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Abstract

The author recently proposed a new class of knapsack type PKC referred to as K(II)ΣΠPKC [1]. In

K(II)ΣΠPKC with old algorithm DA[I], Bob randomly constructs a very small subset of Alice’s set of pub-

lic key whose order is very large, under the condition that the coding rate ρ satisfies 0.01 < ρ < 0.2. In

K(II)ΣΠPKC, no secret sequence such as super-increasing sequence or shifted-odd sequence but the sequence

whose components are constructed by a product of the same number of many prime numbers of the same

size, is used. In this paper we present a new algorithm, DA(II) for decoding K(II)ΣΠPKC. We show that with

new decoding algorithm, DA(II), K(II)ΣΠPKC yields a higher coding rate and a smaller size of public key

compared with K(II)ΣΠPKC using old decoding algorithm, DA(I). We further present a generalized version

of K(II)ΣΠPKC, referred to as K(V)ΣΠPKC. We finally present a new decoding algorithm DA(III) and show

that, in K(V)ΣΠPKC with DA(III), the relation, rF ∼= 0, ρ ∼= 2
3 holds, where rF is the factor ratio that will

be defined in this paper. We show that K(V)ΣΠPKC yields a higher security compared with K(II)ΣΠPKC.
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1 Introduction

Various studies have been made of the Public-Key Cryptosystem (PKC). The security of the PKC’s proposed

so far, in most cases, depends on the difficulty of discrete logarithm problem or factoring problem. For this

reason, it is desired to investigate another class of PKC, so called PQC, that does not rely on the difficulty

of these two problems.

Two of the promising candidates among the members of class of PKC are the code-based PKC and the

product-sum type PKC [1]∼ [21].

The author recently proposed a new class of product-sum type PKC referred to as K(II)ΣΠPKC. In

K(II)ΣΠPKC with old decoding algorithm DA[I], Bob randomly constructs a very small subset of Alice’s set

of public key whose order is very large, under the condition that the coding rate ρ satisfies 0.01 < ρ < 0.2.

In K(II)ΣΠPKC, no secret sequence such as super-increasing sequence [6] or shifted-odd sequence [13]∼ [15]

but the sequence whose components are constructed by the products of the same number of many prime

numbers of the same size, is used. Namely each of the components of the secret sequence such as super-

increasing sequence or shifted-sequence has a different entropy. On the other hand the components of the

secret sequence used in K(II)ΣΠPKC take on the same entropy.
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In this paper we present a new algorithm, DA(II) for decoding K(II)ΣΠPKC. We show that with new

decoding algorithm, DA(II), K(II)ΣΠPKC yields a higher coding rate and a smaller size of public key com-

pared with K(II)ΣΠPKC using old decoding algorithm, DA(I). We further present a generalized version of

K(II)ΣΠPKC, referred to as K(V)ΣΠPKC. We finally present a new decoding algorithm DA(III) and show

that, in K(V)ΣΠPKC with DA(III), the relation, rF ∼= 0, ρ ∼= 2
3 holds, where rF is the factor ratio that will

be defined in this paper. We show that K(V)ΣΠPKC yields a higher security compared with K(II)ΣΠPKC.

In the following sections, in order to let this paper be self-contained we shall briefly describe K(II)ΣΠPKC.

2 K(II)ΣΠPKC for two messages

2.1 Preliminaries

Let us define several symbols :

GF (x) : primitive polynomial over F2 of degree g

mi : message symbol over Z ; i = 1, 2, · · · , λ.
w,W : secret key for generating a set of public key.

pi : prime number ; i = 1, 2, · · · , n.
p : prime number vector ; (p1, p2, · · · , pn).
qi : product of prime numbers, pi1, pi2, · · · , piσ ; σ < n, pij ∈ {pi}.
ki : public key, wqi ≡ ki mod W ; i = 1, 2, · · · , n.
C : ciphertext, C = m1k1 +m2k2 + · · ·+mnkn.

Γ : Intermediate message w−1C ≡ Γ mod W.

|pi| : size of pi, p (in bit).

|mi| : size of mi,m (in bit).

