE , TK , TEK , and TCF be the time costs wasted in one encryption, one
key schedule operation, one block cipher call and one compression function operation, respectively. We
estimate the complexity for the case that TE is almost equal to TK (so, TEK

∼= 2TE and TCF
∼= 3 · TE),

and the case that TE is much larger than TK (so, TEK
∼= TE and TCF

∼= 2 · TE).
In the first step, we need ((r!) ·2(r−1)n)1/r block cipher encryptions with key schedule operations to get

an r-collision for HR. The second step requires q block cipher encryptions. The time complexity of the
last step is negligible compared to other steps. Since there are

(
r
2

)(
q
2

)
possibilities for pairing (X(i), X(j))’s

and (H(u)
1 ,H

(v)
1 )’s, we expect a collision for V with

(
r
2

)(
q
2

)
= 22n, where

(
r
2

)(
q
2

) ∼= (rq)2

4 and q ∼= 2n+1/r.
Overall, the time complexity of the above attack is estimated as

((r!) · 2(r−1)n)1/rTEK + 2n+1/rTE . (3)

(3) is approximated to

((r!) · 2(r−1)n)1/r · 2
3

+ 2n+1/r · 1
3

(4)

for the case of TE
∼= TK , and

(((r!) · 2(r−1)n)1/r + 2n+1/r) · 1
2

(5)

for the case of TE � TK ., respectively. For n = 128, we get the most efficient complexities of 2123.81 with
r = 14 for (4) and 2124.27 with r = 15 for (5).

5 Preimage Attack on MJH Scheme

5.1 Preimage Attack on MJH Compression Function

It is easy to find a preimage of MJH compression function with time complexity of about 2n · TE . The
preimage attack on MJH compression function is as follows.

1. Given a 2n-bit target hash value (Hi+1, Si+1), choose randomly Si ∈ {0, 1}n and fix it.
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2. Find X ∈ {0, 1}n such that ESi(X)⊕X = Hi+1 with brute force attack.

3. If such X is found, compute Y = (ESi(σ(X))⊕ σ(X)) · θ, Hi = Y ⊕ Si+1, and Mi = Hi⊕X. Then,
(Hi, Si,Mi) is a preimage.

5.2 Preimage Attack on MJH Hash Function

We have to consider the padding rule for constructing a preimage attack on a hash function from a
preimage attack on a compression function. We assume that the last message block contains a length
information of the message. In the attack described in Section , the attacker does not have a control
on the message block unlike the preimage attack on MDC-4 compression function described in Section .
So, the attacker can not intend to embed a predetermined length information to the preimage, and we
can not use Knudsen et al.’s time-memory trade off technique to make a preimage attack for MJH hash
function from the preimage attack for MJH compression function. Alternatively, we make it using the
meet-in-the-middle technique [15, Fact 9.99] and expandable messages with fixed-points [3, 8].

A fixed-point for a compression function CF is defined as (H,S,M) such that CF(H,S,M) = (H,S).
We can find fixed-points for MJH compression function as follows.

1. Choose randomly M ∈ {0, 1}n and S ∈ {0, 1}n, fix them.

2. Compute X = E−1
S (M), H = M ⊕X, Y = (ES(σ(X))⊕ σ(X)) · θ, and H ⊕ Y = S′.

3. If S′ = S, then output (H,S,M) as a fixed-point; else, repeat the computations in step 2 with new
random choices of M and S.

On average, we expect to find a fixed-point with time complexity of 2n.
An expandable message is constructed as follows.

1. Collect 2n/2 fixed-points (H(1), S(1), M
(1)
2 ), ..., (H(2n/2), S(2n/2), M

(2n/2)
2 ) by repeating the above

search.

2. Repeat to compute CFMJH(CFMJH(H0, S0,M0),M1) for a randomly chosen two-block message
(M0,M1) until the result is matched with any (H(i), S(i)) for i = 1, ..., 2n/2.

3. If a match is found, then output the corresponding (M0,M1,M
(i)
2 ) as a (2,∞)-expandable message.

On average, the number of repetition in the step 2 should be 23n/2 to expect a match. So, the time
complexity for the above construction of an expandable message is about 23n/2+1.

Assume that we are given a (2,∞)-expandable message (M0,M1,M2) made from a fixed-point (H,M2).
Let len(M) be the length information of the hashed message M contained in the last message block. With
this expandable message, we can construct a preimage attack on MJH hash function as follows.

