
Collusion-Resistant Domain-Specific
Pseudonymous Signatures???

Julien Bringer1, Hervé Chabanne1,2, Alain Patey1,2

1 Morpho
surname.name@morpho.com

2 Télécom ParisTech
surname.name@telecom-paristech.fr

Identity and Security Alliance (The Morpho and Télécom ParisTech Research Center)

Abstract. At ISC 2012, Bender et al. introduced the notion of domain-
specific pseudonymous signatures for ID documents. With this primitive,
a user can sign with domain-specific pseudonyms, that cannot be linked
across domains but that are linkable in a given domain. However, their
security model assumes non-collusion of malicious users, which is a strong
assumption. We therefore propose improvements to their construction.
Our main contribution is a new pseudonymous signature scheme based
on group signatures that is collusion-resistant.

1 Introduction

Several security mechanisms [1] are sequentially used when a machine readable
travel document (MRTD) connects, via a reader, to a service provider:

– Using Password Authenticated Connection Establishment (PACE), the MR-
TD and the reader establish a secure channel, once the MRTD user has
entered his password;

– Using Extended Acces Control (EAC), the MRTD and the service provider
authenticate to each other and establish another secure channel;

– Optionally, using Restricted Identification (RI), the MRTD derives a pseudo-
nym for the service such that the service provider can link the sessions when
this particular user accessed the service, but such that it is impossible for
two providers to link interactions of one user in their respective domains.

The original Restricted Identification of [1] is close to a Diffie-Hellman key
exchange, with static keys, as can be seen in Figure 2. The authenticity of the
pseudonym sent by the card is not guaranteed. Furthermore, the domain-specific
pseudonym of a user has limited applications, which motivates the work of Ben-
der et al. [3], who suggest to use this pseudonym for digital signatures.

? This work has been partially funded by the European FP7 FIDELITY project (SEC-
2011-284862). The opinions expressed in this document only represent the authors’
view. They reflect neither the view of the European Commission nor the view of
their employer.

?? This paper is an extended version of the eponymous article published at NSS 2013
[6].

Fig. 1. Advanced Security Mechanisms for MRTDs

Inputs:

– User U : Secret key x
– Service Provider SP : Domain Identifier R

Protocol:

1. SP sends R to U .
2. U computes nym = Hash(Rx), the domain-specific pseudonym of U for

SP .
3. U sends nym to SP .
4. SP optionally checks if nym belongs to a black list and/or a white list.

Fig. 2. The Original Restricted Identification Protocol

To augment security guarantees and provide the possibility of using the
domain-specific pseudonyms as signature keys, Bender et al. [3] introduced the
notion of domain-specific pseudonymous signatures. This can be seen as a relax-
ation of the notion of group signatures [9, 2]. Group signatures enable users to
anonymously sign on behalf of a group. Anonymity guarantees are very strong:
two signatures of the same user can only be linked by the group manager, who
also issues keys. However, pseudonyms produced by the RI protocol for a given
user and a given service should enable linkability, since pseudonyms serve as
identifiers for the users.

Domain-specific pseudonymous signatures, as defined in [3], satisfy 3 proper-
ties: unforgeability, cross-domain anonymity and seclusiveness. The second prop-
erty states that pseudonymous signatures cannot be linked across domains while
seclusiveness is a relaxation of the notion of traceability [2] for group signatures.

Bender et al. [3] suggest a modification to the original Restricted Identifi-
cation protocol [1] using pseudonymous signatures, as summed up in Figure 3.
In addition to his domain identifier, the service provider sends a message to
be signed. This message is signed by the user using a pseudonymous signature.
This pseudonymous signature at the same time guarantees that the user owns
a valid unrevoked signature key and that the pseudonym is legitimate, i.e. that
the same user key has been used to sign and to derive the pseudonym.

Inputs:

– User U : Pseudonymous signature key x
– Service Provider SP : Domain Identifier R

Protocol:

1. SP sends R and a message m to U .
2. U derives a pseudonym nym from x and R.
3. U signs the message m using x and nym
4. U sends the signature σ and nym to SP .
5. SP checks σ, using public parameters and nym.

