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Véronique Cortier1, David Galindo1, Stéphane Glondu2 and Malika Izabachène1

1 LORIA - CNRS
2 INRIA Nancy Grand Est

Abstract. Most voting schemes aim at providing verifiability: voters should be able to check that their ballots did contribute
to the outcome (individual verifiability) and that the tallying authorities did their job properly (universal verifiability). Sur-
prisingly, verifiability still does not answer a very simple and natural question: how can I be sure that the published result
corresponds to the (sum of) intended votes of the voters? This property is called correctness by Juels, Catalano, and Jakob-
sson. Actually, even a prominent voting system like Helios does not achieve correctness in the case of a dishonest bulletin
board, since it may add ballots.
We generalize the aforementioned definition of correctness to account for a malicious bulletin board (full correctness)
and we provide a generic construction that transforms a correct voting scheme into a fully correct voting scheme. This
construction simply requires to send credentials to the voters, with no additional infrastructure. We further provide a simple
and natural criteria that implies voting correctness, which can then be turned into full correctness due to our construction.
As an application, we build a variant of Helios that is both fully correct, verifiable and private.
Real-world elections often require threshold cryptosystems so that any t out of ` trustees can proceed to tallying. We describe
a fully distributed (with no dealer) threshold cryptosystem suitable for Helios (in particular, suitable to partial decryption).
In doing so we happen to revisit the seminal multi-authority election system from Cramer, Gennaro and Schoenmakers.
Altogether, we provide the first proof of privacy, verifiability and correctness for a fully distributed Helios voting scheme
(and its enhanced version with credentials), together with its detailed description. This also implies, to our knowledge, the
first formal proofs of privacy, verifiability and correctness for the scheme by Cramer et al. Last but not least, we provide an
open source implementation of our variant of Helios.

Keywords: voting protocols, Helios, correctness, full correctness, verifiability, ballot privacy, fully distributed
threshold cryptosystem, implementation.

1 Introduction

Ideally, a voting system should be both private and verifiable. Privacy ensures that no one knows that a certain
voter has voted in a particular way, and verifiability ensures that everyone can trust the result, without having to
rely on some authorities. One leading voting scheme that achieves both privacy and verifiability is Helios [4], based
on a classical voting system proposed by Cramer et al [16] with variants proposed by Benaloh [6]. Helios is an
open-source voting system that has been used several times to run real-world elections, including the election of the
president of the University of Louvain-La-Neuve and the election of the 2010, 2011 and 2012 new board directors
of the International Association for Cryptographic Research (IACR) [1]. Helios has been shown to ensure ballot
privacy for successively stronger notions of privacy and more accurate implementations [14, 7, 9]. The remaining
question is whether the result of an election run through Helios does correspond to the votes cast by the voters.
Juels et al [30] have introduced an important distinction between verifiability and correctness. Verifiability ensures
that there is a public algorithm that can check the outcome of the tally, that is, that can check that the authorities
behaved as expected. However, this says nothing about the fact that the outcome of the election does correspond to
the votes intended by the honest voters (plus possibly some votes from the dishonest voters). This second property,
called correctness, appears only in [30], the extended version of [29]. It ensures in particular that even malicious
ballots correspond to valid votes (for example a malicious voter shall not be able to vote 100 if the two allowed
values are 0 and 1).

Is Helios correct? According to JCJ’s definition [30], Helios is correct, although this has never been proved.
However, JCJ’s definition assumes the bulletin board to be honest: an attacker may cast dishonest ballots on the



behalf of dishonest voters but no extra ballots may be added nor deleted. This means for example that the result of
the election of the 2012 board of the IACR can be trusted only under the assumption that the election server was
neither dishonest nor attacked, during the whole duration of the election. This is a rather unsatisfactory assumption,
since adding a few extra ballots may easily change the outcome of an election. In the case of Helios, this is mitigated
by the fact that voters’ identities are public. If the bulletin board adds ballots, it has to tell which voters are supposed
to have cast these ballots. Thus hopefully, these voters should notice that the server wrongly cast ballots on their
names and would complain. Such complaints are however not guaranteed since absentees typically do not care
much about the election. Things may be even worse. In some countries (like France), whether someone voted or
not is a private information. It is therefore forbidden to publicly reveal the identities of the voters who cast a vote.
Moreover, publishing voters identities compromises privacy in the future: once the keys will be broken (say in 20
years), everyone will learn the vote of each voter. A simple alternative consists in removing the disclosure of voters’
identities. This variant of Helios remains perfectly practical and of course still preserves ballot privacy. But it then
becomes completely straightforward for a corrupted bulletin board to add as many ballots as needed.
Correctness against a malicious box. We first provide a generalization of the definition of correctness of Juels et
al [30] that accounts for a malicious bulletin board. Intuitively, a voting scheme is correct if the result corresponds
to the votes of

– all honest voters that have checked that their vote was cast correctly (e.g. in Helios, this simply amounts into
checking that the encrypted vote appears on the bulletin board);

– at most n valid votes where n is the number of corrupted voters (i.e. the attacker may only use the corrupted
voters to cast valid votes);

– a subset of the votes cast by honest voters that did not check their vote was cast correctly (in practice, many
voters do not perform any check).

As in [30], this definition requires the tally function to admit partial tallying (that is, it is possible to compute the
tally by blocks and then retrieve the final result).

Our first main contribution is a generic construction that transforms any correct voting scheme that assumes
both the registration authority and the bulletin board honest, into a correct voting scheme under the weaker trust
assumption that the registration authority and the bulletin board are not simultaneously dishonest. We refer to this
as transforming correctness w.r.t. a honest bulletin board to correctness w.r.t. a malicious bulletin board. Following
the same terminology, we stress that our transformation also turns ballot privacy and verifiability w.r.t. a honest
bulletin board into ballot privacy and verifiability w.r.t. a malicious bulletin board.

Correctness against a malicious bulletin board cannot come for free. In Helios-like protocols, the bulletin board
is the only authority that controls the right to vote. It may therefore easily stuff itself, that is, it may easily add
ballots. To control the bulletin board, it is necessary to consider an additional authority. Our solution consists in
providing each voter with a private credential (actually a signing key) that has a public part (the verification key).
The set of all public credentials is public and, in particular, known to the bulletin board. Then each voter simply
signs his ballot with his private credential. Note the association between a public credential and the correspond-
ing voter’s identity does not need to be known and actually, should not be disclosed to satisfy e.g. the French
requirements regarding voting systems.

The advantage of our solution is to be simple: the additional authority is only responsible for the generation
of credentials and their distribution to the voters. Once it is done, it can erase all its memory. There is no need for
an additional server. It is also possible to have the registration authority to generate the credentials off-line and to
distribute them using a non-digital channel, e.g. snail mail (see details on our implementation in Section 6). This
minimizes the risk of Internet-based attacks against the registration authority.
A criterion for correctness. Since proving correctness, even with an honest bulletin board, may not be easy, we
provide a simple and natural criterion for correctness. We show that any consistent and accurate voting protocol is
correct (w.r.t. an honest bulletin board). Consistency accounts for the natural property that the tally of just honestly
casted ballots should always yield the expected result (typically the sum of the votes). Accuracy ensures that
any ballot (possibly dishonest) that passes the verification check (e.g. valid proof, well-formedness of the ballots)
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corresponds to a valid vote, and that for any ballot box the output of the tallying algorithm always satisfies the
verification test. Our criterion is satisfied in particular by Helios and we expect it to be satisfied by many existing
voting protocols.

Application to Helios. Applying our generic construction to Helios we obtain a voting scheme, that we name as
Helios with Credentials (Helios-C), which is correct against a malicious bulletin board, verifiable and private. We go
further by providing the first detailed proof of security for Helios without trusted dealer and arbitrary threshold, for
both correctness and privacy. The most accomplished proof of privacy for Helios-like voting schemes can be found
in [9]. It proves privacy for the actual ElGamal scheme used in Helios and the actual tally function (that reveals
partial decryption shares). It however abstracts away the distribution of the secret keys of the trustees that perform
the tally and does not consider threshold decryption. In practice, threshold decryption is mandatory. Typically, three
authorities detain the decryption shares and two among three authorities suffice, and are necessary, to perform the
tally. This is crucial for the robustness of the election.

There is an abundant literature regarding dlog-based threshold cryptosystems (see e.g. [19, 36, 38, 11, 35]) but
most of it assumes a trusted dealer, which amounts, in the case of voting protocols, to place the privacy of the
election in the hands of a single authority. Propositions of distributed key generation (DKG) protocols with no
dealer exist, such as [24, 40, 3, 26]. They focus on ensuring that the public key as output by the protocol is uniformly
distributed as long as at least t + 1 honest parties cooperate. Compared to the classical DKG scheme of Pedersen
[37], which was shown in [24] to output biased public keys in the presence of active adversaries, those stronger
DKG protocols are more involved and expensive. In order to build Helios upon the lightest and simplest fully
distributed semantically secure threshold cryptosystem, we are able to show in Section 4 that Pedersen’s DKG
applied to ElGamal can be proven semantically secure under the Decision Diffie-Hellman assumption. In [25, 3,
26] a related result was shown for Schnorr signatures in the Random Oracle Model. It turns out that the same
techniques can be safely used in more demanding scenarios, where the adversary solves a decisional problem (in
contrast to a search problem, as in the case of digital signatures) and in the standard model (in contrast to the
random oracle model).

Going back to Helios, we note that the currently implemented version of Helios is subject to an attack against
privacy [14]: an attacker may (re)submit the ballot of an honest voter on his behalf without knowing the actual vote.
The result of the election then counts the honest vote twice, which provides a bias to the attacker. In particular, in
the case of three voters, the attacker knows the vote of the voter under attack. A provably secure fix [7] consists in
invalidating ballots that contain ciphertexts already present in the bulletin board, this is called ciphertext weeding.
This fix is conceptually simple but very heavy in practice. Indeed, upon receiving a ballot, the election server would
need to access to the bulletin board and test whether any of the atomic ciphertexts that compose the ballot already
appears in the bulletin board. The complexity of the verification test would therefore be a function of the number
of voters times the number of candidates. The situation is worse in scenarios where the authorities aim at reusing
the election public key for further elections. Then, to ensure ballot privacy, [10] shows that ciphertext weeding
must also be done with respect to bulletin boards produced in older elections! Moreover, election servers are
typically replicated to handle more requests and to ensure better availability. Two replicated servers may therefore
independently accept two ballots that contain duplicated encryption, allowing to mount the previously mentioned
attack.

