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Abstract

A signature scheme is malleable if, on input a message m and a signature σ, it is possible to
efficiently compute a signature σ′ on a related message m′ = T (m), for a transformation T that
is allowable with respect to this signature scheme. Previous work considered various useful flavors
of allowable transformations, such as quoting and sanitizing messages. In this paper, we explore a
connection between malleable signatures and anonymous credentials, and give the following contri-
butions:

• We define and construct malleable signatures for a broad category of allowable transformation
classes, with security properties that are stronger than those that have been achieved previ-
ously. Our construction of malleable signatures is generically based on malleable zero-knowledge
proofs, and we show how to instantiate it under the Decision Linear assumption.

• We construct delegatable anonymous credentials from signatures that are malleable with respect
to an appropriate class of transformations; we also show that our construction of malleable
signatures works for this class of transformations. The resulting concrete instantiation is the
first to achieve security under a standard assumption (Decision Linear) while also scaling linearly
with the number of delegations.

1 Introduction

A signature scheme is malleable — alternatively, homomorphic — if, given a signature σ on a message
m, it is possible to efficiently derive a signature σ′ on a message m′ = T (m) for an “allowable” transfor-
mation T ; as an example, we might allow m′ to be any excerpt from m (in this sense, the malleability
of the signature scheme is “controlled”). Formal definitions of such signatures were first given by Ahn
et al. [3], and their definitions were recently refined by Attrapadung et al. [4]. Without any additional
restrictions on the size of the signature or the privacy of the original message m, a construction of a
malleable signature is trivial: the signature σ on m is also automatically a signature on T (m) for any al-
lowable T . What makes this problem non-trivial is the following additional twist, called context hiding :
the derived signature σ′ should not reveal anything about the original message m that is not revealed
by the message m′, and in fact it should be impossible to tell that σ′ was computed from σ, rather than
issued by the signer directly. This definition can also apply to n-ary transformations T , and implicitly
requires that the size of the signature depends only on the message (so, in particular, it cannot grow as
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it is transformed unless the transformation outputs a message that requires a longer signature). Using
appropriate classes of allowable transformations, malleable signatures are a generalization of a variety
of existing signatures, such as quotable or redactable signatures.

A natural application for malleable signatures that has not been previously considered is an anony-
mous credential system [21, 14, 15]. In such a system, a user Alice is known in different contexts
by different unlinkable pseudonyms (it’s best to think of a pseudonym as an unconditionally binding,
computationally hiding commitment to Alice’s secret key), yet she can demonstrate possession of a
credential issued to pseudonym nym to a verifier who knows her by another pseudonym, nym′. Let T
be the set of transformations that, on input some pseudonym nym, output another pseudonym nym′ of
the same user, so that there exists some T ∈ T such that nym′ = T (nym). Then a signature scheme
that is malleable with respect to the set of transformations T gives us an anonymous credential system:
a credential is simply an authority’s signature σ on nym; malleability makes it possible for Alice to
transform it into σ′ that is a signature on nym′; context hiding should ensure that σ′ cannot be linked
to the original pseudonym nym to which it was issued; and finally, unforgeability should ensure that
Alice cannot compute σ′ unless she received a signature from the authority on one of her pseudonyms.

Somewhat surprisingly, not only do malleable signatures with respect to appropriate sets of trans-
formations T yield anonymous credentials, but, as we show in this paper, they also yield delegatable
anonymous credentials (DACs). A DAC system [20, 6] allows users to delegate their anonymous cre-
dentials; for example, a company employee can use his employee credential to issue a guest pass to a
company visitor, who can in turn issue a credential to a taxi service that comes to pick her up; when
presenting their credentials (and also when obtaining and delegating them), the various participants (the
employee, his guest, and her driver) need not reveal any persistent identifiers — or in fact anything —
about themselves. DACs are much more privacy-friendly than the traditional anonymous credential
model, which assumes that the verifying party knows the public key of the credential issuer(s), as who
issued Alice’s credentials reveals a lot of information about Alice. For example, the identity of the local
DMV that issued her driver’s license might reveal her zip code. If, in addition to this, her date of birth
and gender are leaked (as could happen in the context of a medical application), this is often enough
to uniquely identify her [36, 27]. Verifiers that require more than one credential might learn Alice’s
identity even more easily. Since DACs protect the identity of every link on Alice’s certification chain,
they make it impossible to infer any information about Alice based on who issued her credentials.

In order to construct a DAC from malleable signatures, we essentially follow the same outline as for
the (non-delegatable) anonymous credential, but consider a different class of transformations. In the
non-delegatable scenario, the transformation took as input Alice’s nym and output Alice’s nym′. In the
DAC scenario, when Alice is delegating her credential to Bob, she uses a transformation T that takes as
input Alice’s pseudonym nymA and the length ` of her certification chain, and outputs Bob’s pseudonym
nymB and the length of his new certification chain `+ 1; to be allowable, T ’s description must include
Alice’s secret key (recall that her pseudonym nymA is a commitment to her secret key), so that only
Alice can perform this transformation. Intuitively, it is easy to see that this construction yields a DAC;
yet its security crucially relies on a transformation being allowable not by virtue of its input-output
behavior, but by virtue of what its description contains. As a result, previous definitions of security for
malleable and homomorphic signatures are not strong enough to be useful for this application: DAC
require not only that an allowable transformation exist, but that the party applying it “know” its
description; i.e. that there exist an extractor that, with a special extraction trapdoor, can compute the
description of the transformation. Additionally, to ensure Alice’s privacy even in the face of adversarial
root authorities, context hiding must hold even for adversarially generated public keys for the signature
scheme. This flavor of context hiding has not previously been achieved.
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Our contributions. In this paper, we overcome the definitional obstacle explained above by first
proposing, in Section 3, new definitions for malleable signatures. Our definition of context hiding,
extending that of Attrapadung et al., allows for adversarially-generated keys and signatures. Our
unforgeability definition requires that the transformation T and the original message m that was signed
by the signing oracle be extractable from (m′, σ′). To ensure that these definitions are not overly
strong, we relate them to the relevant definitions of Ahn et al. and Attrapadung et al. and observe
that, for many classes of transformations, the definitions of unforgeability are equivalent (whereas
working with adversarially-generated keys makes our definition of context hiding strictly stronger than
their computational definitions). With these new definitions in hand, we then follow the intuition
developed above and construct, in Section 4, a delegatable anonymous credentials scheme generically
from a malleable signature and — because the pseudonyms used in credentials seem to require it — a
commitment scheme. Our new definitions for malleable signatures also conveniently allow us to provide a
new definition, presented in Section 2, for credential unforgeability; our definition is both more powerful
and considerably simpler than existing definitions. In addition to satisfying this new definition, our
construction provides several desirable functional features (non-interactive delegation and the ability
to delegate polynomially many times), all while relying on a standard assumption (in our concrete
instantiation of choice, Decision Linear [11]).

Finally, to construct the signature that we generically rely on in our DAC construction, we provide
in Section 5 a general construction of context-hiding malleable signatures for a large range of unary
transformation classes. Our construction relies generically on non-interactive zero-knowledge (NIZK)
proofs that provide controlled malleability; such proofs were recently defined and realized by Chase et
al. [17] and allow, on input a proof π for an instance x ∈ L, for the efficient computation of a proof π′ of
a related instance Tinst(x) for an allowable transformation T = (Tinst, Twit), such that if w is a witness
for x ∈ L, then Twit(w) is a witness for Tinst(x) ∈ L. Aside from its usefulness in our construction of
delegatable anonymous credentials, our signature construction enjoys other nice properties. Although
it is not the first construction of signatures from zero-knowledge proofs — the Fiat-Shamir heuristic [24]
is an example of this approach, as are the signatures of knowledge due to Chase and Lysyanskaya [20]
and the construction using PRFs due to Bellare and Goldwasser [8] — ours is the first such construction
to achieve malleability. In terms of constructions that focus on malleability, previous work gives ad-
hoc constructions of malleable signatures for various allowable transformations (such as redactable
signatures [31, 34, 16], quotable signatures [35], and transitive signatures [33, 9]), but ours is the first
general efficient construction of malleable signatures. The only previous work that gave a general
approach to homomorphic signatures was by Ahn et al. [3], who gave (among other contributions, such
as an efficient construction of a quotable signature) an inefficient general construction for which a
malleable signature on m is essentially a set of non-malleable signatures on {m′ | m′ = T (m)∧ T ∈ T }.

Related work on malleable signatures. Here we distinguish between work on unary and n-ary
transformations. As mentioned above, some specific types of unary homomorphic signatures have been
studied over the last decade or so, such as redactable and quotable signatures in which, given a signature
on a document m, one can derive signatures on a redacted version of m in which some parts are blacked
out, or signatures on quotations from m. These can be viewed as special motivating cases of context-
hiding malleable signatures (although some of the constructions in these early papers do not meet more
recent definitions). A somewhat related but different type of signature is an incremental signature
scheme [7], in which a signature on a document can be efficiently updated when the document is
updated. Recent work on computing on authenticated data [3, 4] gives a general definitional framework
for the problem (which we draw on in our definitions) and some general (but inefficient, as discussed
above) constructions for unary transformations, as well as some efficient and elegant provably secure
constructions for specific unary transformation classes, such as quoting and subsets.
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As far as n-ary homomorphisms are concerned, this research direction was initiated by work on
transitive signatures [33, 9] (in which, given signatures on the edges (u, v) and (v, w) of a graph,
one can derive a signature on the edge (u,w)), and by Rivest in a series of talks; the first paper to
address this subject more generally and consider several binary transformations was by Johnson et
al. [32]. A more recent line of work explored homomorphic signatures under linear and polynomial
functions [13, 12, 25, 5]; the emphasis in the papers cited is in transforming n message-signature pairs
into a message-signature pair in which the message is some linear or polynomial function of the input
messages. This is incomparable to our work because we are interested in more general transformations.

Related work on delegatable anonymous credentials. The first construction of delegatable
anonymous credentials, by Chase and Lysyanskaya [20], allowed a constant number of delegations.
Belenkiy et al. [6] gave the first DAC system that allowed for a polynomial number of delegations
using Groth-Sahai proofs [30]; their construction, however, was somewhat ad-hoc and relied on ad-hoc
assumptions. Finally, Fuchsbauer [26] gave a construction that built on the construction of Belenkiy et
al. and allows for non-interactive issuing and delegation of credentials, also based on ad-hoc assumptions.

Our construction essentially combines many of the nicest features of each of these previous con-
structions. First, we support non-interactive issuing and delegation of credentials, as do Chase and
Lysyanskaya, and Fuchsbauer, but not Belenkiy et al. Second, we support credentials that scale linearly
with the number of times they are delegated, as do Belenkiy et al. and Fuschbauer, but not Chase
and Lysyanskaya. Third, we can instantiate cm-NIZKs, and thus our malleable signature and entire
credentials construction, under the standard and well-established Decision Linear assumption, whereas
Belenkiy et al. and Fuschbauer both use less desirable assumptions. (The construction of Chase and
Lysyanskaya is based on general assumptions.) Finally, we realize a simulation-extractable notion of del-
egatable anonymous credentials that is simpler and more efficiently realizable than any of the previous
definitions.

2 Preliminaries and Notation

As our construction of a malleable signature in Section 5 depends on malleable proofs, we first discuss
the definitions for such proofs here. We next recall existing definitions for delegatable anonymous
credentials, and propose our new definition for credential unforgeability.

Malleable proofs In Section 5, we generically construct malleable signatures using malleable proofs.
Briefly, a malleable proof [17] is a tuple of algorithms (CRSSetup,P,V,ZKEval), in which the first three
algorithms constitute a standard non-interactive zero-knowledge proof of knowledge (defined formally
in Appendix A). The fourth algorithm, ZKEval, given a transformation T = (Tinst, Twit), an instance
x, and a proof π such that V(crs, x, π) = 1, outputs a proof π′ such that V(crs, Tinst(x), π′) = 1; i.e.,
outputs a valid proof for the transformed instance. The proof system is then malleable with respect to
some set of transformations T if for every T ∈ T , ZKEval can be efficiently computed. (This is defined
formally in a manner similar to our Definition 3.1.)

In addition to this basic definition of malleability, Chase et al. give amplified security notions for
such proofs that are analogous to our amplified notions for signatures; we recall the formal definitions of
their notions in Appendix A. The first, controlled-malleable simulation-sound extractability (CM-SSE)
is a strong notion of extractability in which, from a valid proof π for an instance x, an extractor can
extract either a witness w such that (x,w) ∈ R, or a previously proved instance x′ and transformation
T such that x = T (x′) and T ∈ T . The second, derivation privacy, requires that a proof does not
reveal whether it was constructed fresh (i.e., using a witness) or by transformation; a related definition,
strong derivation privacy, requires instead that a proof does not reveal whether it was constructed by
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the simulator or by transformation. Putting these together, if a proof is zero knowledge, CM-SSE, and
strongly derivation private, then it is called a cm-NIZK.

Delegatable anonymous credentials At a high level, delegatable anonymous credentials (DAC)
allow credentials to be both delegated and issued within the context of a system in which users
are pseudonymous; i.e., may be using a different pseudonym for each of the different people with
whom they interact. As such, algorithms are required for generating each of these pseudonyms, as
well as issuing and delegating credentials, and proving (in an anonymous way) the possession of a
credential. More formally, a delegatable anonymous credentials scheme consists of eight algorithms
(Setup,KeyGen,NymGen,NymVerify, Issue,CredProve,CredVerify,Delegate) that behave as follows:

• Setup(1k): Generate public parameters params for the system.

• KeyGen(params): Generate public and secret keypair (pk , sk); the secret key sk represents a user’s
“true identity.”

• NymGen(params, sk): Compute a pseudonym for the user corresponding to sk .

• NymVerify(params, nym, sk , open): Check that a given pseudonym nym belongs to the user corre-
sponding to sk . (In practice, this algorithm will never be run; instead, a user might form a proof
of knowledge of a sk corresponding to nym such that this holds.)

• Issue(params, sk0, pk0, nymr): Issue a credential, rooted at the authority who owns pk0, to the
pseudonym nymr.

• CredProve(params, sk , nym, open, nym′, open′, cred): Prove possession of credential cred that has
been delegated to nym, where the owner of nym also owns a pseudonym nym′.

• CredVerify(params, pk0, nym, `, π): Verify that the pseudonym nym is in possession of a level-`
credential, rooted at pk0.

• Delegate(params, skold , nymold , openold , nymnew , cred): Delegate the credential cred, currently del-
egated to the pseudonym nymold , to the pseudonym nymnew .

The main security requirements are anonymity and unforgeability. For anonymity, we require that
pseudonyms hide their owners’ secret keys, and that a proof of possession of a credential does not reveal
the pseudonym to which the credential was initially issued by the root authority, or the pseudonyms
to which the credential was delegated. For unforgeability, we require that one cannot prove possession
or delegate a credential without knowing a secret key corresponding to some pseudonym to which a
credential has been issued.

In order to conceptually identify users with pseudonyms, we require that a nym output by NymGen
is a computationally hiding, unconditionally binding commitment to the underlying sk , such that
NymVerify verifies the opening (sk , open).