Fig. 3. The Restricted Identification Protocol with Pseudonymous Signatures

The pseudonymous signature scheme of Bender et al. [3] fulfills the security
requirements exposed above (unforgeability, cross-domain anonymity and seclu-
siveness). However, the security model relies on a very strong assumption: they
assume that no two malicious users can retrieve their keys and collude. Indeed,
the relation between signature keys and issuing key being linear, with two signa-
ture keys, one is able to retrieve the issuing key and thus to issue as many new
valid keys as they want. To justify their assumption, the authors invoke the fact
that these keys are supposed to be stored on smartcards on ID documents, and
that smartcards are supposed to be tamper-proof. It is however likely that, on a
national scale, two users will be able to retrieve keys stored on their smartcards.

This is the motivation for our work. We propose a new construction of
pseudonymous signatures, where we allow the users to access their keys and
where collusion of malicious users does not break the security guarantees. To do
so, we use (collusion-resistant) group signatures and combine them with Schnorr
proofs of knowledge to guarantee validity of pseudonyms.

2 Group Signatures

The generic setting for dynamic group signatures is described in [2]. We here
focus on the case of Verifier-Local Revocation (VLR) group signatures [5]. The
definitions and properties described in this section may only apply to the VLR
case.

2.1 Setting

We consider the VLR group signature model [5, 10, 8], without Backward Un-
linkability. There are three types of entities in the VLR group signature model:

– a Group Manager GM;

– a set of members;

– a set of verifiers.

A VLR Group Signature Scheme with Exculpability consists of the following
algorithms:

GSKeyGen(k): On input a security parameter k, this algorithm, run by GM
outputs the group public parameters gpk and the issuing key ik. It also sets
an empty Revocation List RL. This list will be later filled with the revocation
tokens of the revoked users.

GSJoin(gpk, ik; gpk): This algorithm is an interactive protocol between GM
and a member Mi. GM takes as input the public parameters gpk and the
issuing key ik, Mi only takes gpk.

In the end, Mi outputs an identity idi, a secret key ski, a credential crei and
a tracing key tki (included in crei). GM gets idi and tki and outputs also a
revocation token rti for Mi.

GSRevoke(gpk, rti, RL): GM runs this algorithm to prevent a member Mi

from making valid signatures. It outputs an updated revocation list RL,
where rti has been added.

GSSign(gpk, ski, crei,m): This algorithm, run by a member Mi, takes as input
a message m, Mi’s keys ski and crei and a message m to sign. It outputs a
signature σ.

GSVerify(gpk,RL,m, σ): This algorithm, run by a verifier takes as input a
message m, its signature σ, the Revocation List RL and the public param-
eters gpk. It checks if the message has been signed by an unrevoked group
member, without revealing the signer’s identity. The possible outputs are
valid and invalid.

GSOpen(gpk,m, σ, {tki}i): This algorithm is run by GM. It takes a signature
σ on a message m as input, together with all tracing keys of the group. It
reveals the tracing key tki and the identity idi of the signer. If it fails to
recover the identity of the signer, it returns ⊥.

2.2 Security Requirements

We require our scheme to satisfy Correctness, Selfless-Anonymity, Traceability
and Exculpability. Let us first define Correctness.

Correctness The scheme is correct if every signature created by an unrevoked
member is verified as valid.

The other properties are game-based. These games are summed up below.

Selfless-Anonymity Selfless-Anonymity guarantees that no one but the (un-
revoked) signer and the GM can gain information about the signer of a given
signature.
Consider the following Selfless-Anonymity game played by an adversary A:
Setup: The challenger C runs GSKeyGen(k) and obtains gpk and ik. He

sends gpk to A.
Queries: A can make Join, Sign, Corruption, Revocation and Open queries

to the challenger C.
Challenge: Adversary A outputs a message m∗ and two members Mi0 and

Mi1 , who are neither corrupted, nor revoked. C chooses b ∈R {0, 1} and
sends σ∗ = GSSign(gpk, skib , creib ,m

∗) to A.
Restricted Queries: Adversary A can make the same queries as in the

Queries phase, as long as he does not require the revocation or the
corruption of Mi0 or Mi1 , nor the opening of σ∗.

Output: Adversary A outputs a guess b′ ∈ {0, 1} on b.
The scheme is said to satisfy the Selfless-Anonymity property if the prob-
ability |Pr[b = b′] − 1/2| is negligible for any probabilistic polynomial-time
adversary A.