Interestingly, our variant of Helios avoids ciphertext weeding. Due to the existence of credentials, we can
provably avoid the submission of duplicated ballots by simply adding the credential as an additional input to the
random oracle in the non-interactive zero-knowledge (NIZK) proofs for ciphertext well-formedness used in Helios
(wich in turn are obtained via the Fiat-Shamir transformation [18]). Checking for duplicates is therefore alleviated
to checking that the same credential does not appear twice in the board. Thus the complexity of the test depends
only on the size of the number of voters, and it had to be implemented in previous versions of Helios anyway.
This solution allows Helios-C to scale for larger elections while attaining correctness. Our detailed description of
Helios (with credentials) uses a fully-distributed threshold cryptosystem with arbitrary threshold parameters. For
privacy, we built upon the privacy proof of [9, 10]. In fact we show that that the generic constructions for NM-CPA
public key encryption in [9, 10] from IND-CPA encryption and Fiat-Shamir non-interactive proofs easily extend to
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fully-distributed threshold cryptosystems. Additionally we need to prove that adding the credential as an additional
input to the random oracle in the Fiat-Shamir transformation maintains its security properties.

We have implemented our variant Helios-C. Our implementation includes the suppression of ciphertext weeding
and the fully distributed threshold cryptosystem. It demonstrates that the overhead of our additional signature is
very limited on the client side (from 5 to 20% depending on the number of candidates and the overhead decreases
with the number of candidates). The implementation is openly accessible [2]. To our knowledge this is the first
public implementation of a variant of Helios using a fully distributed threshold cryptosystem.

Related work. Helios [4] is in fact an implementation and simplification of a seminal work on multi-authority vot-
ing systems by Cramer, Gennaro and Schoenmakers [16]. The fully-distributed IND-CPA scheme that we propose
and analyze in Section 4 was already proposed in [23, 16], but no formal proof of semantic security was given.
Our fully-distributed version of Helios resembles almost exactly the voting scheme given in [16]. Thus our work
can in particular be seen as a thorough examination of the scheme by Cramer et al. that validates all the security
statements claimed by the authors back in 1997. We stress that in the original publication no security definitions
nor formal proofs were given. [16] avoids ballots duplication by adding the voter’s identity id to the hash function
in the NIZK proofs. This technique is sound, as proven in [22, 28] and indirectly here, but as we discussed earlier,
it is not an option when the voters’ identities can not be published together with their ballots.

In addition to Helios, several private and verifiable voting schemes have been proposed, including e.g. Civ-
itas [13] and FOO [20]. Helios is currently the most usable (and used) remote voting scheme in practice. The
notion of privacy has been extensively studied. Several privacy definitions for voting schemes have been proposed,
from ballot privacy [28, 33, 7–9] to coercion-resistance [29, 21, 32] and applied to voting schemes: Civitas has been
shown to be coercion-resistant [13], while Helios has been shown to ensure ballot and vote privacy [14, 7, 9, 8].
While many academic voting schemes aim at being private, correctness and verifiability have deserved less atten-
tion. Küsters et al. have put forward general definitions of verifiability and accountability in [31, 33, 34] that we
believe capture correctness as a particular case. In particular, the standard version of Helios is proved to be verifi-
able for honest bulletin boards [34]. A definition of vote correctness can be found in [30]. Regarding voting systems
with arbitrary threshold parameters, [17] describes an implementation of Civitas with a fully-distributed threshold
cryptosystem using the distributed key generation protocol by Gennaro et al. [24]. Compared to ours, the latter key
generation protocol is twice as complex.

2 Syntax, correctness, verifiability and ballot privacy for a voting system

Election systems typically involve several entities:

1. Registrars: Denoted byR = {R1, . . . , RnR}, is a set of entities responsible for registering voters.
2. Trustees: Denoted by (T1, . . . , T`), these authorities are in charge of producing the public and secret parameters

of the election. They are responsible for tallying and publishing a final result.
3. Voters: The eligible voters (V1, . . . , Vτ ) are the entities participating in a given election administered byR. We

let idj be the public identifier of Vj .
4. Bulletin board manager3: It is responsible for processing ballots and storing valid ballots in the bulletin

board BB.

In an election system with interactive setup and tallying, the ` trustees can communicate via pairwise private
authenticated channels. They have access to a commonly accessible append-only memory where every trustee can
post messages, and these posts can be traced back to its sender. A setup interaction is then run between the ` trustees
to build an election public key pk and corresponding private key sk. Later, a tally interaction computes the final
outcome result and a proof of valid tabulation Π .

We continue by describing the syntax for an electronic voting protocol that we will be using thorough the
paper. A voting protocol V = (Setup,Register,Vote,VerifyVote,Validate,BallotBox,Tally,Verify) consists of
eight algorithms whose syntax is as follows:

3 This entity was not consider in [29, 30], as the bulletin board was honest by default.
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Setup(1λ, `) is a possibly interactive algorithm run by ` trustees. It takes as inputs the security parameter 1λ and
the total number ` of trustees. It outputs an election public key pk, which includes the description of the set of
admissible votes V; a list of secret keys sk. We assume pk to be an implicit input of the remaining algorithms.

Register(1λ, id) captures the registration phase that is intuitively inherent to any voting system. On inputs the
security parameter 1λ and a unique identifier id for the user, it outputs the secret part of the credential uskid
and the public part of the credential upkid. We assume the list L = {upkid} of legitimate public credentials to
be included in the public key pk. Hence every algorithm in the voting protocol has access to L. Of course, if
no credentials are needed, L is empty and Register(1λ, id) is void.

Vote(id, upk, usk, v) is used by voter id to cast his choice v ∈ V for the election. It outputs a ballot b, which
may/may not include the identifier id. The identifier id can be seen as an optional input.

VerifyVote(BB, id, upk, usk, b) is a typically light verification algorithm intended to the voters, for checking that
their ballots will be included in the tally. It takes as input the bulletin board BB, a ballot b, and the voter’s
credentials usk, upk and performs some validity checks, returning accept or reject.

Validate(b) takes as input a ballot b and returns accept or reject for well/ill-formed ballots.
BallotBox(BB, b) takes as inputs the bulletin board BB and a ballot b. If Validate(b) accepts it adds b to BB;

otherwise, it lets BB unchanged.
Tally(BB, sk) takes as input the bulletin board BB = {b1, . . . , bτ} and the secret key sk, where τ is the number of

ballots cast. It outputs the tally result, together with a proof of correct tabulationΠ . Possibly, result = invalid,
meaning the election has been declared invalid.

Verify(BB, result, Π) takes as input the bulletin board BB, and a result/proof pair (result, Π) and checks whether
Π is a valid proof of correct tallying for result. It returns accept if so; otherwise it returns reject.

We focus on voting protocols that admit partial tallying. This is not a limitation of our results but we need it to be
able to define a security property called correctness (as discussed in the Introduction). The partial tallying property
is specified by two natural requirements usually satisfied in practice. Firstly, the result function ρ : Vτ → R for V
must admit partial counting, namely ρ(S1∪S2) = ρ(S1)?R ρ(S2) for any two lists S1, S2 containing sequences of
elements v ∈ V and where ?R : R×R→ R is a commutative operation. For example, the standard result function
that counts the number of votes per candidate admits partial counting.

Secondly, the algorithm Tally must admit partial tallying. That is, let (result1, Π1) ← Tally(BB1, sk) and
(result2, Π2)← Tally(BB2, sk). Then, (result, Π)← Tally(BB1∪BB2, sk) is such that result = result1?Rresult2,
whenever both result1 and result2 are different from invalid.

Next we define the minimal procedural requirement, called consistency, that every such electronic voting pro-
tocol must satisfy. It simply requires that honestly cast ballots are accepted to the BB (and pass the verification
checks) and that, in an honest setting, the tally procedure always yields the expected outcome (that is, the result
function). A voting scheme is consistent if for i ∈ {1, . . . , τ} it holds:
(1) BallotBox(BB, bi) = BB∪{bi} if idi did not previously cast any ballot, where we let bi ← Vote(idi, uski, upki, vi)
for some vi ∈ V; (2) Validate(bi) = accept and VerifyVote(BallotBox(BB, bi), uski, upki, bi) = accept;
(3) Tally({b1, . . . , bτ}, sk) outputs (ρ(v1, . . . , vτ ), Π); (4) Verify({b1, . . . , bτ}, ρ(v1, . . . , vτ ), Π) = accept. The
above properties can be relaxed to hold only with overwhelming probability. Possibly, one might need to include
additional trust assumptions in the consistency definition. For instance, if the voting scheme has threshold param-
eters (t, `), then it is likely that consistency can only be guaranteed if at least t + 1 > d`/2e trustees cooperate to
compute Tally.

2.1 Correctness against a malicious board

Next we give a definition for a security property for voting schemes called correctness. This security property has
already been addressed, for instance in in [29, 30]. Our novelty is that, in contrast to previous work, we assume the
bulletin board to be possibly dishonest. Note that in this case, as shown in the introduction, and as we will recall
later, the bulletin board may try to add ballots to the bulletin board in the name of voters who did never cast a vote.
Of course, a correct protocol should forbid or at least detect such a malicious behavior.
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Experiment Expcorr−malicious
A (λ)

(1) Init(λ)→ (pk, sk)

(2) AOcorruptU(),Ovote() → (BB,HVote,Event)

(3) (result, Π)← Tally(BB, sk)

(4) if result = invalid return 0

let {(idE1 , vE1 ), . . . , (idEnE
, vEnE

)} = Event

if

(5) Verify(BB,pk, result, Π) = accept and

(6) ∃ (idA1 , vA1 ), . . . , (idAnA
, vAnA

) ∈ HVote \ Event and

(7) ∃ vB1 , . . . , vBnB
∈ V s.t. 0 ≤ nB ≤ |CU| and

(8) result = ρ
(
{vEi }nE

i=1

)
?R ρ

(
{vAi }nA

i=1

)
?R ρ

(
{vBi }nB

i=1

)
return 0

else return 1

Fig. 1. Correctness against malicious bulletin board

Attacker model. The adversary against correctness is allowed to corrupt trustees, users and bulletin board. More
precisely, for the bulletin board, we let the adversary replace or delete any ballot. The adversary only looses control
on the bulletin board once the voting phase ends and before the tallying starts. Indeed, at this point it is assumed
that everyone has the same view of the public BB.

Let L be the set of all public credentials and U the set of all pairs of public and secret credentials. CT
and CU denote the set of corrupted trustees and corrupted users respectively. The adversary can query oracles
Oregister,Ovote and OcorruptU as follows:
Oregister(id): invokes algorithm Register(λ, id), it returns upkid and keeps uskid secret. It also updates the lists
L = L ∪ {upkid} and U = U ∪ {(id, upkid, uskid)}.
OcorruptU(id): firstly, it checks if an entry (id, ∗, ∗) appears in U ; if not, it halts. Else, it outputs the credential’s
secret key uskid associated to upkid and updates CU = CU ∪ {(id, upkid)}.
Ovote(id, v): if (id, ∗, ∗) /∈ U or (id, ∗) ∈ CU or v /∈ V, it aborts; else it returns b = Vote(pk, upkid, uskid, v) and
updates HVote = HVote ∪ {(id, v)};

In the correctness game we maintain two lists HVote and Event. The first one contains all pairs (id, v) which
have been queried to Ovote; the second one consists of all pairs (id, v) such that (1) (id, v) ∈ HVote; and (2) the
voter’s verification algorithm was successfully run, i.e. VerifyVote(BB, upkid, uskid, b) = accept.

