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Abstract

Certificateless signatures (CLSs) were introduced to solve the key
escrow problem of identity-based signatures. In CLS, the full pri-
vate key is determined by neither the user nor the trusted third party.
However, a certificate of a public key is not required in CLS schemes;
therefore, anyone can replace the public key. On the formal security,
there are two types of adversaries where the Type I adversary acts as
the outsider, and the Type II as the key generation center. Huang et
al. took a few security issues into consideration and provided some
security models. They showed three kinds of Type I adversaries with
different security levels. Moreover, Tso et al. found the existence
of another Type I adversary that was not discussed by Huang et al.;
however, the adversaries are still too subtle to be presently defined.
In this paper, we further consider public key replacement and strong
unforgeability in certificateless signatures. All feasible situations are
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revisited along with abilities of adversaries. Additionally, structural
extensions of security models are proposed with respect to the de-
scribed public key replacement and strong unforgeability. Moreover,
we also present some schemes, analyze their security against differ-
ent adversaries, and describe our research results. Finally, one of the
proposed certificateless short signature schemes is proven to achieve
the strongest security level.

1 Introduction

Public key cryptography is well-known for its ability to realize secure com-
munications between a sender and a receiver when the sender and the re-
ceiver do not have a shared key. One of the security issues is the authentic-
ity of public keys. A straightforward and effective approach to public key
authentication is to adopt a public key infrastructure (PKI) based system.
The trusted entity, referred to as certification authority (CA), is in charge
of the certificates used to bind users and their respective public keys. The
CA must manage and maintain these certificates through certificate revo-
cations and verifications, which are expensive and daunting tasks.

The notion of Identity-based (ID-based) cryptography was put forth by
Shamir [27] to overcome the aforementioned problem. Certificates of the
public keys are eliminated in an ID-based cryptosystem. A user’s pub-
lic key is unique information such as an e-mail address. In particular, a
trusted third party, referred to as a private key generator (PKG), gener-
ates private keys for all users. The PKG decides a master secret key, msk,
at random, and then computes the master public key, mpk, accordingly.
Each user can obtain a private key that is outputted by the PKG using msk.
However, despite the lack of a certificate, this ID-based cryptosystem in-
curs the inherent key escrow problem, which means that the PKG knows
all of the users’ private keys. This problem can be resolved through the
use of multiple PKGs, although an additional communication cost is nec-
essary.

Certificateless cryptography was first introduced by Al-Riyami and Pa-
terson [1] to solve the key escrow problem of ID-based cryptosystem. Cer-
tificates are also not needed in this system; rather, a semi-trusted third
party, called a key generation center (KGC) instead of a PKG, generates
partial private keys. As a PKG does in the ID-based cryptosysem, the KGC
chooses a master secret key, msk, at random, and then computes the master
public key, mpk. Each user can obtain a partial private key that is outputted
by the KGC using msk. Moreover, users can decide their secret value, and
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their full private keys are composed of partial private keys and chosen se-
cret values. Consequently, the KGC cannot obtain users’ secret keys. A
user can therefore be a legal receiver if and only if the user has the full
private key. As a result, the key escrow problem can be eliminated due to
the use of the partial private key in this certificateless cryptosystem.

1.1 Related work

Since the introduction of certificateless cryptography, certificateless signa-
ture (CLS) has drawn attention of the research community in the last few
years as an alternative to certificateless encryption [8, 12, 21, 33]. simulat-
ing possible attacks, two different types of adversaries are defined in the
security models of CLS, which are referred to as Type I and Type II adver-
saries separately. A Type I adversary acts as an outsider who can replace
the public keys but cannot access the master secret key, whereas a Type II
adversary acts as the KGC that can access the master secret key but cannot
replace the public keys.

The first CLS scheme was proposed by Al-Riyami and Paterson [1] in
2003; however, Huang et al. [20] indicated a security loophole in that sig-
nature scheme. Later, Yum and Lee [36] proposed a generic construction
of CLS in 2004, but Hu et al. [16, 17] had found that construction is in-
secure against the Type I adversary and also provide an improvement. In
2007, Huang et al. [18, 19] defined formal security models in which the ad-
versaries can be categorized into Normal, Strong, and Super adversaries
(ordered based on their attack powers). Tso et al. [29] also showed the
existence of another security model. As a result, since the original core
of certificateless cryptography, many different kinds of CLS schemes and
security models have been presented [15, 24, 34, 37]. With the proposal of
some applications of CLS [4, 5, 10, 26, 32, 35], certificateless cryptography
has gathered significant attention in the field of cryptography.

1.2 Contributions

On the security of certificateless signatures, a Type I adversary is more
complicated than a Type II adversary because of the public key replace-
ment. Therefore, the security models for the Type I adversary are quite
subtle in discussing the security levels and requirements. In this paper, we
consider important security issues of certificateless signature. This paper
seems fully extensive from Huang et al. and Tso et al.’s paper [18, 19, 29].
The contributions of this paper are summarized as follows.
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1. Revisit the public key replacement. In the literature, public key replace-
ment was usually unclear and unaccounted in CLS because it is per-
formed by an outsider, which also creates many different security
models such as different Type I adversaries. In fact, as some Type I
adversaries are similar or the same, we analyze possible activities of
the outsider in depth, and provide a definition for replacing public
keys.

2. Present all potential security models. First, the Strong Type I adversary,
defined by Huang et al. [18, 19], is shown to be dispensable accord-
ing to the real attack power and public key replacement. Moreover,
we also take some possible situations into consideration, and then
propose a structural extension for security models of Type I adver-
saries. It includes eight kinds of Type I adversaries. In addition, we
also generate a structural extension for showing all potential Type II
adversaries.

3. Analyze and propose the relations between CLS schemes and security mod-
els. We review and survey some CLS schemes, including the six
proposed schemes, and then analyze their security against differ-
ent kinds of Type I adversaries. In particular, one of the proposed
schemes reaches the strongest security level.

4. Demonstrate some research results. There is an open problem shown by
Shim [28] in certificateless short signature schemes. She gave an at-
tack, performed by some Type I adversaries, to point out a weakness
of some schemes [7, 9, 11, 18, 19, 30, 31]. However, we overcome this
problem by proposing the new secure schemes. Moreover, we point
out the relation between strong unforgability and non-repudiation
in short CLS schemes. The crossing point of these two properties is
based on the Type I adversaries replacing public keys. In details, we
will describe the results later with some security comparisons

The rest of this paper is organized as follows. In Section 2, we briefly
review the construction of CLS and adversaries’ attack powers. In Sec-
tion 3 and 4, security models are shown to simulate whole Types I and II
adversaries. Therefore we present some CLS schemes against different ad-
versaries respectively in Section 5, and analyze their security in Section 6.
Moreover, discussions and comparisons of certificateless short signature
schemes are demonstrated in Section 7. Eventually, we give conclusions
for this paper in Section 8.
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2 Overview of certificateless signature

A certificateless signature scheme involves three entities, the KGC, a user/signer,
and a verifier. Normally, it consists of the following algorithms: Setup,
Partial-Private-Key-Extract, Set-Secret-Value, Set-Secret-Key, Set-Public-
Key, Sign, and Verify:

• Setup: This algorithm, run by the KGC, takes a security parameter
as an input, and then returns the master secret key, msk, and system
parameter, param.

• Partial-Private-Key-Extract: This algorithm, run by the KGC, takes
param, mskand a user’s identity ID as inputs. It generates a partial-
private-key DID , and sends it to the user via a secure channel.

• Set-Secret-Value: This algorithm, run by a user, returns a secret
value, rID .

• Set-Secret-Key: This algorithm, run by a user, takes the user’s partial-
private-key DID and the secret value rID as inputs, then returns the
user’s full secret key, skID .

• Set-Public-Key: This algorithm, run by a user, takes paramand the
user’s full secret key as inputs, and returns a public key pkID for the
user.

• Sign: This algorithm, run by a signer/user, takes param, a message
m, and the user’s full secret key, skID , as inputs. It then generates σ
as the signature for the message m.

• Verify: This algorithm, run by a verifier, takes param, a public key
pkID , a message m, a user’s ID, and a signature σ as inputs. It returns
1 as the verifier accepts the signature σ if σ is the signature of the
message m, the public key pkID , and the user with ID. It returns 0 if
not.

2.1 Adversaries’ activities and behaviors

Since Al-Riyami and Paterson first introduced CLS [1], plenty of research
works have been presented for CLS; for example, the adversaries and their
attack powers. In the literature, we have the following definition regard-
ing the Type I and Type II adversaries in CLS.
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Definition 1. The Type I adversary, AI , acts as the outsider who can replace
public keys but cannot access the master secret key. The Type II adversary, AII ,
acts as the KGC which can access the master secret key but cannot replace public
keys.

The complete Types I and II adversaries will be presented in details
later (in Section 3 and 4). Here, we present an overview of oracles which
is used to simulate adversaries’ activities and behaviors. Basically, the fol-
lowing three oracles can be accessed by the Type I or II adversary in cer-
tificateless cryptography [1, 17, 18, 19, 36].

• Create-User: This oracle takes ID as an input. Nothing will be re-
turned by the oracle if ID has been created before. Otherwise, it will
perform Partial-Private-Key-Extract, Set-Secret-Value, and Set-Public-
Key for ID to get the partial-private-key DID , the secret value rID , and
the public key pkID . Finally, it adds 〈ID,DID , rID , pkID〉 to K-list and
returns pkID .