Our definition of anonymity is fairly similar to the definition given by Belenkiy et al.; the main modifi-
cations are our non-interactive Issue protocol and that simulated parameters are distributed identically to
those output by Setup. Essentially, we require that there exist a simulator (SimSetup,SimCred,SimProve)
such that (1) SimSetup produces parameters and the simulation trapdoor, (2) SimCred takes as input
the parameters, the simulation trapdoor, the root authority public key, a pseudonym and a level, and
produces credentials indistinguishable from those produced by Issue and Delegate, and (3) SimProve,
given the same set of inputs as SimCred, produces proofs indistinguishable from those produced by
CredProve.

Our definition of unforgeability, on the other hand, is a departure from that of Belenkiy et al.
It is conceptually similar to the definition of simulation-sound extractability for non-interactive zero
knowledge, in that we require that unforgeability should hold in the presence of a simulator that grants
and proves possession of credentials at any level for any pseudonym of the adversary’s choice without
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access to the root authority’s secret key. (In contrast, Belenkiy et al.’s unforgeability game required a
parameter setting for which the simulator was undefined.)

Formally, we define an augmented setup algorithm SimExtSetup that produces (params, τs, τe) such
that (params, τs) is distributed identically to the output of SimSetup. We then have the following
definition.

Definition 2.1 (Unforgeability). A delegatable anonymous credentials scheme (Setup,KeyGen,NymGen,
NymVerify, Issue,CredProve,CredVerify,Delegate) with simulator (SimSetup, SimCred, SimProve) is un-
forgeable if there exists a pair (SimExtSetup,Extract) (where SimExtSetup augments SimSetup) such
that (1) nym is a computationally hiding, unconditionally binding commitment when params are chosen
by SimExtSetup, even when τs and τe are given; and (2) it is hard to form a proof of a credential for
a pseudonym nym at level ` without knowing the secret key corresponding to nym as well as the secret
key corresponding to some nym1 to which a credential at level `′ ≤ ` has been issued; formally, for any
adversary A, consider the following game, wherein SimCred, SimProve, and Extract share state:

• Step 1. (params, τs, τe)
$←− SimExtSetup(1k); (vk0, sk0)

$←− KeyGen(params).

• Step 2. ((nym, `), π)
$←− ASimCred(params,τs,vk0,·,·),SimProve(params,τs,vk0,·,·)(params, vk0).

• Step 3. ({(nymi, sk i, openi)}ki=1, `
′)← Extract(params, τe, (vk0, nym, `), π), where nymk = nym and

`′ + k − 2 = `.

Then for all PPT algorithms A there exists a negligible function ν(·) such that the probability (over
the choices of SimExtSetup, SimCred, SimProve, and A) that CredVerify(params, vk0, nym, `, π) = 1 and
(nym, `) was not queried to SimProve but either

1. A created a new credential; i.e., (nym1, `
′) was not queried to SimCred or ` < `′,

2. A delegated through pseudonyms it did not own; i.e., NymVerify(params, nymj , sk j , openj) = 0 for
some j, 1 ≤ j ≤ k, or

3. A proved possession for a credential it did not own; i.e., skk−1 6= skk,

is at most ν(k).

Note that in the definition above, it is important that a pseudonym hides the underlying secret key
even given the simulation and extraction trapdoors because otherwise the extractor’s job would be too
easy: it could just pick any pseudonym nym1 (with a low enough level) that the adversary has queried,
use the extraction trapdoor to learn the corresponding sk1, and pretend that that’s the one from which
the credential was delegated. This way, however, the extractor can only do this if the proof of possession
π is a proof of knowledge of, among other things, sk1.

In addition to our new definition of credential unforgeability, we also give formal notions of cor-
rectness and of anonymity, which we briefly sketched above. Before we can establish the definition of
correctness for a credentials scheme, we first need to define what it means for a credential to be valid.

Definition 2.2 (Valid credential). For parameters params, we say that a value cred is a valid level-
` credential rooted at pk0 and belonging to nym if proofs of the credential with respect to compatible
pseudonyms always verify. More formally, for all sk , open, open′ such that NymVerify(params, nym, sk ,

open) = 1 and NymVerify(params, nym′, sk , open′) = 1, Pr[π
$←− CredProve(params, sk , nym, open, nym′,

open′, cred) : CredVerify(params, pk0, nym′, `, π) = 1] = 1.

In what follows, we use the notation y ∈ D(x) to denote that Pr[D(x) = y] > 0; e.g., params ∈
Setup(1k) indicates that params might have been produced by Setup (using some appropriate random-
ness).
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Definition 2.3 (Correctness). A delegatable anonymous credentials scheme (Setup,KeyGen,NymGen,
NymVerify, Issue,CredProve,CredVerify,Delegate) is correct if for all params ∈ Setup(1k) and (pk0,
sk0) ∈ KeyGen(params), the following properties are satisfied:

• Valid pseudonyms verify; i.e., for all (nym, open) ∈ NymGen(params, sk0), NymVerify(params,
nym, sk0, open) = 1.

• Only valid credentials verify; i.e., if there exist sk, open, and open′ with NymVerify(params, nym, sk ,
open) = 1 and NymVerify(params, nym′, sk , open′) = 1, such that CredVerify(params, pk0, nym′, `,
CredProve(params, sk , nym, open, nym′, open′, cred)) = 1, then cred is a valid credential.

• The credential output by Issue verifies; i.e., for all (pk , sk) ∈ KeyGen(params), (nym, open) ∈
NymGen(params, sk), and cred ∈ Issue(params, sk0, pk0, nym), cred is a valid level-1 credential,
rooted at pk0 and belonging to nym.

• An honestly delegated credential verifies; i.e., for all (pk , sk), (pknew , sknew ) ∈ KeyGen(params),
(nym, open) ∈ NymGen(params, sk), (nymnew , opennew ) ∈ NymGen(params, sknew ), valid level-`
credentials cred rooted at pk0, and cred′ ∈ Delegate(params, sk , nym, open, nymnew , cred), cred′ is
a valid level-`+ 1 credential, rooted at pk0 and belonging to nym.

Definition 2.4 (Anonymity). A delegatable anonymous credentials scheme (Setup,KeyGen,NymGen,
NymVerify, Issue,CredProve,CredVerify,Delegate) is anonymous if there exist PPT algorithms SimSetup,
SimCred, SimProve, and VerifyPK such that the following properties are satisfied:

• For all params ∈ Setup(1k), VerifyPK(params, pk0, sk0) = 1 if and only if (pk0, sk0) ∈ KeyGen(params).

• The pseudonyms are hiding even given the trapdoors, i.e. for a bit b and a PPT adversary A,
define pA

b (k) to be the probability of the event that b′ = 0 in the following game:

– Step 1. (params, τs, τe)
$←− SimExtSetup(1k).

– Step 2. (vk0, sk0, vk1, sk1, state)
$←− A(params, τs, τe).

– Step 3. If VerifyPK(params, vk0, sk0) = 0 or VerifyPK(params, vk1, sk0) = 0, output ⊥.
Otherwise, compute (nym, open)← NymGen(params, sk b).

– Step 4. b′
$←− A(state, nym).

Then for all PPT algorithms A, there exists a negligible function ν(·) such that |pA
0 (k)− pA

1 (k)| <
ν(k).

• The simulator SimCred can simulate issuing credentials; i.e. for all PPT adversaries A,

Pr[params
$←− Setup(1k) : AIssue′(params,·,·,·)(params) = 1]

≈ Pr[(params, τs)
$←− SimSetup(1k) : ASimCred′(params,τs,·,·,·)(params) = 1],

where these oracles behave as follows: given (sk0, pk0, nym), both Issue′ and SimCred′ output
⊥ if VerifyPK(params, pk0, sk0) = 0; otherwise, Issue′ outputs Issue(params, sk0, pk0, nym) and
SimCred′ outputs SimCred(params, τs, pk0, nym, 1).

• The simulator SimCred can simulate delegation of credentials at any level `; i.e., for a bit b and
a PPT adversary A, define pA

b (k) to be the probability of the event that b′ = 0 in the following
game:

– Step 1. (params, τs)
$←− SimSetup(1k).

– Step 2. (state, skold , nymold , openold , nymnew , pk0, `, cred)
$←− A(params, τs).
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– Step 3. If NymVerify(params, nymold , skold , openold ) = 0 or cred is not a valid level-` − 1
credential rooted at pk0 belonging to nymold , output ⊥.1 Otherwise,

cred′
$←−

{
Delegate(params, skold , nymold , openold , nymnew , cred) if b = 0
SimCred(params, τs, pk0, nymnew , `) if b = 1

– Step 4. b′
$←− A(state, cred′).

Then for all PPT algorithms A, there exists a negligible function ν(·) such that |pA
0 (k)− pA

1 (k)| <
ν(k).

• The simulator SimProve can simulate proving credentials for any level `; i.e., for a bit b and a
PPT adversary A, define pA

b (k) to be the probability of the event that b′ = 0 in the following game:

– Step 1. (params, τs)
$←− SimSetup(1k).

– Step 2. (state, pk0, sk , nym, open, nym′, open′, `, cred)
$←− A(params, τs).

– Step 3. If NymVerify(params, nym, sk , open) = 0 or NymVerify(params, nym′, sk , open′) = 0
or cred is not a valid level-` − 1 credential rooted at pk0 and belonging to nym, output ⊥.
Otherwise,

π
$←−

{
CredProve(params, sk , nym, open, nym′, open′, cred) if b = 0
SimProve(params, τs, pk0, nym′, `) if b = 1

– Step 4. b′
$←− A(state, cred′).

Then for all PPT algorithms A, there exists a negligible function ν(·) such that |pA
0 (k)− pA

1 (k)| <
ν(k).

3 Defining Malleable Signatures

Formally, a malleable signature scheme consists of four algorithms: KeyGen, Sign, Verify, and SigEval.
The first three comprise a standard signature; the additional algorithm, SigEval, on input the verification
key vk , messages ~m = (m1, . . . ,mn), signatures ~σ = (σ1, . . . , σn), and a transformation T on messages,
outputs a signature σ′ on the message T (~m). (Here, and in all of our definitions, we consider the most
general case wherein the transformation may combine many messages. Our construction in Section 5,
however, supports only unary transformations; i.e., those operating on a single message.)

Definition 3.1 (Malleability). A signature scheme (KeyGen,Sign,Verify) is malleable with respect to a
set of transformations T if there exists an efficient algorithm SigEval that on input (vk , T, ~m,~σ), where

(vk , sk)
$←− KeyGen(1k), Verify(vk , σi,mi) = 1 for all i, and T ∈ T , outputs a valid signature σ for the

message m := T (~m); i.e., a signature σ such that Verify(vk , σ,m) = 1.

Here we immediately note one key notational difference with the previous definitions of Ahn et al. [3]
and Attrapadung et al. [4]; whereas their definitions were given with respect to a predicate on input and
output messages, we found it more natural to instead consider the set of allowed transformations. (This
was especially natural given that our construction of a malleable signature uses a malleable proof, which
is itself defined in the context of transformations.) By using transformations, we inherently capture the
dual requirements that the result of an operation be efficiently computable, and that an adversary
know the transformation that was applied; these requirements could also potentially be captured using
predicates (e.g., by using an optional witness input to the predicate), but in a more roundabout way.

1By correctness, to test this latter property efficiently it suffices to form a proof of possession of cred and then see if it
verifies, as only valid credentials verify.
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3.1 Simulation-based definitions for malleable signatures

In order to achieve the stronger notions of unforgeability and context hiding needed to support cre-
dentials, we begin with the idea of a simulatable signature, introduced by Abe, Haralambiev, and
Ohkubo [2, 1], in which there are two indistinguishable ways of producing a signature: using the signing
key and the standard signing algorithm, or using a global trapdoor and a simulated signing algorithm.
Our reasons for using simulatability are two-fold: first, it allows us to easily consider the notion of
context hiding with respect to adversarially-chosen keys, as well as a simpler notion for signature un-
forgeability (much as Ahn et al. used context hiding to achieve a simpler version of their unforgeability
definition). Second, simulatability lines up nicely with the anonymity requirements for credentials, in
which there should exist a simulator that can simulate credentials.

Before we present our definition of simulatability — which is somewhat modified from the original;
in particular they required only that simulated signatures verify, whereas we require them to be indis-
tinguishable from standard signatures — we must expand the standard notion of a signature scheme to
consider signature schemes in which the key generation process is split up into two parts: a trusted
algorithm Gen for generating “universal” parameters crs (we can think of these as the setting; e.g., the
description of a group), and an algorithm KeyGen that, given these parameters, generates a keypair
(vk , sk) specific to a given signer.

Definition 3.2 (Simulatability). A signature scheme (Gen,KeyGen,Sign,Verify) is simulatable if there
exists an additional PPT algorithm KeyCheck that, on input crs, vk, and sk, outputs whether or not
(vk , sk) is in the range of KeyGen(crs), and a PPT simulator (SimGen, SimSign) such that the CRS in

(crs, τs)
$←− SimGen(1k) is indistinguishable from crs

$←− Gen(1k) and signatures produced by SimSign are
indistinguishable from honest signatures; i.e., for all PPT A,

Pr[crs
$←− Gen(1k) : AS(crs,·,·,·)(crs) = 1] ≈ Pr[(crs, τs)

$←− SimGen(1k) : AS′(crs,τs,·,·,·)(crs) = 1],

where, on input (vk , sk ,m), S outputs ⊥ if KeyCheck(crs, vk , sk) = 0 and Sign(crs, sk ,m) otherwise, and
S′ outputs ⊥ if KeyCheck(crs, vk , sk) = 0 and SimSign(crs, τs, vk ,m) otherwise.

Although simulatability might seem to be a fairly strong property, we show in Appendix B that any
non-simulatable signature scheme in the standard model can be easily transformed into a simulatable
signature scheme in the CRS model (i.e., using split Gen and KeyGen algorithms) by adding a proof
of knowledge to the public key. Our signature construction in Section 5 also achieves simulatability
directly by using cm-NIZKs.

3.2 Simulation context hiding

With simulatability in hand, we next present a definition of context hiding that requires transformed
signatures to be indistinguishable from freshly simulated signatures on the transformed messages; note
that if regular signatures were used instead of simulated signatures, this would be quite similar to the
standard notion of context hiding. As mentioned above, however, incorporating simulatability allows
us to easily build in the notion of adversarially-generated keys, which will be especially useful for our
credentials application.

Definition 3.3 (Simulation context hiding). For a simulatable signature (Gen,KeyGen, Sign,Verify,SigEval)
with an associated simulator (SimGen,SimSign), malleable with respect to a class of transformations T ,
and an adversary A and a bit b, let pA

b (k) be the probability of the event that b′ = 0 in the following
game:

• Step 1. (crs, τs)
$←− SimGen(1k).
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• Step 2. (state, vk , ~m,~σ, T )
$←− A(crs, τs).