We define next a procedure Init which helps us describing the view of the correctness adversary:

– Init(λ, `): The objects L,HVote,Event,BB are initialized at empty. In a first phase, the adversary is given
access toOregister(). At the end of this phase, the lists L,U are defined. In a second phase, the setup algorithm
is run and (pk, sk) ← Setup(1λ, t, `). We might allow the adversary to corrupt a subset of trustees. In that
case, when running Setup(), the adversary will control the corrupted trustees (in particular the adversary might
deviate from the algorithm specification). At the end of this second phase, the public key pk is published, and it
includes the set of admissible choices V and the list of public credentials L. The adversary ends with knowledge
of the secret keys belonging to the corrupted trustees, whenever they are defined.

Correctness Any voting scheme should guarantee that the result output by Tally() counts the actual votes cast by
honest voters. In particular an adversary controlling a subset of eligible voters and a subset of trustees, should not
be able to alter the output of the tally so that honest votes are not counted in result. In our case, this shall hold even
if the bulletin board is malicious. More precisely, correctness shall guarantee that result as output by the algorithm
Tally actually counts 1) votes cast by honest voters who checked that their ballot appeared in the bulletin board
once the voting phase is over; 2) a subset of the votes cast by honest voters who did not check this. Indeed it can not
be ensured that result counted their votes but it might still be the case that some of their ballots were not deleted
by the adversary. 3) For voters controlled by the adversary, correctness only guarantees that the adversary cannot
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cast more ballots than users were corrupted, and that ballots produced by corrupted voters contribute to result only
with admissible votes v ∈ V. The correctness security game is formally given by experiment Expcorr−malicious

A in
Figure 1. We say that a voting protocol V is correct against a malicious board or fully correct if there exists a
negligible function ν(λ) such that, for any PPT adversary A,

Succcorr−malicious(A) = Pr
[
Expcorr−malicious

A (λ) = 1
]
< ν(λ)

The adversary modelling a honest bulletin board is obtained from the previous adversary by: 1) not allowing
it to delete ballots from BB; 2) letting it cast only ballots b that pass Validate(). The experiment Expcorr−honestA
defining correctness against a honest bulletin board is obtained from Expcorr−malicious

A by: letting Event := HVote,
since ballots output by Ovote() can not be erased from BB; asking that every ballot b in BB passes the validity
test. We say that a voting protocol V is correct against a honest board or, simply, correct if there exists a negligible
function ν(λ) such that, for any PPT adversary A,

Succcorr−honest(A) = Pr
[
Expcorr−honestA (λ) = 1

]
< ν(λ)

2.2 Verifiability

Verifiability of a voting protocol ensures that the tally of an election is unique. In other words, two different tallies
result 6= result′ can not be accepted by the verification algorithm, even if all the players in the system, except for
the registration authority, are malicious. The goal of the adversary against verifiability is to output a public key
pk, a list of legitimate public credentials, a bulletin board BB, and two tallies result 6= result′, and corresponding
proofs of valid tabulation Π and Π ′, such that both pass verification.

Experiment ExpverA (λ)

(1) (pk,BB, result, Π, result′, Π ′)← AOregister(),OcorruptU()

(2) if result′ 6= result and

(3) Verify(BB, result, Π) = Verify(BB, result′, Π ′) = accept

return 1 else return 0

Fig. 2. Verifiability

We define verifiability by the experiment ExpverA in Figure 2, where oraclesOregister(),OcorruptU() are defined as
in Section 2.1. A voting protocol V is verifiable if there is a negligible function ν(λ) s.t. for any PPT adversary A,

Succver(A) = Pr [ExpverA (λ) = 1] < ν(λ)

This definition is an adaptation of the definition of [30] to better cope with the cases where Tally() might be
ill-defined.

2.3 Ballot privacy

Ballot privacy requires that any coalition of at most t trustees cannot infer information from ballots cast by honest
voters to the bulletin board. We extend the simulation-based game definition from [9] to voting protocols with
credentials and corrupted bulletin board. Formally, we consider two experiments: one in which tally is left to the
simulator and another one in which tally is done as normal. In both of them, the adversary acts on behalf of
corrupted trustees and users. As usual in the electronic voting protocol literature, we assume static corruption of
the trustees; however users can be adaptively corrupted.

The challenger maintains two bulletin boards BB0 and BB1. It randomly chooses β R← {0, 1}, and the adversary
will be given access to the left board if β = 0, or the right board if β = 1. The board BB1−β is invisible to the

7



adversary. The latter is given access to oracles Oregister,OcorruptU as defined in Section 2.1. We define two
procedures Init and Main that help defining the view of the adversary in the ballot privacy game. Additionally the
privacy adversary has access to a left-or-right oracle OvoteLR(id, v0, v1) defined as follows:

– OvoteLR(id, v0, v1) : if id was previously queried, or upkid does not appear in U , or v0 /∈ V, or v1 /∈ V, it
halts. Else, it updates BB0 ← BB0 ∪ {Vote(id, v0)} and BB1 ← BB1 ∪ {Vote(id, v1)}.

– Init(λ, `): it is run interactively by a challenger and the adversary. The challenger starts by picking a random
bit β, and it sets up two bulletin boards BB0 and BB1, initialized at empty. The adversary is given access
to BBβ . The lists L,HVote,Event are initialized at empty. In a first phase, the adversary is given access to
Oregister(). At the end of this phase, the lists L,U are defined. In a second phase, the setup algorithm is run
and (pk, sk) ← Setup(1λ, t, `). Eventually we might allow the adversary to corrupt a subset of trustees. In
that case, when running Setup(), the adversary will control the corrupted trustees (in particular the adversary
might deviate from the algorithm specification). At the end of this second phase, the public key pk is published,
and it includes the set of admissible choices V and the list of public credentials L. The adversary ends with
knowledge of the secret keys belonging to the corrupted trustees, whenever they are defined.

– Main(BB0,BB1,pk, sk): If β = 0, the challenger sets (result, Π)← Tally(BB0, sk). If β = 1, the challenger
sets (result, Π ′)← Tally(BB0, sk) and Π ← SimTally(BB0,BB1,pk, info), where info contains any infor-
mation known to the challenger. The output is (result, Π, β′), where β′ is the guess for β made by the adversary
A. If the adversary is allowed to corrupt a subset of trustees, then Tally and SimTally are jointly run between
the challenger and the adversary, the challenger playing the role of the honest trustees and the adversary playing
the role of the corrupted trustees.

Experiment ExpprivA (λ)

(1) Init(λ)→ (pk, sk, β)

(2) AOcorruptU(),OvoteLR()(BBβ)→ (BBβ ,BB1−β)

(3) Main(BB0,BB1,pk, sk)→ (result, Π, β′)

return β = β′

Fig. 3. Ballot privacy

As discussed in [8], if β = 1 then the announced result will not match the ballots on the board. Ballot privacy
asks that an adversary cannot distinguish ballots containing the true votes of the honest users from ballots containing
a fixed, constant vote.

s The main difference between our privacy definition and previous ones [5, 14, 9] is that in our case the adversary
has full control on the bulletin board. In particular, it can delete any votes added by the challenger via the left-right
voting oracle. Formally, we say that a voting protocol V has ballot privacy against a malicious board if there
exists an efficient simulator SimTally such that any PPT algorithm cannot tell whether it interacts with the real tally
algorithm or a simulator, i.e. there is a negligible function ν(λ) such that, for any PPT adversary A, it holds that
Succpriv(A) =

∣∣∣ Pr [ExpprivA (λ) = 1
]
− 1/2

∣∣∣ < ν(λ), where ExpprivA is defined in Figure 3.
Ballot privacy against an honest board is defined similarly, except that the adversary is asked to produce a

ballot box BB such that Validate(b) = 1 for every b ∈ BB, and it can not delete ballots output by the left-right
voting oracle.

2.4 Accuracy

We introduce a new property for voting protocols that we call accuracy. We say that a voting protocol V has
accuracy (equivalently it is accurate) if the following two properties hold with overwhelming probability:

1. for any ballot b it holds that [Validate(b) = accept⇔ Tally({b}, sk) = ρ(v) for some v ∈ V];
2. for any bulletin board BB it holds Verify(BB,Tally(BB, sk)) = accept.
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Condition 1 reflects the natural requirement that even a dishonest ballot should correspond to an admissible
vote. In Helios-like protocols, this is typically ensured by requiring the voter to produce a proof that the encrypted
vote belongs to V. Condition 2 guarantees that the proof produced by the tally procedure passes the verification
test. In practice, this property is usually held.

3 Sufficient conditions for voting correctness

In this section we identify sufficient conditions for electronic voting correctness, both for honest and corrupted
bulletin boards.

3.1 A sufficient condition for voting correctness. Case I: honest bulletin board

Consistency and accuracy suffice to ensure correctness. Since the two properties of consistency and accuracy are
simple and easy to check, we believe that this result may often ease the proof of correctness.

Theorem 1. Let V be a consistent and accurate voting protocol that admits partial tallying. Then V satisfies
correctness.

The proof is given in Appendix A.

3.2 A sufficient condition for voting correctness. Case II: corrupted bulletin board

As discussed in the introduction, a correct protocol like Helios may still admit ballot stuffing, e.g. from the bulletin
board itself. We provide a generic construction that protects any correct voting scheme against a malicious board.
Let V = (Register′, Setup′,Vote′,VerifyVote′,Validate′,BallotBox′,Tally′,Verify′) be a voting protocol (possibly
without credentials). Let S = (SKey,Sign,SVerify) be a signature scheme (for the syntax and security properties
of a digital signature scheme we refer to [27]). Let us consider the following voting protocol with credentials
Vcred = (Register,Setup,Vote,VerifyVote,Validate,BallotBox,Tally,Verify) obtained from V and S:

Register(1λ, id) first runs (upk′, usk′) ← Register′(1λ, id). It then runs (upk, usk) ← SKey(1λ), and adds
((upk′, upk), (usk′, usk)) to the credential key pair for id. It updates the list of credentials’ public keys as
L← L ∪ {(upk′, upk)}. Let us denote upk← (upk′, upk) and usk← (usk′, usk).

Setup(1λ, t, `) runs (pk′, sk′)← Setup′(1λ, t, `) and sets pk← (pk′, L). It outputs (pk, sk′). Recall that pk is
an implicit input to the remaining algorithms.