Traceability The scheme is traceable if an adversary A is unable to forge a valid
signature that cannot be opened properly. Consider the following Traceability
game played by A:
Setup: The challenger C runs KeyGen(k) and obtains gpk and ik. He sends

gpk to A. He also sets an empty revocation list RL.
Queries: Adversary A can execute Join, Corrupt, Sign and Open queries.
Output: Adversary A outputs a message m∗ and a signature σ∗.
Adversary A wins the game if:
1. GSVerify(gpk,RL,m∗, σ∗) = valid (implying that σ∗’s opening traces

to a member outside the coalition);
2. Adversary A did not obtain σ∗ by making a Sign query on m∗.

The scheme satisfies Traceability if no polynomial probabilistic adversary is
able to win the above game with a non-negligible probability.

Exculpability The aim of the Exculpability property is to offer protection
against the Group Manager. In the Exculpability game, roles are inverted:
the adversary is the GM and, consequently, knows the group’s secret key
and all the players’ credentials. The goal of the adversary is to forge a valid
signature that will be attributed to an honest (i.e. not corrupted) member
by the GSOpen algorithm. This signature must be such that it cannot be
denied by the signer. Consider the following Exculpability game played by
an adversary A:

Setup: Challenger C runs GSKeyGen(k) and obtains gpk and ik. C stores
gpk and sends gpk and ik to A3.

Queries: Adversary A can request Join, Corrupt and Sign queries.
Output: Adversary A outputs a message m∗, the Revocation List RL, a

signature σ∗ and a tracing key pair (idi∗ , tki∗).
Adversary A wins the game if all the following statements hold:
1. He did not obtain σ∗ from making a query on m∗;
2. GSVerify(gpk,RL,m∗, σ∗) = valid;
3. GSOpen(gpk,m∗, σ∗, {tki}) = (idi∗ , tki∗);
4. He did not corrupt Mi∗ ;
5. It is impossible for Mi∗ to prove the knowledge of a member key (idi,
ski, crei) such that ski 6= ski∗ and such that ski could have issued σ∗ as
a valid signature4.

Note that the last requirement is to ensure protection against a dishonest
opening from the manager. The scheme satisfies Exculpability if no poly-
nomial probabilistic adversary is able to win the above game with a non-
negligible probability.

2.3 The CL-BP Scheme

We here detail the scheme of Chen and Li [10], patched by Bringer and Patey [8]
to ensure Traceability, that we denote by CL-BP. This scheme is well-suited for
our purpose, since one can efficiently prove that the same key has been used to
generate a pseudonym and to sign the message. Furthermore, the CL-BP scheme
enjoys efficient revocation checks.

The GSKeyGen algorithm is described in Algorithm 1. The issuing key is
γ ∈R Zp, its public counterpart is w = gγ2 .

Algorithm 1 GSKeyGen(k)

1: Choose bilinear groups G1, G2, GT of order a k-bit prime number p that is safe (i.e.
(p− 1)/2 prime number), a prime number q and a pairing e : G1 ×G2 → GT . Let
g1, g2 be generators of G1 and G2.

2: Choose a hash function H : {0, 1}∗ → Zp
3: Choose g̃1, ĝ1 ∈R G1, γ ∈R Z∗p and compute w = gγ2 .
4: Compute T1 = e(g1, g2), T2 = e(g̃1, g2), T3 = e(ĝ1, g2) and T4 = e(ĝ1, w).

5: Output: gpk = (G1, G2, GT , e, p, g1, g2, g̃1, ĝ1, w, H, T1, T2, T3, T4) and ik = γ.

The GSJoin algorithm is explained in Algorithm 2. Each member Mi chooses
a secret key ski = fi ∈R Zp, not known by GM. Mi gives to GM an identity

idi = g̃fi1 and proves the knowledge of fi. GM sends him, over a secure chan-

nel, a credential crei = (Ai, xi), that satisfies e(Ai, wg
xi
2) = e(g1g̃

fi
1 , g2). The

revocation token for a member Mi is rti = xi and tki = xi is the tracing key.

3 This corresponds to a trusted setup run on behalf of the adversary.
4 This condition is formalized in [10] by using two functionalities called DProve and

DVerify.