1. Given a target hash value (H,S), collect 2n/2 preimages (U (1), V (1), M
(1)
L ), (U (2), V (2), M

(2)
L ), ...,

(U (2n/2), V (2n/2), M
(2n/2)
L ) for the last compression function.

2. Repeat to compute CFMJH(H,S,ML−1) for a randomly chosen one-block message ML−1 until the
result is matched with any U (i) for i = 1, ..., 2n/2.

3. If a match is found, then output the corresponding (M0,M1,M2, ...,M2,ML−1,ML) as a preimage
for V , where the repetition number of M2 depends on len(M) contained in ML.

On average, the number of repetition in the step 2 should be 23n/2 to expect a match. So, the time
complexity for the above construction of an expandable message is about 23n/2+1.

Finally, a preimage attack on MJH hash function is made from the preimage attack on MJH compres-
sion function and the expandable message by the meet-in-the-middle technique in [15, Fact 9.99]. Overall
time complexity is about 23n/2+2.
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6 Preimage Attack on Mennink’s Scheme

In [16], it was not specified how to correspond the variables (Hi, Si,Mi) and (Hi+1, Vi+1) to (U, V, W )
and (Y, Z), respectively. In the cases of Mi = U or Mi = V , we can make a preimage attack on the hash
function of Mennink’s scheme. Without loss of generality, we assume Mi = U .

6.1 Preimage Attack on Mennink’s Compression function

For a given target image (Y, Z) ∈ GF (2n)2, our preimage attack works as follows.

1. Choose 2n/2 P1 randomly. They are denoted by P
(0)
1 , ..., P

(2n/2−1)
q .

2. For 0 ≤ i ≤ 2n/2 − 1, find (U (i), V (i), X(i))’s such that EU(i)(V (i)) = X(i) and P
(i)
1 = a1 ·

(U (i), V (i), X(i)) in the following way:

(a) Choose U (i).

(b) Find V (i) such that P
(i)
1 = a1 · (U (i), V (i), EU(i)(V (i))) with a brute-force method.

(c) Compute X(i) = EU(i)(V (i)).

3. For 0 ≤ j ≤ 2n/2 − 1, find K
(j)
1 such that E

K
(j)
1

(P (j)
1 )⊕ P

(j)
1 = Y .

4. Make 2n tuples (U (i), V (i), X(i),W (ρ(i,j))) such that K
(j)
1 = a2 · (U (i), V (i), X(i),W (ρ(i,j))) for 0 ≤

i, j ≤ 2n/2−1, where ρ(i, j) is an index dependent on i and j. Renumber the tuples as (U (i), V (i), X(i),W (i))
for 0 ≤ i ≤ 2n − 1.

5. For 0 ≤ i ≤ 2n − 1, compute P
(i)
2 = a3 · (U (i), V (i), X(i)) and K

(i)
2 = a4 · (U (i), V (i), X(i),W (i)),

and check whether the relation E
K

(i)
2

(P (i)
2 )⊕P

(i)
2 = Z. One (P (i)

2 ,K
(i)
2 ) solution is expected for the

relation. Then, the corresponding tuple (U (i), V (i),W (i)) is a preimage of the compression function.

The time complexity of the above attack is 23n/2 because steps 2 and 3 require more dominant cost
than the others.

6.2 Preimage Attack on Mennink’s Hash Function

Our preimage attack on the compression function explained in Section 6.1 is converted to a preimage
attack in the case of Mi = U or Mi = V because the attacker has the control on the message length in
the last block, while the previous attack in [16] cannot lead to a preimage attack on the hash function.

Again, a preimage attack on the hash function of Mennnink’s scheme is made from the preimage
attack on the compression function by the meet-in-the-middle technique in [15, Fact 9.99]. Overall time
complexity is about 27n/4+1.

7 Conclusion

We presented several attacks on MDC-4, MJH, and Mennink’s schemes which are DBL hash modes. The
preimage attacks on MDC-4 and Mennink’s significantly improves the previous results, and the attacks
on MJH scheme are the first cryptanalytic results. Our attacks provide deeper understanding about the
securities of our target hash modes. Some of them show that there are gaps between the complexities
of ours and the bounds stated in the security proofs. Studying how to reduce the gaps is interesting;
whether the attacks are more developed or the proofs are more improved.
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