Improved Differential Fault Analysis on ARIA using Small Number of Faults *

Yuseop Lee^a, Kitae Jeong^a, Jaechul Sung^b, Seokhie Hong^{a,*}

^aCenter for Information Security Technologies (CIST), Korea University, Republic of Korea

^bDepartment of Mathematics, University of Seoul, Republic of Korea

Abstract

In [15], Li et al. firstly proposed a differential fault analysis on ARIA-128. This attack requires average 45 random byte fault injections. In 2012, Park et al. proposed the improve DFA by using 33 random byte fault injection. Also Kim proposed differential fault analysis based on multi byte fault model. In this model, the number of fault injections is reduce to 13 and If access to the decryption oracle is allowed, only 7 faults are required. In this paper, we propose improved differential fault analysis on ARIA. Based on random byte fault model, the proposed attacks can recover the secret key of ARIA-128/192/256 by using 6 fault injections within a few minutes. Moreover, in cases of ARIA-128 and ARIA-256, it is possible to recover the secret key using only 4 fault injections under a fault assumption where an attacker can induce some faults during both encryption and decryption process, respectively. Our results on ARIA-192/256 are the first known DFA results on them.

Key words: Differential fault analysis, Block cipher, ARIA, Cryptanalysis.

Differential fault analysis (DFA) is one of the most well-known side-channel analysis on block ciphers. After Biham and Shamir first proposed a DFA on DES [1], it was applied to AES [2,8,11,18,20,?], Triple-DES [9], CLEFIA [4], SEED [10], ARIA [15,19,13], SMS4 and MacGuffin [16] and so on. In DFA,

^{*} This research was supported by the MKE(The Ministry of Knowledge Economy), Korea, under the ITRC(Information Technology Research Center) support program(NIPA-2012-H0301-12-3007) supervised by the NIPA(National IT Industry Promotion Agency.

^{*} Corresponding author.

Email addresses: yusubi@korea.ac.kr (Yuseop Lee), kite.jeong@gmail.com (Kitae Jeong), jcsung@uos.ac.kr (Jaechul Sung), hsh@cist.korea.ac.kr (Seokhie Hong).

an attacker induces some faults to registers of the target round and obtains the corresponding faulty/right ciphertexts. Then the candidates of last round key can be recovered by using differential cryptanalysis. By using them, he can compute the input value of the last round. Thus, he repeats the above procedure to recover more round keys until the secret key is obtained by the key schedule.

ARIA is a 128-bit block cipher supporting 128/192/256-bit secret keys [14]. It was adopted as a Korean Standard block cipher algorithm (KS X 1213). Until now, many cryptanalytic results on this algorithm were proposed [3,5,6,17,21]. First DFA on ARIA-128 proposed in [15]. The attack procedure of this attack is as follows. First, the last four round keys are recovered by using 45 random byte fault injections. Then, the 128-bit secret key is computed by using the recovered round keys. In [19], Park et al. proposed improve DFA on ARIA-128. Thus they reduce the number of fault injections to 33. Also, Kim proposed DFA on ARIA-128 based on multi byte fault model[13]. Thus they use only 13 fault injections. If access to the decryption oracle is allowed, only 7 faults are required.

In this paper, we proposed improved DFAs on ARIA. In our attack, we consider two random byte fault assumptions A^1 and A^2 . Assumption A^2 is a usual random byte fault assumption. That is, an attacker does not know the location and value of faults. Under assumption A^1 , he can control the location of faults but he does not know the value of it. The assumption A^1 is based on the result of [7]. In [7], the authors presented that it is possible to control the location of fault injections to ISO/IEC 18033-3 block ciphers such that AES, DES, Camellia, CAST-128, SEED and MISTY1. From this result, it is reasonable that we can control the location of fault injection to ARIA. Furthermore, we subdivide each assumption into A_E^i and A_{DE}^i , respectively (i = 1, 2). A_E^i means a fault assumption where a fault injection happens during only the encryption process. A_{DE}^i means a fault assumption or encryption process, respectively. For example, a fault assumption considered in [15,19] is A_E^2 .

On the other hand, in [20], the authors constructed differential equations to recover the secret key of AES. Thus, this attack requires only one random byte fault injection. To reduce the number of required fault injections, we apply this idea to ARIA-128/192/256. As a result, our attacks require 6 fault injections under A_E^i . In detail, we induce some faults to the input registers of target rounds. Then, we construct differential equations from the differential propagation of injected faults. Thus, by using these equations, we recover the last four round keys. From the key schedule of ARIA, we finally recover the secret key of ARIA by using these round keys. In the case of A_{DE}^i , we can recover the secret keys of ARIA-128/256 with only 4 fault injections. Our results on ARIA are summarized in the Table 1.

	Target	Fault	\sharp of injected	Reference		
	algorithm	assumption	faults	neierence		
		A_E^2	45	[15]		
		A_E^2	33	[19]		
	ARIA-	A_E^{2*}	13	[13]		
	128	A_{DE}^{2*}	7	[13]		
		A_E^1, A_E^2	6	Section 5.1, Section 5.2		
		A_{DE}^1, A_{DE}^2	4	Section 5.3		
	ARIA-	A_E^1, A_E^2	6	Section 5.1, Section 5.2		
	192	A_{DE}^1, A_{DE}^2	4	Section 5.3		
	ARIA-	A_E^1, A_E^2	6	Section 5.1, Section 5.2		
	256	A_{DE}^1, A_{DE}^2	4	Section 5.3		

Table 1 DFA results on ARIA

* multi byte fault model

The difference between A^1 and A^2 is the computational complexity. In detail, under assumption A^1 , the computational complexity is $O(2^{24})$. In the case of A^2 , the computational complexity is $O(2^{32})$. As a simulation result, our attacks under A^1 can recover the secret key of ARIA within a few seconds. But, in the case of A^2 , our attacks requires a few minutes. This paper is organized as follows. In Section 2, we briefly introduce ARIA. In Section 3, we present our fault assumptions and the basic idea of our attacks. The method to compute round keys by using differential equations is described in Section 4. In Section 5, we present the detailed attack procedure of our attacks on ARIA. Finally, we give our conclusion in Section 6.