Algorithm 2 GSJoin(gpk, ik ; gpk)

1: GM sends a nonce ni ∈ {0, 1}k to Mi.
2: Mi chooses fi ∈R Zp and computes Fi = g̃fi1 . He sets ski = fi and idi = Fi. He

chooses rf ∈R Zp and computes R = g̃
rf
1 . He computes c = H(gpk||Fi||R||ni) then

sf = rf + cfi.
3: Mi sends comm = (Fi, c, sf) to GM.
4: GM computes R′ = g̃

sf
1 F−ci and checks that c = H(gpk||F ||R′||ni) and sf ∈ Zp.

He chooses xi ∈R Zp and computes Ai = (g1Fi)
1/(xi+γ). He sets crei = (Ai, xi),

tki = xi and idi = Fi.
5: GM sends crei to Mi, using a secure channel.
6: Mi checks that e(Ai, wg

xi
2) = e(g1g̃

fi
1 , g2) and outputs (idi, ski, crei).

7: The revocation token for Mi is rti = xi.

The GSSign algorithm is described in Algorithm 3. When a member Mi

creates a signature, he first chooses a random B ∈R G1 and computes J = Bfi ,
K = Bxi . He picks a random a ∈R Zp, computes b = axi and T = Aiĝ

a
1 .

He then does a NIZK PK of (fi, Ai, xi) satisfying J = Bfi , K = Bxi and

e(Ai, wg
xi
2) = e(g1g̃

fi
1 , g2).

Algorithm 3 GSSign(gpk, ski, crei,m)

1: Choose B ∈R G1 and compute J = Bfi , K = Bxi

2: Choose a ∈R Zp, compute b = axi and T = Aiĝ
a
1 .

3: Choose rf , rx, ra, rb ∈R Zp.
4: Compute R1 = Brf , R2 = Brx , R4 = KraB−rb , R3 = e(T, g2)−rxT

rf
2 T

rb
3 T ra4 .

5: Compute c=H(gpk||B||J ||K||T ||R1||R2||R3||R4||m).
6: Compute sf = rf + cfi, sx = rx + cxi, sa = ra + ca and sb = rb + cb.

7: Output: σ = (B, J,K, T, c, sf , sx, sa, sb).

The GSVerify algorithm is described in Algorithm 4. To check a signature,
the verifier checks the proof of knowledge. If the check succeeds, he also does a
Revocation Check: ∀rti′ = x′i ∈ RL, he checks that K 6= Brti′ .

Algorithm 4 GSVerify(gpk,m, σ,RL)

1: Signature Check:
2: Check that B, J,K, T ∈ G1 and sf , sx, sa, sb ∈ Zp.
3: Compute R′1 = Bsf J−c, R′2 = BsxK−c, R′4 = KsaB−sb and R′3 =
e(T, g2)−sxT

sf
2 T

sb
3 T sa4 T c1 e(T,w)−c .

4: Check that c=H(gpk||B||J ||K||T ||R′1||R′2||R′3||R′4||m).
5: Revocation Check:
6: Check that ∀rti ∈ RL,K 6= Brti .

7: Output valid if all checks succeed. Otherwise output invalid.

The GSOpen algorithm consists in an application of the Revocation Check
part of the GSVerify algorithm, using the revocation tokens of all enrolled users.
When there is an equality between K and Brti (see Algorithm 4, line 6), the
corresponding user is output.

The security of the CL-BP scheme is proved in [8]. We sum up the security
guarantees in the following theorem, where DDH stands for Decisional Diffie-
Hellman, q-SDH for q-Strong Diffie Hellman [4] and DLP for Discrete Logarithm
Problem.

Theorem 1 (Security of the CL-BP Scheme). The CL-BP scheme achieves

– Correctness;
– Selfless-Anonymity, under the DDH assumption;
– Traceability, under the q-SDH assumption;
– Exculpability, under the DLP assumption.

3 Pseudonymous Signatures

We give in this section definitions that follow our stronger security model and
indicate where the weaker security model of [3] differs.