• Public-Key-Replace: This oracle takes (ID, r ′ID , pk′ID) or (ID,⊥, pk′ID)
as an input, where ID has been created. Here, ⊥ denotes that the
adversary does not provide the corresponding secret value r ′ID for
pk′ID . It will replace the ID’s public key with the new public key pk′ID
to update K-list if the input is (ID,⊥, pk′ID). Otherwise, it will replace
the ID’s key with the new public key pk′ID and secret value r ′ID to
update K-list.

• Secret-Value-Extract: This oracle takes ID as an input. It will return
rID from K-list.

In fact, there is another oracle, Partial-Private-Key-Extract, which can
be accessed by the Type I adversaries only, because the Type II adversaries
have the master key.

• Partial-Private-Key-Extract: This oracle takes ID as an input. It will
return DID from K-list.

In certificateless signature schemes, the Sign oracle is important. To
simulate and perform the adaptively chosen message and identity attack,
an adversary can send a query, a message/identity pair, to the Sign ora-
cle, and then it will receive a message/identity/signature triplet. We now
describe and analyze the different Sign oracles below.
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2.2 Sign oracle

In the literature, Huang et al. [18, 19] showed three kinds of different
Sign oracles: Normal-Sign, Strong-Sign, and Super-Sign. To observe these
oracles, the inputs of Normal-Sign and Super-Sign are (ID,m), but that of
Strong-Sign is (ID, rID ,m). However, Strong-Sign is unreasonable because
the chosen message and identity adversary may not know the secret value
during his attack. Although Huang et al. had found a real-life scenario
in which the user might reveal his secret value, it does not fully match
Strong-Sign up. In other words, the adversary can query a signature of
(ID,m) and a secret value of ID instead of Strong-Sign with (ID, rID ,m).
As a result, Strong-Sign is directly referred to as the transition between
Normal-Sign and Super-Sign, and is ignored in our consideration. In this
paper, Normal-Sign is denoted by N-Sign for short and Super-Sign by S-
Sign.

Now we will describe the two practical Sign oracles: N-Sign and S-
Sign. In particular, there is one significant property to distinguish N-Sign
from S-Sign.

• N-Sign only returns a signature of (ID,m) if the ID’s public key has
never been replaced. In this case of N-Sign, we consider a real-life
attack that the adversary can eavesdrop to get or be the verifier to
receive ID’s valid signatures which are generated by ID using his
private key. However, AI can replace ID’s public key with a new one
pk′ID , but it is impossible to obtain any signature which is valid on the
replaced public key. Hence, N-Sign is defined to return a signature
of (ID,m) if the ID’s public key has never been replaced.

• S-Sign returns a signature of (ID,m), no matter whether the public
key has been replaced or not. In this case of S-Sign, we have not
found a real and suitable attack, but S-Sign could be regarded as an
oracle with the full attack power. However, the scenario of revealing
the secret value is under S-Sign, since replacing a public key with a
corresponding secret value is equal to getting the secret value. As a
result, S-Sign is more powerful than N-Sign undoubtedly.

3 Security models for Type I adversaries

The notion of the security on CLS is known, but the security models are
quite subtle to be formal defined in the literature. We consider some at-
tack scenarios to simulate all potential Type I adversaries, and eventually
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define security models.

3.1 Strong unforgeability and existential unforgeability

In certificateless signatures, for existential unforgeability under the adap-
tive chosen message and identity attack, the goal of the adversary is to
output a forged signature σ∗ on (ID∗,m∗), and in the meanwhile, the fol-
lowing conditions hold. (We can look (σ∗,m∗, ID∗) as the forgery of the
adversary.)

1. σ∗ is a valid signature of (ID∗,m∗), which means σ∗ can pass verifica-
tion.

2. (ID∗,m∗) has never been submitted to require the signature.

3. σ∗ has never been returned.

Nevertheless, for strong unforgeability under the adaptive chosen mes-
sage and identity attack, the goal of the adversary and Conditions 1 and 3
are the same as before, but the different Condition 2 must hold as follows.

2. (ID∗,m∗) can be submitted to require the signature.

Due to the public key replacement, we give the lead-in of strong un-
forgeability which had not been discussed previously in CLS. Here we
briefly show an example with respect to short signature and certificateless
short signature. In normal short signature, the signature of m is unique for
m thus this signature scheme is strong unforgeability. However, in certifi-
cateless short signature, the signature of (ID,m) might not be unique for
(ID,m) since the adversary has ability to replace the public key. As the
above result, strong unforgeability is a truly important issue in CLS.

In the following, the potential Type I adversaries’ behaviors are sim-
ulated to define the security models of CLS. As we mentioned in Section
2.2 and 3.1, Sign oracle and unforgeability of σ∗ on (ID∗,m∗) are two im-
portant issues for simulating the Type I adversary; however, there exists
another one, the secret value of ID∗. Therefore we list three optional condi-
tions which would be considered, whereas AI ’s goal is to output a forged
signature σ∗ on (ID∗,m∗) which has never been returned by Sign oracle.

• The Sign oracle is N-Sign or S-Sign.

• ID∗ can be submitted to require the secret value or not.

• (ID∗,m∗) can be submitted to require the signature or not.
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Table 1: Eight different kinds of Type I adversaries

Type of Sign oracle Submit ID∗ to Secret-Value-Extract Submit (ID∗,m∗) to Sign
N-Type I N-Sign × ×
SV-Type I N-Sign X ×
SU-Type I N-Sign × X
SS-Type I S-Sign × ×
SV-SU-Type I N-Sign X X
SS-SU-Type I S-Sign × X
SS-SV-Type I S-Sign X ×
S-Type I S-Sign X X

Due to these, we have eight (23) kinds of Type I adversaries named
as N-Type I, SV-Type I, SU-Type I, SS-Type I, SV-SU-Type I, SS-SU-Type
I, SS-SV-Type I, and S-Type I adversaries, respectively. For example, SV-
Type I means that this Type I adversary can submit ID∗ to Secret-Value-
Extract. The comparisons of eight Type I adversaries are illustrated in
Table 1. However, their activities and behaviors can be simulated to the
following security games. Here we only present N-Type I, SV-Type I, SS-
SU-Type I, and S-Type I adversaries. For other Type I adversaries, we can
refer to Appendix A in details.

3.2 Security against the N-Type I adversary

The unforgeability of a CLS scheme against the adaptive chosen message
and identity N-Type I adversary is defined by the following game:

Setup: The challenger runs the algorithm Setup, and then returns the
system parameters paramincluding the master public key to AI .

Query: In this phase, AI can adaptively send queries to Create-User,
Public-Key-Replace, Secret-Value-Extract, and Partial-Private-Key-Extract
defined in Section 2.1. Moreover, AI can submit queries to the N-Sign or-
acle defined in Section 2.2.

Forgery: AI outputs a forged triplet (σ∗,m∗, ID∗). AI is said to win the
game if the following conditions hold.

1. (ID∗,m∗) has never been submitted to N-Sign.

2. σ∗ has never returned by N-Sign and 1←Verify(param, ID∗, pkID∗,m∗,σ∗)
where pkID∗ is the ID∗’s current public key.
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3. ID∗ has never been submitted to Partial-Private-Key-Extract or Secret-
Value-Extract.

3.3 Security against the SV-Type I adversary

The unforgeability of a CLS scheme against the adaptive chosen message
and identity SV-Type I adversary is defined by the following game:

Setup: The challenger runs the algorithm Setup, and then returns the
system parameters paramincluding the master public key to AI .

Query: AI can adaptively send queries to Create-User, Public-Key-
Replace, Secret-Value-Extract, and Partial-Private-Key-Extract defined in
Section 2.1. Moreover, AI can submit queries to the N-Sign oracle defined
in Section 2.2.

Forgery: AI outputs a forged triplet (σ∗,m∗, ID∗). AI is said to win the
game if the following conditions hold.

1. (ID∗,m∗) has never been submitted to N-Sign.

2. σ∗ has never returned by N-Sign and 1←Verify(param, ID∗, pkID∗,m∗,σ∗)
where pkID∗ is the ID∗’s current public key.

3. ID∗ has never been submitted to Partial-Private-Key-Extract.

3.4 Security against the SS-SU-Type I adversary

The unforgeability of a CLS scheme against the adaptive chosen message
and identity SS-SU-Type I adversary is defined by the following game:

Setup: The challenger runs the algorithm Setup, and then returns the
system parameters paramincluding the master public key to AI .

Query: AI can adaptively send queries to Create-User, Public-Key-
Replace, Secret-Value-Extract, and Partial-Private-Key-Extract defined in
Section 2.1. Moreover, AI can submit queries to the S-Sign oracle defined
in Section 2.2.

Forgery: AI outputs a forged triplet (σ∗,m∗, ID∗). AI is said to win the
game if the following conditions hold.

1. (ID∗,m∗) can be submitted to S-Sign.

2. σ∗ has never returned by S-Sign and 1←Verify(param, ID∗, pkID∗,m∗,σ∗)
where pkID∗ is the ID∗’s current public key.

3. ID∗ has never been submitted to Partial-Private-Key-Extract or Secret-
Value-Extract.
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3.5 Security against the S-Type I adversary

The unforgeability of a CLS scheme against the adaptive chosen message
and identity S-Type I adversary is defined by the following game:

Setup: The challenger runs the algorithm Setup, and then returns the
system parameters paramincluding the master public key to AI .