1 Description of ARIA

ARIA is a 128-bit block cipher which supports 128-, 192- and 256-bit secret keys. We call this algorithm ARIA-128/192/256, respectively. ARIA-128/192/256 consist of 12, 14 and 16 rounds, respectively. Throughout this paper, the following notations are used.

- K_n : the secret key of ARIA-*n* (*n* = 128, 192, 256).
- r: the number of round of ARIA (r = 12, 14, 16).
- X_i : the input value of round key addition in round i $(i = 1, 2, \dots, r)$.
- Y_i : the input value of substitution layer in round *i*.
- Z_i : the input value of diffusion layer in round *i*.
- \ll (\gg) t: a left(right) circular rotation of operand by t bits.

Fig. 1. The structure of ARIA

Each round function is composed of three subfunctions such as Round Key Addition (RKA), Substitution Layer (SL) and Diffusion Layer (DL). In last round, DL is replaced by RKA. They are defined as follows. See [14] for detailed descriptions of them (see the Figure 1).

- RKA is a XORing of the state and a 128-bit round key which is derived from the secret key.
- SL is a non-linear byte substitution operation applied all bytes of state in parallel. In odd rounds and even rounds, two different types of SL are operated.
- DL is a linear matrix multiplication of the state with a 1616 binary matrix.

The key schedule of ARIA consists of an initialization part and a round key generation part. First, a 256-bit (KL, KR) is filled with K_n as follows.

$$KL||KR = K_n||0\cdots 0.$$

In an initialization part, four 128-bit values (W_0, W_1, W_2, W_3) are computed as follows. Here, F_o and F_e are the even and odd round function, respectively. Here, CK_i is a 128-bit constant.

$$W_0 = KL,$$

$$W_1 = F_o(W_0, CK_1) \oplus KR,$$

$$W_2 = F_e(W_1, CK_2) \oplus W_0,$$

$$W_3 = F_o(W_2, CK_3) \oplus W_1.$$

In a round key generation part, r + 1 round keys (ek_1, \dots, ek_{r+1}) used in the encryption process are generated as follows.

$$\begin{array}{l} ek_1 = W_0 \oplus W_1^{\gg 19}, \ ek_2 = W_1 \oplus W_2^{\gg 19}, \ ek_3 = W_2 \oplus W_3^{\gg 19}, \\ ek_4 = W_3 \oplus W_0^{\gg 19}, \ ek_5 = W_0 \oplus W_1^{\gg 31}, \ ek_6 = W_1 \oplus W_2^{\gg 31}, \\ ek_7 = W_2 \oplus W_3^{\gg 31}, \ ek_8 = W_3 \oplus W_0^{\gg 31}, \ ek_9 = W_0 \oplus W_1^{\ll 61}, \\ ek_{10} = W_1 \oplus W_2^{\ll 61}, \ ek_{11} = W_2 \oplus W_3^{\ll 61}, \ ek_{12} = W_3 \oplus W_0^{\ll 61}, \\ ek_{13} = W_0 \oplus W_1^{\ll 31}, \ ek_{14} = W_1 \oplus W_2^{\ll 31}, \ ek_{15} = W_2 \oplus W_3^{\ll 31}, \\ ek_{16} = W_3 \oplus W_0^{\otimes 31}, \ ek_{17} = W_0 \oplus W_1^{\otimes (19}. \end{array}$$

2 Fault assumptions and the basic idea

2.1 Fault assumptions

Our fault assumption is based on a random byte fault model. In general, under random byte fault model, an attacker induces some byte faults into the target rounds and does not know the exact location of injected faults. However, in [7], it is shown that it is possible to control the location a fault injection to ISO/IEC 18033-3 block ciphers. They considered AES, DES, Camellia, CAST-128, SEED and MISTY1. Though ARIA is not included in the list, we expect that the result of [7] is also applicable to ARIA. Thus, we consider the following two assumptions.

- Assumptions A^1
- (1) An attacker can induce some random byte faults to the input register in the target round.
- (2) The attacker can control the location of injected faults.
- (3) The value of faults is unknown.
- Assumptions A^2
- (1) An attacker can induce some random byte faults to the input register in the target round.
- (2) The location and value of injected faults are both unknown.

Furthermore, A^i is partitioned into two assumptions A^i_E and A^i_{DE} , respectively (i = 1, 2). A^i_E means a fault assumption where a fault injection happens during only the encryption process. A^i_{DE} means a fault assumption where a fault injection happens during the decryption and encryption process, respectively. For example, A^1_E and A^1_{DE} are defined as follows.

• Assumptions A_E^1

- (1) An attacker can induce some random byte faults to the input register in the target round **during the encryption process**.
- (2) The attacker can control the location of injected faults.
- (3) The value of faults is unknown.
- Assumptions A_{DE}^1
- (1) An attacker can induce some random byte faults to the input register in the target round during the decryption and encryption process, respectively.
- (2) The attacker can control the location of injected faults.
- (3) The value of faults is unknown.