3.1 Setting

Three entities are involved:

– The Issuing Authority (IA)
– Users Mi

– Service Providers SPj with specific domains Dj

The issuing authority issues secret keys to the users and domain param-
eters to the service providers. The users can generate, from their secret keys
and the domain parameters, one pseudonym per domain. Using domain-specific
pseudonymous signatures, users can sign messages linked to their pseudonyms.
The pseudonym being attached to the signatures, the signatures of one user in
one domain are obviously linkable. The construction guarantees that signatures
of the same user for different domains are not linkable by (even colluding) service
providers. However, the issuing authority can retrieve these links.

There are six algorithms in the scheme:

PSKeyGen(k) The Issuing Authority generates a master secret key msk and
a master public key gpk.
The IA and the SPj ’s generate domain-specific public keys dpkj .

PSJoin(msk, gpk) The Issuing Authority and the user Mi interact to generate
a secret key ski for user Mi.

PSSign(gpk,ski,dpkj,m) The user Mi outputs his pseudonym nymij for do-
main Dj and a signature σ on m for domain Dj

PSVerify(gpk,nymij,dpkj,m,σ,RLj) The Service Provider for domain Dj che-
cks the signature σ on message m and the link between σ and nymij . SPj
also performs a revocation check, using RLj , the list of revoked pseudonyms
for domain Dj

PSDomainRevoke(RLj,nymij) SPj runs this algorithm to prevent a member
Mi from making valid signatures in Dj . It outputs an updated revocation
list RLj , where nymij has been added.

PSRevoke(gpk,xi) IA runs this algorithm to prevent a member Mi from mak-
ing valid signatures in all domains. He sends an information xi about the
key of Mi that the SPj ’s use to revoke Mi from their domains. Every service
provider SPj outputs an updated RLj .

3.2 Security

The security properties of pseudonymous signatures are close to the properties
of group signatures. We require a pseudonymous signature scheme to satisfy
Correctness, Cross-Domain Anonymity, Unforgeability and Seclusiveness.

Correctness The scheme is correct if every signature-pseudonym couple cre-
ated by an unrevoked member is verified as valid.

Cross-Domain Anonymity Cross-Domain Anonymity guarantees that signa-
tures are anonymous and that linkability is possible within a given domain
only, even with colluding service providers.
Consider the following Cross-Domain Anonymity game played by an adver-
sary A:

Setup: The challenger C runs KeyGen(k) and obtains gpk and msk. He
sends gpk to A.

Queries: A can make Join, Sign, User Corruption5, Service Provider Cor-
ruption, Domain-Specific Revocation and Revocation queries to the chal-
lenger C.

Challenge: Adversary A outputs a message m∗, a domain Dj and two
members Mi0 and Mi1 , who are neither corrupted, nor revoked for do-
main Dj . Furthermore, no Sign request in the domain Dj for these two
members must have been called. C chooses b ∈R {0, 1} and sends σ∗ =
PSSign(gpk, skib ,dpkj ,m

∗) to A.
Restricted Queries: Adversary A can make the same queries as in the

Queries phase, as long as he does not require the revocation or the
corruption of Mi0 or Mi1 , nor signatures of Mi0 or Mi1 for domain Dj .

Output: Adversary A outputs a guess b′ ∈ {0, 1} on b.

The scheme is said to satisfy the Cross-Domain Anonymity property if the
probability |Pr[b = b′] − 1/2| is negligible for any probabilistic polynomial-
time adversary A.

Seclusiveness The scheme achieves Seclusiveness if an adversary A is unable
to forge a valid signature that cannot be opened properly. Consider the
following Seclusiveness game played by A:

5 In the security definition of the scheme of [3], only one corruption is authorized

Setup: The challenger C runs KeyGen(k) and obtains gpk and ik. He sends
gpk to A. He also sets empty revocation list RLj .

Queries: Adversary A can execute Join, Corrupt6, Sign and Open queries.
Output: Adversary A outputs a message m∗ and a signature σ∗.

Adversary A wins the game if:

1. PSVerify(gpk, nymij , dpkj , RLj ,m
∗, σ∗) = valid (implying that σ∗’s o-

pening traces to a member outside the coalition);
2. Adversary A did not obtain σ∗ by making a Sign query on m∗.

The scheme satisfies Traceability if no polynomial probabilistic adversary is
able to win the above game with a non-negligible probability.