• Step 3. If Verify(crs, vk , σi,mi) = 0 for some i or T /∈ T , abort and output ⊥. Otherwise, form

σ
$←− SimSign(crs, τs, vk , T (~m)) if b = 0, and σ

$←− SigEval(crs, vk , T, ~m,~σ) if b = 1.

• Step 4. b′
$←− A(state, σ).

Then the signature scheme satisfies simulation context hiding if for all PPT algorithms A there exists
a negligible function ν(·) such that |pA

0 (k)− pA
1 (k)| < ν(k).

Unsurprisingly, as we show in Appendix B, by incorporating the notion of adversarially-generated
keys we provide a strictly stronger definition than any of the existing definitions for computational con-
text hiding. While Ahn et al. and Attrapadung et al. both provide statistical variants on context hiding,
we cannot hope to simultaneously achieve statistical hiding and a meaningful notion of extractability
in our unforgeability definition.

3.3 Simulation unforgeability

The main point at which our unforgeability definition diverges significantly from previous definitions
is in considering how to check whether a message and signature output by the adversary are in fact a
forgery, or whether they were instead obtained using a valid transformation from the signatures issued
by the signer. For many simple classes of transformations this may be easy to do given the set of signed
messages, but for classes of transformations that are exponentially (or even infinitely) large, it is not
clear that this can be done in an efficient manner. Whereas previous definitions for unforgeability were
limited to these simple classes of transformations (as was explicitly acknowledged by Ahn et al., who
point out that for many predicates it may be impossible to verify whether or not the adversary has
won their unforgeability game), for our credentials application it is crucial that the winning conditions
be efficiently testable, even in the face of a complex and infinitely large class of unary transformations;
beyond efficient testability, credentials inherently require that signatures can’t be transformed without
knowledge of some appropriate secret information.

Translating this requirement back to malleable signatures, we therefore require that an adversary
knows which valid transformation it is applying in order to generate a transformed signature; again, this
is quite different from previous definitions, that require only that there exists some valid transformation
corresponding to any signature produced by the adversary. We build in this requirement by using
an extractor that — given the produced message and signature, as well as the set of signed messages —
produces the transformation (if one exists) that was used to get from the signed message to the produced
message; checking if the adversary won is then as simple as checking if this extracted transformation is
in the allowed class. Note that giving the extractor the set of signed messages is a deviation from the
standard simulation-sound extractability approach for proofs; this is because in a proof system, it is
impossible to describe all the proved statements, as the adversary can form proofs himself. Signatures,
however, should be created only with the signing key and thus this notion is meaningful; furthermore, it
allows us to support larger classes of transformations, such as n-ary transformations, that would seem
to be impossible without this extra information.

By using simulatability, we are able to replace all honestly generated and transformed signatures
with signatures generated by a simulator; this means that we can simply give the adversary access to
an oracle that generates simulated signatures, which has the advantage that we end up with a much
cleaner definition than the main one of Ahn et al. (they also provide a similar simplification using
the notion of statistical context hiding). The result is a definition similar to that of simulation-sound
extractability [22, 28], in which we simulate and extract at the same time.

To formalize this game, in which we need to both simulate and extract, we require an amplified setup,
SimExtGen, that outputs a tuple (crs, τs, τe); we then require the (crs, τs) part of this to be distributed
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identically to the output of SimGen, and we now give τe as input to SigExt. To cover the case of simple —
but potentially n-ary — transformations, where not all the information about a transformation can be
encoded in the signature, the extractor is also given access to the query history Q.

Definition 3.4 (Simulation unforgeability). For a simulatable signature (Gen,KeyGen,Sign,Verify,SigEval)
with an associated PPT simulator/extractor (SimExtGen, SimSign,SigExt) that is malleable with respect
to a class of transformations T , an adversary A, and a table Q = Qm × Qσ that contains messages
queried to SimSign and their responses, consider the following game:

• Step 1. (crs, τs, τe)
$←− SimExtGen(1k); (vk , sk)

$←− KeyGen(crs).

• Step 2. (m∗, σ∗)
$←− ASimSign(crs,τs,vk ,·)(crs, vk , τe).

• Step 3. (~m′, T )← SigExt(crs, vk , τe,m
∗, σ∗, Q).

Then the signature scheme satisfies simulation unforgeability if for all such PPT algorithms A there
exists a negligible function ν(·) such that the probability (over the choices of KeyGen, SimSign, and A)
that Verify(vk , σ∗,m∗) = 1 and (m∗, σ∗) /∈ Q but either (1) ~m′ 6⊆ Qm, (2) m∗ 6= T (~m′), or (3) T /∈ T is
at most ν(k).

Having now argued that our definition is significantly stronger than previous definitions, one might
be concerned that our definition might be overly restrictive, in the sense that it might rule out previous
constructions or many interesting classes of transformations. As we show in Appendix B, however,
when considering many transformation classes, including essentially all those for which constructions
are known, our definition of unforgeability is equivalent to that of Ahn et al. (with respect to simulatable
signatures which, as mentioned above, can be easily and generically obtained from non-simulatable
signatures). Thus, although our definition does automatically rule out certain classes of transformations
(i.e., those where the transformation cannot be efficiently derived given the query list and some limited
amount of extra information), to date this does not seem to be a significant limitation on the schemes
we can construct.

4 Delegatable Anonymous Credentials from Malleable Signatures

Recall the desired functionality of a credential system: there are various users, each in possession of some
secret key, who can use different pseudonyms to represent themselves to other participants; a credential
authority (CA) publishes some public key pk . To form a pseudonym, a user Alice can compute a
commitment to her secret key skA; again, each user might know her under a different pseudonym. The
CA may issue a credential to Bob, known to it by the pseudonym B1, by forming a signature on B1 using
sk ; this signature attests to the fact that the CA issued a level-1 credential to the user who owns the
pseudonym B1. Bob might now wish to do one of two things with this credential: he can either prove
possession of this credential to another user, who might know him under a different pseudonym B2, or
he can delegate this credential to another user, Carol, whom he knows under the pseudonym C1. To
delegate, Bob can give to Carol a level-2 credential belonging to her pseudonym C1, that is “rooted” at
the authority pk ; note that Bob shold only be able to perform this operation if he is the rightful owner
of the pseudonym B1 to which the credential was issued. In order to fit this framework, credentials
must therefore reveal three pieces of information: the root authority, denoted pk0, the recipient of the
credential, denoted nymr, and the level of the credential, denoted `.

4.1 Allowable transformations

First, let us describe all of the components in the above landscape in terms of commitments, messages,
signatures, and transformations. We already saw that pseudonyms are represented as commitments;
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this leaves delegation and issuing of credentials, which will be represented using transformations, and
credentials and proofs of possession, which will be represented using signatures.

Intuitively, to create an initial credential, the root authority signs the message m = (nym, 1), us-
ing a signing key pair (vk , sk), to obtain a signature σ; the credential is the tuple (vk , nym, 1, σ),
and anyone can verify that this is a valid credential by running the signature verification algorithm
Verify(vk , σ, (nym, 1)). To delegate, the user corresponding to nym can maul the signature σ, using
SigEval, to specify a new recipient nym′ and increase the level.

This intuitive construction, however, does not contain enough information to allow users to prove
possession of credentials. To do this, we add a bit of information to the message, meaning messages are
now of the form m = (nym, `, flag), where either flag = credential (to indicate that Alice is delegating a
credential) or flag = proof (to indicate that Alice is proving possession of a credential). Delegation can
still proceed in the same way as before, but now Alice can additionally prove possession of the credential
by switching the flag from credential to proof, and changing the recipient to a fresh pseudonym nym′

(that still belongs to Alice); this means that a proof object is really still a credential.
Formally, messages to be signed are of the form m = (nym, `, flag), where nym is a pseudonym,

` is a level, and flag = credential/proof. In order to carry out a valid transformation and delegate
a credential to another pseudonym, nym′, one must know (sk , open) that corresponds to nym. Thus,
the description of a valid transformation that takes as input the message m = (nym, `, credential) and
outputs T (m) = (nym′, `+1, credential) must include (sk , open). In order to carry out the transformation
that allows the owner of nym to prove possession of a credential in a context where she is known by
another pseudonym, nym′, one needs to know (sk , open, open′) such that (sk , open) correspond to nym,
and (sk , open′) correspond to nym′. Thus, the description of a valid transformation that takes as input
the message m = (nym, `, credential) and outputs T (m) = (nym′, `, proof) must include (sk , open, open′).
More generally, transformations may take a level-` credential and output a level-`+ k credential, which
means that its description 〈T 〉 is of the form 〈T 〉 = ({nymj , sk j , openj}kj=1, nymnew , flag′), where flag′ =
credential means the transformation outputs a delegated credential and flag′ = proof means it outputs
a proof, and

T (nym, `, flag) :=


(nymnew , `+ k, credential) if nym1 = nym and flag = flag′ = credential
(nymnew , `+ (k − 2), proof) if nym1 = nym, flag = credential, and flag′ = proof
⊥ otherwise.

(1)
Thus, the set of allowable transformations Tdac consists of transformations whose description is

〈T 〉 = ({nymj , sk j , openj}kj=1, nymnew , flag′), whose input/output behavior is as in Equation 1, and such
that

1. A user needs a pseudonym to which a credential was issued before the user can delegate: k > 0.

2. A user can only delegate a credential he owns; i.e., he must know the opening of the pseudonym
to which it was issued: for commitment parameters params ′, nymj = Com(params, sk j ; openj) for
all 1 ≤ j ≤ k.

3. If this is a proof of possession, meaning flag′ = proof, then k ≥ 2 and 〈T 〉 must include the opening
of nymnew , so nymk = nymnew . Additionally, the owner of nymnew must be the same as the owner
of the pseudonym to which the credential was delegated, so skk = skk−1.

In terms of credential size, we can see that messages scale logarithmically with the number of levels
(as they need to represent the integer `), while the size of the description of a transformation scales
linearly. Since credentials should (as part of their functionality) explicitly reveal how many times they
have been delegated, this dependence seems inevitable.
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4.2 Our construction

Our construction follows the intuition developed above: to form a pseudonym, a user forms a commit-
ment to a signing secret key; to issue a credential, the root authority signs the recipient’s pseudonym
and the intended level of the credential; and to delegate and prove possession of a credential, a user
mauls the credential (i.e., signature) using one of the allowable transformations defined above. Formally,
we use a simulatable signature (Gen,KeyGen,Sign,Verify,SigEval), malleable with respect to Tdac, and a
commitment scheme (ComSetup,Com) as follows:

• Setup(1k): Compute crs
$←− Gen(1k) and params ′

$←− ComSetup(1k). Output params := (crs, params ′).

• KeyGen(params): Output (vk , sk)
$←− KeyGen(1k).

• NymGen(params, sk): Pick a random opening open, compute nym := Com(params ′, sk ; open), and
output (nym, open).

• NymVerify(params, nym, sk , open): Check that nym = Com(params ′, sk ; open); output 1 if this
holds and 0 otherwise.

• Issue(params, sk0, vk0, nymr): Compute σ
$←− Sign(crs, sk0, (nymr, 1, credential)) and output cred :=

(vk0, 1, nymr, σ).

• CredProve(params, sk , nym, open, nym′, open′, cred): Parse cred = (vk0, `, nym, σ) and abort if Verify(
crs, vk0, σ, (nym, `, credential)). Otherwise, set 〈T 〉 := (((nym, sk , open), (nym′, sk , open′)), nym′,

proof), compute σ′
$←− SigEval(crs, vk0, T, (nym, `, credential), σ), and output π := (nym′, σ′).

• CredVerify(params, vk0, nym, `, π): Parse π = (nym′, σ′); output 0 if nym′ 6= nym. Otherwise,
output Verify(crs, vk0, σ

′, (nym, `, proof)).

• Delegate(params, skold , nymold , openold , nymnew , cred): Parse cred = (vk0, `, nymold , σ) and abort
if Verify(crs, vk0, σ, (nym, `, credential)). Otherwise, set 〈T 〉 := ((nymold , skold , openold ), nymnew ,

credential), compute σ′
$←− SigEval(crs, vk0, T, (nymold , `, credential), σ), and output cred′ := (vk0, `+

1, nymnew , σ
′).

Theorem 4.1. If the commitment scheme is computationally hiding and perfectly binding, and the
signature is simulatable, simulation unforgeable, and simulation context hiding with respect to Tdac,
then the above construction describes a secure delegatable anonymous credentials scheme, as defined in
Section 2.

In the next section, we see how to instantiate the malleable signature, using cm-NIZKs, to achieve
the required malleability and security properties. As we can instantiate both the cm-NIZK — and thus
the malleable signature — and the commitment scheme using the Decision Linear assumption [11], the
security of our entire credentials construction is based on this relatively mild assumption.

To prove Theorem 4.1, we break it up into three lemmas, one for each desired property: correctness,
anonymity, and unforgeability.

Lemma 4.2. If the commitment scheme is correct, and the signature scheme is correct and malleable,
as defined in Definition 3.1, the above construction describes a correct DAC scheme.

Proof. By the correctness of the commitment scheme, valid pseudonyms (i.e., pseudonyms produced
by NymGen) always verify. To see that CredProve produces a verifying proof only when given a valid
credentials as input, we observe that verifying credentials must contain a valid signatures, as otherwise
a proof under any pseudonym would fail. Thus by malleability the π output by CredProve verifies for
all pseudonyms and thus the credential is valid. To see that honestly issued credentials also verify,
we observe that by signature correctness the credential output by Issue is a valid credential, and by
malleability the π output by CredProve verifies as well. Similarly, by malleability the credential output
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by Delegate is a valid credential, and again by malleability the π output by CredProve will verify as
well.

Lemma 4.3. If (Gen,KeyGen,Sign,Verify,SigEval) is simulatable and simulation context hiding (as
defined in Definitions 3.2 and 3.3 respectively), and the commitment scheme is hiding, then the above
construction describes an anonymous DAC scheme, as defined in Definition 2.4.

Proof. To prove this, we must prove that the four properties described in Definition 2.4 are satisfied.
We take each of them in turn.

We first define the simulators SimSetup and SimCred and VerifyPK. The simulator SimSetup runs

(crs, τs)
$←− SimGen(1k) and params ′

$←− ComSetup(1k), and outputs (params := (crs, params ′), τs).
The simulator SimCred on input (params, τs, vk0, nymnew , `) outputs (vk0, ` + 1, nymnew ,SimSign(crs,
τs, vk0, (nymnew , `+ 1, credential)). Finally, VerifyPK is defined in terms of KeyCheck.

Pseudonym hiding. This follows directly from the hiding property of the commitment.

Issue simulatability. We argue that signature simulatability implies that an adversary cannot dis-
tinguish between honest parameters and honestly issued credentials and parameters formed by SimSetup
and credentials formed by SimCred.