Since ARIA satisfies the involutional property, the encryption process is equal to the decryption process except for the round keys. Thus, it is reasonable that we consider both processes.

2.2 Constructing differential equations

Fig. 2. The differential propagation where a fault is injected to $X_{r-2,0}$

When a random byte fault is induced to the first byte of input register $X_{r-2,0}$ of round r-2, the differential propagation is shown in Figure 2. From this figure, the input difference ΔX_{r-1} of round r-1 has the following pattern. Here, α is the first byte difference of SL in round r-2.

$$\Delta X_{r-1} = (0, 0, 0, \alpha, \alpha, 0, \alpha, 0, \alpha, 0, \alpha, 0, 0, 0, \alpha, \alpha, 0).$$

That is, ΔX_{r-1} has the same 7 difference bytes and 9 zero difference bytes. Then ΔZ_{r-1} has the following pattern. Here, β_i is a nonzero difference $(i = 1, \dots, 7)$.

$$\Delta Z_{r-1} = (0, 0, 0, \beta_1, \beta_2, 0, \beta_3, 0, \beta_4, \beta_5, 0, 0, 0, \beta_6, \beta_7, 0)$$

Then, we can construct differential equations on ΔY_r by using ΔZ_{r-1} . Let M be a matrix derived from DL. Then, ΔZ_{r-1} and ΔX_r satisfy the following equation.

$$\Delta X_r = M \cdot (\Delta Z_{r-1})^T.$$

Since M is an involutory matrix, that is $M^{-1} = M$, the above equation can be rewritten as follows.

$$\Delta Z_{r-1} = M \cdot (\Delta X_r)^T.$$

In our attack, we consider only positions of zero differences in ΔZ_{r-1} . That is, $\Delta Z_{r-1,0}, \Delta Z_{r-1,1}, \Delta Z_{r-1,2}, \Delta Z_{r-1,5}, \Delta Z_{r-1,7}, \Delta Z_{r-1,10}, \Delta Z_{r-1,11}, \Delta Z_{r-1,12}$ and $\Delta Z_{r-1,15}$. Thus, we consider the following matrix M_0 . Here, M_0 consists of 0-, 1-, 2-, 5-, 7-, 10-, 11-, 12-, 15-th rows of M.

Then ΔX_r satisfies the following equation.

$$M_0 \cdot (\Delta X_r)^T = (00 \cdots 0)^T.$$

Also, since ΔX_r is equal to ΔY_r , we can construct the following 9 differential equations.

$$M_0 \cdot (\Delta Y_r)^T = (00 \cdots 0)^T.$$

Note that all equations do not include $\Delta Y_{r,0}$.

Recall that 7 bytes of ΔY_{r-1} have the same difference value. By using this property, we can easily obtain six additional differential equations. Hence, when a random byte fault is induced to $X_{r-2,0}$, we can construct total fifteen differential equations. When a random byte fault is injected to other bytes of X_{r-2} , we can obtain fifteen differential equations under other cases in a similar fashion.

2.3 Recovery of the secret key from round keys

We assume that four consecutive round keys are obtained under assumption A_E^i . Then, it is known that the secret key of ARIA can be easily computed by using linear equations. For example, in the case of ARIA-128, W_0 satisfies the following equation from the key schedule.

$$W_0 \oplus W_0^{\ll 86} = ek_{13} \oplus ek_{10}^{\ll 31} \oplus ek_{11}^{\ll 92} \oplus ek_{12}^{\ll 25}.$$

Thus, if we know 512-bit $(ek_{10}, ek_{11}, ek_{12}, ek_{13})$, we can compute W_0 . In detail, the left side of the above equation can be rewritten as $G \cdot W_0^T$. Here, G is a 128×128 binary matrix with rank 126. Thus we can compute 2^2 candidates of W_0 by using this linear equation. For each candidate of W_0 , we can compute (W_1, W_2, W_3) by using the following equations.

$$ek_{13} = W_0 \oplus W_1^{\lll 13},$$

$$ek_{10} = W_1 \oplus W_2^{\lll 61},$$

$$ek_{11} = W_2 \oplus W_3^{\lll 61}.$$

 (W_0, W_1, W_2, W_3) of ARIA-192/256 can be computed in a similar fashion.

For each candidate of four consecutive round keys, we obtained 2^2 candidates of (W_0, W_1, W_2, W_3) from the above procedure. Furthermore, we can discard wrong candidates of (W_0, W_1, W_2, W_3) by using an initialization part of the key schedule. Recall that an initialization part conducts the following operations.

$$W_0 = KL, W_1 = F_o(W_0, CK_1) \oplus KR,$$
 (1)

$$W_2 = F_e(W_1, CK_2) \oplus W_0,$$
 (2)

$$W_3 = F_o(W_2, CK_3) \oplus W_1.$$
 (3)

For each candidate of (W_0, W_1, W_2, W_3) , we check that Equation (1), (2) and (3) hold. In the case of ARIA-128, KR = 0 from the key schedule. Thus, the probability that a wrong candidate passes this test is $2^{-384} (= 2^{-128 \cdot 3})$. Similarly, in the cases of ARIA-192/256, the probability is 2^{-320} and 2^{-256} , respectively. Hence we further reduce the number of candidate of (W_0, W_1, W_2, W_3) . The method to compute the secret key from (W_0, W_1, W_2, W_3) is simple. From the key schedule, KL is equal to W_0 . And KR is computed by using Equation (1).