Unforgeability The aim of the Unforgeability property is to prevent anyone,
including the Group Manager, from making signatures on behalf of a given
user. Notice that, contrary to the security definitions of [3], we do not require
the group manager to delete information about the users’ keys after the
PSJoin algorithm.
In the Unforgeability game, roles are inverted: the adversary is the IA and,
consequently, knows the group’s secret key and all the players’ and providers’
credentials. The goal of the adversary is to forge a valid signature that will
be attributed to an honest (i.e. not corrupted) member. This signature must
be such that it cannot be denied by the signer. Consider the following Un-
forgeability game played by an adversary A:

Setup: Challenger C runs KeyGen(k) and obtains gpk and ik. C stores gpk
and sends gpk and ik to A.

Queries: Adversary A can request Join, Corrupt and Sign queries.
Output: Adversary A outputs a message m∗, a domain Dj , the Revocation

List RLj , a signature σ∗, a pseudonym nymij and a member Mi∗ .

Adversary A wins the game if all the following statements hold:
1. He did not obtain σ∗ from making a query on m∗;
2. PSVerify(gpk, nymij , dpkj , RLj ,m

∗, σ∗) = valid;
3. The signature opens to Mi∗ , and Mi∗ cannot deny it.
4. He did not corrupt Mi∗ ;

The scheme satisfies Unforgeability if no polynomial probabilistic adversary
is able to win the above game with a non-negligible probability.

3.3 Overview of the scheme of Bender et al.

We sum up the components of the pseudonymous signature scheme of [3] and
the reasons why it does not resist to collusions.

Let G = 〈g〉 be a cyclic group of prime order q. The secret key of the IA is
made of two randomly chosen integers x, z ∈R Zq. The public parameters of the
system are g, gx and gz.

The key of a user Mi is a couple (x1i, x2i), chosen by the IA, such that
x1i = x− z · x2i.
6 In [3], only one Corrupt query is allowed.

The domain parameters for every domain Dj are chosen by the IA, by picking
a random rj ∈R Z∗q and setting dpkj = grj . SPj learns dpkj , but not rj .

The pseudonym of a user Mi for domain Dj is dpkx1i
j .

To sign, user Mi uses two intertwined proofs of knowledge, a Schnorr proof
of knowledge [13] that he knows the discrete logarithm of the pseudonym and an
Okamoto proof [12] that he owns a valid (x1, x2) key pair. The proofs are non-
interactive and rely on the random oracle. The message to be signed is included
in the entries of the hash function used to generate the challenge.

Limitations First, it is noticeable, that when one finds two (x1, x2) couples, one
easily retrieves the secret keys x and z of the IA and can thus generate as many
valid key couples as one wants. The authors of [3] justify that, since these keys
are supposed to be stored on smartcards, assumed to be tamper-proof, security
will be guaranteed. We estimate that this assumption is optimistic, especially
for the sensitive application of ID documents.

Second, the IA generates all the keys and, thus, is able to sign on behalf of
the users. It is specified in [3] that these keys are supposed to be deleted by the
IA, once delivered to the users, which is impossible to verify. This might raise
some security issues, we also solve this problem in our proposal thanks to the
Exculpability property of group signatures.

4 Our Proposal for a Collusion-Resistant Pseudonymous
Signature Scheme

4.1 The Proposal

One of the main properties of group signatures is that they prevent from linking
signatures. However, pseudonymous signatures are supposed to enable linkability
of signatures if they are accompanied by the same pseudonym, but unlinkability
otherwise. By combining the construction of [3] with the CL-BP group signa-
ture, we build pseudonymous signatures that are resistant to collusions. This
construction requires more computation from the user to sign messages. It re-
quires elliptic curve cryptography but the smartcard does not need to be able
to compute pairings.

The PSKeyGen algorithm, described in Algorithm 5 is mostly an execution
of the GSKeyGen algorithm of the CL-BP scheme by the Issuing Authority. IA
also has to pick randomly chosen domain parameters dpkj = g

rj
1 that he sends

to the service providers. It is essential, in order to preserve unlinkability, that
the service providers do not learn rj .

The PSJoin algorithm, described in Algorithm 67 consists in an execution of
the GSJoin algorithm.