Query: AI can adaptively send queries to Create-User, Public-Key-
Replace, Secret-Value-Extract, and Partial-Private-Key-Extract defined in
Section 2.1. Moreover, AI can submit queries to the S-Sign oracle defined
in Section 2.2.

Forgery: AI outputs a forged triplet (σ∗,m∗, ID∗). AI is said to win the
game if the following conditions hold.

1. (ID∗,m∗) can be submitted to S-Sign.

2. σ∗ has never returned by S-Sign and 1←Verify(param, ID∗, pkID∗,m∗,σ∗)
where pkID∗ is the ID∗’s current public key.

3. ID∗ has never been submitted to Partial-Private-Key-Extract.

Upon showing the different Type I adversaries with their correspond-
ing security games separately, we have the following definition for the
security of a CLS scheme.

Definition 2. A certificateless signature scheme is secure against a Type I adver-
sary if and only if no PPT algorithm has non-negligible probability of winning
the corresponding game.

In a practical sense, we also adopt the form of Table 1 to trace all po-
tential Type II adversaries. More details of Type II adversaries are located
in Section 4.

3.6 Remarks on Type I adversaries

To the best of our knowledge, the only paper deals with some attack situ-
ations in CLS is the paper of Huang et al. [18, 19]. They deeply considered
and defined three kinds of Type I adversaries which are briefly discussed
in Section 2.2. Without the strong Type I adversary of Huang et al.1, the

1In Section 2.2, we have analyzed the Strong-Sign oracle is unreasonable, thus the the
strong Type I adversary is also informal since it sends requests to the Strong-Sign oracle.
Factually, the Strong-Sign oracle can be done and referred to as a combination of the S-
Sign oracle and the Public-Key-Replace oracle. The strong Type I adversary sending
(ID, r ′ID ,m) to the Strong-Sign oracle is equivalent to the SS-Type I adversary (SS-SV-Type
I, SS-SU-Type I, or S-Type I adversaries as well) which first sends (ID, r ′ID , pk′ID) to Public-
Key-Replace and then asks for a signature of (ID,m) to S-Sign.
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normal Type I adversary is the same with the N-Type I adversary, and the
super Type I adversary is with the SS-SV-Type adversary. Moreover, Tso
et al. [29] also found another Type I adversary which is the same with the
SS-Type adversary.

In addition to the Type I adversaries mentioned above, there exists an-
other Type I adversary [34, 36] which is weaker than our N-Type I ad-
versary. This is referred to as the W-Type I adversary. The activities and
behaviors of the W-Type I adversary will be simulated and modelled by
the following security game.

Security against the W-Type I adversary: The unforgeability of a CLS
scheme against the adaptive chosen message and identity W-Type I ad-
versary is defined by the following game:

Setup: The challenger runs the algorithm Setup, and then returns the
system parameters paramincluding the master public key to AI .

Query: AI can adaptively send queries to Create-User, Public-Key-
Replace, Secret-Value-Extract, and Partial-Private-Key-Extract defined in
Section 2.1. Moreover, AI can submit queries to the N-Sign oracle defined
in Section 2.2.

Forgery: AI outputs a forged triplet (σ∗,m∗, ID∗). AI is said to win the
game if the following conditions hold.

1. (ID∗,m∗) has never been submitted to N-Sign.

2. σ∗ has never returned by N-Sign and 1←Verify(param, ID∗, pkID∗,m∗,σ∗)
where pkID∗ is the ID∗’s original public key (which has never been re-
placed).

3. ID∗ has never been submitted to Partial-Private-Key-Extract or Secret-
Value-Extract.

Due to the winning conditions of the W-Type I adversary, pkID∗ is the
ID∗’s original current public key, which violates Definition 1. We con-
clude that the W-Type I adversary is not feasible for CLS, thus some CLS
schemes [1, 11] are weak to be used in real-life because they are only
proven to be secure against the W-Type I adversary.

4 Security models for Type II adversaries

We use the same concept to construct the extension of security models
for Type II adversaries as well as those for Type I adversaries. Straightly,
Table 2 shows all potential Type II adversaries. We present N-Type II and
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Table 2: Four different kinds of Type II adversaries

Type of Sign oracle Submit (ID∗,m∗) to Sign
N-Type II N-Sign ×
SU-Type II N-Sign X
SS-Type II S-Sign ×
S-Type II S-Sign X

S-Type II adversaries as follows. For more details, SU-Type II and SS-Type
II adversaries are shown in Appendix B.

4.1 Security against the N-Type II adversary

The unforgeability of a CLS scheme against the adaptive chosen message
and identity N-Type II adversary is defined by the following game:

Setup: The challenger runs the algorithm Setup, and then returns the
system parameters paramand the master key mskto AII .

Query: In this phase, AII can adaptively send queries to Create-User,
Public-Key-Replace, and Secret-Value-Extract defined in Section 2.1. More-
over, AI can submit queries to the N-Sign oracle defined in Section 2.2.

Forgery: AII outputs a forged triplet (σ∗, ID∗,m∗). AII is said to win the
game if the following conditions hold.

1. (ID∗,m∗) has never been submitted to N-Sign.

2. σ∗ has never returned by N-Sign and 1←Verify(param, ID∗, pkID∗,m∗,σ∗)
where pkID∗ is the ID∗’s original public key.

3. ID∗ has never been submitted to Secret-Value-Extract.

4.2 Security against the S-Type II adversary

The unforgeability of a CLS scheme against the adaptive chosen message
and identity S-Type II adversary is defined by the following game:

Setup: The challenger runs the algorithm Setup, and then returns the
system parameters paramand the master key mskto AII .

Query: In this phase, AII can adaptively send queries to Create-User,
Public-Key-Replace, and Secret-Value-Extract defined in Section 2.1. More-
over, AI can submit queries to the S-Sign oracle defined in Section 2.2.
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Forgery: AII outputs a forged triplet (σ∗, ID∗,m∗). AII is said to win the
game if the following conditions hold.

1. (ID∗,m∗) can be submitted to S-Sign.

2. σ∗ has never returned by S-Sign and 1←Verify(param, ID∗, pkID∗,m∗,σ∗)
where pkID∗ is the ID∗’s original public key.

3. ID∗ has never been submitted to Secret-Value-Extract.

Definition 3. A certificateless signature scheme is secure against a Type II ad-
versary if and only if no PPT algorithm has non-negligible probability of winning
the corresponding game.

5 Certificateless short signature schemes

Boneh et al. introduced the concept of short signatures in 2001 [3], which
are useful for systems with low bandwidth or low computation power.
Inheriting the advantages of both certificateless cryptography and short
signatures, certificateless short signatures were introduced, and then have
garnered considerable attention in recent years. However, the short CLS
schemes in the literature [29] are not secure against the Type I adversaries
who are allowed to submit ID∗ to Secret-Value-Extract; for instance, ex-
isting short CLS schemes [7, 9, 11, 18, 19, 29, 30, 31] cannot withstand the
SV-Type I, SS-SV-Type I, SV-SU-Type I, or S-Type I adversary. This is re-
ferred to as an open problem in short CLS.

In this section, we first describe bilinear pairing. In Section 5.3 through
5.10, we present nine certificateless short signature schemes, including
three literature schemes and six new schemes (proposed in this paper).
However, these schemes are respectively secure against different Type I
adversaries which are ordered as Table 1.

5.1 Bilinear pairing

A bilinear pairing is a mapping ê : G1×G2 → GT , where G1 and G2 are
additive cyclic groups of prime order q, and Gq is a multiplicative cyclic
group of the same order q. Additionally, bilinear pairing is with the fol-
lowing properties:

(1) Computable: given P∈G1 and Q∈G2, there exists a polynomial time
algorithm to compute ê(P,Q) ∈GT .
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(2) Bilinear: for any x,y∈ Z∗q, we have ê(xP,yQ) = ê(P,Q)xy for any P∈G1

and Q∈G2.

(3) Non-degenerate: if P is a generator of G1 and Q is a generator of G2,
then ê(P,Q) 6= 1.

However, there are three kinds of the bilinear pairings based on the rela-
tion between G1 and G2.

• Type 1: G1 =G2 is a group of prime order q.

• Type 2: G1 6= G2 are groups of prime order q but with an isomor-
phism ψ :G2→G1.

• Type 3: G1 6= G2 are groups of prime order q without any isomor-
phism ψ :G2→G1.

There are several works to propose speed-up algorithms to improve the
efficiency regarding computation [3, 23, 25].

Definition 4. (Computational Diffie-Hellman (CDH) Problem inG1) Let (G1,GT)
be bilinear groups with the bilinear map, ê :G1×G1→GT . Given (P,aP,bP) for
unknown a,b∈ Z∗q, compute abP. If there is a probabilistic polynomial-time algo-
rithm A with probability at least ε to solve the CDH problem, Pr[A(P,aP,bP)→
abP]≥ ε.

The CDH problem is assumed to be intractable if for any PPT algo-
rithm A , Pr[A(P,aP,bP)→ abP] is negligible. However, in security proof of
cryptographic schemes, we also define the CDH problem is a hardness as-
sumption. In fact, the bilinear pairing is widely adopted to design crypto-
graphic schemes. Therefore the following CLS schemes are pairing-based.

5.2 Fan et al.’s scheme against the W-Type I adversary

Fan et al.’s scheme is found to be only secure against the W-Type I ad-
versary, which means it cannot withstand the N-Type I adversary. This
scheme is composed of the following algorithms.