The conventional knapsack type PKC are constructed using the following sequences:

(i) : super-increasing sequence [6]

(ii) : shifted-odd sequence [12] ∼ [14]

In these sequences, entropies of the components are not necessarily same. On the other hands, the entropies

of the components of the secret sequence used in K(II)ΣΠPKC are exactly same. We shall refer to such

secret sequencce as uniform sequence [1], [19]∼ [21].

In the following sections, when the variable xi takes on an actual value x̃i, we shall denote the corre-

sponding vector, x = (x1, x2, · · · , xn), as

x̃ = (x̃1, x̃2, · · · , x̃n). (1)

The C̃ and M̃ et al. will be defined in a similar manner.

2.2 Summary of idea of K(II)ΣΠPKC

In this sub-section let us summarize the idea of a secret system using an example of K(II)ΣΠPKC for two

messages.

Let the Alice’s set of public key, be denoted {ki}A.
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For example, for the message m = (mA,mB), Bob randomly chooses two keys, kA and kB, from the set

of Alice’s public key {ki}A.
Bob encrypts the message m into

m 7→ C = mAkA +mBkB . (2)

Alice decrypts the ciphertext C into

C 7→ m = (mA,mB). (3)

2.3 Maximum length code

In this sub-section, we assume that n is

n = 2g − 1. (4)

The maximum length code {FM (x)} is a cyclic code that satisfies

FM (x) ≡ 0 mod
xn − 1

GF (x)
, (5)

where GF (x) over F2 is a primitive polynomial of degree g [22].

In the followings {FM (x)} will also be denoted simply by {FM}.
Let the two code words (m-sequences) of {FM}, Mα and Mβ over F2, be denoted

Mα = (α1, α2, · · · , αn),

Mβ = (β1, β2, · · · , βn).
(6)

Let the sets S1, S2, S3 be defined as follows :

S1 : Set of pairs (αi, βi)’s such that αi = 1, βi = 1 ; i = 1, 2, · · · , n.
S2 : Set of pairs (αi, βi)’s such that αi = 0, βi = 0 ; i = 1, 2, · · · , n.
S3 : Set of pairs (αi, βi)’s such that αi = 0, βi = 1 or αi = 1, βi = 0 ; i = 1, 2, · · · , n.

Theorem 1 : The orders #S1, #S2 and #S3 are given by

#S1 =
n+ 1

4
,

#S2 =
n− 3

4
,

#S3 =
n+ 1

2
.

(7)

Proof : See Ref.[1].

2.4 Construction of composite numbers {qi}
Let A be a code word of {FM} and p, a prime number vector whose components are randomly chosen prime

numbers. Let A and p be denoted

A =(a1, a2, · · · , an).
p = (p1, p2, · · · , pn) ; pi ̸= pj for i ̸= j ; |pi| = p.

(8)
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Figure 1: Array ((x+ 1)(x3 + x+ 1))

Let w be defined

wA = (a1p1, a2p2, · · · , anpn). (9)

Let the composite number q(A) be defined by the products of the non-zero components of wA. Namely

q(A) can be represented by

q(A) =
n∏

i=1

a′ipi, (10)

where a′i ̸= 0 is an i-th component of A.

Let another code word B be denoted

B = (b1, b2, · · · , bn). (11)

The following composite number q(B) can be obtained from wB = (b1p1, b2p2, · · · , bnpn) in a similar

manner as q(A) :

q(B) =
n∏

i=1

b′ipi. (12)

We have the following straightforward theorem.

Theorem 2 : Letting the largest common divisor (q(A), q(B)) be denoted dA,B , it is

dA,B =

#S1∏
i=1

p
(A,B)
i , (13)

where p
(A,B)
i denotes a prime number for which (ai, bi) ∈ S1.

Let w and W be relatively prime positive integers such that

w < W, (w,W ) = 1. (14)

The set of public keys, {ki}, is given by

wqi = ki mod W ; i = 1, · · · , n. (15)

Public key : {ki}
Secret key : w, W , {pi}, {qi}, {Mi}

4



7654321: ppppppp  p

:1M 0 0 1 0 1 1 1

1 0 0 1 0 1 1

1 1 0 0 1 0 1

1 1 1 0 0 1 0

0 1 1 1 0 0 1

1 0 1 1 1 0 0

0 1 0 1 1 1 0

:2M

:3M

:4M

:5M

:6M

:7M

Random

selection

7641

)( 2 ppppq
M

=

5431

)( 6 ppppq
M

=

Figure 2: Random selection of qM2 and qM6

Example 1 : Maximum length code of length n = 23 − 1.