7 Optionally, during the execution of this algorithm, Mi also gets e(Ai, g2) to avoid
pairing computations by the smartcard

Algorithm 5 PSKeyGen(k)

1: Run the GSKeyGen algorithm of the CL-BP scheme, as Group Manager.
2: Thus obtain gpk and msk = γ

3: For every service provider SPj , pick a random rj ∈R Zp and issue the domain

parameters dpkj = g
rj
1 to SPj .

Algorithm 6 PSJoin(msk, gpk)

1: IA runs a GSJoin algorithm with the user Mi.
2: Mi gets a key gski = (xi, Ai, fi)

3: IA gets xi and Ai.

The PSSign algorithm, described in Algorithm 7 consists in a CL-BP sig-
nature, a domain-specific pseudonym derivation, and a proof of knowledge that
the same key has been used in both operations.

Algorithm 7 PSSign(gpk,ski,dpkj,m)

1: Choose B ∈R G1 and compute J = Bfi , K = Bxi .
2: Choose a ∈R Zp, compute b = axi and T = Aiĝ

a
1 .

3: Choose rf , rx, ra, rb ∈R Zp.
4: Compute R1 = Brf , R2 = Brx , R4 = KraB−rb , R3 = e(T, g2)−rxT

rf
2 T

rb
3 T ra4 and

R5 = dpkrxj .
5: Compute c=H(gpk||B||J ||K||T ||R1||R2||R3||R4||R5||m).
6: Compute sf = rf + cfi, sx = rx + cxi, sa = ra + ca and sb = rb + cb.

7: Output: σ = (B, J,K, T, c, sf , sx, sa, sb) and nymij = dpkxij

The PSVerify algorithm, described in Algorithm 8 is a verification of the
proof of knowledge, followed by a revocation check, where the verifier checks
if the pseudonym is on the revocation list or not. Notice that the verifier only
performs a list membership test and not a linear number of arithmetic operations,
as in the Revocation Check of the GSVerify algorithm.

Algorithm 8 PSVerify(gpk,nymij,dpkj,m,σ,RLj)

1: Signature Check:
2: Check that B, J,K, T ∈ G1 and sf , sx, sa, sb ∈ Zp.
3: Compute R′2 = BsxK−c, R′3 = e(T, g2)−sxT

sf
2 T

sb
3 T sa4 T c1 e(T,w)−c, R′4 =

KsaB−sb , R′1 = Bsf J−c and R′5 = dpksxj nym
−c.

4: Check that c=H(gpk||B||J ||K||T ||R′1||R′2||R′3||R′4||R′5||m).
5: Revocation Check:
6: Check that nymij /∈ RLj .
7: Output valid if all checks succeed. Otherwise output invalid.

The revocation algorithms, PSDomainRevoke, described in Algorithm 9, and
PSRevoke, described in Algorithm 10, consist in adding the pseudonym of the
revoked user in the revocation list RLj of the domain RLj .

Algorithm 9 PSDomainRevoke(RLj,nymij)

1: Add nymij to RLj
2: Output RLj

Algorithm 10 PSRevoke(gpk,xi)

1: IA sends rti = xi to all SP ′js
2: Every SPj adds nymij = dpkrtij to RLj and outputs RLj .

4.2 Security

Our pseudonymous signature scheme achieves the security properties described
in Section 3.2, under the same security conditions as the CL-BP scheme. It can
be proven in a similar way as in [10, 8], i.e. by showing how a successful adver-
sary against our security games can be used to break the security assumptions.
Security is guaranteed is in the random oracle model.

Theorem 2 (Correctness). The pseudonymous signature scheme described in
Section 4.1 achieves Correctness.

Theorem 3 (Cross-Domain Anonymity). Under the Decisional Diffie-Hell-
man assumption, the pseudonymous signature scheme described in Section 4.1
achieves Cross-Domain Anonymity.

Theorem 4 (Seclusiveness). Under the q-Strong Diffie-Hellman assumption
[4], the pseudonymous signature scheme described in Section 4.1 achieves Seclu-
siveness.

Theorem 5 (Unforgeability). Under the Discrete Logarithm assumption, the
pseudonymous signature scheme described in Section 4.1 achieves Unforgeability.