To do this, we assume there exists an adversary A that can distinguish between these two cases with
some non-negligible advantage ε and use it to construct an adversary B that breaks simulatability with

the same advantage. To start, B receives as input a CRS crs. It now forms params ′
$←− ComSetup(1k)

and gives params := (crs, params ′) to A. When A queries for (sk0, pk0, nymr), B queries (pk0, sk0,m =
(nymr, 1, credential)) to the signing oracle of the simulatability game to get back a signature σ; it then
returns (pk0, 1, nymr, σ) to A. At the end of the game, if A guesses b′ = 0 then B guesses it is using
an honest CRS and interacting with the signer, and if A guesses b′ = 1 then B guesses it is using a

simulated CRS and interacting with the simulator. As B gives to A crs
$←− Gen(1k) and credentials of

the form (pk0, 1, nymr, σ
$←− Sign(crs, sk0, (nymr, 1, credential))) = Issue(params, sk0, pk0, nymr) when it

is interacting with the real signer using an honest CRS, and crs
$←− SimGen(1k) and credentials of the

form (pk0, 1, nymr, σ
$←− SimSign(crs, τs, pk0, (nymr, 1, credential))) = SimCred(params, τs, pk0, nymr, 1)

when it is interacting with SimSign using a simulated CRS, it therefore perfectly simulates the behavior
that A expects. As B furthermore succeeds whenever A does, B succeeds with the same non-negligible
advantage.

Delegation simulatability. We argue that simulatable context hiding implies that an adversary
cannot distinguish between honestly delegated credentials and ones formed by SimCred.

To prove this we assume there exists an adversary A that can distinguish between credentials from
Delegate and from SimCred with some non-negligible advantage ε and use it to construct an adversary
B that breaks simulation context hiding with the same advantage. To start, B receives as input a pair

(crs, τs); it then forms params ′
$←− ComSetup(1k) and gives params := (crs, params ′) to A. When A

outputs (skold , nymold , openold , nymnew , pk0, `, cred), B first checks that NymVerify(params, nymold , skold ,
openold ) = 1 and that cred is a valid level-` credential rooted at pk0; it aborts and outputs ⊥ if
any of these checks fail. Otherwise, B parses cred = (pk0, `, nymold , σ) and sets T := ((nymold , skold ,
openold ), nymnew , credential) andm := (nymold , `, credential); it then outputs its own tuple (pk0, (m,σ), T )
to get back a signature σ′, and returns (pk0, `+ 1, nymnew , σ

′) to A. At the end, B outputs the opposite

guess bit as A. As B returns (pk0, `+1, nymnew , σ
′ $←− SimSign(crs, τs, pk0, T (m))) = SimCred(params, τs,

pk0, nymnew , `) in the case that b = 0, and (pk0, ` + 1, nymnew , σ
′ $←− SigEval(crs, pk0, T, (m,σ))) =
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Delegate(params, skold , nymold , openold , nymnew , cred) in the case that b = 1, it therefore perfectly simu-
lates the behavior that A expects. As B furthermore guesses correctly whenever A does (as its b = 0 is
A’s b = 1 case, and vice versa), B succeeds with the same non-negligible advantage.

Proof simulatability. To prove this, we first define the simulator SimProve: on input (params, τs, vk0,
nym′, `), it outputs SimSign(crs, τs, vk0, (nym′, `, proof)). Now, we assume there exists an adversary
A that can distinguish between honest proofs formed by CredProve and those formed by SimProve
with some non-negligible advantage ε and use it to construct an adversary B that breaks simula-
tion context hiding with the same advantage. To start, B receives as input a pair (crs, τs). It then

generates params ′
$←− ComSetup(1k) and gives params := (crs, params ′) to A. When A outputs

(pk0, sk , nym, open, nym′, open′, `, cred), B first checks that NymVerify(params, nym, sk , open) = 1, that
NymVerify(params, nym′, sk , open′), and that cred is a valid level-` credential rooted at pk0; if any of
these checks fails, it aborts and outputs ⊥. Otherwise, it parses cred = (vk0, `, nym, σ) and sets T :=
(((nym, sk , open), (nym′, sk , open′)), nym′, proof) andm := (nym, `, credential), and outputs (vk0, (m,σ), T )
as its own tuple to receive back a signature σ′. It then gives (nym′, σ′) back to A, and at the end outputs
the opposite guess bit as A.

To argue that interactions with B are indistinguishable from those that A expects, we observe that

if b = 0, B gives (nym′, σ′
$←− SigEval(crs, pk0, T, (m,σ))) = CredProve(params, sk , nym, open, nym′, open′,

cred), which is exactly what A expects in the case that its own b′ = 1. Similarly, if b = 1, then B gives

(nym′, σ′
$←− SimSign(crs, τs, pk0, T (m) = (nym′, `, proof))), which is exactly what A expects in the case

that its own b′ = 0. B therefore perfectly simulates the bheavior that A expects; as B furthermore
guesses correctly whenever A does, B succeeds with the same non-negligible advantage.

Lemma 4.4. If (Gen,KeyGen, Sign,Verify, SigEval) is simulation unforgeable, as defined in Definition 3.4,
then the above construction describes an unforgeable DAC scheme, as defined in Definition 2.1.

Proof. To prove this, we first describe the algorithms SimExtSetup and Extract: SimExtSetup, on in-

put 1k, runs (crs, τs, τe)
$←− SimExtGen(1k) and computes params ′

$←− ComSetup(1k); it then outputs
params := (crs, params ′), τs, and τe. The algorithm Extract, on input (params, τe, (vk0, nym, `), π =
(nym′, σ′)), computes (m′ := (nym′′, `′, flag′), T := (S, nymnew , flag)) := SigExt(crs, τe, vk0, (nym′, `, proof),
σ′, Q)2 and outputs (S, `′).

To argue that commitments are still hiding and binding even when given the trapdoors τs and τe, we
observe that the commitment parameters are generated completely independently from the parameters
generated by SimExtGen, meaning that τe and τs provide no meaningful information to help break either
hiding or binding.

Now, we first assume there exists an adversary A that can distinguish between honest and simulated
parameters with some non-negligible advantage ε and use it to construct an adversary B that distin-
guishes between honest and simulated signature parameters with the same advantage. The reduction is

simple: B, on input (crs, τs), generates params ′
$←− ComSetup(1k) and gives params := (crs, params ′) to

A; B then outputs the same guess bit as A. As B simulates exactly the behavior that A expects, and
furthermore B guesses correctly whenever A does, B succeeds with the same advantage.

Next, we assume there exists an adversary A that can break credential unforgeability with some
non-negligible advantage ε and use it to construct an adversary B that breaks simulation unforgeability
for the signature with the same advantage. To start, B receives as input (crs, vk0). It then generates

params ′
$←− ComSetup(1k) and gives params := (crs, params ′) and vk0 to A. Now, when A queries its

SimCred oracle on input nym and `, B queries its SimSign oracle on input m = (nym, `, credential) to

2Recall that, for both signatures and credentials, the extractor is given access to the queries Q made to the simulator.
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receive back a signature σ; it then returns (vk0, `, nym, σ) to A. Similarly, when A queries its SimProve
oracle on input nym′ and `, B queries its SimSign oracle on input m = (nym′, `, proof). At the end, when
A outputs ((nym, `), π = (nym′, σ′)), B outputs (m∗ = (nym′, `, proof), σ′).

To argue that interactions with B are indistinguishable from those that A expects, we observe that
B mimics exactly the behavior of SimExtSetup, SimCred, and SimProve. To further see that B wins at
its game whenever A does, we consider (m′ = (nym′′, `′′, flag′′), 〈T 〉 = ({(nym′j , sk ′j , open′j)}ki=1, nymnew ,

flag′) := SigExt(crs, sk , vk ,m∗, σ′) and ({(nymj , sk j , openj)}kj=1, `
′) := Extract(params, τe, (vk0, nym, `), π).

By the definition of Extract, we have nym′j = nymj , sk ′j = sk j , and open′j = openj for all j, 1 ≤ j ≤ k;
we similarly have that `′′ = `′. We now examine the three winning conditions for A:

• If (nym1, `1) for some `1 ≤ ` was not queried to SimCred, then there are two possibilities: either
m′ was not queried to SimSign, or T (m′) 6= m∗. To see this, we observe that, in the case that
nym1 = nym′′ and flag′′ = credential, if (nym1, `1) was not queried to the SimCred oracle then,
by how B’s behavior is defined, (nym1, `

′, credential) was not queried to SimSign; as in this case
m′ = (nym1, `

′, credential), we therefore have that m′ was not queried to SimSign.
In the case that either nym1 6= nym′′ or flag′′ = proof, by the definition of T we would have that
T (m′) = ⊥. As m∗ 6= ⊥, this implies that T (m′) 6= m∗.
As both of these cases result in B winning the simulation unforgeability game, we therefore have
that B wins at its game whenever A wins by creating a new credential (i.e., whenever A falls into
this first winning condition).

• If NymVerify(params, nymj , sk j , openj) = 0 for some j, then, by definition, T /∈ Tdac, which means
B wins as well.

• If skk−1 6= skk then, again by definition, T /∈ Tdac and B wins as well.

As any winning condition for A therefore results in a winning condition for B, we can conclude that
B will succeed at the simulation unforgeability game with the same probability that A succeeds at the
credential unforgeability game.

5 Malleable Signatures from cm-NIZKs

Now that we have seen how to use malleable signatures to construct delegatable anonymous credentials,
we must also consider how to construct malleable signatures. In this section, we show how to use
cm-NIZKs (as defined in Section 2) to construct a malleable signature meeting the requirements for
the DAC construction: namely, simulatability, simulation unforgeability, simulation context hiding,
and malleability with respect to Tdac. After providing a generic construction of malleable signatures
from cm-NIZKs, we then discuss how to instantiate the cm-NIZK (and thus the malleable signature)
concretely.

5.1 Our construction

Intuitively, our construction is extremely simple: to sign a message, just prove knowledge of the signing
key! While this might seem to produce signatures that are independent of the message being signed, we
show that by including the message in the instance, we can bind the message and signature together (as
was also done, e.g., by Chase and Lysyanskaya [20]); furthermore, defining transformations on signatures
is quite straightforward as well, since signatures in our construction are just malleable proofs.

Formally, we use a hard relation Rpk with generator G and a cm-NIZK (CRSSetup,P,V,ZKEval),
malleable with respect to some class of transformations Tnizk, for the relation R such that ((pk ,m), sk) ∈
R if and only if (pk , sk) ∈ Rpk . We then construct a simulatable signature, malleable with respect to a
class of transformations Tsig, as follows:
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• Gen(1k): Output crs
$←− CRSSetup(1k).

• KeyGen(crs): Compute (pk ′, sk ′)
$←− G(1k); output vk := pk ′ and sk := (vk , sk ′).

• Sign(crs, sk ,m): Parse sk = (pk ′, sk ′) and output π
$←− P(crs, (pk ′,m), sk ′).

• Verify(crs, vk , σ,m): Output V(crs, (vk ,m), σ).

• SigEval(crs, vk , T,m, σ): Set Tinst to be such that Tinst(vk ,m) = (vk , T (m)) and Twit = id; i.e.,

such that Twit(sk ′) = sk ′. Return σ′
$←− ZKEval(crs, (Tinst, Twit), (vk ,m), σ).

Looking at the definition of SigEval, we can see that the malleability of our signature construction
is very closely linked to the malleability of the proof. If we therefore wished to construct a signature
malleable with respect to a specific class of transformations Tsig, we would require a proof malleable
with respect to the class Tnizk that contained transformations of the form (Tinst = (id, T ), Twit = id) for
all T ∈ Tsig.

Theorem 5.1. If (CRSSetup,P,V,ZKEval) is zero knowledge, then (Gen,KeyGen, Sign,Verify, SigEval)
is simulatable, as defined in Definition 3.2.

Proof. To prove this, we first define KeyCheck, as well as the simulator (SimGen,SimSign). For KeyCheck,
we can define KeyCheck(crs, vk , sk) to be 1 if (vk , sk) ∈ Rpk and 0 otherwise. For the simulator,

we use the zero-knowledge simulator (S1, S2): SimGen outputs (crs, τs)
$←− S1(1

k), and SimSign, on
input (crs, vk , τs,m), outputs S2(crs, τs, (vk ,m)). Now, we assume there exists an adversary A that can
distinguish between interactions with SimSign and the honest signer with some non-negligible advantage
ε and use it to construct an adversary B that can distinguish between interactions with the prover and
simulator with the same advantage.

To start, B receives as input a CRS crs, which it forwards to A. When A queries its oracle on inputs
pk ′, sk ′, and m, B first checks that (pk ′, sk ′) ∈ Rpk and outputs ⊥ if this does not hold. Otherwise, it
sends the query (x := (pk ′,m), w = sk ′) to its own oracle to get back a proof π, which it then forwards
(as σ) back to A. If A guesses it is interacting with the signer on an honest CRS then B guesses it
is interacting with the prover on an honest CRS, and if B guesses it is interacting with the simulated
signer on a simulated CRS then B guesses it is interacting with the simulator on a simulated CRS.

To see that interactions with B are distributed identically to those that A expects, we observe that,
in the case that the CRS is honest and B is interacting with the prover, B provides A with an honest CRS

and signatures of the form π
$←− P(crs, (pk ′,m), sk ′) = Sign(crs, sk ,m), which is exactly what A expects

in this case. Similarly, if the CRS is simulated and B is interacting with the simulator, then B provides

A with a simulated CRS and signatures of the form π
$←− S2(crs, τs, (pk ′,m)) = SimSign(crs, τs, pk ′,m),

which is again exactly what A expects. A will therefore succeed when interacting with B with the
same advantage ε; as B furthermore guesses correctly whenever A does, B will succeed with the same
advantage.

Theorem 5.2. If (CRSSetup,P,V,ZKEval) is CM-SSE with respect to the class of transformations Tnizk

and Rpk is a hard relation, then (Gen,KeyGen,Sign,Verify,SigEval) is simulation unforgeable with respect
to transformation class Tsig, as defined in Definition 3.4.

Proof. To prove this, we first define the algorithms SimExtGen and SigExt, using the algorithms SE 1 and

E2 that, by CM-SSE, we know exist for the proof. SimExtGen simply outputs (crs, τs, τe)
$←− SE 1(1

k);
because the (crs, τs) output by SE 1 are, by definition, distributed identically to those output by S1, and
furthermore SimGen runs S1, SimExtGen satisfies the constraint that its own (crs, τs) must be distributed
identically to that of SimGen. Now, SigExt, given (vk , τe,m, σ), runs E2(crs, τe, (vk ,m), σ) to get back a
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tuple (w, x′, (Tinst, Twit)); it then parses x′ = (pk ′,m′) and Tinst = T and outputs (m′, T ). We also use
the same simulator SimSign as in the proof of Theorem 5.1.