Now, we consider assumption A_{DE}^i . We assume that the first round key and the last round key are obtained. In cases of ARIA-128/256, W_1 satisfies the following equation, respectively.

- ARIA-128: $W_1^{\ll 109} \oplus W_1^{\ll 31} = ek_1 \oplus ek_{13}.$
- ARIA-256: $W_1^{\ll 109} \oplus W_1^{\ll 19} = ek_1 \oplus ek_{17}$.

Fig. 3. In ARIA-128, two differential propagations where a fault is injected to $X_{10,0}$ and $X_{10,1}$

Similarly to the method to computing W_0 under assumption A_E^i , we can compute 2^2 candidates of W_1 from the above equation. Then, we can also compute W_0 by using the following equation.

$$ek_1 = W_0 \oplus W_1^{\gg 19}.$$

In the case of ARIA-128, we can reduce the number of candidates of (W_0, W_1) by checking Equation (1). However, since we do not know KR in the case of ARIA-256, we need some trial encryptions.

3 Computation of round keys

In this section, we describe the method to obtaining round keys from differential equations considered in Section 3.2. We first consider assumption A^1 . Under A_E^1 , to recover the secret key, we need four consecutive round keys as mentioned in Section 3.3. However, we consider only the method to computing the last two round keys (ek_r, ek_{r+1}) . When we obtain them, we repeat this procedure to compute (ek_{r-2}, ek_{r-1}) . In the case of A_{DE}^1 , we need to obtain (ek_1, ek_{r+1}) . Thus, we compute ek_{r+1} and ek_1 by using the above procedure in the encryption and decryption processes, respectively. Under A^2 , we do not know the location of injected faults. Thus, we should guess it. Moreover, ARIA-128/192/256 have the same structure except for the number of rounds and the key schedule. Thus we concentrate on ARIA-128 in this section.

3.1 Assumption A^1

Since methods to obtaining round keys from differential equations under A_E^1 and A_{DE}^1 are similar, we consider only A_E^1 here. First, an attacker chooses a plaintext P and obtains one right ciphertext C. And he injects two random byte faults to

 $Y_{10,0}$ and $Y_{10,1}$, and computes the corresponding two faulty ciphertexts C^1 and C^2 , respectively (see Figure 3). From Section 3.2, we construct two matrices M_0 (corresponding to the event where a random byte fault is injected to $Y_{10,0}$) and M_1 (corresponding to the event where a random byte fault is injected to $Y_{10,1}$). Thus, we can obtain total 18 differential equations on $(\Delta Y_{12}^1, \Delta Y_{12}^2)$. Note that ΔY_{12}^1 and ΔY_{12}^2 are related to $\Delta C^1 (= C \oplus C^1)$ and $\Delta C^2 (= C \oplus C^2)$, respectively. On the other hand, Y_{12} satisfies the following equation.

$$Y_{12} = SL^{-1}(C \oplus ek_{13}).$$

Thus, guessing a 128-bit ek_{13} , we can check the guessed ek_{13} by using these 18 equations. The probability that a wrong-guessed ek_{13} passes this test is 2^{-144} . So only the right ek_{13} passes it. However, the computational complexity of this method is 2^{128} .

In order to reduce the computational complexity, we consider divide and conquer strategy. First, we modify M_0 and M_1 by using elementary row operations. Among all possible patterns, we found the following two matrices H_0 and H_1 .

	01100000000001001		(10010000000000110)
	$0\; 0\; 1\; 0\; 0\; 0\; 1\; 0\; 1\; 0\; 0\; 0\; 1\; 0\; 0\; 0\; 0\; 1\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\;$		$0\ 0\ 1\ 1\ 0\ 0\ 0\ 1\ 1\ 0\ 0\ 0\ 0\ 0$
	$0\; 0\; 0\; 1\; 0\; 0\; 1\; 0\; 0\; 1\; 0\; 0\; 1\; 0\; 0\; 1\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\;$		$0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0$
	$0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 1 \ 1 \ $		$0\; 0\; 0\; 0\; 1\; 0\; 0\; 0\; 0\; 0\; 1\; 0\; 0\; 0\; 0\; 0\; 1\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\;$
$H_0 =$	0000010000000010	$H_1 =$	$0\; 0\; 0\; 0\; 0\; 1\; 1\; 0\; 0\; 1\; 1\; 0\; 0\; 1\; 0\; 0\; 1\; 0\; 0$
	$0\; 0\; 0\; 0\; 0\; 0\; 1\; 0\; 0\; 1\; 0\; 0\; 0\; 1\; 1\; 1$		0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0
	000000010000100		$0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 0$
	00000000000100100		$0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 1\; 0\; 0\; 0\; 0\; 1$
	00000000000010010		0000000000011000

Under this fault assumption where two random byte faults are injected to $Y_{10,0}$ and $Y_{10,1}$ respectively, these matrices result in the lower computational complexity. As a result, we obtain the following 18 differential equations to appropriate for divide and conquer strategy.