Implementation In [8], parameters for the CL-BP scheme are suggested and
a computation time analysis is performed. The computation required by our
PSSign algorithm is the cost of the GSSign algorithm of the CL-BP scheme and
an exponentiations necessary to compute R5 and nymij . As noticed in [8], all the
computation of GSSign but the hash function can be computed offline, before

the knowledge of the message to be signed. This offline work consists in 6 multi-
exponentiations in G1 and 1 multi-exponentiation in GT . The remaining online
work for our pseudonymous signature is then 1 hash function computation and
2 exponentiations in G1. With the parameters of [8], this online computation
requires less than 100 ms on a personal computer.

The corresponding computation for PSVerify is 5 multi-exponentiations in
G1, 1 multi-exponentiation in GT and 1 pairing. Contrary to the one of GSVerify,
the cost of the Revocation Check of PSVerify is negligible. With the parame-
ters of [8], the computation of PSVerify requires around 500 ms on a personal
computer.

5 Conclusion

We succeed in building a pseudonymous signature scheme that resists to collu-
sions, which improves on the previous proposal of Bender et al. [3]. This property
is an asset for a secure large-scale deployment of this mechanism on electronic
ID documents. The price to pay is the use of elliptic-curve cryptography and
pairings. However, it can be deployed such that no pairings are computed on the
users’ smartcards.

Our proposal relying on VLR group signatures, it can be extended to en-
joy additional features that have already been proposed for group signatures
such as biometric key derivation [7] or Backward Unlinkability [11, 8]. The latter
property enables to have a time period-specific revocation process.

References

1. Advanced security mechanisms for machine readable travel documents. part 2 ex-
tended access control version 2 (EACv2), password authenticated connection es-
tablishment (PACE), and restricted identification (RI). Tech. Rep. TR-03110-2,
BSI (March 2012), version 2.10

2. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: The case of dy-
namic groups. IACR Cryptology ePrint Archive 2004, 77 (2004)

3. Bender, J., Dagdelen, Ö., Fischlin, M., Kügler, D.: Domain-specific pseudonymous
signatures for the german identity card. In: Gollmann, D., Freiling, F.C. (eds.)
ISC. Lecture Notes in Computer Science, vol. 7483, pp. 104–119. Springer (2012)

4. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J. (eds.) EUROCRYPT. Lecture Notes in Computer Science, vol. 3027,
pp. 56–73. Springer (2004)

5. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: Atluri,
V., Pfitzmann, B., McDaniel, P.D. (eds.) ACM Conference on Computer and Com-
munications Security. pp. 168–177. ACM (2004)

6. Bringer, J., Chabanne, H., Patey, A.: Collusion-resistant domain-specific pseudony-
mous signatures. In: International Conference on Network and System Security
(NSS) (2013)

7. Bringer, J., Chabanne, H., Pointcheval, D., Zimmer, S.: An application of the
Boneh and Shacham group signature scheme to biometric authentication. In: Mat-
suura, K., Fujisaki, E. (eds.) IWSEC. Lecture Notes in Computer Science, vol.
5312, pp. 219–230. Springer (2008)

8. Bringer, J., Patey, A.: VLR group signatures - how to achieve both backward
unlinkability and efficient revocation checks. In: SECRYPT. pp. 215–220 (2012)

9. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT.
Lecture Notes in Computer Science, vol. 547, pp. 257–265. Springer (1991)

10. Chen, L., Li, J.: VLR group signatures with indisputable exculpability and efficient
revocation. In: Elmagarmid, A.K., Agrawal, D. (eds.) SocialCom/PASSAT. pp.
727–734. IEEE Computer Society (2010)

11. Nakanishi, T., Funabiki, N.: A short verifier-local revocation group signature
scheme with backward unlinkability. In: Yoshiura, H., Sakurai, K., Rannenberg,
K., Murayama, Y., ichi Kawamura, S. (eds.) IWSEC. Lecture Notes in Computer
Science, vol. 4266, pp. 17–32. Springer (2006)

12. Okamoto, T.: Provably secure and practical identification schemes and correspond-
ing signature schemes. In: Brickell, E.F. (ed.) CRYPTO. Lecture Notes in Com-
puter Science, vol. 740, pp. 31–53. Springer (1992)

13. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptology 4(3),
161–174 (1991)