We now observe that, if there exists an adversary A that can break unforgeability with some non-
negligible probability ε, it must be the case that one of two events occurs with some non-negligible
probability: in the first, Event1, for (w, x′, T ) ← E2(crs, (pk ′,m∗), σ∗), w 6= ⊥ and (x,w) ∈ R. In the
second, Event2, we consider all other winning cases in the CM-SSE game; i.e., (x,w) /∈ R, x′ was not
queried to the S2 oracle, x 6= Tinst(x

′), or T /∈ T . We define e1 to be the probability that Event1
occurs, and e2 to be the probability that Event2 occurs. To see that, in the event that A wins the game,
either e1 or e2 must be non-negligible (i.e., either Event1 or Event2 must have taken place), we observe
that for A to have won, it must be the case that, for (m′, T ) := SigExt(vk , sk ,m, σ), either m′ wasn’t
queried to SimSign, T ∈ T and m∗ 6= T (m′), or T /∈ T . Based on the definition of SigExt, this first
case happens in the event that x′ = (pk ′,m′) wasn’t queried to S2, which is part of Event2. The second
case happens in the event that (x′, T ) 6= (⊥,⊥) and x 6= T (x′), which is also part of Event2. The third
case, on the other hand, might happen in the event that (x′, T ) 6= (⊥,⊥) and T /∈ T , or in the event
that (w, x′, T ) = (⊥,⊥,⊥); these are once again part of Event2. It also might happen in the event that
w 6= ⊥; in this case, if (x,w) ∈ R then we are in Event1, and if (x,w) /∈ R then we are in Event2. As
each winning case for A therefore implies that either Event1 or Event2 has taken place, it must be the
case that either e1 or e2 is non-negligible.

To first use Event1 to break the hardness of the relation, B receives as input a public key pk ′ for Rpk .

It then generates (crs, τs, τe)
$←− SE 1(1

k) and gives crs and pk ′ to A. When A queries its SimSign oracle,
B uses its knowledge of τs to execute the code honestly; similarly, when A queries its SigExt oracle,
B uses its knowledge of τe to execute the code honestly. Finally, when A outputs its pair (m∗, σ∗), B
computes (w, x′, T ) := E2(crs, τe, (pk ′,m∗), σ∗). If Event1 has occurred, then by definition w 6= ⊥ and
((pk ′,m∗), w) ∈ R; by definition of the relation R, this means that (pk ′, w) ∈ Rpk , and thus B can output
w to win its game. As B behaves honestly and interactions with B are thus distributed identically to
those that A expects, and further B succeeds whenever A does and Event1 occurs, B succeeds with
overall probability e1ε.

To use Event2 to break CM-SSE, C receives as input the pair (crs, τe); it then generates (pk ′, sk ′)
$←−

G(1k) and gives crs and pk ′ to A. When A queries its SimSign oracle on input m, C queries its own
S2 oracle on input (pk ′,m) and returns the resulting proof back to A. When A queries its SigExt
oracle, C uses its knowledge of τe to execute the code honestly. Now, when A outputs its pair (m∗, σ∗),
C computes (w, x′, T ) := E2(crs, τe, (pk ′,m∗), σ∗). If Event2 has occurred, then by definition one of
the winning cases for the CM-SSE game holds, and thus C can output (x := (pk ′,m∗), σ∗) to win its
game. As C generates vk honestly and returns values of the form S2(crs, τs, (pk ′,m)) = SimSign(vk =
(crs, pk ′), τs,m), interactions with it are distributed identically to those that A expects; furthermore, C
succeeds whenever A does and Event2 occurs, so C succeeds with overall probability e2ε. As ε is assumed
to be non-negligible, and by our discussion above so is either e1 or e2, the success probability of either
B or C is therefore non-negligible as well.

Theorem 5.3. If (CRSSetup,P,V,ZKEval) is strongly derivation private with respect to Tnizk, as de-
fined in Definition A.3, then (Gen,KeyGen, Sign,Verify, SigEval) satisfies simulation context hiding with
respected to Tsig, as defined in Definition 3.3.

Proof. To show this, we take an adversary A that can break simulation context hiding with some non-
negligible advantage ε and use it to construct an adversary B that breaks strong derivation privacy with
the same advantage.

To start, B will get as input a pair (crs, τs), which it then immediately forwards to A. When A out-
puts its challenge (pk ′, sk ′,m, σ, T ), B first checks that Verify((crs, pk ′), σ,m) = 1, KeyCheck(crs, pk ′, sk ′) =
1 and T ∈ T ; it aborts and outputs ⊥ if any of these checks fails. Otherwise, it sets Tinst := T and
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Twit := id and outputs (x := (pk ′,m), σ, (Tinst, Twit)) as its own challenge to get back a proof π′, which
it again forwards directly (as σ′) to A. Finally, when A outputs its guess bit b′, B outputs the same bit.

To see that interactions with B are distributed identically to those that A expects, we observe that the
pair (crs, τs) given to A is honestly computed. In addition, if Verify((crs, pk ′), σ,m) = 1 then, by defini-
tion, V(crs, (pk ′,m), σ) = 1; furthermore, if T ∈ T then, again by definition, (Tinst, Twit) ∈ Tnizk, meaning
that if B interprets A’s challenge tuple as valid, its own challenge tuple will be interpreted as valid as well.
As for the response, if b = 0 then B gets back S2(crs, τs, (pk ′,m)) = SimSign(vk = (crs, pk ′), τs,m), which
is exactly what A expects. Furthermore, if b = 1, then B gets back ZKEval(crs, (Tinst, Twit), (pk ′,m), σ) =
SigEval((crs, pk ′), T,m, σ), which is again exactly what A was expecting. As A therefore has the same
advantage interacting with B as it does normally, and furthermore B succeeds in guessing b whenever
A does, B succeeds with non-negligible advantage ε.

5.2 Instantiating our construction

In order to instantiate this malleable signature, we must consider concrete choices for the cm-NIZK
upon which it is based. Although Chase et al. already considered this question for certain classes of
transformations, we focus in particular on the specific class of credential transformations Tdac defined
in Section 4.1.

Two constructions of cm-NIZKs exist within the literature, both due to Chase et al.: their original
construction [17], based on Groth-Sahai proofs [30], and a more recent construction [18], based on
succinct non-interactive arguments of knowledge (SNARGs) and fully homomorphic encryption. While
the latter construction is less efficient, showing that it supports the class of transformations Tdac is
relatively straightforward: all we need to show is that the language and class of transformations are
what is called t-tiered ; this means that (1) every instance x in the language can be labeled with an
integer i = tier(x), and (2) every transformation T ∈ Tdac is such that tier(T (x)) > tier(x) for all x ∈ L
such that tier(x) < t, and T (x) = ⊥ if tier(x) = t.

To see that our language is t-tiered, we recall that the relation R in Section 5.1 was defined as
(x = (pk ,m), w = sk) ∈ R ⇔ (pk , sk) ∈ Rpk for a hard relation Rpk . For the credentials, we have
m = (nymr, `, b); we can therefore define tier(x) := `+b. To see that Tdac is also t-tiered, we observe that
〈T 〉 = ({nymi, sk i, openi}ki=1, nymnew , b

′), where it is required that k > 0. Looking at the two cases for
transformations in Equation 1, for the first we see that T (nymr, `, b) = (nymnew , `+ k, 0) if b = b′ = 0;
then tier(x) = `, tier(T (x)) = ` + k for k > 0, and thus tier(T (x)) > tier(x) as desired. In the second
case, T (nymr, `, b) = (nymnew , `+k−2, 1) if b = 0 and b′ = 1; here it is additionally required that k ≥ 2,
so tier(T (x)) = ` + k − 2 + 1 > ` = tier(x) and the condition is still satisfied. To finally satisfy the
requirement that T (x) = ⊥ if tier(x) = t, we could require that credentials can be delegated at most
t− 1 times (the last tier t would then be reserved for proving possession).

While the result of Chase et al. [18] therefore assures us that we can construct a cm-NIZK supporting
the desired class of transformations, we might also wish to instantiate our cm-NIZK using their first,
more efficient, construction. In order to do this, we first observe that the identity transformation must
always be allowable when using Groth-Sahai proofs, as they are inherently re-randomizable. After
therefore extending Tdac to include the identity, we show in Appendix C that our relation and class of
transformations are what is called CM-friendly ; this essentially means that all of the objects (instances,
witnesses, and transformations) can be represented as elements of a bilinear group and hence the system
is compatible with Groth-Sahai proofs. Although we end up using a slightly modified notion of CM-
friendliness (that allows for transformations to grow as credentials are delegated), we can show that our
notion of CM-friendliness still implies cm-NIZKs. We can therefore instantiate our malleable signature
with respect to Tdac using this more efficient construction.
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A Non-Interactive Proof Systems

A.1 Standard definitions for zero-knowledge proofs of knowledge

Definition A.1. [17] A set of algorithms (CRSSetup,P,V) constitute a non-interactive (NI) proof sys-
tem for an efficient relation R with associated language LR if completeness and soundness below are
satisfied. A NI proof system is extractable if, in addition, the extractability property below is satisfied.
A NI proof system is witness-indistinguishable (NIWI) if the witness-indistinguishability property below
is satisfied. An NI proof system is zero-knowledge (NIZK) if the zero-knowledge property is satisfied. A
NIZK proof system that is also extractable constitutes a non-interactive zero-knowledge proof of knowl-
edge (NIZKPoK) system. A NIWI proof system that is also extractable constitutes a non-interactive
witness-indistinguishable proof of knowledge (NIWIPoK) system.

1. Completeness [10]. For all crs
$←− CRSSetup(1k) and (x,w) ∈ R, V(crs, x, π) = 1 for all proofs

π
$←− P(crs, x, w).
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2. Soundness [10]. For all PPT A, and for crs
$←− CRSSetup(1k), the probability that A(crs) outputs

(x, π) such that x /∈ L but V(crs, x, π) = 1 is negligible. Perfect soundness is achieved when this
probability is 0.

3. Extractability [29]. There exists a PPT extractor E = (E1, E2) such that E1(1
k) outputs (crse, τe),

and E2(crse, τe, x, π) outputs a value w such that (1) any PPT A given σ cannot distinguish between
the honest CRS and one output by E1; i.e.,

Pr[crs
$←− CRSSetup(1k) : A(crs) = 1] ≈ Pr[(crse, τe)

$←− E1(1
k) : A(crse) = 1], and

and (2) for all PPT A, the probability that A outputs (x, π) such that V(crse, x, π) = 1 but
R(x,E2(crse, τe, x, π)) = 0 is negligible; i.e., there exists a negligible function ν(·) such that

Pr[(crse, τe)
$←− E1(1

k); (x, π)
$←− A(crse) : V(crse, x, π) = 1 ∧ (x,E2(crse, τe, x, π)) /∈ R] < ν(k).

Perfect extractability is achieved if this probability is 0, and crse is distributed identically to crs.

4. Witness indistinguishability [23]. For all (x,w1, w2) such that (x,w1), (x,w2) ∈ R, any PPT A
cannot distinguish between proofs for w1 and proofs for w2; i.e.,

Pr[crs
$←− CRSSetup(1k); (x,w1, w2)

$←− A(crs);π
$←− P(crs, x, w0) : A(π) = 1 ∧ (x,w0), (x,w1) ∈ R]

≈Pr[crs
$←− CRSSetup(1k); (x,w1, w2)

$←− A(crs);π
$←− P(crs, x, w1) : A(π) = 1 ∧ (x,w0), (x,w1) ∈ R].

Perfect witness indistinguishability is achieved when these two distributions are identical.

5. Zero knowledge [23]. There exists a polynomial-time simulator algorithm S = (S1, S2) such that
S1(1

k) outputs (crss, τs), and S2(crss, τs, x) outputs a value πs such that for all (x,w) ∈ R, a PPT
adversary A cannot distinguish between proofs produced by the prover and simulator; i.e., for all
PPT adversaries A,

Pr[crs
$←− CRSSetup(1k) : AP (crs,·,·)(crs) = 1] ≈ Pr[(crss, τs)

$←− S1(1k) : AS(crss,τs,·,·)(crss) = 1],

where, on input (x,w), P outputs ⊥ if (x,w) /∈ R and π
$←− P(crs, x, w) otherwise, and S also

outputs ⊥ if (x,w) /∈ R, and returns π
$←− S2(crss, τs, x) otherwise. Perfect zero knowledge is

achieved if for all (x,w) ∈ R, these distributions are identical.

A.2 Definitions for malleable proofs

Let R(·, ·) be a relation such that the corresponding language LR := {x | ∃w such that (x,w) ∈ R} is
in NP. As defined for malleable proofs [17], the relation is closed with respect to a transformation T =
(Tinst, Twit) if for every (x,w) ∈ R, (Tinst(x), Twit(w)) ∈ R. The formal definition of a malleable proof
extends the definition of a non-interactive proof (CRSSetup,P,V) by adding an additional algorithm
ZKEval, designed to transform proofs. More formally, ZKEval, on input the CRS crs, a transformation
T , an instance x and a proof π such that V(crs, x, π) = 1, outputs a proof π′ for x′ := Tinst(x) such that
V(crs, x′, π′) = 1. The proof system is then malleable with respect to a set of transformations T if for
every T ∈ T , ZKEval can be computed efficiently.

In addition to defining this basic notion of malleability, Chase et al. also defined how to mean-
ingfully control the malleability of a proof system by extending the strong notion of simulation-sound
extractability [28, 22] to deal with malleability; this means requiring that, for a set of transformations
T , if an adversary can produce a proof π for an instance x then the extractor should be able to extract
from π either a witness w or a transformation T ∈ T and previous instance x′ such that x = Tinst(x

′)
(the definition of simulation-sound extractability required only this first condition). More formally, this
is defined as follows:
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Definition A.2. [17] Let (CRSSetup,P,V,ZKEval) be a NIZKPoK system for an efficient relation R,
with a simulator (S1, S2) and an extractor (E1, E2). Let T be a set of unary transformations for the
relation R such that membership in T is efficiently testable. Let SE 1 be an algorithm that, on input 1k,
outputs (crs, τs, τe) such that (crs, τs) is distributed identically to the output of S1. Let A be given, let
Q := Qinst×Qproof be a table used to store the instances queried to S2 and the proofs given in response,
and consider the following game:

• Step 1. (crs, τs, τe)
$←− SE 1(1

k).

• Step 2. (x, π)
$←− AS2(crs,τs,·)(crs, τe).

• Step 3. (w, x′, T )← E2(crs, τe, x, π).

• Step 4. b← (w 6= ⊥ ∧ (x,w) /∈ R) ∨
((x′, T ) 6= (⊥,⊥) ∧ (x′ /∈ Qinst ∨ x 6= Tinst(x

′) ∨ T /∈ T )) ∨
(w, x′, T ) = (⊥,⊥,⊥)).

The NIZKPoK satisfies controlled-malleable simulation-sound extractability (CM-SSE, for short) with
respect to T if for all PPT algorithms A there exists a negligible function ν(·) such that the probability
(over the choices of SE 1, A, and S2) that V(crs, x, π) = 1 and (x, π) /∈ Q but b = 1 is at most ν(k).

Definition A.3. [17] For a non-interactive zero-knowledge proof system (CRSSetup,P,V,ZKEval) with
an associated simulation (S1, S2), an efficient relation R malleable with respect to T , an adversary A,
and a bit b, let pA

b (k) be the probability of the event that b′ = 0 in the following game:

• Step 1. (crss, τs)
$←− S1(1k).

• Step 2. (state, x1, π1, . . . , xq, πq, T )
$←− A(crss, τs).