Vote(id,upk,usk, v) starts by running α ← Vote′(id, upk′, usk′, v). It computes σ ← Sign(usk, α) and returns
a ballot b← (upk, α, σ).

VerifyVote(BB, id,upk,usk, b) verifies that the ballot b appears in BB once the bulletin board is closed. Let
BB = {(upk1, α1, σ1), . . . , (upkτ , ατ , στ )},BB′ = {α1, . . . , ατ}. If there is an entry of the form (upk, α, σ)
in BB, then it runs VerifyVote(BB, id, upk′, usk′, α). Otherwise, it outputs reject.

Validate(b) it parses b = (upk, α, σ). If SVerify(upk, α, σ) = reject it outputs reject. Else, it outputs
Validate′(α).

BallotBox(BB, b) it runs Validate(b) and lets BB unchanged if b was rejected. Else, it parses b = (upk, α, σ), and
lets BB unchanged if there is no entry of the form (∗, upk) in L. Else, it removes any previous entry in BB
containing (∗, upk), and updates BB← BB ∪ {b}.

Tally(BB, sk) starts by every trustee checking whether BB is well-formed. We say BB is well-formed if: every
upk appearing in BB appears only once; every upk showing up in BB belongs to L; Validate(b) = accept for
every b ∈ BB. If any of these checks fails, trustees halt and output invalid. Else trustees run Tally′(BB′, sk),
where BB′ = {α1, . . . , ατ} if BB = {(upk1, α1, σ1), . . . , (upkτ , ατ , στ )}.

Verify(BB, result, Π) starts by checking whether BB is well-formed. If not, it outputs accept if result = invalid;
else it outputs reject. Else, it runs Verify′(BB′, result, Π), where BB = {(upk1, α1, σ1), . . . , (upkτ , ατ , στ )}
and BB′ = {α1, . . . , ατ}.
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Our construction protects against a malicious bulletin board, in the sense that it updates correctness (against a
honest board to correctness) to full correctness (against a malicious board).

Theorem 2. Let V be a voting protocol that satisfies correctness and admits partial tallying. Let S be an existen-
tially unforgeable signature scheme. Then Vcred satisfies full correctness.

Additionally our transformation preserves verifiability and ballot privacy. It shall be noted that any voting
scheme inside our framework is verifiable, alternatively ballot private, for a malicious bulletin board iff it satisfies
the corresponding property against a honest board.

Theorem 3. If V satisfies verifiability, then Vcred preserves verifiability.

Theorem 4. If V satisfies privacy then Vcred satisfies privacy.

Using the fact that V is consistent, it is easy to see that Vcred is consistent. The proofs of this fact and of the
above theorems are to be found in Appendix A.

4 A Fully Distributed NM-CPA Threshold Cryptosystem from Decision Diffie-Hellman

Our aim is to build voting systems where to compute Tally() we shall require that at least t+ 1 trustees cooperate
and follow the protocol specification, without assuming the existence of a trusted dealer. We need what is called a
fully distributed (t, `)-threshold cryptosystem. In such a cryptosystem, there exist ` servers which can communicate
via pairwise private authenticated channels. They have access to an append-only public board where every server
can post messages, and these posts can be traced back to its sender. A setup interaction is then run between the `
servers to build a public key pk, servers’ private keys sk1, . . . , sk`, and eventually verification keys vk1, . . . , vk`.
The secret and verification keys will later enable any set of (t+ 1) servers to non-interactively decrypt ciphertexts
computed under the public key pk. On the contrary, any set of at most t servers can not learn any information on
the plaintext embedded on any given ciphertext C. Rigorously, a fully distributed t-out-of-` threshold cryptosystem
with non-interactive threshold decryption consists of the following algorithms:

DistKG(1λ, t, `) is a fully distributed key generation algorithm that takes as input a security parameter 1λ, the num-
ber of decryption servers `, and the threshold parameter t; it outputs a public key pk, a list sk = {sk1, . . . , sk`}
of servers’ private keys, a list vk = {vk1, . . . , vk`} of verification keys.

Enc(pk,m) is an encryption algorithm that takes as input the public key pk and a plaintext m, and outputs a
ciphertext C. Eventually we write Enc(pk,m; r) when we want to make explicit the random coins used for
encrypting.

ShareDec(ski, vki, C) is a share decryption algorithm that takes as input the public key pk, the private key ski, the
verification key vki, a ciphertext C, and outputs a decryption share (i, ci).

Rec(pk,vk, C, C) is a recovery algorithm that takes as input the public key pk, a ciphertext C, and a list C of t+1
decryption shares, together with the verification keys vk1, . . . , vk`, and outputs a message m or reject.

We recall the definition of completeness and robustness and IND-CPA security for a threshold cryptosystem:

Completeness: for any integers 1 ≤ t ≤ `, for every admissible plaintext m, we require Rec(pk,vk, C, C) = m,
where (1) (pk, sk,vk) ← DistKG(1λ, t, `); (2) C = Enc(pk,m); (3) (i, ci) ← ShareDec(ski, vki, C); and (4)
C ⊆ {c1, . . . , c`} is any subset of t+ 1 elements.

Robustness: against active cheating adversaries means that for any ciphertext C and any two (t + 1)-subsets of
decryption shares C 6= C′ such that Rec(pk, C, C) 6= reject 6= Rec(pk, C, C′) it holds that Rec(pk, C, C) =
Rec(pk, C, C′).

IND-CPA security: (informal) Any adversary with knowledge of at most t private keys amongst the set sk =
{sk1, . . . , sk`} can not distinguish between encryptions Enc(pk,m0) and Enc(pk,m1) for any two admissible
messages m0 6= m1 such that |m0| = |m1|.
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IND-CPA Fully Distributed (t, n)-Threshold Cryptosystem from DDH in the Standard Model There are few
electronic voting proposals based on threshold cryptosystems that make explicit how to generate the election public
and secret keys in a fully distributed manner with arbitrary threshold parameters (t, `) such that 0 ≤ t ≤ ` − 1.
One exception is the work by Juels, Catalano and Jakobsson [30], whose idea has been detailed and implemented
by Davis, Chmelev and Clarkson [17]. They propose to use a computationally secure distributed simulation of the
process of generating a public key Y = gx, x

R← Zq. In particular, they propose the distributed key generation
scheme by Gennaro, Jarecki, Krawczyk and Rabin in [26].

Here we give a full description and proof of a fully distributed cryptosystem compatible with Helios, which
is in fact obtained by coupling Pedersen’s distributed key generation protocol (DKG) [37] with ElGamal. This
cryptosystem has been previously described in [23, 16]. However we shall notice that still a full proof of semantic
security is needed and is lacking. The latter is somehow unsatisfactory, since as it is common wisdom in cryp-
tographic protocols, the devil is in the details. In fact Pedersen’s protocol is shown in [26] to not always output
uniformly random public keys, so in principle it does not seem to be a good choice to distribute ElGamal while
retaing the Decision Diffie-Hellman (DDH) assumption (we refer to [39] for a definition of DDH) for semantic se-
curity. Pedersen’s DKG is known to be sound in conjunction with Schnorr signatures in the Random Oracle Model,
as shown in [25, 26]. Here we apply the same techniques to prove that Perdersen’s DKG + ElGamal gives fully
distributed semantically secure encryption under DDH. In this case the result is in principle more challenging, as
[26] seems to indicate, since the adversary solves a decisional problem (in contrast to a search problem, as in the
case of digital signatures) in the standard model (in contrast to the random oracle model). Still the same techniques
used in the Schnorr case can be applied to the ElGamal case. Let D = (DistKG,Enc, ShareDec,Rec) be then the
threshold cryptosystem [23, 16, 17]:

DistKG(1λ, t, `) proceeds as follows:
1. Each party Pi chooses a random t-degree polynomial fi(x) = ai0+ai1x+. . .+aitx

t ∈ Z[x] and broadcasts
Aik = gaik for k = 0, . . . , t. Denote the secret held by Pi as si = fi(0) and let Yi = gfi(0). Each party Pi
computes shares sij = fi(j) mod q of its own secret si for j = 1, . . . , ` and sends sij ∈ Zq secretly to
party Pj .

2. Each party Pj verifies the shares he received by checking for i = 1, . . . , `:

gsij =
t∏

k=0

(Aik)
jk (1)

If a check fails for an index i then Pj broadcasts a complaint against Pi.
3. Party Pi reveals share sij ∈ Zq if it receives a complaint against him by party Pj . If any of the revealed

shares sij fails to satisfy Equation 1, then Pi is disqualified. Let us define the set QUAL 6= ∅ as the set of
qualified players.

4. The public key is computed as pk =
∏
i∈QUAL Yi. Each Pj sets his share of the secret key as xj =∑

i∈QUAL sij mod q. The virtual decryption key x =
∑

i∈QUAL si mod q is not needed to be known to
be able to decrypt. The public verification keys are computed as vkj =

∏
i∈QUAL g

sij for j = 1, . . . , `.

Enc(pk,m) outputs C = (R,S) = (gr, Y r ·m) for a plaintext m ∈ G and randomness r R← Zq.
ShareDec(ski, vki, C) outputs (i, ci = Rxi).

Rec(pk,vk, C, C) parses C = (R,S), C = {ci1 , . . . , cit+1} and outputs m = S ·

∏
j∈I

c
λIj
j

−1 with I =

{i1, . . . , it+1}, where the λIj ’s are the Lagrange coefficients, λIj =
∏
k∈I\{j}

k
k−j ∈ Z∗q . We thus have that∑

j∈I f(j)λ
I
j = f(0) for any polynomial f of degree at most t.

Let us see that the above cryptosystem is complete. Indeed, let C = (R,S) = (gr, Y r · m). Consider the

equation
∑
j∈I

λIj xj =
∑
j∈I

λIj

 ∑
i∈QUAL

sij

 =
∑

i∈QUAL

∑
j∈I

λIj sij

 =
∑

i∈QUAL

∑
j∈I

λIj fi(j)

 =
∑

i∈QUAL

si.
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Then ∏
j∈I

c
λIj
j =

∏
j∈I

(Rxj )λ
I
j = R(

∑
j∈I λ

I
j xj) = Rx

and completeness follows.

Theorem 5. The above scheme is IND-CPA secure under the DDH assumption.

The proof is given in Appendix B. We know from previous work that ballot private Helios-like voting protocols
are tightly related to NM-CPA cryptosystems [9, 10]. In Appendix G we show how to improve the previous IND-
CPA ElGamal-based threshold cryptosystem into a robust and NM-CPA threshold cryptosystem that encrypts bit-
by-bit. To do this, we use the NIZK proof system à la Fiat-Shamir DisjProofupk(g, pk, R, S) = (DisjProveupk,
DisjVerifyupk) from Appendix E to prove in zero-knowledge that (R,S) encrypts g0 or g1.