Let GF (x) be

GF (x) = x3 + x+ 1. (16)

All the code words (m-sequences) generated by (x7 +1)/GF (x) = (x+1)(x3 +x2 +1) are listed in Fig.1.

List of the code words will be referred to as Array ((x+ 1)(x3 + x+ 1)).

Let us assume that the two keys k2 and k6 are randomly chosen from the set {ki} by Bob (correspondingly

two code words M2 and M6 in Fig.1 are chosen from {Mi}), as shown in Fig.2.

Let the prime number vector be

p = (p1, p2, · · · , p7). (17)

From Fig.1, w2 and w6 are
w2 = (p1, 0, 0, p4, 0, p6, p7),

w6 = (p1, 0, p3, p4, p5, 0, 0).
(18)

As show in Fig.2, q(M2) and q(M6) are
q(M2) = p1p4p6p7,

q(M6) = p1p3p4p5.
(19)

Alice calculates
(q(M2), q(M6)) = (p1p4p6p7, p1p3p4p5)

= p1p4 = d1,4,
(20)

and knows for certain that Bob has randomly selected M2 and M6 (correspondingly k2 and k6 from the set

{ki}A, where {ki}A implies the Alice’s set of public key).

From this example, it is easy to see that any selection of (Mi,Mj); i ̸= j by Bob can be successfully

known to Alice, who knows the secret key.
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2.5 Construction of composite numbers {qi} for general λ

Bob randomly chooses λ code words of {FM}. Without loss of generality let us assume that the list of the

randomly chosen code words by Bob are the followings:

M1 = (t11, t12, · · · , t1n),
M2 = (t21, t22, · · · , t2n),

...

Mλ = (tλ1, tλ2, · · · , tλn).

(21)

Let the column vector ti be denoted by

ti =


t1i
t2i
...

tλi

 . (22)

Let the total number of ti’s such that ti’s take on the same value a(i) over F2 be denoted by N(a(i)).

Theorem 3 : The N(a(i)) is given by

N(a(i)) = 2g−λ for ti ̸= 0,

= 2g−λ − 1 for ti = 0.
(23)

Proof : See, for example, Ref.[1]. 2

From Theorem 3 we see that when Bob, in accordance with a random choice of λ public keys, k(1), k(2), · · · , k(λ)
selects λ code words M1,M2, . . . ,Mλ among the code words of {FM} for given messages m1,m2, · · · ,mλ,

the largest common divisor of q(M1), q(M2), · · · , q(Mλ) consists of a product of 2g−λ prime numbers.

The intermediate message Γ is given as

ω−1C ≡ Γ mod W

= m1q
(M1) +m2q

(M2) + · · ·+mλq
(Mλ).

(24)

Let the largest common divisor between q(Mi) and q(Mj) be denoted by dij . It is easy to see that the size

of dij takes on the same value, namely

|dij | = |d2|. (25)

2

From dλ, Alice is able to know for certain that Bob has random chosen a set of keys, k(1), k(2), · · · , k(λ)
from the Alice’s set of public key {ki}A.

Let the factor ratio rF be defined by

rF =
Size of the largest common divisor of q(i)and q(j)

Size of q(i)
. (26)

From Eq.(25), we see that the factor ratio is

rF =
|d2|

|q(Mi)|
. (27)

The common divisor (q(Mi), q(Mj)) can be disclosed, when rF > 1
2 , by an algorithm similar to the

Euclidean division algorithm, yielding all the secret prime numbers {pi}. We shall refer to this attack as

Factor Attack.
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2.6 Brief sketch of a communication scheme using K(II)ΣΠPKC

Encryption process can be performed as follows :

Step 1 : For a given message sequence m̃1, m̃2, · · · , m̃λ, Bob randomly chooses λ keys

kB1, kB2, · · · , kBλ by just taking a look at Alice’s public key set {ki}A.

Step 2 : Bob encrypts messages m̃1, m̃2, · · · , m̃λ into

C̃B = m̃1kB1 + m̃2kB2 + · · ·+ m̃λkBλ. (28)

Step 3 : Bob sends the ciphertext C̃B to Alice.