$$\Delta Y_{12,1}^1 \oplus \Delta Y_{12,2}^1 \oplus \Delta Y_{12,12}^1 \oplus \Delta Y_{12,15}^1 = 0, \tag{4}$$

$$\Delta Y_{12,2}^1 \oplus \Delta Y_{12,6}^1 \oplus \Delta Y_{12,8}^1 \oplus \Delta Y_{12,12}^1 = 0, \tag{5}$$

$$\Delta Y_{12,3}^1 \oplus \Delta Y_{12,6}^1 \oplus \Delta Y_{12,9}^1 \oplus \Delta Y_{12,12}^1 = 0, \tag{6}$$

$$\Delta Y_{12,4}^1 \oplus \Delta Y_{12,8}^1 \oplus \Delta Y_{12,12}^1 \oplus \Delta Y_{12,13}^1 \oplus \Delta Y_{12,14}^1 = 0, \tag{7}$$

$$\Delta Y_{12,5}^1 \oplus \Delta Y_{12,14}^1 = 0, \tag{8}$$

$$\Delta Y_{12,6}^1 \oplus \Delta Y_{12,9}^1 \oplus \Delta Y_{12,13}^1 \oplus \Delta Y_{12,14}^1 \oplus \Delta Y_{12,15}^1 = 0, \tag{9}$$

$$\Delta Y^1_{12,7} \oplus \Delta Y^1_{12,13} = 0, \tag{10}$$

$$\Delta Y_{12,10}^1 \oplus \Delta Y_{12,13}^1 = 0, \tag{11}$$

$$\Delta Y_{12,11}^1 \oplus \Delta Y_{12,14}^1 = 0, \tag{12}$$

(13)

$$\Delta Y_{12,0}^2 \oplus \Delta Y_{12,3}^2 \oplus \Delta Y_{12,13}^2 \oplus \Delta Y_{12,14}^2 = 0, \tag{14}$$

$$\Delta Y_{12,2}^2 \oplus \Delta Y_{12,3}^2 \oplus \Delta Y_{12,8}^2 \oplus \Delta Y_{12,9}^2 = 0, \tag{15}$$

 $\Delta Y_{12,3}^2 \oplus \Delta Y_{12,7}^2 \oplus \Delta Y_{12,9}^2 \oplus \Delta Y_{12,13}^2 = 0, \tag{16}$

$$\Delta Y_{12.4}^2 \oplus \Delta Y_{12.10}^2 = 0, \tag{17}$$

$$\Delta Y_{12,5}^2 \oplus \Delta Y_{12,6}^2 \oplus \Delta Y_{12,9}^2 \oplus \Delta Y_{12,10}^2 \oplus \Delta Y_{12,13}^2 = 0, \tag{18}$$

$$\Delta Y_{12,6}^2 \oplus \Delta Y_{12,11}^2 = 0, \tag{19}$$

$$\Delta Y_{12,7}^2 \oplus \Delta Y_{12,8}^2 \oplus \Delta Y_{12,10}^2 \oplus \Delta Y_{12,11}^2 \oplus \Delta Y_{12,14}^2 = 0, \qquad (20)$$

$$\Delta Y_{12,10}^2 \oplus \Delta Y_{12,15}^2 = 0, \tag{21}$$

$$\Delta Y_{12,11}^2 \oplus \Delta Y_{12,12}^2 = 0. \tag{22}$$

By using the above differential equations, we recover ek_{13} as follows. Here, $ek \Rightarrow_T E'$ means that we check equations E by using candidates contained in the table T and the guessed ek. Then, ek passing the test is included to T.

- (1) Checking $(ek_{13,5}, ek_{13,6}, ek_{13,11}, ek_{13,12}, ek_{13,14})$.
 - (a) Initialize table T_1 to empty table.
 - (b) $(ek_{13,5}, ek_{13,14}) \Rightarrow_{T_1}$ Equation (8).
 - (c) $ek_{13,11} \Rightarrow_{T_1}$ Equation (12).
 - (d) $ek_{13,12} \Rightarrow_{T_1}$ Equation (21).
 - (e) $ek_{13,6} \Rightarrow_{T_1}$ Equation (18).
- (2) Checking $(ek_{13,4}, ek_{13,7}, ek_{13,10}, ek_{13,13}, ek_{13,15})$.
 - (a) Initialize table T_2 to empty table.
 - (b) $(ek_{13,7}, ek_{13,13}) \Rightarrow_{T_2}$ Equation (10).
 - (c) $ek_{13,10} \Rightarrow_{T_2}$ Equation (11).
 - (d) $ek_{13,15} \Rightarrow_{T_2}$ Equation (20).
 - (e) $ek_{13,4} \Rightarrow_{T_2}$ Equation (16).
- (3) Construct a table T by combining T_1 and T_2 .
- (4) Checking $(ek_{13,0}, ek_{13,1}, ek_{13,2}, ek_{13,3}, ek_{13,8}, ek_{13,9})$
 - (a) $ek_{13,8} \Rightarrow_T$ Equation (7) and (19).
 - (b) $ek_{13,9} \Rightarrow_T$ Equation (9) and (17).
 - (c) $ek_{13,1} \Rightarrow_T$ Equation (5).
 - (d) $ek_{13,2} \Rightarrow_T$ Equation (4).
 - (e) $ek_{13,3} \Rightarrow_T$ Equation (6), (14) and (15).
 - (f) $ek_{13,0} \Rightarrow_T$ Equation (13).

Table 2 presents the length of guessed key, the computational complexity, the filtering probability and the size of table for each step. From this table, the computational complexity of the above procedure is $O(2^{24})$.

Theoretically, we expect that only the right ek_{13} passes the above procedure. However, note that $ek_{13,0}$ and $ek_{13,1}$ are checked only one time in the above procedure.