5 Helios-C : Fully Distributed Helios with Credentials

In this section we propose a modification of Helios [4] which is fully distributed, allows to choose an arbitrary
threshold value and adds credentials to prevent ballot stuffing. We name it Helios-C, as a shortening for Helios
with Credentials. It takes into account the specification of Helios variants such as [14, 9]. We emphasize that we
present a completely detailed fully distributed version of Helios with arbitrary threshold parameters, for the first
time with formal proofs. We use the fully distributed IND-CPA cryptosystem D = (DistKG,Enc, ShareDec,Rec)
from Section 4; an existentially unforgeable signature scheme S = (SKeyGen,Sign,SVerify); the NIZK proof
system DisjProofupk(g, pk, R, S) from Appendix E to prove in zero-knowledge that (R,S) encrypts g0 or g1; and
the NIZK proof system EqDl(g,R, vk, c) to prove in zero-knowledge that logg vk = logR c for g,R, vk, c ∈ G. For
readability, we describe Helios for a single choice election (voters may simply vote 0 or 1). It can be easily general-
ized to elections with several candidates. We assume an authenticated channel between each voter and the bulletin
board manager. In Helios, this is typically realized through password-based authentication. Formally, Helios-C con-
sists of eight algorithms Vheliosc = (Register,Setup,Vote,Validate,VerifyVote,BallotBox,Tally,Verify) defined
below:

Register(1λ, id, L) runs (upkid, uskid)← SKeyGen(1λ). It adds upkid to L and outputs (upkid, uskid).

Setup(1λ, t, `) runs DistKG(1λ, t, `) from Section 4, such that at the end, each trustee Tj knows a secret key
xj ∈ Zq. A public key for encrypting votes pk ∈ G is created. A hash function H : {0, 1}? → Zq is chosen. It
outputs pk← (G, q, pk, vk1 ← gx1 , . . . , vk` ← gx` , L,H,V = {0, 1}), the public key of the election.

Vote (id, upk, usk, v) it is used by a voter with credentials (upk, usk) to create a ballot b as follows:
(1) It encrypts its choice v ∈ {0, 1} asC ← Enc(pk, gv) = (R,S). It computes a proof π = DisjProveupk(g, pk,
R, S) guaranteeing that the encrypted vote is 0 or 1.

(2) It computes a signature on the ciphertext and proof as σ ← Sign(usk, (C, π)).
The ballot is defined as b = (upk, (C, π), σ).

Validate(b) parses the ballot b as a tuple (upk, (C, π), σ). It then checks whether: (1) upk ∈ L; (2) DisjVerifyupk(g,
pk, C, π) = 1; (4) SVerify(upk, σ, (C, π)) accepts. If any step fails, it returns reject; else it returns accept.

VerifyVote(id, upk, usk, b) returns the value of the test b ∈ BB.

BallotBox(BB, b) if Validate(b) = reject, it halts. Else, (2) it parses b = (upk, (C, π), σ) and checks whether
the credential upk appears in a previous entry in BB. If so, it erases that entry. (3) It adds b to BB.

Tally(BB, sk) consists of two phases, a first one performed by each trustee in isolation and a second one performed
interactively by a subset of trustees which outputs the outcome of the election. In the first phase, every trustee
Tj , 1 ≤ j ≤ `:

(1) Runs Validate(b) for every b ∈ BB. It outputs invalid, meaning invalid election, if any b is rejected.
(2) Parses each ballot b ∈ BB as (upkb, (Cb, πb), σb).
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(3) Checks whether upkb appears in a previous entry in BB. If so, it outputs invalid; else,
(4) Computes the atomic result ciphertext CΣ = (RΣ , SΣ) = (

∏
b∈BBRb,

∏
b∈BB Sb ), where Cb = (Rb, Sb).

It outputs its decryption shares (j, cj , πj) on CΣ where cj ← ShareDec′(skj , vkj , (RΣ , SΣ)) and πj is a
proof of knowledge of xj s.t. cj = (RΣ)

xj and vkj = gxj obtained via ProveEq(g, vkj , RΣ , cj).
In the second phase, each trustee Tj :
(5) Checks whether VerifyEq(g, vkk, RΣ , ck, πk) = 1 for k = 1, . . . , `. If not, it outputs result← ∅. Else,
(6) Computes gresult ← Rec(pk, vk, (RΣ , SΣ), C). The tally result is obtained from gresult in time

√
τ for result

lying in the interval [0, τ ] and τ equals the number of legitimate voters. Finally Π = {(cj , πj)}j=1,...,`

Verify(BB, result, Π)
(1) Performs the checks (1-3) done in the algorithm Tally. If any of the checks fail, then it returns reject

unless the result is itself set to invalid. Else,
(2) Computes the result ciphertext

(RΣ , SΣ) =

( ∏
b∈BB

Rb,
∏
b∈BB

Sb

)

It verifies the decryption shares (j, cj , πj), for 1 ≤ j ≤ `. If any check fails, it returns reject unless the
result is itself set to invalid.

(3) Checks whether Rec(pk, vk, (RΣ , SΣ , C)) = gresult, where C ⊆ Π is any (t + 1)-subset. If all the checks
pass, the algorithm returns accept and it returns reject otherwise.

Theorem 6. Helios-C is correct, verifiable and ballot private against a malicious bulletin board.

The proofs are to be found in Appendices I, J and K.

6 Implementation of Helios-C

We have implemented a proof of concept of our variant of Helios, called Helios-C, openly accessible at [2].
In case credentials are generated by a third-party provider and sent to the voters by snail mail, it would be

cumbersome for voters to copy their signature key by typing it. We use a trick which consists in sending only the
random seed used for generating the key, which can be encoded in about 12-15 alphanumeric characters depending
on the desired entropy. It is expected that this seed is used by the provider to add the generated public key to L,
then sent (as a password) to its rightful recipient and immediately destroyed.

Our variant of Helios requires voters to additionally sign their ballots. Table 4 shows the overhead induced by
the signature, for various numbers of candidates (from 2 to 50). The two first lines are timings on the client side: the
first one indicates the time needed by the voter’s browser to form the ballot (without signature) while the second line
indicates the computation time for signing. The third and fourth lines indicate the computation time on the server
side for performing the verification tests (well-formedness of the ballot, validity of the proofs of knowledge and
validity of the signature). In practice, we use the Schnorr signature scheme, which is very similar to the proofs of
knowledge already in place for Helios, and a 256-bit multiplicative subgroup of a 2048-bit prime field for ElGamal
and Schnorr operations. The figures have been obtained on a computer with an Intel(R) Core(TM) i7-2600 CPU @
3.40GHz, running Firefox 18. Unsurprisingly, the overhead of the signature is small compared to the computation
time of the whole ballot.

For the fully distributed threshold cryptosystem to be more practical for the parties involved, we use a similar
trick: each trustee Pi derives from a random seed ri so-called “setup” keys along with the polynomial fi of the
DistKG algorithm. Setup keys consist of a signature keypair and an encryption keypair whose public parts are
published with the Aik at the beginning of the key distribution algorithm. Then, DistKG can be run as described
earlier, using setup keys to establish the needed secure communication channels through a single server. That
server can also be used to securely store all messages so that from the point of view of trustee Pi, only ri needs to
be remembered.
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number of candidates 2 5 10 20 30 40 50
encryption+proofs time (ms) 600 1197 2138 4059 6061 7789 9617
signature time (ms) 196 215 248 301 358 423 484
signature verification time < 10 ms < 10 ms < 10 ms < 10 ms < 10 ms < 10 ms < 10 ms
ballot verification time (ms) 110 210 390 720 1070 1380 1730

Fig. 4. Overhead induced by adding signatures
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A Proofs from Section 3

A.1 Generic construction satisfies consistency

(1) BallotBox(BB, bj) = BB ∪ {bj} if idj did not previously cast any ballot, where we let bj ← Vote(idj ,
Register(1λ, idj), vj), vj ∈ V. This is in fact the case, since Validate(bj) = accept due to the correctness of
S, the accuracy of V , and the fact that upkj does not previously appear in BB.

(2) Validate
(
Vote(idj ,Register(1

λ, id), vj)
)
= accept for i ∈ {1, . . . , τ}, vj ∈ V was argued in the previous

point.
(3) Tally({b1, . . . , bτ}, sk) outputs (ρ(v1, . . . , vτ ), Π); this holds due to the accuracy of V;
(4) Verify({b1, . . . , bτ}, ρ(v1, . . . , vτ ), Π) = accept, is implied the fact that BB is well-formed and by the equal-

ity Verify({α1, . . . , ατ}, ρ(v1, . . . , vτ ), Π) = accept.

A.2 Proof of Theorem 1

We start by noting that, since the bulletin board is honest, we know that Validate(b) = accept ∀b ∈ BB by
definition. The fact that V admits partial tallying and is accurate (Condition 1 in Definition 2.4), implies that
result 6= invalid. Additionally, Event := HVote, so it contains all the pairs (idEi , v

E
i ) that were queried to the

oracle Ovote().
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We proceed to show that each one of the conditions (5), (7-8) from Figure 1 is satisfied with overwhelming
probability (Condition (6) being void since Event := HVote). This would imply that V is correct for honest bulletin
boards.

We start by discarding Verify(BB,Tally(BB, sk)) 6= accept. This is indeed infeasible, V is accurate (Condition
2 in Definition 2.4). Thus Condition (5) is satisfied with overwhelming probability.

Now we show that the requirement result = ρ
(
{vEi }

nE
i=1

)
?R ρ

(
{vBi }

nB
i=1

)
where vB1 , . . . , v

B
nB
∈ V and

0 ≤ nB ≤ |CU|, must hold with overwhelming probability. Before proceeding, let us easily see that nB ≤ |CU|.
Indeed, if BB is honest, and given that each voter can cast only one ballot to BB, the adversary needs to corrupt an
extra voter for each extra ballot it wants to cast without calling Ovote().

(i) Let bB1 , . . . , b
B
nB

be the ballots appearing in BB which have been directly cast by the adversary. Since V admits
partial tallying, we have that Tally({bBi }

nB
i=1, sk) = resultB1 ?R . . . ?R resultBnB where (resultBi , Π

i
B) ←

Tally({bBi }, sk), whenever resultBi 6= invalid for i = 1, . . . , nB . But since V is accurate, Condition 2 in
Definition 2.4 establishes that resulti = ρ(vBi ) for a certain (maybe unknown) vBi ∈ V with overwhelming
probability.