Decryption process by Alice is given as shown below :

Step 1 : Alice calculates the intermediate message Γ̃B by

w−1C̃B ≡ Γ̃B = m̃1qB1 + m̃2qB2 + · · ·+ m̃λqBλ mod W. (29)

Step 2 : By simply calculating the largest common divisor of q̃B1, q̃B2, · · · , q̃Bλ, d̃λ, Alice decodes

M̃B1, M̃B2, · · · , M̃Bλ randomly chosen by Bob.

In the next section we shall present a new decoding algorithm for improving the coding rate of K(II)ΣΠPKC

with old algorithm DA(I) [1] and show how to decode the messages m̃1, m̃2, · · · , m̃λ after knowing

M̃B1, M̃B2, · · · , M̃Bλ.

Theorem 4 : For the given messages m̃1, m̃2, · · · , m̃λ, the ciphertext can be uniquely decoded, as far as

log2 λ+ λ ≦ g (30)

is satisfied.

Proof : We see that when all the code words whose generator polynomial is given by (xn − 1)/GF (x) are

listed, for example, as shown in Fig.1, any column vector is a code word generated by (xn − 1)/xgGF (x
−1).

We then see that the following relation:

λ2λ ≦ n+ 1 = 2g (31)

should be satisfied, for uniquely decoding m̃1, m̃2, · · · , m̃λ, yielding the proof. 2

It is easy to see that when λ is 2a, a = 1, 2, 3, · · · , the equality holds in Eq.(31). we shall refer to such λ

as optimum λ and denote it by λo. We shall also refer to the largest λ such that it satisfies the inequality of

Eq(30) as quasi-optimum λ and denote it by λqo.

The maximum λ’s that satisfy Eq.(31), for g = 2, 3, 4, 5 and 6 are

g = 2, λo = 1,

g = 3, λo = 2,

g = 4, λqo = 2,

g = 5, λqo = 3,

g = 6, λo = 4.
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2.7 An example of decoding process, DA(II)

Throughout this section let us discuss on a new decoding algorithm, referred to as DA(II), for decoding

messages m1,m2, · · · ,mλ, when Bob randomly has chosen public keys kB1, kB2, · · · , kBλ, from Alice’s public

key, {ki}A, using Example 2 given below.

According to the random choice of public keys kB1, kB2, · · · , kBλ, the code words MB1,MB2, · · · ,MBλ

are chosen.

Before presenting a toy example for illustrating DA(II), let us define the symbols:

0 = (0000),

0′ = (000),

1 = (1111).

(32)

Example 2 : Maximum length code of length n = 26 − 1, generated by GF (x) = x6 + x+ 1. λo = 4.

Code words M i,M j ,Mk,M l can be rearranged as shown in Table 1 by a pertinent column permutation

of Array ((x63 + 1)/(x6 + x + 1)), where qi implies the composite numbers of four different prime numbers

∈ {pi}.

Table. 1: Rearranged M-sequences

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16
M i 0′ 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

M j 0′ 0 0 1 0 1 1 1 0 1 1 0 0 1 0 1

Mk 0′ 0 1 0 1 0 1 1 1 0 1 0 1 0 0 1

M l 0′ 1 0 0 1 1 0 1 1 1 0 1 0 0 0 1

The intermediate message Γ is

Γ = miq(i) +mjq(j) +mkq(k) +mlq(l), (33)

where q(i), q(j), q(k) and q(l) are

q(i) = q9q10q11q12q13q14q15q16,

q(j) = q4q6q7q8q10q11q14q16,

q(k) = q3q5q7q8q9q11q13q16,

q(l) = q2q5q6q8q9q10q12q16.

(34)

Alice is able to know that Bob randomly has chosen Mi,Mj ,Mk and Ml from the relation :

Γ ≡ 0 mod q16. (35)

The messages mi,mj ,mk and ml can be decoded according to the following steps with DA(II).

Step 1 : q(i)−1Γ ≡ mi mod q8.

Step 2 : q(j)−1(Γ−miq(i)) ≡ mj mod q5q9.

Step 3 : q(k)−1(Γ−miq(i)−mjq(j)) ≡ mk mod q2q6q10q12.