Table 2 Computing ek_{13}

Stop	Length of	Computational	Filtering	Size of
Dieh	guessed key	complexity	probability	table
1-(a)	•	•	•	•
1-(b)	16	2^{16}	2^{-8}	2^{8}
1-(c)	8	2^{16}	2^{-8}	2^{8}
1-(d)	8	2^{16}	2^{-8}	2^{8}
1-(e)	8	2^{16}	2^{-8}	2^{8}
2-(a)	•		•	•
2-(b)	16	2^{16}	2^{-8}	2^{8}
2-(c)	8	2^{16}	2^{-8}	2^{8}
2-(d)	8	2^{16}	2^{-8}	2^{8}
2-(e)	8	2^{16}	2^{-8}	2^{8}
3	•	•	•	2^{16}
4-(a)	8	2^{24}	2^{-16}	2^{8}
4-(b)	8	2^{16}	2^{-16}	1
4-(c)	8	2^{8}	2^{-8}	1
4-(d)	8	28	2^{-8}	1
4-(e)	8	2^{8}	2^{-24}	1
4-(f)	8	2^{8}	2^{-8}	1

From the differential distribution table of S-box, given an input/output difference pair, the number of possible input values is 0, 2 or 4. Thus, the number of candidates of ek_{13} is 4, 8 or 16. On the other hand, we construct the following additional 12 differential equations on $(\Delta Y_{11}^1, \Delta Y_{11}^2)$ as mentioned in Section 3.2.

$$\begin{split} \Delta Y^{1}_{11,3} \oplus \Delta Y^{1}_{11,4} &= 0, \Delta Y^{1}_{11,3} \oplus \Delta Y^{1}_{11,6} = 0, \\ \Delta Y^{1}_{11,3} \oplus \Delta Y^{1}_{11,8} &= 0, \Delta Y^{1}_{11,3} \oplus \Delta Y^{1}_{11,9} = 0, \\ \Delta Y^{1}_{11,3} \oplus \Delta Y^{1}_{11,13} &= 0, \Delta Y^{1}_{11,3} \oplus \Delta Y^{1}_{11,14} = 0, \\ \Delta Y^{2}_{11,2} \oplus \Delta Y^{2}_{11,5} &= 0, \Delta Y^{2}_{11,2} \oplus \Delta Y^{2}_{11,7} = 0, \\ \Delta Y^{2}_{11,2} \oplus \Delta Y^{2}_{11,8} &= 0, \Delta Y^{2}_{11,2} \oplus \Delta Y^{2}_{11,9} = 0, \\ \Delta Y^{2}_{11,2} \oplus \Delta Y^{2}_{11,18} &= 0, \Delta Y^{2}_{11,2} \oplus \Delta Y^{2}_{11,19} = 0, \\ \Delta Y^{2}_{11,2} \oplus \Delta Y^{2}_{11,18} &= 0, \Delta Y^{2}_{11,2} \oplus \Delta Y^{2}_{11,19} = 0, \\ \end{split}$$

With (C^1, C^2) and each candidate of ek_{13} , we can compute candidates of ek_{12} by checking the above differential equations. The computational complexity of this procedure is $O(2^{16})$. Note that $ek_{12,0}, ek_{12,2}, ek_{12,10}$ and $ek_{12,11}$ do not affect the above differential equations. Thus, the expected number of candidates of ek_{12} is 2^{32} .

Hence, we obtain at most $2^{36} (= 2^4 \cdot 2^{32})$ candidates of (ek_{12}, ek_{13}) with the $O(2^{24})$ computational complexity and two fault injections.

3.2 Assumption A^2

Under assumption A^2 , we assume that an attacker cannot know the location of injected faults. Thus, to construct differential equations, he should guess it. Since there exist 16 possible positions for each fault injection, we need to consider $256(=16 \cdot 16)$ possible cases for two fault injections.

These 256 cases can be partitioned into two types. The first type includes 240 cases where the positions of two injected faults are different. For each case, we compute candidates of ek_{13} by using the similar method to that under assumption A^1 . Here, if a guessed position of injected faults is wrong, the expected number of the survived ek_{13} is $2^{-16} (= 2^{128} \cdot 2^{-144})$. In the case of the right-guessed position, 4, 8 or 16 candidates of ek_{13} are remained.

The second type includes 16 cases where the positions of two injected faults are same. By using this type, we can only recover 15 bytes of ek_{13} . Recall that, in Section 3.2, all constructed equations do not include $\Delta Y_{r,0}$ assuming that a random byte fault is induced to $X_{r-2,0}$. In general, when a random byte fault is induced to $X_{r-2,i}$, all constructed equations do not include $\Delta Y_{r,i}$ ($i = 0, \dots, 15$). Thus, for each wrongguessed position, the expected number of the remained ek_{13} is $2^{-16} (= 2^8 \cdot 2^{120} \cdot 2^{-144})$. In the case of the right-guessed position, 2^8 candidates of ek_{13} are survived.

In summary, if some candidates of ek_{13} pass this test, we may expect that a guessed position is right. And, in this case, the number of candidates of ek_{13} is at most 2^8 . Note that we can obtain the exact position of injected faults from the above procedure. Thus, as mentioned in Section 3.2, we can construct 12 differential equations on $(\Delta Y_{11}^1, \Delta Y_{11}^2)$. By using them, we obtain candidates of ek_{12} for each candidate of ek_{13} . Similarly to Section 4.1, the expected number of candidates of ek_{12} is 2^{32} . Thus, in the worst case, $2^{40}(=2^8 \cdot 2^{32})$ candidates of (ek_{12}, ek_{13}) are survived.

Hence, we obtain at most $2^{40} (= 2^8 \cdot 2^{32})$ candidates of (ek_{12}, ek_{13}) with the $O(2^{32} (= 2^8 \cdot 2^{24}))$ computational complexity and two random byte fault injections.