(ii) Let us show that every vote in Event is numbered in result. Let us assume that, on the contrary, there exists
at least one vote vEj which does not contribute to result. Since BB is honest, we can write BB = {bEi }

nE
i=1 ∪

{bBi }
nB
i=1. Since V is consistent and admits partial tallying, we know that Tally(BB, sk) = resultE ?R resultB ,

where (resultE , ΠE) ← Tally({bEi }
nE
i=1, sk) and (resultB, ΠB) ← Tally({bBi }

nB
i=1, sk) (we know from (i)

that resultB 6= invalid). Furthermore, the partial tallying property and the consistency of V imply that
Tally({bEi }

nE
i=1, sk) = ρ(vE1 ) ?R . . . ρ(v

E
nE

). Thus, if there exists (idEj , v
E
j ) ∈ Event that does not contribute to

result, the adversary must have deleted the corresponding ballot from BB. But by definition the adversary can
not delete ballots from BB. We conclude then that every vote vEj belonging to Event is counted in the tally.

Putting together (i) and (ii) implies that Conditions (7-8) are satisfied. This ends the proof. ut

A.3 Proof of Theorem 2

We proceed to show that each one of the conditions (5-8) from Figure 1 is satisfied with overwhelming probability,
and thus Vc has correctness against a malicious bulletin board.

We start by discarding Verify(BB,Tally(BB, sk)) 6= accept. First, we notice that since result 6= invalid,
it follows that BB is well-formed (as defined in the transformation in Section 3). Therefore Verify(BB,Tally(BB,
sk)) := Verify(BB′,Tally(BB′, sk)), where BB′ is obtained from BB as specified in the transformation. In partic-
ular, since BB is well-formed, we have Validate(α) = accept for every α ∈ BB′. Finally, Verify(BB′,Tally(BB′,
sk)) = accept using that V is correct against an honest board. Thus Condition (5) is satisfied with overwhelming
probability.

Now we show that the requirements result = ρ
(
{vEi }

nE
i=1

)
?Rρ

(
{vAi }

nA
i=1

)
?Rρ

(
{vBi }

nB
i=1

)
, such that {(idE1 , vE1 ),

. . . , (idEnE , v
E
nE

)} = Event; (idA1 , v
A
1 ), . . . , (id

A
nA
, vAnA) ∈ HVote; vB1 , . . . , v

B
nB
∈ V and 0 ≤ nB ≤ |CU|, must

hold with overwhelming probability. Before proceeding, let us write BB = {bEi }
nE
i=1∪{bAi }

nA
i=1∪{bBi }

nB
i=1 and BB′ =

{αEi }
nE
i=1∪{αAi }

nA
i=1∪{αBi }

nB
i=1, where the α’s are obtained from the b’s as specified in the transformation in Section

3. Since BB is well-formed, we know that Tally(BB, sk) = Tally′(BB′, sk). Furthermore, since V admits partial
tallying, we have Tally′(BB′, sk) = resultE ?R resultA ?R resultB , where (resultX , ΠX) ← Tally′({αXi }

nX
i=1, sk)

as long as resultX 6= invalid forX = E,A,B, which is the case. Furthermore, Tally′({αXi }
nX
i=1, sk) = ρ(vX1 )?R

. . . ρ(vXnX ) for X = E,A,B.

(i) The fact that every vote in Event is numbered in result is guaranteed by the correctness against an honest board
of V .

(ii) Let us now assume that the adversary has added a ballot b = (upkid, α, σ) to BB, such that Validate(b) =
accept, but b was never submitted by an honest voter id with (id, ∗) ∈ HVote. This could be potentially
done by the adversary without being caught, since voters appearing in HVote do not check whether their ballot
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appears in BB after the voting phase is over. But, since b passes the validity test, the signature σ on α is valid,
while σ was never produced by the challenger. Thus, A would succeed in this case in forging a signature for
public signing key upkid, which is only possible with negligible probability since the signature scheme S is
existentially unforgeable.

(iii) let us assume this time that nB > |CU|, where nB is the number of ballots directly cast by the adversary. This
means that:
(iii-1) there is more than one ballot associated to a corrupted user which contributes to the election tally result.

In this case, the bulletin board contains two entries bi = (upkid, αi, σi) and bj = (upkid, αj , σj). But this
is discarded, since BB is well-formed. Indeed, if Tally(BB, sk) 6= invalid, then BB is well-formed and it
cannot contain two entries with duplicated credentials.

(iii-2) the adversary has added a valid ballot b = (upkid, ∗, ∗) without invoking Ocorrupt for voter id. In this
case, the adversary has produced a ballot b = (upkid, α, σ) for a registered user id such that σ is a valid
signature on α without knowledge of the corresponding usk. This means that the adversary succeeds in
forging a valid signature for a message α, which violates the existential unforgeability of S.

(iv) Let bB1 , . . . , b
B
nB

be the ballots appearing in BB which have been directly cast by the adversary. We know
that resultB = resultB1 ?R . . . ?R resultBnB where (resultBi , Π

i
B) ← Tally′({αBi }, sk). The correctness of V

against an honest bulletin board implies that resulti = ρ(vBi ) for a certain (maybe unknown) vBi ∈ V with
overwhelming probability.

Putting together (i-iv) implies that Conditions (6-8) are satisfied. This ends the proof. ut

A.4 Proof of Theorem 3

Since the triples (BB, result, Π) and (BB, result′, Π ′) with result 6= result′ output by A passes verification for
Vc, it must be the case that the triples (BB′, result, Π) and (BB′, result′, Π ′), where BB′ is obtained from BB as
specified in the transformation, also pass verification for V . But this can only happen with negligible probability,
since V is verifiable. ut

A.5 Proof of Theorem 4

Assume that there exists an adversary Acred against the ballot privacy of Vc = (Register,Setup,Vote,VerifyVote,
Validate,BallotBox,Tally,Verify). We will build from it an adversaryA against the ballot privacy of the underlying
voting scheme V = (Setup′,Vote′,VerifyVote′,Validate′,BallotBox′,Tally′,Verify′).

To do this we will make A simulate the ballot privacy game to Acred using the ballot privacy challenger
for V . Thus, when Acred makes a query Oregister(id), the adversary A runs (upk′, usk′) ← Register′(id) and
(upk, usk) ← SKeyGen(1λ), and maintain the lists L,U , CU consistently to what Acred expects to see. We denote
upk ← (upk′, upk) and usk ← (usk′, usk). Once Acred asks to see the public key of the election, A uses the
public key pk′ he receives from V’s challenger to build pk← (pk′, L) and sends pk to Acred. Eventually parts of
sk are revealed both to A and Acred if the latter chose to corrupt a subset of trustees. The first phase of the ballot
privacy game is over.

Next, A will, in interaction with Acred, build its two local boards BB′0,BB
′
1. At the same time, A will build

Acred’s local boards BB0,BB1 using the contents of BB′0,BB
′
1. Adversary Acred can ask OcorruptU queries on in-

put id. ThenA relays (upk,usk) toAcred, whenever they are defined. WhenAcred invokes the OvoteLR oracle on
input (id, v0, v1), adversaryA first checks whether user id is registered. If not,A replies nothing; otherwise,A starts
by computing α0 ← Vote′(id, upk′, usk′, v0) and α1 ← Vote′(id, upk′, usk′, v1). Next it sets b0 ← (upk, α0, σ0)
and b1 ← (upk, α1, σ1), where σ0 = Sign(usk, α0) and σ1 = Sign(usk, α1). Finally A runs BallotBox(BB0, b0)
and BallotBox(BB1, b1).

At some point Acred outputs a modified bulletin board BBβ (for β ∈ {0, 1} unknown both to A,Acred) which
consists, on the one hand, on ballots b = (upk, αβ, σβ) as created by A using the specification of the algorithm
Vote(·), and on the other hand, on ballots b = (upk, α, σ) created arbitrarily by Acred itself.
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Internally, A needs to define a simulator SimTally such that Acred can not distinguish between the output of
Tally(BB0, sk) and the output of SimTally(BB0,BB1,pk, info). Note that while one of the boards, actually BBβ ,
is known toA, there exists a second board, actually BB1−β , which is unknown toA. To build the output of SimTally
the adversaryA thus makes use of SimTally′, which is guaranteed to exist since V is private.A defines the output of
SimTally(BB0,BB1,pk, info) to be the output of SimTally′(BB′0,BB

′
1,pk

′, info), where BB′0,BB
′
1 are obtained

from BB0,BB1 by simply keeping the α-component of each of their ballots.
Next, when Acred asks A to reveal either Tally(BB, sk) or SimTally(BB0,BB1,pk, info), the adversary A

does the following. It checks before deciding whether to give a meaningful response to Acred that BB is well-
formed. Namely if: every upk appearing in BB appears only once; every upk showing up in BB belongs to L;
Validate(b) = accept for every b ∈ BB. If any of these checks fails, A relays invalid to Acred and outputs

β̂
R← {0, 1} as it guess to V’s challenger. Else, A relies to Acred whatever V’s challenger output at the end of

procedure End(BB′β,pk
′, sk), where BB′β is obtained from BBβ by simply keeping the α-component of each of

the ballots in BBβ .
By construction, it holds that BB′β is a legitimate board in the view of V’s challenger, as it contains only valid

ballots from different voters. Furthermore, the contents of BBβ are correlated with BB′β . Let β̂ be the guess of
Acred. Finally, A outputs β̂ as its guess to V’s ballot privacy challenger. It is easy to see that, the adversary A we
have described is always a legitimate ballot privacy adversary against V . Hence a ballot privacy Acred against Vc
implies a ballot privacy adversary A against V . The proof of the theorem is concluded. ut

B Proof of Theorem 5

The reduction we show next is based on the the ideas used by Gennaro et. al [26] to prove that Pedersen’s key
generation protocol produces hard instances of the dlog problem. Let (g, ga, gb, h) be the instance of the DDH

problem that we need to distinguish. That is, we need to distinguish between the case h = gab or h R← G. To this
end, we will use the IND-CPA adversary against the cryptosystem from Section 4. We simulate the IND-CPA game
to the IND-CPA adversaryA. Let B be the set of parties corrupted byA. Let G denote the set of honest decryption
servers that will be simulated by our reduction. Wlog let us assume that the `-th server is honest, i.e. T` ∈ G.

What does the adversary expect to see? In the first place, the adversary chooses before the start of the IND-CPA
game (static corruption) the setB ⊂ {1, . . . , `} of players that it will corrupt, |B| ≤ t. For each i ∈ B the adversary
plays the role of the i-th server Ti. At the end of the distributed key generation phase, the adversary learns the public
and verification keys pk,vk. Next, adversary A will choose two different plaintexts m0,m1 ∈ G and asks to see
Enc(pk,mβ) for a random coin β R← {0, 1}. His goal is to learn β with probability significantly away from 1/2.