Step 4 : Γ−miq(i)−mjq(j)−mkq(k) = Γ2 −mkq(k) = mlq(l), yielding ml.

We see that the factor ratio rF is

rF =
2g−1|p|/2
2g−1|p|

=
1

2
. (36)
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Let the sizes of messages be
|mi| = λ|p| − 1,

|mj | = 2λ|p| − 1,

|mk| = 4λ|p| − 1,

|ml| = 4λ|p| − 1.

(37)

The sizes of the intermediate message, public key and ciphertext are

|Γ| = |ml|+ 2λ−1λ|p|,
|ki| = |W | = |Γ|+ 1,

|C| = |ki|+ 2λ−2λ|p|+ log2 2.

(38)

The coding rate ρ is given by

ρ =
|mi|+ |mj |+ |mk|+ |ml|
|ml|+ 32|p|+ 1 + 16|p|

∼=
44|p|
64|p|

= 0.688, for |p| >∼ 32. (39)

Let the probability that all the elements of SB = {ki}B is correctly estimated by an attacker be denoted

PC [ŜB ]. The PC [ŜB] is

PC [ŜB ] =

(
n

λ

)−1

. (40)

In Table 2 we present several examples of K(II)ΣΠPKC under the condition that

PC [ŜB ] < 2−80 = 8.27× 10−25, (41)

where |pi| = 80(bit).

We see that the coding rate ρ is much improved with DA(II).

Table. 2: Examples of K(II)ΣΠPKC with DA(I) and DA(II)

Decoding
Example n p λ PC [ŜB ]

|{ki}A| |{ki}B |
ρ rF

Algorithm (MB) (KB)

DA(I)
I 4095 80 8 5.13× 10−25 83.9 164 0.059 0.5

II 32767 80 6 5.18× 10−25 335.6 1014 0.176 0.5

DA(II) III 4095 80 8 5.13× 10−25 83.9 164 0.746 0.5

2.8 Security considerations on K(V)ΣΠPKC

Remark 1 :

For any given message m̃1, m̃2, · · · , m̃λ, we assume that Bob chooses encryption key k̃
(1)
1 , k̃

(2)
2 , · · · ,

k̃
(λ)
λ all over again from his key set {ki}B . The order ♯{ki}B is made so that

(
♯{ki}B

λ

)
may take on

a sufficiently large value of 215 for λ = 6. When Bob wants to his set of chosen public key, {ki}B , for a

relatively long period of time, the order of {ki}B , ♯{ki}B is recommended to large so that the relation may

hold : (
♯{ki}B

λ

)λ

∼= 280 (42)
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Attack 1 : Exhaustive attack on {ki}B
By letting n be sufficiently large and appropriately determing the size of λ, the probability of successfully

estimating the subset of {ki}B , PC [ŜB ], can be made sufficiently small.

Attack 2 : Attack on secret keys

In a sharp contrast with the conventional knapsack type PKC where super-increasing sequence or shifted-

odd sequence is used, K(II)ΣΠPKC uses a uniform sequence whose components have exactly same entropy.

Namely a random product of the same number of prime numbers of the same size. Thus it seems very hard

to attack on the secret keys k1, k2, · · · , kn. However the factor rate of secret keys {qi} takes on 0.5. As a

result K(II)ΣΠPKC would be threatened by Factor Attack.

Attack 3 : LLL attack on the ciphertext

In K(V)ΣΠPKC, n takes on a sufficiently large value although λ is a small value, realizing a sufficiently

high security, for the LLL attack.

Attack 4 : Shamir’s attack on secret key

As the components of the secret sequence has the same entropy, K(V)ΣΠPKC can be secure against the

Shamir’s attack.

3 K(V)ΣΠPKC with decoding algorithm, DA(III)

In order to improve the factor ratio of K(II)ΣΠPKC given in Section 2, we let the composite number qi be

transformed into

qi 7→ qiRi ; i = 1, 2, · · · , n (43)

where Ri is a large prime number of size = 2g−1µp.

It is easy to see that the factor ratio rF is given by

rF =
2g−2

2g−1 + µ · 2g−1
=

1

2(1 + µ)
. (44)

Let us refer to a revised version of K(II)ΣΠPKC with a new set of composite numbers {qiRi} will be

referred to as K(V)ΣΠPKC.