Setup: Let G1 and G2 be additive cyclic groups of prime order q, GT

be a multiplicative cyclic group of the same order, and e be the bilin-
ear pairing where ê : G1×G2 → GT . Moreover, let H0 : {0,1}∗ → Z∗q and
H1 : {0,1}∗×G1→G2 be two cryptographic hash functions. The KGC ran-
domly chooses s∈ Z∗q as the master secret key msk= s, and then picks the
generators P1 ∈ G1 and P2 ∈ G2 with g = ê(P1,P2). Finally, it publishes the
system parameter, param= {G1,G2,GT , ê,H0,H1,q,P1,P2,Ppub = sP2}.
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Partial-Private-Key-Extract: Given a user’s identity ID, the KGC uses
msk= sto compute the ID’s partial private key, DID = 1

s+H0(ID)+H0(ID||pkID,1)
P1.

It thus gives DID to ID via a secure channel.
Set-Secret-Value: The user ID selects rID ∈ Z∗q at random and sets rID

as his secret value.
Set-Secret-Key: The user ID sets his full secret key, skID = {DID , rID}.
Set-Public-Key: Given ID’s secret value rID , the user ID obtains his

public key pkID = {pkID,1, pkID,2}where pkID,1 = rIDP2 and pkID,2 = rID(H0(ID)P2+
Ppub).

Sign: Given a message m and ID’s secret key skID , the signer/user ID
generates the signature
σ = 1

rID+H1(m,pkID,1)
DID .

Verify: Taking (m,σ, pkID , ID, param) as input, the verifier sets h= H1(m, pkID,1),
and the algorithm returns 1 if the following equation holds, ê(σ, pkID,2 +
H0(ID||pkID,1)pkID,1+h(Ppub+H0(ID)P2+H0(ID||pkID,1)P2)) = g; otherwise,
returns 0.

Remark 1. Fan et al.’s scheme is insecure against the N-Type I adversary.

5.3 The proposed scheme 1 against the N-Type I adversary

The proposed scheme 1 against the N-Type I adversary consists of the fol-
lowing algorithms.

Setup: Let G1 be an additive cyclic group of prime order q, GT be a
multiplicative cyclic group of the same order, and ebe the bilinear pairing
where ê :G1×G1→GT . Moreover, let H0 : {0,1}∗→G1 and H1 : {0,1}∗→
G1 be two cryptographic hash functions. The KGC randomly chooses s∈
Z∗q and P∈G1, and then sets the master secret key msk= s and the master
public key Ppub = sP. Finally, it announces the system parameter, param=
{G1,GT , ê,H0,H1,q,P,Ppub = sP}

Partial-Private-Key-Extract: Given a user’s identity ID, the KGC uses
msk= sto compute the ID’s partial private key, DID = sH0(ID). It thus gives
DID to ID via a secure channel.

Set-Secret-Value: The user ID selects rID ∈ Z∗q at random and sets rID

as his secret value.
Set-Secret-Key: The user ID sets his full secret key, skID = {DID , rID}.
Set-Public-Key: Given ID’s secret key skID , the user ID obtains his pub-

lic key pkID = rIDP.
Sign: Given a message m and ID’s secret key skID , the signer/user ID

generates the signature
σ = DID + rIDH1(m||ID).
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Verify: Taking (m,σ, pkID , ID, param) as input, the verifier can check the
following equation holds or not, ê(σ,P)=?ê(H0(ID),Ppub)ê(pkID ,H1(m||ID)).
If it holds, the algorithm returns 1; otherwise, returns 0.

Remark 2. Scheme 1 is insecure against the SS-Type I, SU-Type I, or SV-Type I
adversary. This scheme is modified from Huang et al.’s scheme (Sect. 5.5), and its
formal security proof is almost the same.

5.4 The proposed scheme 2 against the SV-Type I adver-
sary

The proposed scheme 2 against the SV-Type I adversary consists of the
following algorithms.

Setup: Let G1 be an additive cyclic group of prime order q, GT be a
multiplicative cyclic group of the same order, and e be the bilinear pair-
ing where ê : G1×G1 → GT . Moreover, let H0 :,H2{0,1}∗ → Z∗q and H1 :
{0,1}∗ → G1 be three cryptographic hash functions. The KGC randomly
chooses s1,s2 ∈ Z∗q and P∈ G1, and then sets the master secret key msk=
{s1,s2} and the master public key Ppub1 = s1P,Ppub2 = s2P. Finally, it an-
nounces the system parameter, param= {G1,GT , ê,H0,H1,H2,q,P,Ppub1,Ppub2}

Partial-Private-Key-Extract: Given a user’s identity ID, the KGC ran-
domly chooses x ∈ Z∗q and uses msk= s to compute the ID’s partial pri-
vate key, DID,1 = x+ s1H0(ID) and DID,2 = s2H1(ID). It thus gives DID =
{DID,1,DID,2} and pkID,2 = xP to ID via a secure channel.

Set-Secret-Value: The user ID selects rID ∈ Z∗q at random and sets rID

as his secret value.
Set-Secret-Key: The user ID sets his full secret key, skID = {DID , rID}.
Set-Public-Key: Given ID’s secret key skID , the user ID obtains his pub-

lic key pkID = {pkID,1, pkID,2} where pkID,1 = rIDP.
Sign: Given a message m and ID’s secret key skID , the signer/user ID

sets h = H2(m||ID) and generates the signature
σ = 1

hrID+DID,1
DID,2.

Verify: Taking (m,σ, pkID , ID, param) as input, the verifier sets h= H2(m||ID)
and can check the following equation holds or not, ê(σ,h · pkID,1 + pkID,2 +
H0(ID)Ppub1) =?ê(H1(ID),Ppub2). If it holds, the algorithm returns 1; other-
wise, returns 0.
Correctness: If the public key PKID and the signature σ are generated cor-
rectly as this scheme, then the correctness holds since

ê(σ,h· pkID,1 + pkID,2 +H0(ID)Ppub1)
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= ê(
1

hrID +DID,1
DID,2,h(rIDP)+xP+H0(ID)(s1P))

= ê(
1

hrID +DID,1
DID,2,(hrID +x+H0(ID)s1)P)

= ê(DID,2,P)
= ê(s2H1(ID),P)
= ê(H1(ID),Ppub2)

Remark 3. Scheme 2 is insecure against the SS-Type I or SU-Type I adversary.
This scheme is modified from Scheme 4 (Sect. 5.7), and its formal security proof
is almost the same.

5.5 Huang et al.’s scheme against the SU-Type I adversary

Huang et al.’s scheme against the SU-Type I adversary consists of the fol-
lowing algorithms.

Setup: Let G1 be an additive cyclic group of prime order q, GT be a
multiplicative cyclic group of the same order, and ebe the bilinear pairing
where ê :G1×G1→GT . Moreover, let H0 : {0,1}∗→G1 and H1 : {0,1}∗→
G1 be two cryptographic hash functions. The KGC randomly chooses s∈
Z∗q and P∈G1, and then sets the master secret key msk= s and the master
public key Ppub = sP. Finally, it announces the system parameter, param=
{G1,GT , ê,H0,H1,q,P,Ppub = sP}

Partial-Private-Key-Extract: Given a user’s identity ID, the KGC uses
msk= sto compute the ID’s partial private key, DID = sH0(ID). It thus gives
DID to ID via a secure channel.

Set-Secret-Value: The user ID selects rID ∈ Z∗q at random and sets rID

as his secret value.
Set-Secret-Key: The user ID sets his full secret key, skID = {DID , rID}.
Set-Public-Key: Given ID’s secret key skID , the user ID obtains his pub-

lic key pkID = rIDP.
Sign: Given a message m and ID’s secret key skID , the signer/user ID

generates the signature
σ = DID + rIDH1(m||ID||pkID).

Verify: Taking (m,σ, pkID , ID, param) as input, the verifier can check the
following equation holds or not, ê(σ,P)=?ê(H0(ID),Ppub)ê(pkID ,H1(m||ID||pkID)).
If it holds, the algorithm returns 1; otherwise, returns 0.

Remark 4. Huang et al.’s scheme is insecure against the SS-Type I or SV-Type I
adversary. Its formal security proof is done in the paper of [19].
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5.6 The proposed scheme 3 against the SS-Type I adversary

The proposed scheme 3 against the SS-Type I adversary consists of the
following algorithms.

Setup: Let G1 be an additive cyclic group of prime order q, GT be a
multiplicative cyclic group of the same order, and ebe the bilinear pairing
where ê :G1×G1→GT . Moreover, let H0 : {0,1}∗→G1 and H1 : {0,1}∗→
G1 be cryptographic hash functions. The KGC randomly chooses s∈ Z∗q
and P ∈ G1, and then sets the master secret key msk= s and the master
public key Ppub = sP. Finally, it announces the system parameter, param=
{G1,GT , ê,H0,H1,q,P,Ppub = sP}

Partial-Private-Key-Extract: Given a user’s identity ID, the KGC ran-
domly chooses x∈ Z∗q and uses msk= s to compute the ID’s partial private
key, DID = sH0(ID). It thus gives DID to ID via a secure channel.

Set-Secret-Value: The user ID selects rID ∈ Z∗q at random and sets rID

as his secret value.
Set-Secret-Key: The user ID sets his full secret key, skID = {DID , rID}.
Set-Public-Key: Given ID’s secret key skID , the user ID obtains his

public key pkID = {pkID,1, pkID,2, pkID,3} where pkID,1 = rIDDID , pkID,2 =
rIDH0(ID), and pkID,3 is randomly chosen from G1.