We start our simulation of the IND-CPA game by running a regular instance of DistKG(1λ, t, `), except that for
server T` we cheat without A noticing, and this results in a simulation that provides ga as Tl’s contribution to the
jointly computed public key pk. That is, for party T` we choose t values slj

R← Zq for j ∈ B and we send it to
corrupted server Tj ∈ B. Notice that there exists a unique polynomial f`(z) of degree t such that f`(0) = a and
f`(j) = slj for j ∈ B. Let f`(z) = a`0 + a`1z + . . . + a`tz

t ∈ Z[z]. Then it is known that there exists a proper
set of efficiently computable Lagrange coefficients λ`j such that a`i = λ`0a +

∑t
j=1 λ`js`j , which are defined

as a function of the values slj
R← Zq for j ∈ B as indicated in [26]. We can not explicitly compute them, but

instead we are able to compute an implicit representation A`i = ga`i = (h)λ`0
∏t
j=1 g

s`jλ`j . Finally we broadcast
A`0, . . . , A`t on behalf of T`.

Let pk be the public key output by the DistKG algorithm. [26] shows that pk can be written as pk = ga ·YG ·YB ,
where YG is the contribution of servers in G \ {`}, and YB is the contribution of parties in the set B ∩ QUAL.
Furthermore, if we write YG = gxG and YB = gxB , the simulator can explicitly compute both xG and xB . Indeed,
as [26] argues, the simulator chose xG on behalf of the honest servers. On the other hand, the contribution of each
server in i ∈ B that has not been disqualified is the free term of a polynomial fi(z) ∈ Zq[x] of degree t, and the
simulator holds at least t + 1 points on this polynomial. If follows that the simulator can compute each of these
contributions and hence the value xB ∈ Zq.
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Now, let m0,m1 ∈ G be the plaintexts chosen by A. Then we build the challenge ciphertext Cβ = (gb, h ·
g(xG+xB)b ·mβ) for β R← {0, 1}. Notice that if h = gab then h · g(xG+xB)b = pkb; else if h = gr for r R← Zq then
h · g(xG+xB)b is uniformly distributed at random in G as long as (xG + xB)b 6= −r. The latter can be discarded, as
this only happens with negligible probability 1/q.

Thus, using the standard reduction argument, we can conclude that any IND-CPA adversary against the above
fully distributed threshold cryptosystem implies a DDH solver. ut

C Sigma Protocols

Let R : {0, 1}∗ × {0, 1}∗ → {0, 1} be an efficiently computable relation. Let LR = {Y ∈ {0, 1}∗ | ∃w : R(w, y)}
be the language defined by R and let Λ be such that LR ⊆ Λ and Λ is decidable in polynomial time.

A proof system for the language LR is a pair of possibly interactive algorithms (Prove,Verify) such that with
overwhelming probability the interaction Verify(Y )↔ Prove(w, Y ) ends with accept for every (w, Y ) ∈ R.

A Σ-protocol is an interactive between a prover and a verifier in which the sender starts the interaction by
sending a value com, the commitment. The verifier replies with a challenge ch taken uniformly at random from
a given challenge set. The prover ends by sending a response res. The verifier checks the validity of the claimed
proof by calling a deterministic algorithm VerifyΣ(Y, com, ch, res). Basic properties for Σ-protocol are:

Special honest-verifier zero-knowledge: there is an algorithm SimulateΣ , called the simulator that takes as input
a statement Y ∈ {0, 1}∗ (that may or may not be valid), a challenge ch and a response res and outputs a
commitment com such that VerifyΣ(Y, com, ch, res) = 1. Furthermore, if com, res are uniformly random,
then (com, ch, res) is distributed as a real conversation between the prover on input (w, Y ) and an honest
verifier.

Zero-knowledge: The Σ-protocol is zero-knowledge if the previous simulator can be efficiently built and the
verifier can possibly be dishonest.

Special soundness: if there is an algorithm ExtractΣ that given a statement Y and any two triples (com, ch, res)
and (com, ch′, res′) with ch 6= ch′ as input, returns a witness w such that R(w, Y ) holds.

Unique Responses: A Σ-protocol has unique responses if for any statement Y , any commitment com and any
challenge ch, there is at most one value res such that VerifyΣ(Y, com, ch, res) = 1.

D Fiat-Shamir Transformation and NIZKs

Definition 1 (Fiat-Shamir Transformation [18, 9]). Let Σ = (ProveΣ ,VerifyΣ) and H : {0, 1}? → Ch a hash
function, where Ch is the challenge set for Σ. The Fiat-Shamir transformation of Σ is the non-interactive proof
system FSH(Σ) = (Prove,Verify) defined as follows:

Prove(w, Y ): runs ProveΣ(w, Y ) to obtain commitment com and computes ch← H(Y, com). It then completes
the run of ProveΣ with ch as input to get the response res and outputs the pair (ch, res).

Verify(Y, ch, res): computes com← SimulateΣ(Y, ch, res) and runs VerifyΣ(Y, com, ch, res).

The resulting non-interactive zero-knowledge (NIZK) proof system for the relation R is complete; sound,
meaning that if R(w, Y ) = 0 for any w, then with overwehlming probability, it holds that 0 ← Verify(Y, ch, res)
for any (ch, res); zero-knowledge, meaning that there exists a simulator that given a valid statement Y it outputs
(com, ch, res) indistinguishable from a real proof such that Verify accepts. Here, we recall the dlog-based NIZK
systems for proving equaltity of discrete-logarithm and disjunctive Chaum-Pedersen statements.

Equality of Discrete-Logarithms Let G a cyclic group of order q and g1, g2 ∈ G. We define the language
LEqDl = {(g1, g2, y1, y2) | logg1 y1 = logg2 y2}. The Chaum-Pedersen Σ-protocol for proving equality of discrete
logarithm works as follows: both prover and verifier have as input (G, q, (g1, y1), (g2, y2)); prover has a witness

19



x = logg1 y1 = logg2 y2 to the statement as additional input. The prover chooses r R← Zq and sends com1 = gr1

and com2 = gr2 to the verifier. The latter sends a random challenge ch R← Zq to the prover who then responds
with res = r + x · ch. The verifier accepts iff gres1 = com1 · ych1 and gres2 = com2 · ych2 . For this Σ-protocol,
SimulateΣ(g1, g2, y1, y2, ch, res) returns com1 ← gres1 /ych1 and com2 ← gres2 /ych2 .

We write EqDl(g1, g2, y1, y2) = (ProveEq,VerifyEq) for g1, g2, y1, y2 ∈ G be the non-interactive proof system
associated to the language LEqDl when applying the Fiat-Shamir to the above Σ-protocol. That is, let the prover
set ch ← H(g1, g2, y1, y2, com1, com2), where com1, com2 ∈ G are as above. Prover’s output is (ch, res =
r + x · ch). The verifier computes com1 ← gres1 /ych1 and com2 ← gres2 /ych2 and returns the output of the test

ch
?
= H(g1, g2, y1, y2, com1, com2).

Disjunctive Chaum-Pedersen Let DisjProof(g, pk, R, S) = (DisjProve,DisjVerify) be a NIZK proof that an
ElGamal ciphertext C = (R = gr, S = pkrgm) encrypts either m = 0 or m = 1. This is built using [15] and
the proof system for LEqDl to show that either (g, pk, R, S) ∈ LEqDl or (g, pk, R, S · g−1) ∈ LEqDl. It works
as follows. Assume wlog that (g, pk, R, S) /∈ LEqDl. First, the prover fakes a proof (g, pk, R, S) ∈ LEqDl by

choosing (ch0, res0)
R← Zq × Zq and setting U0 = gres0/Rch0 and V0 = pkres0/Sch0 . It then sets U1 = gu1

and V1 = pku1 for res1
R← Zq and c = H(g, pk, R, S, U0, V0, U1, V1). It defines ch1 = ch − ch0 and res1 =

u1 + ch1r. On the one hand, DisjProve(G, Y,R, S, r) is set to output π ← (ch0, ch1, res0, res1). On the other
hand, DisjVerify(g, pk, R, S, π) checks whether ch0 + ch1 = H(g, pk, R, S, G

res0

Rch0
, pk

res0

Sch0
, G

res1

Rch1
, pkres1

(S·g−1)ch1
).

E Ad-Hoc Fiat-Shamir transformation

We prove that if one adds an arbitrary string (which will be the voter’s credential) to the hash function, the proof-
system obtained by applying the Fiat-Shamir transform remains sound. Let (Prove′Σ ,Verify

′
Σ) be a Σ-protocol for

a given language L′R ⊆ Λ′. We will modify it into a Σ-protocol for the extended language LR = {(id, Y )|∃w :
R(w, (id, Y )} which is equal to {0, 1}∗ × L′R since id is any string in {0, 1}∗. And LR ⊆ Λ = {0, 1}∗ × Λ′.

It is easy to see that if Λ′ is decidable, so is Λ. The interaction VerifyΣ(id, Y )↔ ProveΣ(w, (id, Y )) is defined
identically to Verify′Σ(Y ) ↔ Prove′Σ(w, Y ). It turns out that if (Prove′Σ ,Verify

′
Σ) is special honest-verifier zero-

knowledge and special sound, so is (ProveΣ ,VerifyΣ). This is easily seen by defining SimulateΣ((id, Y ), c, f) :=

Simulate′Σ(Y, c, f), VerifyΣ((id, Y ), A, c, f) = Verify
′
Σ(Y,A, c, f) and let ExtractΣ be identical to Extract′Σ .

Applying the Strong Fiat-Shamir transformation to (ProveΣ ,VerifyΣ) provides a non-interactive proof sys-
tem (Prove,Verify) as follows: Prove(w, (id, Y )) runs ProveΣ(w, (id, Y )) to obtain commitment A, computes
c ← H(id, Y,A), completes the run of ProveΣ with c as input to get the response f and finally outputs the
pair (c, f). Verify((id, Y ), c, f) computes A from ((id, Y ), c, f) by using the SimulateΣ algorithm and then runs
VerifyΣ(Y,A, c, f).

Theorem 7. Let (Prove′Σ ,Verify
′
Σ) be a Σ-protocol that is special honest-verifier zero-knowledge and special

sound and let (Prove,Verify) be the non-interactive proof system obtained from our ad-hoc Fiat-Shamir transfor-
mation. Then the new proof system is zero-knowledge and simulation-sound extractable.

Proof. This is a corollary of Theorem 1 in [9], since the ad-hoc Fiat-Shamir transformation can be seen as extending
(Prove′Σ ,Verify

′
Σ) to a newΣ-protocol (ProveΣ ,VerifyΣ) that takes an arbitrary dummy string id as input and then

applies Fiat-Shamir. ut

Theorem 7 implies that if we let DisjProofupk(g, pk, R, S) be the NIZK proof system obtained from DisjProof(g,
pk, R, S) by adding upk as an input to the hash function, then the new proof system retains all the security properties
hold by the original NIZK. This new proof system is essential in Helios-C to avoid ciphertext weeding.
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F NM-CPA Transformation from Fully Distributed (t, `)-Threshold Cryptosystems

In this section, we apply the result of [10, 9] to the IND-CPA fully distributed (t, `)-threshold cryptosystem con-
struction of Section 4 with non-interactive version of the Chaum-Pedersen proof system to obtain a NM-CPA Fully
Distributed (t, `)-Threshold Cryptosystem.