• Step 3. If V(crss, xi, πi) = 0 for some i, 1 ≤ i ≤ q, or T /∈ T , abort and output ⊥. Otherwise,
form

π
$←−

{
S2(crss, Tinst(x1, . . . , xq)) if b = 0
ZKEval(crss, T, {xi, πi}qi=1) if b = 1.

• Step 4. b′
$←− A(state, π).

Then the proof system is strongly derivation private if for all PPT algorithms A there exists a negligible
function ν(·) such that |pA

0 (k)− pA
1 (k)| < ν(k).

B Relations between Malleable Signature Definitions

In this section we relate our simulation-based notions of unforgeability and context hiding (Defini-
tions 3.4 and 3.3, respectively) to definitions for homomorphic signatures as defined by Ahn et al. [3]
and Attrapadung et al. [4].

B.1 Previous definitions

To begin our comparison, we must first recall the specific definitions of Ahn et al. and Attrapadung et
al. to which we are comparing our own. We first recall the two main unforgeability definitions of Ahn
et al.; we refer to the first as existential unforgeability, and the second as NHU unforgeability.

Definition B.1 (Existential unforgeability). [3] For a signature (KeyGen,Sign,Verify,SigDerive) mal-
leable with respect to a predicate P , a table Q = Qm ×Qσ, and an adversary A, consider the following
game:
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• Step 1. (vk , sk)
$←− KeyGen(1k); S,Q← ∅.

• Step 2. (m∗, σ∗)
$←− ASign,SigDerive,Reveal(vk), where these oracles behave as follows:

Signsk (m) SigDerivepk ({hi}i,m′)) Reveal(h)

h
$←− H (hi,mi, σi)← S ∀i (h,m, σ)← S

add (h,m,Sign(sk ,m)) to S if P (~m,m′) = 1, pick h′
$←− H add (m,σ) to Q

return h add (h′,m′,SigDerive(vk , ~m,~σ,m′)) to S return σ
return h′

Then the signature scheme satisfies existential unforgeability if for all such PPT algorithms A there
exists a negligible function ν(·) such that the probability (over the choices of KeyGen, Sign, SigDerive,
A, and the handles) that Verify(vk , σ∗,m∗) = 1, and m∗ /∈ P ∗(Qm) is at most ν(k).3

The definition of NHU unforgeability is similar to that of existential unforgeability, with the excep-
tion that the Sign oracle is the only one provided.

Definition B.2 (NHU unforgeability). [3] For a signature (KeyGen,Sign,Verify,SigDerive) malleable
with respect to a predicate P , a table Q = Qm ×Qσ, and an adversary A, consider the following game:

• Step 1. (vk , sk)
$←− KeyGen(1k); Q← ∅.

• Step 2. (m∗, σ∗)
$←− ASign(·)(vk), where Sign behaves as follows:

Signsk (m)

σ ← Sign(sk ,m)
add (m,σ) to Q
return σ

Then the signature scheme satisfies NHU unforgeability if for all such PPT algorithms A there ex-
ists a negligible function ν(·) such that the probability (over the choices of KeyGen, Sign, and A) that
Verify(vk , σ∗,m∗) = 1 and m∗ /∈ P ∗(Qm) is at most ν(k).

For context hiding, we compare simulation context hiding (as defined in Definition 3.3) to the notion
of adaptive context hiding given by Attrapadung et al., which is in turn inspired by the computational
notion of context hiding given by Ahn et al.

Definition B.3 (Adaptive context hiding). [4] For a signature scheme (KeyGen,Sign,Verify,SigDerive)
malleable with respect to a predicate P , an adversary A, and a bit b, let pA

b (k) be the probability of the
event that b′ = 0 in the following game:

• Step 1. (vk , sk)
$←− KeyGen(1k).

• Step 2. (state, ~m,~σ,m′)
$←− A(vk , sk).

• Step 3. If Verify(vk , σi,mi) = 0 for some i or P (~m,m′) = 0, abort and output ⊥. Otherwise, form

σ
$←− Sign(sk ,m′) if b = 0, and σ

$←− SigDerive(vk , ~m,~σ,m′) if b = 1.

• Step 4. b′
$←− A(state, σ).

Then the signature scheme satisfies adaptive context hiding if for all PPT algorithms A there exists a
negligible function ν(·) such that |pA

0 (k)− pA
1 (k)| < ν(k).

3Here P ∗(M) denotes the set of messages derivable from M by repeated derivation, where a message m′ is derivable
from the set M if P (M,m′) = 1.
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Before we move on to consider our new definitions, we relate the two notions of unforgeability us-
ing the notion of adaptive context hiding. As we show, when adaptive context hiding holds, NHU
unforgeability implies existential unforgeability; as existential unforgeability trivially implies NHU un-
forgeability, this means the two notions are equivalent. For the rest of this section, we therefore focus
mainly on the notion of NHU unforgeability.

Theorem B.4. If a P -homomorphic signature scheme (KeyGen,Sign,Verify, SigDerive) is NHU unforge-
able and adaptive context hiding, and if m ∈ P ∗(M) is efficiently decidable, then it is also existentially
unforgeable.

Proof. We first alter the existential unforgeability game by replacing the SigDerive oracle with an oracle
that, on input ({hi}i,m′), looks up {(mi, σi)}i and outputs Sign(sk ,m′) only if P ({mi}i,m′) = 1. To see
that these outputs are indistinguishable, we take an adversary A whose success probabilities in the two
games differ by some non-negligible ε and use it to construct an adversary B that can break adaptive
context hiding with advantage ε.4 The reduction here is straightforward: on input (vk , sk), B gives vk
to A. B then uses its knowledge of sk to answer calls to the Sign and Reveal oracles honestly; when
A queries its SigDerive oracle on input ({hi}i,m′), B looks up the messages ~m = {mi}i and signatures
~σ = {σi}i stored in S with {hi}i, and outputs (~m,~σ,m′) as its own query to get back a signature σ; it

then stores (h′,m′, σ) in S (for h′
$←− H), and returns h′ to A. At the end, if A succeeds in producing

a forgery, then B guesses that its signatures came from SigDerive, and otherwise it guesses they came
from Sign. (Note that in order for B to test whether A’s output is a successful forgery, we need the
efficient decideability property.) As B simulates the behavior that A expects, A’s success probability in
the two games differs by ε depending on B’s input. Thus, B breaks the adaptive context hiding game
with advantage ε.

Next, we argue that if an adversary A can win this altered existential unforgeability game with some
non-negligible probability ε, then we can construct an adversary B that wins the NHU unforgeability
game with the same probability. Again, the reduction is straightforward: on input vk , B gives vk to
A. On both Sign and SigDerive queries, B forwards the queried message m to its own Sign oracle to get
back a signature σ; it then deals with the handles and storage honestly, and returns the appropriate
handle to A, and answers Reveal queries completely honestly. When A outputs (m∗, σ∗) at the end, B
outputs the same. As B correctly simulates the oracles, and wins whenever A does, B succeeds with
the same advantage as A.

B.2 Relating our definitions to prior work

In Section 3, we briefly outlined our reasons for choosing to work in the language of transformations
rather than that of predicates. To meaningful relate our security definitions to the predicate-based
definitions just presented, however, we first need a way to formally relate transformations and predicates.
We do this as follows:

Definition B.5. We say that a transformation class T implements a predicate P if for all M ⊂
M and m∗ ∈ M, P (M,m∗) = 1 if and only if there exist m1, . . . ,mn ∈ M and T ∈ T such that
T (m1, . . . ,mn) = m∗.

Note that we can always construct a transformation class T that implements a given predicate
as follows: for each pair (~m,m∗) such that P (~m,m∗) = 1, we consider TP that contains an extreme

4Technically, the advantage is the same only if we consider a multi-query version of the adaptive context hiding game;
otherwise, using a hybrid, it is ε/q, where q is the number of the queries to the SigDerive oracle, which is still non-negligible
for polynomial q.
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partial function; i.e., TP = {~m 7→ m∗ | P (~m,m∗) = 1}. Sometimes, however, there is a more natural
transformation class T for implementing a given predicate.5

The other major syntactic difference is that our simulation-based definitions consider signatures
schemes in the CRS model, whereas previous definitions considered signatures in the standard model
(i.e., without the trusted setup component Gen defined in Section 3.1). This difference is also easily
addressed: for any CRS model signature Σ = (Gen,KeyGen, Sign,Verify), a corresponding signature Σ′

in the standard model can be defined as (KeyGen′, Sign,Verify), where KeyGen′ runs crs
$←− Gen(1k) and

(vk , sk)
$←− KeyGen(crs), and outputs (vk ′ := (crs, vk), sk).

With these notational differences out of the way, we now proceed as follows: first, we show that for
simulatable signatures, our notions of simulation unforgeability and simulation context hiding imply the
notions of NHU unforgeability and adaptive context hiding respectively. Next, we show that existing
constructions can be easily made simulatable, without changing their security guarantees, by adding
a proof of knowledge and shifting to the CRS model. Finally, we show that for certain classes of
transformations (that, to the best of our knowledge, includes all classes of transformations for which
constructions exist), our notion of simulation unforgeability is implied by, and thus equivalent to, NHU
unforgeability (again, with respect to simulatable signatures, as otherwise our definitions are not well
defined).

B.2.1 Simulatability-based definitions imply previous definitions

Theorem B.6. Let T be a transformation class that implements the predicate P . Let Σ be a signature
in the CRS model that is malleable with respect to T , and let Σ′ be the corresponding standard model
signature. If (1) Σ is simulatable, and (2) m ∈ P ∗(M) is efficiently decidable, then Σ′ is NHU-
unforgeable with respect to P if Σ is simulation unforgeable with respect to T .

Proof. Given a successful adversary A that breaks NHU-unforgeability, we want to break either simu-
latability or simulation unforgeability. We proceed through the following series of games:

• Game 0. The original NHU unforgeability game.

• Game 1. In this game, replace Gen with SimGen and Sign with SimSign. To see that this is
indistinguishable from Game 0, we assume there exists an adversary A whose success probabilities
in Games 0 and 1 differ by some non-negligible ε and use it to construct an adversary B that
breaks simulatability with advantage ε. To start, B is given either a real crs and a Sign oracle,
or a simulated crs and a SimSign oracle. B then gives its own crs to A and responds to A’s Sign
queries using its own oracle. At the end of the game, if A succeeds in producing a forgery then
B guesses it is in the real world, and other B guesses it is in the simulated world. (Again, we
need the predicate to be efficiently decidable in order for B to decide.) As B successfully simulates
the behavior that A expects, A’s success probability in the simulated work differs by ε from its
success probability in the real world, meaning B breaks simulatability with advantage ε.

• Game 2. In this game, replace SimGen with SimExtGen. To see that an adversary cannot distin-
guish this game from Game 2, we observe that the distribution over the CRS is in fact identical,
and thus so are the two games. Furthermore, if there exists an adversary A that wins at this game
with some non-negligible probability ε then we can use it to construct an adversary B that breaks
simulation unforgeability with the same probability. To start, B gives to A the crs that it receives
as input; it also answers A’s oracle queries using its own oracle and, when A outputs (m∗, σ∗) at
the end of the game, it also outputs (m∗, σ∗). To see that B succeeds whenever A does, observe

5Ahn et al. suggest that in some cases one could pass an additional input w into the predicate. This could also be done
here if w is efficiently computable from T .
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that whenever σ∗ verifies but m∗ /∈ P ∗(Qm) (and thus A succeeds), then (m∗, σ∗) cannot be in
Q and there simply do not exist any ~m′ ∈ Qm and T ∈ TP such that m∗ = T (~m′). Consequently,
extraction will fail, and B succeeds as well.

As each game is indistinguishable from the previous one, and the success probability in the last game is
bounded by the success probability in the simulation unforgeability game, simulatability and simulation
unforgeability therefore imply NHU unforgeability.

Theorem B.7. Let T be a transformation class that implements a predicate P . Let Σ be a signature
in the CRS model that is malleable with respect to T , and let Σ′ be the corresponding standard model
signature. If Σ is simulatable and simulation context hiding with respect to T , then Σ′ is adaptive
context hiding with respect to P .

Proof. We proceed through the following series of games:

• Game 0. The original adaptive context hiding game.

• Game 1. Instead of checking that P (~m,m′) = 0, check that there exists a transformation T ∈
T such that T (m1, . . . ,mn) = 1 and abort otherwise. This is identical to Game 0 because T
implements P .

• Game 2. Replace KeyGen′ with Gen and KeyGen and replace SigDerive(vk ′, ~m,~σ,m′) with SigEval(crs,
vk , T, ~m,~σ). Again, this is identical to Game 2, as Σ is simply the CRS model version of Σ′.

• Game 3. Replace Gen with SimGen and use SimSign to form the challenge signature. This is
indistinguishable from Game 2 by simulatability; the argument is analogous to the one in the
proof of Theorem B.6. Furthermore, this is now the simulation context hiding game, except that
the keys are generated by KeyGen. Given an adversary A that wins at Game 3 with some non-
negligible advantage ε, it is therefore trivial to construct an adversary B that breaks simulation

context hiding with the same advantage: to generate its keys, B runs (vk , sk)
$←− KeyGen(1k) and

gives these to A. Whenever A outputs its tuple (~m,~σ,m′), B outputs (vk , ~m,~σ, T ), where T maps
~m 7→ m′ (i.e., is the extreme partial function mentioned above); it then forwards the resulting
signature σ back to A, and outputs the same guess bit as A at the end. As B simulates the
behavior that A expects, and wins whenever A does, B succeeds with the same advantage.

As each game is indistinguishable from the previous one, and the success probability in the last game is
bounded by the success probability in the simulation context hiding game, simulatability and simulation
context hiding imply adaptive context hiding.

By combining these two theorems with Theorem B.4, which relates NHU unforgeability back to
existential unforgeability, we obtain the following corollary:

Corollary B.8. Let T be a transformation class that implements the predicate P . Let Σ be a signature
in the CRS model that is malleable with respect to T , and let Σ′ be the corresponding standard model
signature. Then if (1) Σ is simulatable, (2) Σ′ is adaptive context hiding (alternatively, Σ is simulation
context hiding), (3) P is efficiently decidable, and (4) Σ is simulation unforgeable, then Σ′ is existentially
unforgeable.

B.2.2 Adding simulatability to existing constructions

After demonstrating that our definitions imply previous definitions for simulatable signatures, we now
demonstrate that building simulatability into existing constructions is not too difficult. In fact, for any
standard model signature scheme Σ = (KeyGen,Sign,Verify) we consider a CRS model signature scheme
Σ∗ = (Gen∗,KeyGen∗,Sign,Verify), in which Gen∗ outputs the crs for a non-interactive zero-knowledge
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proof of knowledge (NIZKPoK) for the relation R := {(vk , (sk , r)) | KeyGen(1k; r) = (vk , sk)}, and

KeyGen∗(crs) runs (vk , sk)
$←− KeyGen(1k; r) and π

$←− P(crs, vk , (sk , r)), and outputs (vk∗ := (vk , π), sk).
We denote this CRS model signature as the extended CRS model signature.