Sign: Given a message m and ID’s secret key skID , the signer/user gen-
erates the signature
σ = DID + 1

rID
H1(m||ID||pkID,1||pkID,2)+ pkID,3.

Verify: Taking (m,σ, pkID , ID, param) as input, the verifier can check
whether the following equations hold or not.

ê(Ppub, pkID,2) =?ê(P, pkID,1) and
ê(σ− pkID,3, pkID,2) =?ê(pkID,1 +T,H0(ID)),

where T = H1(m||ID||pkID,1||pkID,2). If they hold, the algorithm returns 1;
otherwise, returns 0.

Remark 5. Scheme 3 is insecure against the SU-Type I or SV-Type I adversary.
This scheme is modified from Tso et al.’s scheme (Sect. 5.8), and its formal security
proof is almost the same.

5.7 The proposed scheme 4 against the SV-SU-Type I ad-
versary

The proposed scheme 4 against the SV-SU-Type I adversary consists of the
following algorithms.
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Setup: Let G1 be an additive cyclic group of prime order q, GT be a
multiplicative cyclic group of the same order, and ebe the bilinear pairing
where ê:G1×G1→GT . Moreover, let H0,H2{0,1}∗→Z∗q and H1 : {0,1}∗→
G1 be three cryptographic hash functions. The KGC randomly chooses
s1,s2 ∈ Z∗q and P ∈ G1, and then sets the master secret key msk= {s1,s2}
and the master public key Ppub1 = s1P,Ppub2 = s2P. Finally, it announces the
system parameter, param= {G1,GT , ê,H0,H1,H2,q,P,Ppub1,Ppub2}

Partial-Private-Key-Extract: Given a user’s identity ID, the KGC ran-
domly chooses x ∈ Z∗q and uses msk= s to compute the ID’s partial pri-
vate key, DID,1 = x+ s1H0(ID) and DID,2 = s2H1(ID). It thus gives DID =
{DID,1,DID,2} and pkID,2 = xP to ID via a secure channel.

Set-Secret-Value: The user ID selects rID ∈ Z∗q at random and sets rID

as his secret value.
Set-Secret-Key: The user ID sets his full secret key, skID = {DID , rID}.
Set-Public-Key: Given ID’s secret key skID , the user ID obtains his pub-

lic key pkID = {pkID,1, pkID,2} where pkID,1 = rIDP.
Sign: Given a message m and ID’s secret key skID , the signer/user ID

sets h = H2(m||ID||pkID) and generates the signature
σ = 1

hrID+DID,1
DID,2.

Verify: Taking (m,σ, pkID , ID, param) as input, the verifier sets h= H2(m||ID||pkID)
and can check the following equation holds or not, ê(σ,h · pkID,1 + pkID,2 +
H0(ID)Ppub1) =?ê(H1(ID),Ppub2). If it holds, the algorithm returns 1; other-
wise, returns 0.

Remark 6. Scheme 4 is insecure against the SS-Type I adversary.

5.8 Tso et al.’s scheme against the SS-SU-Type I adversary

Tso et al.’s scheme against the SS-SU-Type I adversary consists of the fol-
lowing algorithms.

Setup: Let G1 be an additive cyclic group of prime order q, GT be a
multiplicative cyclic group of the same order, and ebe the bilinear pairing
where ê :G1×G1→GT . Moreover, let H0 : {0,1}∗→G1 and H1 : {0,1}∗→
G1 be cryptographic hash functions. The KGC randomly chooses s∈ Z∗q
and P ∈ G1, and then sets the master secret key msk= s and the master
public key Ppub = sP. Finally, it announces the system parameter, param=
{G1,GT , ê,H0,H1,q,P,Ppub = sP}

Partial-Private-Key-Extract: Given a user’s identity ID, the KGC ran-
domly chooses x∈ Z∗q and uses msk= s to compute the ID’s partial private
key, DID = sH0(ID). It thus gives DID to ID via a secure channel.
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Set-Secret-Value: The user ID selects rID ∈ Z∗q at random and sets rID

as his secret value.
Set-Secret-Key: The user ID sets his full secret key, skID = {DID , rID}.
Set-Public-Key: Given ID’s secret key skID , the user ID obtains his pub-

lic key pkID = {pkID,1, pkID,2}where pkID,1 = rIDDID and pkID,2 = rIDH0(ID).
Sign: Given a message m and ID’s secret key skID , the signer/user gen-

erates the signature
σ = DID + 1

rID
H1(m||ID||pkID).

Verify: Taking (m,σ, pkID , ID, param) as input, the verifier can check the
following two equations hold or not.

ê(Ppub, pkID,2) =?ê(P, pkID,1) and
ê(σ, pkID,2) =?ê(pkID,1 +H1(m||ID||pkID),H0(ID)).

If they hold, the algorithm returns 1; otherwise, returns 0.

Remark 7. Tso et al.’s scheme is insecure against the SV-Type I adversary. Its
formal security proof is done in the paper of [29].

5.9 The proposed scheme 5 against the SS-SV-Type I ad-
versary

The proposed scheme 5 against the SS-SV-Type I adversary consists of the
following algorithms.

Setup: Let G1 be an additive cyclic group of prime order q, GT be a
multiplicative cyclic group of the same order, and ebe the bilinear pairing
where ê :G1×G1 →GT . Moreover, let H0 : {0,1}∗→ Z∗q, H1 : {0,1}∗→G1,
and H2 : {0,1}∗→G1 be cryptographic hash functions. The KGC randomly
chooses s∈ Z∗q and P∈G1, and then sets the master secret key msk= s and
the master public key Ppub = sP. Finally, it announces the system parame-
ter, param= {G1,GT , ê,H0,H1,q,P,Ppub = sP}

Partial-Private-Key-Extract: Given a user’s identity ID, the KGC ran-
domly chooses x∈ Z∗q and uses msk= s to compute the ID’s partial private
key, DID = x+ sH0(ID, pkID,2,Ppub). It thus gives DID and pkID,2 = xP to ID
via a secure channel.

Set-Secret-Value: The user ID selects rID ∈ Z∗q at random and sets rID

as his secret value.
Set-Secret-Key: The user ID sets his full secret key, skID = {DID , rID}.
Set-Public-Key: Given ID’s secret key skID , the user ID obtains his pub-

lic key pkID = {pkID,1, pkID,2} where pkID,1 = rIDP.
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Sign: Given a message m and ID’s secret key skID , the signer/user ID
sets T1 = H1(m||ID) and T2 = H2(m||ID). He then generates the signature
σ = rIDT1 +DIDT2.

Verify: Taking (m,σ, pkID , ID, param) as input, the verifier sets h= H0(ID, pkID,2,Ppub),
T1 = H1(m||ID) and T2 = H2(m||ID), and then can check the following equa-
tion holds or not, ê(σ,P) =?ê(pkID,1,T1)ê(pkID,2 + hPpub,T2). If it holds, the
algorithm returns 1; otherwise, returns 0.
Correctness: If the public key PKID and the signature σ are generated cor-
rectly as this scheme, then the correctness holds since

ê(σ,P) = ê(rIDT1 +DIDT2,P)
= ê(rIDT1,P)ê(DIDT2,P)
= ê(rIDP,T1)ê(DIDP,T2)
= ê(pkID,1,T1)ê(pkID,2 +hPpub,T2)

Remark 8. Scheme 5 is insecure against the SU-Type I adversary. This scheme
is modified from Scheme 6 (Sect. 5.10), and its formal security proof is almost the
same.

5.10 The proposed scheme 6 against the S-Type I adversary

The proposed scheme 6 against the S-Type I adversary consists of the fol-
lowing algorithms.

Setup: Let G1 be an additive cyclic group of prime order q, GT be a
multiplicative cyclic group of the same order, and ebe the bilinear pairing
where ê :G1×G1 →GT . Moreover, let H0 : {0,1}∗→ Z∗q, H1 : {0,1}∗→G1,
and H2 : {0,1}∗→G1 be cryptographic hash functions. The KGC randomly
chooses s∈ Z∗q and P∈G1, and then sets the master secret key msk= s and
the master public key Ppub = sP. Finally, it announces the system parame-
ter, param= {G1,GT , ê,H0,H1,q,P,Ppub = sP}

Partial-Private-Key-Extract: Given a user’s identity ID, the KGC ran-
domly chooses x∈ Z∗q and uses msk= s to compute the ID’s partial private
key, DID = x+sH0(ID||pkID,2||Ppub). It thus gives DID and pkID,2 = xP to ID
via a secure channel.

Set-Secret-Value: The user ID selects rID ∈ Z∗q at random and sets rID

as his secret value.
Set-Secret-Key: The user ID sets his full secret key, skID = {DID , rID}.
Set-Public-Key: Given ID’s secret key skID , the user ID obtains his pub-

lic key pkID = {pkID,1, pkID,2} where pkID,1 = rIDP.
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Sign: Given a message m and ID’s secret key skID , the signer/user ID
sets T1 = H1(m||ID||pkID ||Ppub) and T2 = H2(m||ID||pkID ||Ppub). He then gen-
erates the signature σ = rIDT1 +DIDT2.

Verify: Taking (m,σ, pkID , ID, param) as input, the verifier sets h= H0(ID||pkID,2||Ppub),
T1 = H1(m||ID||pkID||Ppub) and T2 = H2(m||ID||pkID ||Ppub), and then can check
the following equation holds or not, ê(σ,P)=?ê(pkID,1,T1)ê(pkID,2+hPpub,T2).
If it holds, the algorithm returns 1; otherwise, returns 0.