An example of Problem A

Construc {q1} so that ciphertext : C̃ = m̃1k̃1 + m̃2k̃2 + · · ·+ m̃8k̃8 may be decoded as

C̃ 7→ (m̃1, m̃2, · · · , m̃8)

under the condition that factor ratio rF ∼= 0.05 and coding rate ρ ∼= 2/3.

Let us show an example of composite numbers for n = 4095, in Fig.3.

The set of k1, · · · , k4095 are constructed from almost random sequence Q1, Q2, · · · , Q4095 such that

rF<∼ 0.05.

Several examples of rF ’s and ρ’s for g >∼ 6 are shown in Table 3.

We conclude that K(V)ΣΠPKC would be secure against Factor Attack when µ ≥ 2, although coding rate

takes on a little smaller value, 1/2.
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Table. 3: rF and ρ

µ rF ρ

2 1/6 1/2

4 1/10 1/3

8 1/18 1/4

4 New decoding algorithm DA(III) for K(V)ΣΠPKC

For an easy understanding, in the followings, let us explain a new decoding algorithm, referred to as DA(III),

using Example 2 given in 2.7.

In K(V)ΣΠPKC the composite numbers q(i), q(j), q(k) and q(l) in Example 2 are transformed into

q(i) = q9q10q11q12q13q14q15q16Ri

q(j) = q4q6q7q8q10q11q14q16Rj

q(k) = q3q5q7q8q9q11q13q16Rk

q(l) = q2q5q6q8q9q10q12q16Rl

(45)

The decoding of messages mi,mj ,mk and ml can be performed exactly similar manner as in Example 2.

Namely the messages mi,mj ,mk and ml can be decoded according to the following steps:

The mi and mj can be decoded with Steps 1 and 2 given in Section 2.7, yielding, mkq(k)Rk +mlq(l)Rl.

Step 3 : (Rkq(k))
−1(Γ−miq(i)Ri −mjq(j)Rj) = mk mod q̄(Ml)Rl.

Step 4 : (Rlq(l))
−1(Γ−miq(i)Ri −mjq(j)Rj) = ml mod q̄(Mk)Rk.

In Example 2, the size of the messages mi,mj ,mk and ml can be made

|mi| = 4p (bit),

|mj | = 8p (bit),

|mk| = 48p (bit),

|ml| = 48p (bit).

(46)
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Let the sizes |R| of Ri, Rj , Rk and Rl be |R| = |Ri| = |Rj | = |Rk| = |Rl| = 32p (bit).

The factor ratio rF and the coding rate ρ are

ρ =
4 + 8 + 48 + 48

48 + 48 + 32 + 32
=

108

160
= 0.675, (47)

rF =
16p

32p+ 32p
=

1

4
. (48)

We see that the factor ratio can be improved by using DA(III).

It is easy to see that the following relation asymptotically holds:

ρ = 2/3, rF = 0 as |R| → ∞. (49)

We thus conclude that the secret sequence used for K(V)ΣΠPKC can be made almost perfectly random.

In other words K(V)ΣΠPKC, a product-sum type (knapsack-type) PKC, would be secure against the various

conventional attacks.

For example, when n = 4095, |pi| = 32, λqo = 8, the factor ratio rF and coding rate ρ are

rF ∼= 0.045,

ρ ∼=
2

3
.

|{ki}A| = 302MB

|{ki}B | = 58.9KB

(50)

5 Conclusion

We have presented a new class of PKC, K(V)ΣΠPKC.

We have clarified the following results on K(V)ΣΠPKC:

• In a sharp ccontrast with the convetional knapsack PKC where the super-increasing sequence or shifted-

odd sequence is used, in K(V)ΣΠPKC, a uniform sequence is used.

• We have presented a generalized version of K(II)ΣΠPKC referred to as K(V)ΣΠPKC, by appending a

large prime numbers to the secret composite numbers. We have presented a new decoding algorithm

DA(III) and have shown that the following relation holds: rF ∼= 0, ρ ∼= 2
3 , as size of Ri, |R| increases.

Thus secret key can be made almost random in a sense that factor ration can be made rF ∼= 0. We

conclude that K(V)ΣΠPKC can be secure against Factor Attack.

• K(V)ΣΠPKC can be secure against the various attacks such as LLL attack.
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