Theorem B.9. Let Σ be a signature scheme in the standard model, let Σ∗ be the extended CRS model
signature using (CRSSetup,P,V), and let Σ′ be the standard model scheme corresponding to Σ∗. Then,
if (CRSSetup,P,V) is a zero-knowledge proof of knowledge,

1. Σ∗ is simulatable;

2. if Σ is NHU unforgeable, then Σ′ is NHU unforgeable;

3. if Σ is adaptive context hiding, then Σ′ is adaptive context hiding.

Proof. To show simulatability, SimGen outputs (crs, τe)
$←− E1(1

k); i.e., the extraction trapdoor for the
proof of knowledge. Given this trapdoor, SimSign extracts the secret key from the proof of knowledge,
and then sign using the honest signing algorithm. By extractability, the value that SimSign extracts
will be a valid signing key sk with overwhelming probability; as simulation is therefore perfect with all
but negligible probability, the signature is simulatable.

To show that unforgeability is preserved, consider an adapted version of the NHU unforgeability
game in which π is replaced by a simulated proof; this adapted game is indistinguishable from the
regular game by zero knowledge. Furthermore, if we are given an adversary A that can win at this
adapted game with non-negligible probability ε (against Σ′), we can construct an adversary B that wins
at the NHU unforgeability game with the same probability (against Σ). To start, B gets as input a

verification key vk ; it then forms the simulated proof π (so (crs, τs)
$←− S1(1

k) and π
$←− S2(crs, τs, vk))

and gives vk ′ := (vk , π) to A. When A then queries its Sign oracle, B responds by querying its own
oracle, and when A outputs (m∗, σ∗) at the end of the game B does the same. As B perfectly simulates
the parameters and the oracle behavior that A expects, and furthermore B succeeds whenever A does,
B succeeds with the same probability as A.

Finally, to show that context hiding is preserved, we first consider the context hiding game for Σ′

when the verification key is generated using a simulated CRS and simulated proof; this is indistin-
guishable from the original game by zero knowledge. Then take an adversary A that wins this adaptive
context hiding game for this modified Σ′ with some non-negligible advantage ε and use it to construct an
adversary B that wins the adaptive context hiding game for Σ with the same advantage. Because B gets
the signing keypair, this reduction is quite straightforward: to start, B receives (vk , sk) and computes

(crs, τs)
$←− S1(1

k) and π
$←− S2(crs, τs, vk); it then gives (vk ′ := (vk , π), sk) to A. B then outputs the

same tuple as A, forwards the resulting signature back to A, and at the end outputs the same guess bit
as A. As B once again perfectly simulates the parameters and signature, and wins whenever A does, B
wins with the same advantage ε.

B.2.3 When existing constructions meet our definitions

For context hiding, our notion of simulation context hiding seems clearly stronger than existing defini-
tions, as it guarantees privacy even in case of adversarially-generated verification keys. What is unclear,
however, is whether existing malleable signature schemes (when adapted to be simulatable) can meet
our stronger notion of simulation unforgeability. Perhaps unsurprisingly, this depends largely on the
class of transformations they require.

As it turns out, for most existing schemes the relevant class of transformations is such that it is easy
to determine, given a set of “base” messages and a transformed message, the transformation that was
applied. More formally, we have the following definition:
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Definition B.10 (Trivial extractability). We say a transformation class T is trivially extractable if
there exists a PPT algorithm TrivExt such that for all polynomial-sized M ⊂ M and m∗ ∈ {m | ∃T ∈
T , ~m ∈ M : m = T (~m)}, the algorithm TrivExt(M,m∗) produces ~m = (m1, . . . ,mn) ∈ M and transfor-
mation T such that m∗ = T (~m).

As an example, we consider the linear homomorphic signature construction given by Attrapadung et
al. Phrased in the language of transformations, their construction allows for linear combinations of (simi-
larly tagged) messages; i.e., for any vector ~β = (β1, . . . , βn) ∈ Zn, T~β((τ1, ~y1), . . . , (τn, ~yn)) = (τ1,

∑
i βi~yi)

if τ1 = . . . = τn and ⊥ otherwise. To see how this transformation class is trivially extractable, we con-
struct the TrivExt algorithm as follows: on input M and m∗ = (τ, ~y), it first lets Mτ define the set of
messages in M with tag τ . Second, it identifies a subset of Mτ that forms a basis for the subspace
spanned by the vectors in Mτ . Third, it finds coefficients to represent ~y as a linear combination of those
basis vectors. Fourth and last, it outputs the basis vectors as (m1, . . . ,mn), and the linear combination
defined by the coefficients as the transformation T . This algorithm is furthermore efficient, as each step
involves basis linear algebra.

In a similar manner, one can show that subset signatures, quotable signatures, and transitive sig-
natures are all trivially extractable as well; briefly, for each of these constructions TrivExt respectively
corresponds to finding a superset, searching for a substring, and finding a path in a graph, all of which
have simple efficient algorithms.

We argue that for such transformation classes, NHU unforgeability and simulation unforgeability
are equivalent.

Theorem B.11. Let T be a transformation class that implements the predicate P . Let Σ be a signature
in the CRS model that is malleable with respect to T , and let Σ′ be the corresponding standard model
signature. If Σ is simulatable and T is trivially extractable, then Σ′ is NHU unforgeable with respect to
P if and only if Σ is simulation unforgeable with respect to T .

Proof. Let (SimSetup, SimSign) be the simulator for Σ, and let (SimExtSetup, SigExt) be the extrac-

tor, where SimExtSetup runs (crs, τs)
$←− SimSetup(1k) and outputs (crs, τs,⊥), and SigExt, given m∗

and the messages ~m ∈ Qm (i.e., the messages queried to to the SimSign oracle), outputs (~m′, T )
$←−

TrivExt(~m,m∗). We argue that the success probability of any adversary interacting with this simula-
tor and extractor in the simulation unforgeability game is at most negligibly different from its success
probability in the NHU unforgeability game.

To do this, we proceed through the following series of games:

• Game 0. The regular simulation unforgeability game, using the extractor defined above.

• Game 1. Replace SimExtGen with Gen and the SimSign oracle with a Sign oracle. This is indis-
tinguishable from Game 0 by simulatability (the argument is analogous to the one in the proof of
Theorem B.6).

• Game 2. Replace the winning conditions of the game; rather than check for the (~m′, T ) produced by
SigExt that ~m′ ⊆ Qm and m∗ = T (~m′) and T ∈ T , check instead that there exists a transformation
T ∈ T and a set of messages (m1, . . . ,mn) ∈ Qm such that T (m1, . . . ,mn) = m∗, and have the
adversary win if no such transformation exists. Because SigExt runs TrivExt, this is identical to
Game 1 by the definition of trivial extractability.

• Game 3. Replace the winning conditions again; this time, have the adversary win if there does not
exist a set of messages (m1, . . . ,mn) ⊆ Qm such that P (m1, . . . ,mn,m

∗) = 1. This is identical to
Game 2 because T implements P .

As Game 3 is now the NHU unforgeability game, and furthermore each game is (at least) indistinguish-
able from the previous one, this implies that an adversary can behave at most negligibly differently in
the simulation unforgeability and NHU unforgeability games.
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Once again, we can combine Theorems B.9 and B.11 to get a corollary that shows that, for any
of the standard types of transformation considered in previous work (i.e., any trivially extractable
transformations), we can construct simulation-unforgeable signature schemes based on ones that are
NHU unforgeable.

Corollary B.12. If Σ is NHU unforgeable for a predicate P implemented by a trivially extractable
transformation class T , then the extended CRS model signature Σ∗ is simulation unforgeable.

C CM-Friendliness for Delegatable Anonymous Credentials

C.1 Variable-length CM-friendliness

To show that Groth-Sahai proofs [30] could be used to construct cm-NIZKs, Chase et al. [17] relied on a
property, called CM-friendliness, over languages and transformations. This property, however, assumes
that there is a fixed-length representation for all transformations; the size of the resulting proofs is then
dependent on this length. As we saw in Section 4, however, in our application of delegatable anonymous
credentials, the size of the transformation depends on how many times a credential has been delegated.
To address this gap, one could of course place a maximum on the number of times a credential can be
delegated and then pad the representation of each transformation up to the corresponding maximum
length; as this solution seems far from ideal, we instead adopt a solution in which the length depends
only on the number of times the current credential has been delegated so far.

To do this, we slightly modify the notion of CM-friendliness; we work from the already revised
notion due to Chase et al. [19] that captures the original definition as perfect CM-friendliness. The
additional change we must make is because, in many cases, the instance x determines an upper bound
on the length of the transformation that produced x. (For example, in our credential application the
level of the credential determines an upper bound on the number of times it has been delegated so far,
and thus on the length of the transformation applied.) Thus, we now want to allow the representation
of a transformation to depend on the instances that it can produce. Similarly, we can generalize the
notion of CM-friendliness to allow the representation of witnesses to depend on the statements; while
we do not need this for our application, we nevertheless include it here for completeness.

Definition C.1 (Variable-length CM-friendliness). For sets S and S′ of pairing product equations and a

PPT setup algorithm params
$←− CRSSetup(1k) that specifies some group G, we say that (S, S′,CRSSetup)

is a CM-friendly instantiation for a relation R and transformation class T if the following six properties
hold:

1. Representable statements. Any instance can be represented as a set of group elements of a fixed
length, and any witness can be represented as a set of group elements whose length depends only on
the associated instance. More formally, there is a positive integer dx and an efficiently computable
invertible function Fx(params, ·) that maps LR 7→ Gdx, an efficiently computable function Dw :
LR → Z+, and an efficiently computable invertible function Fw(params, ·, ·) that, for any x ∈ LR,
maps Wx 7→ GDw(x), where Wx := {w | (x,w) ∈ R}. For (x,w) ∈ R we call Fx(params, x) the
representation of x and Fw(params, x, w) the representation of w.

2. Representable transformations. Any transformation can be represented as a set of group ele-
ments whose length depends only on the possible resulting instances. More formally, there is an
efficiently computable function Dt : LR → Z+, and an efficiently computable invertible func-
tion Ft(params, ·, ·) such that for any x ∈ LR, Ft maps Tx 7→ GDt(x), where Tx := {T |∃x′ ∈
LR s.t. T (x′) = x}. For x ∈ LR and T ∈ Tx we call Ft(params, x, T ) the representation of T for
x.
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3. Provable statements. Proving satisfaction of the set S constitutes a computationally sound proof

for the statement “(x,w) ∈ R;” i.e., for params
$←− CRSSetup(1k) it holds that (1) if (x,w) ∈ R

then Fx(params, x) and Fw(params, x, w) satisfy S, and (2) for a PPT adversary A there exists a
negligible function ν(·) such that the probability (over the randomness used in CRSSetup and A)
that A can produce (X,W ) such that X and W satisfy S but (F−1x (params, X), F−1w (params,W )) /∈
R is at most ν(k).

4. Provable transformations. Proving satisfaction of the set S′ constitutes a computationally sound
proof for the statement “Tinst(x

′) = x for T ∈ T ” using the above representations for x and T ; i.e.,

for params
$←− CRSSetup(1k) it holds that (1) if T ∈ T and Tinst(x

′) = x then Ft(params, x, T ),
Fx(params, x), and Fx(params, x′) satisfy S′, and (2) for a PPT adversary A there exists a neg-
ligible function ν(·) such that the probability (over the randomness used in CRSSetup and A)
that A can produce (T ′, X,X ′) such that T ′, X, and X ′ satisfy S′ but F−1t (params, T ′) 6∈ T or
F−1t (params, T ′)(F−1x (params, X ′) 6= F−1x (params, X) is at most ν(k).

5. Transformable statements. For any T ∈ T , (x,w) ∈ R, there is a valid transformation that
changes the statement “(x,w) ∈ R” (phrased using S as above) into the statement “(x̂, ŵ) ∈ R”
for x̂ := Tinst(x) and ŵ := Twit(w).

6. Transformable transformations: for any T, T̂ ∈ T , x, x′ ∈ LR with x = T (x′), there is a valid
transformation that changes the statement “x = T (x′) for T ∈ T ” (phrased using S′ as above)
into the statement “x̂ = T̂inst ◦ Tinst(x′) for T̂ ◦ T ∈ T ” where x̂ := T̂inst(x).

We say that (S, S′,CRSSetup) is a perfect CM-friendly instantiation if the probabilities in the third and
fourth properties are zero. A relation and transformation class (R, T ) are (perfectly) CM-friendly if
they have a (perfect) CM-friendly instantiation.

Using this definition, Chase et al. show that, given any CM-friendly relation R and transformation
T , one can use Groth-Sahai proofs to construct the NIWI proof system needed for the cm-NIZK con-
struction (which, briefly, is a proof of knowledge of (w, σ, x′, T ) such that (x,w) ∈ R∨(Verify(vk , x′, σ) =
1 ∧ Tinst(x′) = x ∧ T ∈ T )). Their proof of this relies on two main arguments: first, that Groth-Sahai
proofs can be used to construct NIWI proofs for any statement that is a disjunction of two pairing
product statements, and second, that the transformations can be applied independently to both sides
of the disjunction.

To ensure that we can still construct cm-NIZKS using our modified definition, we observe that the
same argument still goes through. To see this, both the prover and verifier for the proof system can
first use the instance x to determine which pairing product equations to include on each side of the
disjunction; afterwards, the argument proceeds exactly as before, as transformations can still be applied
independently to each side of the disjunction to produce the appropriate transformed proof.

C.2 Proof of credential CM-friendliness

As discussed in Section 5.2, in order to use Groth-Sahai proofs, we require that the identity always be a
valid transformation (as GS proofs are inherently re-randomizable). While this may not be a restriction
for many classes of transformations, for the set of allowable credential transformations Tdac defined in
Section 4.1, the identity transformation is not allowed; as such, we must modify it slightly to include the
identity. We also replace the flags with bits in order to represent them as group elements; this means
we use b = 0 in place of credential and b = 1 in place of proof (for messages; for transformations we
denote the bit bnew ). Formally, Tdac must consist of all transformations Tdac = ({nymj , sk j , openj}kj=1,
nymnew , bnew ), k ≥ 0, such that

1. NymVerify(params, nymj , sk j , openj) = 1 for all j, 1 ≤ j ≤ k,
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2. if bnew = 1 then nymk = nymnew and skk−1 = skk, and

3. Tdac(nymr, `, b) :=


(nymr, `, b) if nymnew = nymr, b = bnew = 0 and k = 0
(nymnew , `+ k, 0) if nym1 = nymr, b = bnew = 0 and k > 0
(nymnew , `+ k − 2, 1) if nym1 = nymr, b = 0, bnew = 1, and k > 1
⊥ otherwise.

In order to construct a malleable signature for Tdac using the construction in Section 5, we recall
that we are given a hard relation Rpk , and we need to construct a cm-NIZK for a relation R such
that ((pk , (nymr, `, b)), sk) ∈ R if and only if (pk , sk) ∈ Rpk . This cm-NIZK must be malleable with
respect to the related transformation class Tnizk, which contains transformation T = (Tinst, Twit) such
that Tinst = (id, Tdac ∈ Tdac) and Twit = id. By constructing a CM-friendly instantiation for this relation
and transformation class, we thus conclude that we can instantiate the cm-NIZK using the Chase et al.
construction [17].