Remark 9. Scheme 6 is secure against the S-Type I adversary, thus we will give
its formal security proof in Section 6.

6 Security analysis

In Section 3 and 5, we has introduced all possible Type I adversaries and
presented the nine CLS schemes. Now we show the security analysis of
the proposed scheme 6 in this section. Particularly, we also demonstrate
the insecurity of the other schemes in Appendix C; for example, the pro-
posed scheme 2 is secure against the SV-AI , thus we analyze that it is inse-
cure against the SS-AI and SU-AI .

Theorem 1. The proposed scheme 6 is provably secure against the adaptively cho-
sen message and identity attacks, performed by the S-Types I and II adversaries,
in the random oracle model assuming the CDH problem is intractable.

This theorem follows from Lemmas 1 and 2 straightly due to two types
of adversaries.

Lemma 1. If there exists an adaptively chosen message and identity S-Type I ad-
versary, AI , who can ask at most qC Create-User queries, qK Partial-Private-
Key-Extract queries, and qS S-Sign queries, and can break the proposed scheme
6 in polynomial time with success probability ε, then there exists an algorithm
C which can depend on AI ’s forgery to solve the CDH problem with probability
Pr[C (P,aP,bP)→ abP]≥ (1− 1

1−qC
)qK(1− 1

qS+1)qS( 1
qC(qS+1))ε.

Proof. If there exists an S-Type I adversary AI who can break the strong
unforgeability of the proposed scheme 6 by winning the security game,
then we can construct an algorithm C which can depend on AI ’s forgery
to solve the CDH problem as Section 5.1.

Let (G1,GT) be bilinear groups with the bilinear map ê. Given P,aP,bP
where a,b are unknown, C ’s purpose is to compute abP, which is the out-
put of the CDH problem. C acts as the challenger. AI is eligible for ac-
cessing the oracles defined in Section 2.1 and 2.2. The three hash functions
H0,H1,H2 will be random oracles.
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Setup: C chooses h∗,v∗ ∈ Z∗q at random. C then sets Ppub = 1
h∗ (bP−v∗P)

and sends param= {G1,GT , ê,P,Ppub} to AI .
Query: AI can adaptively access the following oracles in a polynomial

number of times.

1. Create-User: C maintains K-list which is initially empty. AI can sub-
mit ID to this oracle. For returning AI ’s request, C first chooses a
number t ∈ {1, ...,qC} at random.

(1) If i 6= t, C randomly chooses vi ,v′i , rID i ∈Z∗q and sets H0(ID i ||pkID i ,2||Ppub)=
v′i , DID i ,1 = vi , DID i ,2 = pkID i ,2 = viP−v′i(Ppub), pkID i ,1 = rID i P, and
the secret value rID i .

(2) If i = t, C randomly chooses rIDt ,vt ,v′t ∈Z∗q and sets H0(IDt ||pkIDt ,2||Ppub)=
v′t , DIDt ,1 =⊥, DIDt ,2 = pkIDt ,2 = vtP, pkIDt ,1 = rIDt P, and the secret
value rIDt .

2 (Hereafter, ⊥means that nothing is set or returned.)

In both cases, C will add the outputted tuple
(ID i ,H0(ID i ,Ppub),DID i , rID i , pkID i ,1, pkID i ,2) on K-List. If AI submits ID i

to ask for the public key or H0(ID i ,Ppub), C returns pkID i ,1, pkID i ,2 or
H0(ID i ||pkID i ,2||Ppub) according to K-list.

2. Partial-Private-Key-Extract: AI can submit ID i to this oracle. C out-
puts ⊥ if ID i has not been created. Else, if ID i has been created and
i 6= t, C returns DID i from K-list; otherwise, C returns failure and ter-
minates.

3. Public-Key-Replace: AI can submit (pk′ID i ,1, pk′ID i ,2) to this oracle for
replacing the public key. If ID i has been created, C replaces the orig-
inal (pkID i ,1, pkID i ,2) with the new (pk′ID i ,1, pk′ID i ,2); otherwise, it out-
puts ⊥.

4. Secret-Value-Extract: AI can submit ID i to this oracle. C outputs ⊥ if
ID i has not been created. Else, C returns rID i from K-list.

5. H1 queries: C maintains H1-list which is initially empty. AI can sub-
mit Mi = (mj , IDk, pkIDk,Ppub) to the random oracle H1. C outputs ⊥
if ID i has not been created. Otherwise, C performs as follows for the
request Mi . C randomly chooses yi ∈ Z∗q and sends Yi = yiP as H1(Mi)
to AI . Finally, C adds the outputted tuple (Mi ,yi ,Yi) on H1-list.

2ID i can receive many partial private key because of replacing pkID i ,2. Therefore, for
IDt , it is possible that DIDt ,2 = pkIDt ,2 = v∗P and H0(IDt ||pkIDt ,2||Ppub) = h∗ accordingly.
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6. H2 queries: C maintains H2-list which is initially empty. AI can sub-
mit Mi = (mj , IDk, pkIDk,Ppub) to the random oracle H2. C outputs ⊥
if ID i has not been created. Otherwise, C performs as follows for the
request Mi .

– If IDk 6= IDt , C randomly chooses αi ∈ Z∗q and sends Ri = αiP as
H2(Mi) to AI . C therefore adds the outputted tuple (Mi ,αi ,Ri ,ci =⊥
) on H2-list.

– Otherwise, IDk = IDt , C randomly chooses αi ∈ Z∗q and flips a
biased-coin, ci ∈ {0,1}, with Pr[ci = 1] = β and Pr[ci = 0] = 1−β.
(The value, β < 1, will be considered later.) In the case of ci = 1,
C sends Ri = αi(aP) as H2(Mi) to AI . In the case of ci = 0, C sends
Ri = αiP as H2(Mi) to AI . Finally, C adds the outputted tuple
(Mi ,αi ,Ri ,ci) on H2-list.

7. S-Sign: AI can submit γi = (IDk,mj) as a signature query. C outputs
⊥ if IDk has not been created. Otherwise, C performs as follows for
(IDk,mj) according to K,H1,H2-lists.

– If IDk 6= IDt , C generates the signature by σi = yi · pkIDk,1+DIDkRi .

– If IDk = IDt and ci = 0, C generates the signature σi = yi · pkIDt ,1+
αi(pkIDt ,2 +v′t(Ppub)).

– If IDk = IDt and ci = 1, C returns failure and terminates. In this
case of ci = 1, C must make sure that DIDt ,2 = pkIDt ,2 = v∗P and
H0(IDt ||pkIDt ,2||Ppub) = h∗.

Forgery: After all queries, AI outputs a forgery (m∗, ID∗,σ∗). By assump-
tion, AI wins this game because σ∗ is valid. If ID∗ 6= IDt , C outputs failure
and terminates this game. Otherwise, in the case of ID∗ = IDt , C performs
as follows.

(1) C checks H2-list. If c∗ = 0, C outputs failure and terminates.

(2) Otherwise, in the case of c∗ = 1, C depends on AI ’s forgery to solve
the CDH problem. Since σ∗ is valid, we suppose the following equa-
tion holds,

ê(σ∗,P) = ê(pkID∗,1,H1(m∗||ID∗||pkID∗||Ppub)) ·
ê(pkID∗,2,H2(m∗||ID∗||pkID∗||Ppub)) ·
ê(hPpub,H2(m∗||ID∗||pkID∗||Ppub))
where h = H0(ID∗||pkID∗,2||Ppub).
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Based on K,H1,H2-lists, the forged signature must be σ∗= y∗ ·pkIDt ,1+
α∗(abP) where y∗ is obtained from H1-list, α∗ from H2-list, and pkIDt ,1

from K-list. Eventually, C utilizes σ∗ to solve the CDH problem and
output abP= 1

α∗ (σ
∗−y∗ · pkIDt ,1).

The algorithm C is done through the above simulation, which remains
to compute the probability that C solves the CDH problem. Hence, we
show the three events if C succeeds.

• E1: C does not abort in the Query phase.

• E2: The forged signature σ∗ is valid on (m∗, ID∗, pkID∗).

• E3: C does not abort in the Forgery phase.

The probability of C is Pr[C (P,aP,bP)→abP] = Pr[E1∧E2∧E3] = Pr[E1]Pr[E2]Pr[E3]
because E1, E2 and E3 are independent.

Claim 1. C does not abort in the Query phase with Pr[E1]≥ (1− 1
qC

)qK(1−β)qS.

C does not output failure in Partial-Private-Key-Extract with proba-
bility (1− 1

qC
)qK , and does not output failure in S-Sign with probability

(1− ( 1
qC

)β)qS≥ (1−β)qS. Hence, Pr[E1]≥ (1− 1
qC

)qK(1−β)qS.
In addition, Pr[E2] = ε and Pr[E3] = β/qC. The probability of C is Pr[C (P,aP,bP)→

abP]≥ (1− 1
qC

)qK(1−β)qS( β
qC

)ε. However, β(1−β)qS could be maximized at
β = 1

1+qS
, so Pr[C (P,aP,bP)→ abP]≥ (1− 1

qC
)qK(1− 1

1+qS
)qS( 1

qC(1+qS)
)ε. On the

other hand, for the performance, τ is denoted by the running time of AI ,
and τ′ of C . AI can ask at the most qH1 H1 queries and qH2 H2 queries where
qH1 = qH2 = qS+1. We conclude τ′ ≤ τ +2qCτsm+qH1τsm+qH2τsm+qSτsm=
τ+(2qC +3qS+2)τsm. The proof of this lemma is complete.