Theorem 8. Let D′ = (DistKG′,Enc′, ShareDec′,Rec′) be an IND-CPA fully distributed (t, `)-threshold cryp-
tosystem and let (Prove,Verify) be a Σ-protocol for the language

R((pk, C), (m, r)) = 1 ⇐⇒ C = Enc′(pk,m; r)

with special soundness, special honest-verifier zero knowledge, unique responses and an exponentially large (in
the security parameter) challenge space C ∈ Ch. Let H : {0, 1}∗ → Ch be a random oracle. Then the following
construction D = (DistKG,Enc,ShareDec,Rec), that uses the Fiat-Shamir transformation provides a NM-CPA
fully distributed (t, `)-threshold cryptosystem.

DistKG(λ): is defined as DistKG′(λ)
Enc(pk,m; r): given pk and m, first computes C ′ ← Enc′(pk,m; r) and runs Prove on input ((pk, C ′), (m, r))

until it outputs commitment com; it computes challenge ch← H(pk, C, com) and sends this to Prove; obtains
the response res from Prove and returns the ciphertext C ← (C ′, com, res).

ShareDec(ski, vki, C): parsesC as (C ′, com, res). If Verify((pk, C ′), com, ch, res) = 0, it returns reject. Else,
it outputs whatever ShareDec′(ski, vki, C ′) outputs.

Rec(pk,vk, C, C): parses C as (C ′, com, res). If Verify((pk, C ′), com, ch, res) = 0, it returns reject. Else, it
outputs whatever Rec′(pk,vk, C ′, C) outputs.

Proof. The proof is obtained by replacing the algorithms corresponding to an IND-CPA PKE in either Theorem 5.1
in [10] or Theorem 2 in [9] by the algorithms corresponding to a fully distributed threshold cryptosystem. Addi-
tionally, algorithms ShareDec and Rec have to be adapted. We leave the details to the full version of this paper, as
the proof from [10, 9] can be adapted with no additional difficulties.

G NM-CPA and Robust Fully Distributed (t, n)-Threshold Cryptosystem from DDH with
Random Oracle

We know from previous work that ballot private Helios-like voting protocols are tightly related to NM-CPA cryp-
tosystems [9, 10]. In this section, we show how to improve the IND-CPA ElGamal-based threshold cryptosystem
from Section 4 into a robust and NM-CPA threshold cryptosystem that encrypts bit-by-bit. To do this, we use the
NIZK proof system DisjProofupk(g, pk, R, S) = (DisjProveupk,DisjVerifyupk) from Appendix E, where upk is any
bit string, to prove in zero-knowledge that to prove in zero-knowledge that (R,S) encrypts g0 or g1.

LetD† be the cryptosystem from the previous section and letD = (DistKG,Enc,ShareDec,Rec) be the thresh-
old cryptosystem obtained by letting DistKG = DistKG† and

Enc(pk,m): form ∈ {0, 1} chooses r R← Zq and set (R,S) = (gr, pkr·gm). Now it runs π ← DisjProveupk(g, pk,
R, S, r) and returns C ← ((R,S), π).

ShareDec(skj , vkj , C): parses C as ((R,S), π). If DisjVerifyupk(g, pk, R, S, π) = 0, it returns reject. Else, it
runs (j, cj)← ShareDec†(skj , vkj , (R,S)). It runs πj ← ProveEq(g,R, vkj , cj , skj). It outputs (j, cj , πj).

Rec(pk, vk, C, C): parses C as ((R,S), π). If DisjVerifyupk(g, pk, R, S, π) = 0, it returns reject. Else, it parses
every element in C as (j, cj , πj). If for any i it happens VerifyEq(g,R, vkj , cj , πj) = 0, it outputs reject. Else,
it runs Rec†(pk, vk, (R,S), {ci1, . . . , ci(t+1)}).

Theorem 9. D is NM-CPA and robust in the Random Oracle Model under the DDH assumption.
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Proof. NM-CPA is obtained from Theorem 8 in Appendix F. This is because D† is IND-CPA (which has been
shown in Theorem 5 and because the proof system DisjProofupk is the result of applying the augmented Fiat-
Shamir transform from Appendix E to Chaum-Perdersen Σ-protocol (see Appendix D). This way the requirements
of Theorem 8 are satisified and the result holds.

Let us now briefly address robustness. The soundness of the proof system EqDl(g,R, vkj , cj) implies that
logg vkj = logR cj with overwhelming probability if VerifyEq(g,R, vkj , cj , πj) = 1 for any 1 ≤ j ≤ l. Therefore,
for any (R,S) ∈ G2, C = {ci1 , . . . , cit+1}, C? = {c?k1 , . . . , c

?
kt+1
} such that Rec(pk, (R,S), C) 6= reject 6=

Rec(pk, (R,S), C?), we have that
∏
j=1,...,t+1 c

λIj
ij

=
∏
j=1,...,t+1(c

?)
λKj
kj

= Rx and thus

S ·

 ∏
j=1,...,t+1

c
λIj
ij

−1 = S ·

 ∏
j=1,...,t+1

(c?)
λKj
kj

−1 = m (2)

with I = {i1, . . . , it+1},K = {k1, . . . , kt+1}, pk = gx. Equation (2) is equivalent to equation Rec(pk,
vk, C, C) = Rec(pk,vk, C, C?). ut

H Avoiding weeding ballots belonging to different users

Recall that weeding ballots is essential for proving ballot privacy. We will show that there is no need in Helios-C
of weeding ballots (as previously done in [14, 9]) to avoid duplication of atomic ballots. Let us recall that the latter
property is essential for proving ballot privacy. In effect, let πupk = (c0, c1, f0, f1) and πupk

′
= (c′0, c

′
1, f
′
0, f
′
1) be

disjunctive Chaum-Pedersen NIZKs asserting that two given ciphertexts belonging to different voters with public
credentials upk 6= upk′ are encryptions of 0 or 1 in Helios-C. Ballot weeding consists on rejecting to add ballots
bupk′ to the bulletin board such that πupk

′
= πupk if the atomic proof πupk is contained in a previous ballot bupk. We

aim at simplifying this procedure. First, notice that if the proofs πupk, πupk
′

verify with respect to the corresponding
ciphertexts (R,S), (R′, S′) , then it holds

c0 + c1 = H

(
upk, R, S,

gf0

Rc0
,
Y f0

Sc0
,
gf1

Rc1
,

Y f1

(Sg−1)c1

)
c′0 + c′1 = H

(
upk′, R′, S′,

gf
′
0

(R′)c
′
0
,
Y f ′0

(S′)c
′
0
,
gf
′
1

(R′)c
′
1
,

Y f ′1

(S′g−1)c
′
1

)

The presence of the signing verification key of each voter to the hash function makes ballots weeding trivial.
In fact for any pair of valid atomic disjunctive proofs πupk, πupk

′
we have that Pr[πupk = πupk

′ | upk 6= upk′] =
Pr[H(upk, πupk) = H(upk′, πupk

′
) | upk 6= upk′ fixed in advance ] for any πupk, πupk

′
satisfying Equation 3. In

particular assume that H is a collision-resistant hash function. Then Prob[πupk = πupk
′ | upk 6= upk′] is less than

the probability of finding a collision on the hash function.

I Proof of Correctness against a Malicious Bulletin Board for Helios-C

We first see that Helios-C without credentials is correct against a honest bulletin board if at least t > d`/2e are
honest and follow the Setup(1λ, t, `) algorithm from Vheliosc. By Theorem 1, it suffices to show that Vheliosc admits
partial tallying, is consistent and accurate if at least t > d`/2e are honest.

Partial tallying is implied by the homomorphic properties of the underlying IND-CPA threshold cryptosytem
and by the nature of the result function, which is in fact the summation of votes.

Consistency easily follows from the completeness and robustness properties of the fully-distributed NM-CPA
cryptosystem used in Helios-C, to be found in Appendix G.
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Condition 1 of accuracy asks that for any ballot b it should hold that [Validate(b) = accept⇔ Tally({b}, sk) =
ρ(v) for some v ∈ V] with overwhelming probability. This is due to the completeness and soundness properties of
the NIZK system DisjProofupk(g, pk, R, S) from Appendix E, and to the consistency of Helios-C without creden-
tials.

Condition 2 of accuracy asks that for any bulletin board BB it should hold Verify(BB,Tally(BB, sk)) = accept

with overwhelming probability. For Helios-C without credentials this is guaranteed by the the completeness and
soundness properties of the NIZK system EqDl(g1, g2, y1, y2) from Appendix D, and to the consistency of Helios-C
without credentials.

Finally, the previous discussion and Theorem 2 implies that Helios-C is correct against a malicious bulletin
board. ut

J Proof of Verifiability for Helios-C

Verifiability easily follows from the robustness property of the fully-distributed NM-CPA cryptosystem from Ap-
pendix G. ut

K Proof of Theorem 6

Sketch of the proof. We content ourselves here to shortly indicate how the proof works. This is because we can
hardly claim any novelty here, as the main ideas are those used in [9]. Our only novelty is that we see that [9] easily
generalises to a fully distributed setting with arbitrary threshold parameters.

Our proof of ballot privacy for Helios-C is divided into two parts. First we prove that removing the credentials
from Helios-C results in a fully distributed ballot private voting protocol for honest bulletin boards. Secondly, the
previous result and Theorem 4 imply that Helios-C is ballot private for malicious bulletin boards.

Proving that Helios-C without credentials is ballot private against a honest bulletin board boils down to gener-
alizing the ballot privacy proof of [9] to the fully distributed setting. To do this, the first step is to show that every
atomic ciphertext in Helios-C is obtained from a fully distributed NM-CPA cryptosystem. This is in fact the case,
since Helios-C is built upon the fully distributed NM-CPA DDH-based cryptosystem from Appendix G.

Secondly, we need to build a simulator such that if we let (RLΣ , SLΣ), (RRΣ , SRΣ) be the result ciphertexts in
the left and right boards respectively, then when the ballot private adversary is supposed to have access to the right
board, the simulator needs to make the adversary thinking that Rec(pk,vk, (RRΣ , SRΣ), C) = SLΣ · (RLΣ)−x,
that is the simulator needs to give out the result from tallying BBL to A, while A is tallying BBR, without A
noticing. Since the simulator can program the random oracle, this can be done by using the simulate algorithm
of the equality of discrete logarithms sigma-protocol from Appendix D. This makes it possible for the simulator
to cheat the adversary by convincing A to accept the result from Tally(BBL, sk), while A has access to the right
board. ut
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