We first describe our concrete choices for the hard relation Rpk and the commitment scheme used
to produce pseudonyms; because we consider only bilinear groups, these constructions are both with
respect to some setup algorithm CRSSetup that outputs a bilinear group (p,G,GT , e, g) such that
|G| = |GT | = p, G = 〈g〉, and e : G × G → GT .6 For the hard relation, the generator G samples

pairs (pk = (ga, gb), sk = gab) for a, b
$←− Fp; note that by CDH it should be hard to find the secret key

gab given only the public key (ga, gb), but we can use a pairing to verify that a given pair (pk , sk) is
correct; i.e., the KeyCheck algorithm required for the signature can check that e(pk1, pk2) = e(g, sk). For
the commitment scheme, we use Boneh-Boyen-Shacham encryption [11]; this means ComSetup generates

f, h
$←− G and sets params ′ := (f, h), and that a commitment c = Com(params ′, sk) = (c1 := f r, c2 :=

hs, c3 := gr+ssk) for r, s
$←− Fp. The opening for this commitment is open := (R,S) = (gr, gs), which

can be verified (in combination with sk) by checking that e(c1, g) = e(R, f), e(c2, g) = e(S, h), and
e(c3, g) = e(R · S · sk , g).

Representable statements: To see that instances and witnesses are group elements, we observe that
instances are of the form (pk , (nymr, `, b)), and witnesses are of the form sk , where (using our
concrete choice of Rpk above) sk = gab is a group element. As for instances, using our concrete
choices above we see that pk is a pair (pk1, pk2) ∈ G, and nym is a triple (n1, n2, n3) ∈ G. We
furthermore represent ` by the group element g`, and b by the group element gb.

Representable transformations: As described above, each transformation T is described by a set
of values ({nymj , sk j , openj}kj=1, nymnew , bnew ). As also described above, in our instantiations,
nymj , sk j , and openj are all elements of G for all j. The value k for transforming an instance
(pk , (nymold , `old , bold )) into x = (pk , (nymnew , `new , bnew )) is computed as k = `new−`old +2(bnew−
bold ).

Rather than use this representation, however, which depends on how many times a credential
has been delegated, we would like to switch to a representation whose length depends only on
the resulting instance x. To achieve this, we prepend the list {nymj , sk j , openj}kj=1 with a list of

`new + 2bnew − k − 1 dummy values {nymj = (1, 1, 1), sk j = 1, openj = (1, 1)}`new+2bnew−k−1
j=1 .

The values `new and bnew , together with k, uniquely determine `old and bold , and we include all
four of these values in the representation Ft(x, T ) of the transformation T for x. We represent
bnew and bold as gbnew and gbold . The value of `new is then uniquely determined by the number of
nymj , sk j , openj tuples included and the value of gbnew . We represent `old by the vector of values

6We stick with a symmetric prime-order setting for simplicity, but we note that using an asymmetric setting, with the
SXDH instantiation of GS proofs, should also be feasible.
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(L1, . . . , L`new+2bnew ) such that Li = 1 for i 6= `old + 2bold and L`old+2bold = g. (Note that since
there is only one g in this list, its position together with gbold uniquely determines `old .)

The final representation Ft(x, T ) of a transformation T for x is then

(gbold , {Lj}`new+2bnew
j=1 , {(nj1, nj2, nj3, sk j , Rj , Sj)}`new+2bnew−1

j=1 , (nnew1, nnew2, nnew3), g
bnew ).

Provable statements: To prove the statement (x,w) ∈ R for x = ((pk1, pk2),m), m = (nymr, `, b),
and w = sk , we can prove that

e(pk1, pk2) = e(sk , g).

Provable transformations: Given representations for x = (pk , (nymr, `, b)), x
′ = (pk ′, (nym′r, `

′, b′)),
and T as follows

Fx(x) = ((pk1, pk2), ((nr1, nr2, nr3), g
`, gb)),

Fx(x′) = ((pk ′1, pk ′2), ((n
′
r1, n

′
r2, n

′
r3), g

`′ , gb
′
)), and

Ft(x
′, T ) = (gb

′
, {Lj}`+2b

j=1 , {(nj1, nj2, nj3, sk j , Rj , Sj)}`+2b−1
j=1 , (nnew1, nnew2, nnew3), g

b),

we prove the statement “x = Tinst(x
′) and T ∈ T .”

We capture the requirements that {nnewi = nri}3i=1 by using the values nri in place of nnewi in
the equations below. When b = 1 we can capture the requirement that gsk`′+k−2 = gsk`′+k−1 , and
{n(`′+k−1)i = nnewi}3i=1 by using the same variable to represent each pair of values.

We first prove that pk1 and pk2 are unchanged:

e(gpk1/gpk
′
1 , g) = 1 (pk1)

e(gpk2/gpk
′
2 , g) = 1. (pk2)

Next, we prove that NymVerify(params, nymj , sk j , openj) = 1 using the following set of equations
for j = 1 . . . `+ 2b− 1:

e(nj1, g)−1e(Rj , f) = 1 (nym,1,j)

e(nj2, g)−1e(Sj , h) = 1 (nym,2,j)

e(nj3, g)−1e(Rj , g) · e(Sj , g) · e(sk j , g) = 1. (nym,3,j)

Finally, we want to prove that nym′r = nym`′+2b′ . We do this as follows: first we prove that Lj 6= 1
when j = `′ + 2b′ and that nym′r and nymj are the same in the position j where Lj 6= 1, using the
following set of equations for all j, 1 ≤ j ≤ `+ 2b− 1:

e(Lj , g
`′(gb

′
)2/gj) = 1 (L,j)

e(nr1′ , Lj)
−1e(nj1, Lj) = 1 (nym′,1,j)

e(nr2′ , Lj)
−1e(nj2, Lj) = 1 (nym′,2,j)

e(nr3′ , Lj)
−1e(nj3, Lj) = 1. (nym′,3,j)

To allow for the identity transformation we also have to prove

e(L`+2b, g
`′(gb

′
)2/g`+2b) = 1 (L,`+ 2b)

e(nr1′ , L`+2b)
−1e(nr1, L`+2b) = 1 (nym′,1,`+ 2b)

e(nr2′ , L`+2b)
−1e(nr2, L`+2b) = 1 (nym′,2,`+ 2b)

e(nr3′ , L`+2b)
−1e(nr3, L`+2b) = 1. (nym′,3,`+ 2b)
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To prove `′ + 2b′ ≤ `+ 2b, we prove that

`+2b∏
j=1

e(Lj , g) = e(g, g). (sum,`+ 2b)

The last thing we need to prove is that either b′ = 0 (which allows arbitrary transformations
including the identity transformation) or b = b′ = 1 and this is the identity transformation (i.e.
`′ = `, k = 0). We do this by proving that if b′ 6= 0 then b 6= 0, and proving that if b′ 6= 0, then
this must be an identity transformation, i.e. `′ + 2b′ = `+ 2b:

e(gb
′
, gb/g) = 1 (b)

e(gb
′
, L`+2b/g) = 1 (b′)

Transformable statements: To change the statement “(x = (pk ,m), w) ∈ R” into “(x̂, ŵ) ∈ R” for
x̂ = Tinst(x) and ŵ = Twit(w), we observe that Twit = id and that Tinst does not change pk ,
meaning we in fact prove the same statement (pk , sk) ∈ Rpk regardless of the transformation.

Finally, to define how transformations can be transformed, we need to ensure that we use valid trans-
formations, meaning transformations that can be applied to Groth-Sahai proofs. We use the following
four transformations on sets of pairing product equations:

• AddTriv(S) takes in a set of variables, and adds the equation e(s, 1) = 1 for all s ∈ S.

• ConstToVar(a, z, S) takes in a constant a and changes it to a variable z; it then adds the equation
e(a,w)−1e(z, w) = 1 for all s ∈ S.

• MergeEq(i.j) adds a new equation that is the product of equations i and j.

• RemoveEq(i) removes the i-th equation.

As Chase et al. already showed that these transformations were valid in the above sense, we can use
them to transform transformations as follows:

Transformable transformations: We show how to transform a proof of the statement “Tinst(x
′) = x”

into a proof of the statement “T̂inst ◦ Tinst(x′) = x̂” where x̂ = T̂inst(x).

For x′ = (pk , (nym′r, `
′, b′)), x = (pk , (nymr, `, b)), x̂ = (pk , (n̂ymr,

̂̀, b̂)) we consider only transfor-
mations

T = ({nymj , sk j , openj}kj=1, nymnew , b) where k = `− `′ + 2(b− b′)

T̂ = ({n̂ymj , ŝk j , ôpenj}k̂j=1, n̂ymnew , b̂) where n̂ym1 = nymnew and k̂ = ̂̀− `+ 2(b̂− b) and,

T̂ ◦ T = ({nymj , sk j , openj}kj=1 ∪ {n̂ymj , ŝk j , ôpenj}k̂j=1, n̂ymnew , b̂) .

If this is not the case, then the transformations simply produce ⊥.7

To change the statement Tinst(x
′) = x into T̂inst ◦ Tinst(x′) = x̂, we use the same representations

for x, x′, and T as above. Let T̂ be the transformation described above with (n̂j1, n̂j2, n̂j3) and
(R̂j , Ŝj) for each j, and (n̂new1, n̂new2, n̂new3) the representations of n̂ymj , ôpenj , and n̂ymnew

respectively. Let x̂ be the result of the transformation, i.e. x̂ = (p̂k , (n̂ymr,
̂̀, b̂)), and let Fx(x̂) =

((p̂k1, p̂k2), ((n̂r1, n̂r2, n̂r3), g
̂̀, gb̂)) be its representation.

7⊥ is unprovable, or provable only insofar as any proof that doesn’t verify constitutes a valid proof for ⊥.
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First add constant equations for j = 1 . . . k̂:

e(n̂j1, g)−1e(R̂j , f) = 1 (nym,1,`+ 2b+ j − 1)

e(n̂j2, g)−1e(Ŝj , h) = 1 (nym,2,`+ 2b+ j − 1)

e(n̂j3, g)−1e(R̂j , g) · e(Ŝj , g) · e(ŝk j , g) = 1 (nym,3,`+ 2b+ j − 1)

and for j = 2 . . . k̂:

e(n′r1, 1)−1e(n̂j1, 1) = 1 (nym′,1,`+ 2b+ j − 1)

e(n′r2, 1)−1e(n̂j2, 1) = 1 (nym′,2,`+ 2b+ j − 1)

e(n′r3, 1)−1e(n̂j3, 1) = 1 (nym′,3,`+ 2b+ j − 1)

e(1, g) = 1. (temp, `+ 2b+ j − 1)

where n̂1i uses the same constant as nri from x, for i = 1 . . . 3.

To allow for the identity transformation we add

e(nr1′ , 1)−1e(n̂r1, 1) = 1 (nym′,1,`+ 2b+ k̂)

e(nr2′ , 1)−1e(n̂r2, 1) = 1 (nym′,2,`+ 2b+ k̂)

e(nr3′ , 1)−1e(n̂r3, 1) = 1 (nym′,3,`+ 2b+ k̂)

e(1, g) = 1. (temp, `+ 2b+ k̂)

For j = `+ 2b+ 1, . . . , ̂̀+ 2b̂, use AddTriv to add equations:

e(1, g`
′
(gb
′
)2/gj) = 1 (L,j)

(Note that AddTriv is constructed so that this can be done even without knowing the values g`
′
,

gb
′

used in the previous proof.)

Next, use ConstToVar to replace 1 in all the new (nym′,i,j), (temp, j), and (L,j) equations with Lj to

obtain the following for j = `+ 2b− 1 . . . ̂̀+ 2b̂− 1:

e(Lj , g
`′(gb

′
)2/gj) = 1 (L,j)

e(n′r1, Lj)
−1e(n̂j1, Lj) = 1 (nym′,1,j)

e(n′r2, Lj)
−1e(n̂j2, Lj) = 1 (nym′,2,j)

e(n′r3, Lj)
−1e(n̂j3, Lj) = 1 (nym′,3,j)

e(Lj , g) = 1 (temp, j)

and replace 1 with L̂̀+2̂b
in the (nym′,i,̂̀+ 2b̂), (temp, ̂̀+ 2b̂), and (L,̂̀+ 2b̂) equations to obtain:

e(L̂̀+2̂b
, g`
′
(gb
′
)2/g

̂̀+2̂b) = 1 (L,̂̀+ 2b̂)

e(nr1′ , L̂̀+2̂b
)−1e(n̂r1, L̂̀+2̂b

) = 1 (nym′,1,̂̀+ 2b̂)

e(nr2′ , L̂̀+2̂b
)−1e(n̂r2, L̂̀+2̂b

) = 1 (nym′,2,̂̀+ 2b̂)

e(nr3′ , L̂̀+2̂b
)−1e(n̂r3, L̂̀+2̂b

) = 1 (nym′,3,̂̀+ 2b̂)

e(L̂̀+2̂b
, g) = 1. (temp, ̂̀+ 2b̂)
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Then use ConstToVar to replace n̂ji with a variable in all equations for j = ` + 2b . . . ̂̀+ 2b̂ − 1. Use

ConstToVar to replace ŝk j with a variable in all equations for j = ` + 2b . . . ̂̀+ 2b̂ − 1. If b̂ = 1,

use the same variable for ŝk ̂̀ and sk ̂̀+1
.

Use MergeEq to combine (sum, `+ 2b) with (temp,`+ 2b+ 1), . . ., (temp,̂̀+ 2b̂) to obtain:

̂̀+2̂b∏
j=1

e(Lj , g) = e(g, g) (sum,̂̀+ 2b̂)

and RemoveEq to remove (sum,`+ 2b) and (temp,`+ 2b = 1), . . ., (temp,̂̀+ 2b̂).

Finally, if b = 1 then T̂ must be the identity transform, so b̂ = b and ̂̀+2b̂ = `+2b. Thus the equations
(b) and (b′) remain exactly the same.

e(gb
′
, gb̂/g) = 1 (b)

e(gb
′
, L̂̀+2̂b

/g) = 1. (b′)

Similarly if b = 0 and k = 0 the equations (b) and (b′) remain exactly the same.

If b = 0, then equation (b) gives us e(gb
′
, 1/g) = 1. We can make a copy of this equation, and

include it when we use the ConstToVar for variable L̂̀+2̂b
above so that we get

e(gb
′
, L̂̀+2̂b

/g) = 1. (b′)

For the equation (b), if b̂ = b = 0, then we can use exactly the same equation. If b = 0 and b̂ = 1,
then we can use AddTriv to add the equation e(gb

′
, 1) = 1, which since b̂ = 1 is equivalent to

e(gb
′
, gb̂/g) = 1. (b)

Note that all the aliasing equations will still be trivially verifiable because n̂newi, n̂ri, g
b̂new are in the

clear, and when b̂new = 1 sk ̂̀ and sk ̂̀+1
use the same variable and n̂

(̂̀+1)i
and n̂ri use the same

constant.
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