Lemma 2. If there exists an adaptively chosen message and identity S-Type II
adversary, AII , who can ask at most qC Create-User queries, qV Secret-Value-
Extract queries, and qS S-Sign queries, and can break the proposed scheme 6
in polynomial time with success probability ε, then there exists an algorithm C
which can depend on AII ’s forgery to solve the CDH problem with probability
Pr[C (P,aP,bP)→ abP]≥ (1− 1

1−qC
)qV (1− 1

qS+1)qS( 1
qC(qS+1))ε.

The proof of Lemma 2 is similar to that of Lemma 1. We can refer to
Appendix D for more details.
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7 Discussions

7.1 Shim’s attack against short CLS schemes

In 2009, Shim [28] reflected on the possibility that short CLS schemes might
be insecure against her presented attack. Performing this attack, a Type I
adversary AI first sets a new secret value r ′ID of ID and computes the new
corresponding public key pk′ID . Secondly AI replaces the old public key
pkID with the new one pk′ID , and then submits (m, ID) to Sign oracle. Upon
receiving the signature σ of (m, ID), AI can indirectly compute the partial
private key DID . AI can thus forge any signature existentially by using
DID . As a result, Shim considered the short CLS schemes might suffer
from such attacks since those schemes are deterministic short signature
schemes without using random factors.

According to the security models mentioned in Section 3, the SS-Type
I, SS-SV-Type I, SS-SU-Type I, and S-Type I adversaries can access S-Sign,
and they can therefore perform Shim’s attack. However, there are some
short CLS schemes such as Tso et al.’s scheme [29] and our proposed
schemes 3, 5, and 6, which have been proven to be secure against these
kinds of Type I adversaries. As we know, some short CLS schemes [7, 9,
11, 18, 19, 30, 31] are insecure against such attacks undoubtedly. How-
ever, this attack does not succeed to break all of short CLS schemes; for
example, it can be withstood by the proposed scheme 6.

7.2 The relation between strong unforgability and non-repudiation
in short CLS schemes

Girault defined three trust levels for a trusted third party (TTP) [14]. How-
ever, the higher the trust level of the TTP is, the higher the security level
of the cryptographic scheme becomes. Explicitly, based on the definition
of Girault, Hu et al. [17] stated clearly the three trust levels of the KGC in
the context of certificateless signature schemes:

• Level 1. The KGC knows the full private key of any user and is able
to act as any user to forge signatures which cannot be repudiated by
that user (the victim).

• Level 2. The KGC does not know the full private key of any user. But
the KGC is able to generate a false private key for any user to forge
signatures which cannot be repudiated by that user (the victim).
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• Level 3. The KGC does not know the full private key of any user.
But the KGC is able to generate a false private key of any user to
forge signatures but that user (the victim) can repudiate these forged
signatures.

From a legal viewpoint, using a digital signature scheme with trust level 1
or 2, a signer can always repudiate the signatures by blaming the KGC. A
CLS scheme is said to provide non-repudiation if the KGC is of trust level 3.
In general, a CLS scheme meets trust level 3, which implies that only a user
has one unique public/private key pair, and thereby is unable to generate
another key pair himself. To prove a CLS scheme with trust level 3, we
usually use an analysis in which a user cannot output another key pair
by replacing the public key. We now conclude that a short CLS scheme is
strongly unforgeable against the SU-Type I adversary if it is at trust level 3.
Since no random factors are involved and the adversary cannot replace the
public key, the short CLS scheme with trust level 3 is strongly unforgeable
against SU-AI without doubt. As a result, this kind of short CLS schemes
avoids the only ability of the SU-AI , i.e. replacing a public key.

7.3 Comparisons

Finally, we compare our schemes with the other short certificateless sig-
nature schemes [7, 9, 11, 18, 19, 29, 30, 31]. The comparisons are given in
Table 3 with respect to their efficiency and security (we do not consider
the precomputations herein).3 The computation cost of bilinear pairing is
denoted by P , and that of scalar multiplication of G1 is denoted by S . In
addition, we use X to represent that the scheme is secure against this kind
of AI .

As shown in Table 3, although the signature generations of the pro-
posed schemes 5 and 6 are not as efficient as those of the schemes [9, 11,
18, 19, 29, 30, 31], the proposed scheme 6 can achieve the higher security
level. However, Fan et al.’s scheme [11] is insecure against the N-AI . In
particular, Choi et al. claimed that their scheme can withstand the SS-SV-
AI [7]; however, this scheme has been cryptanalyzed to be secure against
only the N-AI [6]. As a result, the proposed scheme 6 is proven to be secure
against the S-Type I adversary, with the formal security proof provided in
Section 6. In fact, the open problem of short CLS (described in Section 5)
has been solved since in the proposed schemes 2, 4 ,5, and 6, presented in
this paper.

3In Table 3, we do not compare the communication costs since the schemes are all
short signatures.
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Table 3: Efficiency and security comparisons with our proposed schemes
and others

Scheme Sign Verify N-AI SV-AI SU-AI SS-AI SV-SU-AI SS-SU-AI SS-SV-AI S-AI

CPL [7] 3S 3P X X
DW [9] S P X X
FHH [11] S P
HMSWW [18, 19] S 2P X X
THS [29] S 4P X X X X
TYH [30, 31] S 4P X X
Scheme 1 S 2P X
Scheme 2 S 2P X X
Scheme 3 S 5P X X
Scheme 4 S 2P X X X X
Scheme 5 2S 3P X X X X
Scheme 6 2S 3P X X X X X X X X

8 Conclusions

Cryptographic schemes are dependable for realizing secure applications.
Security models are given to simulate behaviors and attack powers of dif-
ferent adversaries. By the formal security proof, schemes are claimed to
be secure against the adversary under the security model. Hence, such
security models are very important since they are not used only to prove
the security in theory, but also to preconsider potential attacks in practice.

In this paper, we revisited certificateless signatures for public key re-
placement and strong unforgability, which have not been considered in
depth in the literature. The simulations of potential adversaries resulted
in eight different kinds of Type I adversaries. We reviewed and surveyed
some schemes and proposed six schemes. Moreover, we proved their se-
curity or insecurity against one kind of Type I adversaries. The proposed
scheme 6 is the only certificateless short signature scheme that reaches the
strongest security level, which is provably secure against both S-Types I
and II adversaries. Finally, some research results were presented includ-
ing the relation between strong unforgability and non-repudiation in cer-
tificateless short signatures.
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A Other Type I adversaries

A.1 Security against the SU-Type I adversary

The unforgeability of a CLS scheme against the adaptive chosen message
and identity SU-Type I adversary is defined by the following game:

Setup: The challenger runs the algorithm Setup, and then returns the
system parameters paramincluding the master public key to AI .

Query: AI can adaptively send queries to Create-User, Public-Key-
Replace, Secret-Value-Extract, and Partial-Private-Key-Extract. Moreover,
AI can submit queries to the N-Sign oracle.

Forgery: AI outputs a forged triplet (σ∗,m∗, ID∗). AI is said to win the
game if the following conditions hold.

1. (ID∗,m∗) can be submitted to N-Sign.

2. σ∗ has never returned by N-Sign and 1←Verify(param, ID∗, pkID∗,m∗,σ∗)
where pkID∗ is the ID∗’s current public key.

3. ID∗ has never been submitted to Partial-Private-Key-Extract or Secret-
Value-Extract.

A.2 Security against the SS-Type I adversary

The unforgeability of a CLS scheme against the adaptive chosen message
and identity SS-Type I adversary is defined by the following game:

Setup: The challenger runs the algorithm Setup, and then returns the
system parameters paramincluding the master public key to AI .
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Query: AI can adaptively send queries to Create-User, Public-Key-
Replace, Secret-Value-Extract, and Partial-Private-Key-Extract. Moreover,
AI can submit queries to the S-Sign oracle.

Forgery: AI outputs a forged triplet (σ∗,m∗, ID∗). AI is said to win the
game if the following conditions hold.

1. (ID∗,m∗) has never been submitted to S-Sign.

2. σ∗ has never returned by S-Sign and 1←Verify(param, ID∗, pkID∗,m∗,σ∗)
where pkID∗ is the ID∗’s current public key.

3. ID∗ has never been submitted to Partial-Private-Key-Extract or Secret-
Value-Extract.

A.3 Security against the SV-SU-Type I adversary

The unforgeability of a CLS scheme against the adaptive chosen message
and identity SV-SU-Type I adversary is defined by the following game:

Setup: The challenger runs the algorithm Setup, and then returns the
system parameters paramincluding the master public key to AI .

Query: AI can adaptively send queries to Create-User, Public-Key-
Replace, Secret-Value-Extract, and Partial-Private-Key-Extract. Moreover,
AI can submit queries to the N-Sign oracle.

Forgery: AI outputs a forged triplet (σ∗,m∗, ID∗). AI is said to win the
game if the following conditions hold.

1. (ID∗,m∗) can be submitted to N-Sign.

2. σ∗ has never returned by N-Sign and 1←Verify(param, ID∗, pkID∗,m∗,σ∗)
where pkID∗ is the ID∗’s current public key.

3. ID∗ has never been submitted to Partial-Private-Key-Extract.

A.4 Security against the SS-SV-Type I adversary

The unforgeability of a CLS scheme against the adaptive chosen message
and identity SS-SV-Type I adversary is defined by the following game:

Setup: The challenger runs the algorithm Setup, and then returns the
system parameters paramincluding the master public key to AI .