4 DFAs on ARIA

Now, we are ready to propose DFAs on ARIA-128/192/ 256 under four fault assumptions, that is $A_E^1, A_{DE}^1, A_E^2, A_{DE}^2$. Table 3 summarizes our attack results on ARIA.

4.1 DFA on ARIA under A_E^1

Under assumption A_E^1 , the attack procedure on ARIA-128/192/256 is as follows.

Table 3 DFA results on ARIA

Fault	Target Computational		# of injected
assumption	algorithm	complexity	faults
	ARIA-128	$O(2^{24})$	6
A_E^1	ARIA-192	$O(2^{24})$	6
	ARIA-256	$O(2^{24})$	6
	ARIA-128	$O(2^{32})$	6
A_E^2	ARIA-192	$O(2^{32})$	6
	ARIA-256	$O(2^{32})$	6
A_{DE}^1	ARIA-128	$O(2^{24})$	4
	ARIA-256	$O(2^{24})$	4
12	ARIA-128	$O(2^{32})$	4
$^{\Lambda}DE$	ARIA-256	$O(2^{32})$	4

- (1) [Collection of right ciphertext] Choose a plaintext P and obtain the corresponding right ciphertext C.
- (2) [Collection of faulty ciphertexts] After inducing six random byte faults to $(Y_{r-2,0}, Y_{r-2,1}, Y_{r-3,4}, Y_{r-4,0}, Y_{r-4,1}, Y_{r-5,4})$, respectively, and obtain the corresponding faulty ciphertexts $(C^1, C^2, C^3, C^4, C^5, C^6)$.
- (3) [Computation of candidates of (ek_r, ek_{r+1})]
 - (a) With (C^1, C^2) , compute candidates of (ek_r, ek_{r+1}) by using the method presented in Section 4.1.
 - (b) With C^3 , construct additional 9 differential equations on Y_{r-2} and reduce the number of candidates of (ek_r, ek_{r+1}) similarly to Step 3-(a).
- (4) [Computation of candidates of (ek_{r-2}, ek_{r-1})] By repeating Step 3 with (C^4, C^5, C^6) , obtain candidates of (ek_{r-2}, ek_{r-1}) .
- (5) [Recovery of the secret key K_n] By using the method introduced in Section 3.3, recover the secret key K_n from candidates of $(ek_{r-2}, ek_{r-1}, ek_r, ek_{r+1})$.

As mentioned in Section 4.1, the expected number of candidates of (ek_r, ek_{r+1}) passing Step 3-(a) is at most 2³⁶. Moreover, since the filtering probability of Step 3-(b) is 2⁻⁷², we expect that only the right (ek_r, ek_{r+1}) passes Step 3. Similarly to Step 3, we expect that only the right (ek_{r-2}, ek_{r-1}) passes Step 4. It is known that, if we know the four consecutive round keys, it is possible to recover K_n . Since we know the right $(ek_r, ek_{r+1}, ek_{r-2}, ek_{r-1})$, we can recover K_n .

The computation complexity of the above attack algorithm depends on heavily Step 3 and Step 4. In Step 3-(a), the computational complexity is $O(2^{24})$ as mentioned in Section 4.1. Compared to Step 3-(a), the computational complexity of Step 3-(b) is negligible. Thus, the computational complexity of Step 3 is $O(2^{24})$. Since the computational complexity of Step 4 is equal to that of Step 3, The total computational complexity of our attack is $O(2^{24})$.

We simulated this attack on a PC 1000 times. As a result, we could always recover K_n within a few seconds. Hence, our attack can recover the secret key of ARIA-128/192/256 with six random byte fault injections and the computational complexity of $O(2^{24})$.

4.2 DFA on ARIA under A_E^2

Under assumption A_E^2 , the overall attack procedure is similar to that under A_E^1 . As mentioned in Section 4.2, we obtain at most 2^{40} candidates of (ek_r, ek_{r+1}) with the $O(2^{32})$ computational complexity and two random byte fault injections. However, similarly to Step 3-(b) under A_E^1 , the right (ek_r, ek_{r+1}) is only survived by using an additional fault injection.

We simulated this attack on a PC 100 times. As a result, we could always recover K_n within ten minutes. Hence, our attack can recover the secret key of ARIA-128/192/256 with six random byte fault injections and the computational complexity of $O(2^{32})$.

4.3 DFAs on ARIA-128/256 under A_{DE}^1 and A_{DE}^2

Note that, under A_{DE}^1 and A_{DE}^2 , we need to obtain the first and last round keys of ARIA. In the encryption and decryption processes, we obtain the last round key ek_{r+1} and dk_{r+1} , respectively. Here, it is known that dk_{r+1} is equal to ek_1 . Thus, if we obtain (ek_{r+1}, dk_{r+1}) , we can obtain (ek_1, ek_{r+1}) .

The attack procedure under A_{DE}^1 is as follows. The case of A_{DE}^2 can be presented in a similar fashion.

- (1) [Collection of right ciphertext] Choose a plaintext P and obtain the corresponding right ciphertext C.
- (2) [Collection of faulty ciphertexts in the encryption process] After inducing two random byte faults to $(Y_{r-2,0}, Y_{r-2,1})$ in the encryption process, and obtain the corresponding faulty ciphertexts (C^1, C^2) .
- (3) [Computation of candidates of ek_{r+1}] With (C^1, C^2) , compute candidates of ek_{r+1} by using the method presented in Section 4.1.
- (4) [Collection of faulty ciphertexts in the decryption process] After inducing two random byte faults to $(Y_{r-2,0}, Y_{r-2,1})$ in the decryption process, and obtain the corresponding faulty plaintexts (P^1, P^2) .
- (5) [Computation of candidates of ek_1] By repeating Step 3 with (P^1, P^2) , obtain candidates of dk_{r+1} . And convert dk_{r+1} to ek_1 .

(6) [Recovery of the secret key K_n] By using the method introduced in Section 3.3, recover the secret key K_n from candidates of (ek_1, ek_{r+1}) .

The computational complexity of the attack under A_{DE}^1 and A_{DE}^2 is $O(2^{24})$ and $O(2^{32})$, respectively. The simulation results are also similar to them under A_E^1 and A_E^2 , respectively.

5 Conclusion

In this paper, we proposed DFAs on ARIA-128/192/256. The proposed attacks can recover the secret key with the $O(2^{24})$ computational complexity and 6 random byte fault injections. Furthermore, in cases of ARIA-128/256, it is possible to recover the secret key with the $O(2^{24})$ computational complexity and 4 random byte fault injections under a fault assumption where an attacker can induce some faults during both encryption and decryption process, respectively. As simulation results, our attacks recovered the secret key within a few minutes. Particularly, our results on ARIA-192/256 are the first known DFA results on them.

In the future, we will study the method to reduce the fault injections and computational complexity.

References

- E. Biham and A. Shamir, Differential Fault Analysis of Secret Key Cryptosystems, Crypto 1997, LNCS 1294, pp. 513–525, Springer-Verlag, 1997.
- [2] J. Blomer and J. Seifert, Fault Based Cryptan alysis of the Advanced Encryption Standard (AES), FC 2003, LNCS 2742, pp. 162–181, Springer-Verlag, 2003.
- [3] A. Byukov, C. Canniere, J. Lano, S. Ors and B. Preneel, Security and Performance Analysis of Aria, Version 1.2, 2004.
- [4] H. Chen, W. Wu and D. Feng, Differential fault and lysis on CLEFIA, ICICS 2007, LNCS 4861, pp. 284–295, Springer-Verlag, 2007.
- [5] C. Du and J. Chen, Impossible Differential Crypt ana- lysis of ARIA Reduced to 7 Rounds, CANS 2010. LNCS 6467, pp. 20-30, Springer-Verlag, 2010.
- [6] E. Fleischmann, C. Forler, M. Gorski and S. Lucks, New Boomerang Attacks on ARIA, INDOCRYPT 2010, LNCS 6498, pp. 163–175, Springer-Verlag, 2010.
- [7] T. Fukunaga and J. Takahashi, Practical fault attack on a cryptographic LSI with ISO/IEC 18033-3 block ciphers, FDTC 2009, pp. 84–92, IEEE Computer Society, 2009.

- [8] C. Giraud, DFA on AES, AES 2004, LNCS 3373, pp 27–41, Springer-Verlag, 2005.
- [9] L. Hemme, A differential fault analysis against early rounds of (Triple-) DES, CHES 2004, LNCS 3156, pp. 254–267, Springer-Verlag, 2006.
- [10] K. Jeong, Y. Lee, J. Sung and S. Hong, *Differential fault analysis on block cipher SEED*, Mathematical and Computer Modelling, Vol. 55, Issue 1-2, pp. 26–34, Elsevier, 2012.
- [11] C. Kim, Differential fault analysis against AES-192 and AES-256 with minimal faults, FDTC 2010, pp 3–9, IEEE Computer Society, 2010.
- [12] C. Kim, Differential fault analysis of AES: Toward reducing number of faults, Information Sciences, Vol. 199, pp. 43–57, ELSEVIER, 2012.
- [13] C. H. Kim, Differential fault analysis of ARIA in multi-byte fault models, Journal of Systems and Software, Vol 85, No. 9, pp.2096–2103, 2012
- [14] D. Kwon, J. Kim, S. Park, S. Sung, Y. Sohn, J. Song, Y. Yeom, E. Yoon, S. Lee, J. Lee, S. Chee, D. Han and J. Hong, *New block cipher ARIA*, ICISC 2003, LNCS 2971, pp. 432–445, Springer-Verlag, 2003.
- [15] W. Li, D. Gu and J. Li, Differential fault analysis on the ARIA algorithm, Information Sciences, Vol. 178, No. 19, pp. 3727–3737, Elsevier, 2008.
- [16] W. Li, D. Gu, and Y. Wang, Differential fault analysis on the contracting UFN structure, with application to SMS4 and Macguffin, Journal of Systems and Software, Vol. 82, No. 2, pp. 346–354, Elsevier, 2009.
- [17] P. Li, B. Sun, C. Li, *Integral cryptanalysis of ARIA*, Proceedings of the 5th international conference on Information security and cryptology, 2009.
- [18] D. Mukhopadhyay, An improved fault based attack of the advanced encryption standard, In AFRICACRYPT 2009, LNCS 5580, pp. 421–434, Springer-Verlag, 2009.
- [19] J. Park and j. Ha, *Improved Dierential Fault Analysis on Block Cipher ARIA*, The 13th International Workshop on Information Security Applications, 2012.
- [20] M. Tunstall and D. Mukhopadhyay, Differential fault analysis of the advanced encryption standard using a single fault, IACR eprint archive, 2009/575, 2009.
- [21] W. Wu, W. Zhang, D. Feng, Impossible differential cryptanalysis of reducedround ARIA and Camellia, Journal of Computer Science and Technology, Vol. 22, No. 3, pp. 449–456, 2007.