Query: AI can adaptively send queries to Create-User, Public-Key-
Replace, Secret-Value-Extract, and Partial-Private-Key-Extract. Moreover,
AI can also submit queries to the S-Sign oracle.
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Forgery: AI outputs a forged triplet (σ∗,m∗, ID∗). AI is said to win the
game if the following conditions hold.

1. (ID∗,m∗) has never been submitted to S-Sign.

2. σ∗ has never returned by S-Sign and 1←Verify(param, ID∗, pkID∗,m∗,σ∗)
where pkID∗ is the ID∗’s current public key.

3. ID∗ has never been submitted to Partial-Private-Key-Extract.

B Other Type II adversaries

B.1 Security against the SU-Type II adversary

The unforgeability of a CLS scheme against the adaptive chosen message
and identity SU-Type II adversary is defined by the following game:

Setup: The challenger runs the algorithm Setup, and then returns the
system parameters paramand the master key mskto AII .

Query: In this phase, AII can adaptively send queries to Create-User,
Public-Key-Replace, and Secret-Value-Extract. Moreover, AI can submit
queries to the N-Sign oracle.

Forgery: AII outputs a forged triplet (σ∗, ID∗,m∗). AII is said to win the
game if the following conditions hold.

1. (ID∗,m∗) can be submitted to N-Sign.

2. σ∗ has never returned by N-Sign and 1←Verify(param, ID∗, pkID∗,m∗,σ∗)
where pkID∗ is the ID∗’s original public key.

3. ID∗ has never been submitted to Secret-Value-Extract.

B.2 Security against the SS-Type II adversary

The unforgeability of a CLS scheme against the adaptive chosen message
and identity N-Type II adversary is defined by the following game:

Setup: The challenger runs the algorithm Setup, and then returns the
system parameters paramand the master key mskto AII .

Query: In this phase, AII can adaptively send queries to Create-User,
Public-Key-Replace, and Secret-Value-Extract. Moreover, AI can submit
queries to the S-Sign oracle.

Forgery: AII outputs a forged triplet (σ∗, ID∗,m∗). AII is said to win the
game if the following conditions hold.
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1. (ID∗,m∗) has never been submitted to S-Sign.

2. σ∗ has never returned by S-Sign and 1←Verify(param, ID∗, pkID∗,m∗,σ∗)
where pkID∗ is the ID∗’s original public key.

3. ID∗ has never been submitted to Secret-Value-Extract.

C Insecurity of some schemes

C.1 Insecurity of Fan et al.’s scheme

This scheme is insecure against the N-Type I adversary’s attack. AI first
picks m∗ and sets h∗ = H1(m∗, pkID∗,1). Secondly, he chooses t ∈ Z∗q at ran-
dom, and then replaces pkID∗,2 with a new one pk′ID∗,2 = tP−H0(ID∗||pkID∗,1)pkID∗,1−
h(Ppub+H0(ID∗)P2+H0(ID∗||pkID∗,1)P2). AI finally can output a forged sig-
nature σ∗ = t−1P1. As a result, (ID∗,m∗) has never been submitted to Sign
oracle.

C.2 Insecurity of the proposed scheme 1

This scheme is only secure against the N-Type I adversary, thus it cannot
withstand the SS-Type I, SU-Type I, or SV-Type I adversaries’ attacks.

• SS-AI randomly chooses t ∈ Z∗q and computes pk′ID∗ = tP, and then
submits (ID∗, pk′ID∗) to Public-Key-Replace. He sends (ID∗,m) to S-
Sign, and then receives σ of (ID∗,m) where σ = tH1(m||ID∗)+ DID∗ .
Eventually, he can obtain the partial-private-key DID∗ = σ−tH1(m||ID∗).
If AI has DID∗ , he can generate any forged signature of (ID∗,m∗).

• SU-AI sends (ID∗,m∗) to N-Sign and obtains σ of (ID∗,m∗). He ran-
domly chooses t ∈ Z∗q and computes pk′ID∗ = pkID∗ + tP, and then sub-
mits (ID∗, pk′ID∗) to Public-Key-Replace. Eventually, he outputs a
forged signature σ∗ where σ∗ = σ+ tH1(m∗||ID∗). σ∗ is valid and has
never been returned by N-Sign.

• SV-AI first submits ID∗ to Secret-Value-Extract, and then receives
rID∗ . He sends (ID∗,m) to N-Sign, and then receives σ of (ID∗,m)
where σ = rID∗H1(m||ID∗)+DID∗ . Eventually, he can obtain the partial-
private-key DID∗ = σ− rID∗H1(m||ID∗). If AI has DID∗ , he can generate
any forged signature of (ID∗,m∗).
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C.3 Insecurity of the proposed scheme 2

This scheme is only secure against the SV-Type I adversary, thus it can-
not withstand the SS-Type I or SU-Type I adversaries’s attacks. Now we
present them respectively in details.

• SS-AI first randomly chooses r ′ID∗, t ∈ Z∗q and sends (ID∗, pk′ID∗) as
the new public key to Public-Key-Replace where pk′ID∗,1 = r ′ID∗P and
pk′ID∗,2 = tP−H0(ID∗)Ppub1. AI submits (m, ID∗) to S-Sign, and then
obtains the signature σ. Therefore AI computes DID∗,2 =(H2(m||ID∗)r ′ID∗+
t)σ since σ is a valid one. Finally, AI can generate a forged signature
σ∗ on (ID∗,m∗) by computing σ∗ = 1

H2(m∗||ID∗)r ′ID∗+t DID∗,2.

• SU-AI first sets h= H2(m∗||ID∗) and submits (ID∗,m∗) to N-Sign, and
obtains the signature σ. AI randomly chooses t ∈Z∗q and sends (ID∗, pk′ID∗)
as the new public key to Public-Key-Replace where pk′ID∗,1 = 1

t pkID∗,1

and pk′ID∗,2 = 1
t pkID∗,2−H0(ID∗)Ppub1 + 1

t H2(ID∗)Ppub1. Finally, AI can
generate a forged signature σ∗ = tσ of (ID∗,m∗) where σ∗ has never
been returned by N-Sign.

C.4 Insecurity of Huang et al.’s scheme

This scheme is only secure against the SU-Type I adversary, thus it cannot
withstand the SS-Type I or SV-Type I adversaries’ attacks.

• SS-AI randomly chooses t ∈ Z∗q and computes pk′ID∗ = tP, and then
submits (ID∗, pk′ID∗) to Public-Key-Replace. He sends (ID∗,m) to S-
Sign, and then receives σ of (ID∗,m) where σ = tH1(m||ID∗||pk′ID∗)+
DID∗ . Eventually, he can obtain the partial-private-key DID∗ = σ−
tH1(m||ID∗||pk′ID∗). If AI has DID∗ , he can generate any forged signa-
ture of (ID∗,m∗).

• SV-AI first submits ID∗ to Secret-Value-Extract, and then receives
rID∗ . He sends (ID∗,m) to N-Sign, and then receives σ of (ID∗,m)
where σ = rID∗H1(m||ID∗||pk′ID∗)+DID∗ . Eventually, he can obtain the
partial-private-key DID∗ = σ− rID∗H1(m||ID∗||pk′ID∗). If AI has DID∗ ,
he can generate any forged signature of (ID∗,m∗).

C.5 Insecurity of the proposed scheme 3

This scheme is only secure against the SS-Type I adversary, thus it cannot
withstand the SU-Type I or SV-Type I adversaries’ attacks.
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• SU-AI first submits (ID∗,m∗) to N-Sign, and receives the signature σ.
AI randomly chooses pk′ID∗,3∈G1 and sends (ID∗, pk′ID∗,1, pk′ID∗,2, pk′ID∗,3)
as the new public key to Public-Key-Replace where pk′ID∗,1 = pkID∗,1,
pk′ID∗,2 = pkID∗,2, and pk′ID∗,3. Finally, AI can generate a forged signa-
ture σ∗ = σ + pk′ID∗,3 of (ID∗,m∗) where σ∗ has never been returned
by N-Sign.

• SV-AI first submits ID∗ to Secret-Value-Extract, and then receives rID .
He can obtain the partial-private-key DID∗ = r−1

ID∗(pkID∗,1). If AI has
DID∗ , he can generate any forged signature of (ID∗,m∗).

C.6 Insecurity of the proposed scheme 4

This scheme is only secure against the SV-SU-Type I adversary, thus it can-
not withstand the SS-Type I adversary’s attacks.

• SS-AI first randomly chooses r ′ID∗, t ∈ Z∗q and sends (ID∗, pk′ID∗) as
the new public key to Public-Key-Replace where pk′ID∗,1 = r ′ID∗P and
pk′ID∗,2 = tP−H0(ID∗)Ppub1. AI submits (m, ID∗) to S-Sign, and then
obtains the signature σ. Therefore AI computes DID∗,2 =(H2(m||ID∗||pkID)r ′ID∗+
t)σ since σ is a valid one. Finally, AI can generate a forged signature
σ∗ on (ID∗,m∗) by computing σ∗ = 1

H2(m∗||ID∗||pkID)r ′ID∗+t DID∗,2.

C.7 Insecurity of Tso et al.’s scheme

This scheme is only secure against the SS-SU-Type I adversary, thus it can-
not withstand the SV-Type I adversary’ attacks.

• SV-AI first submits ID∗ to Secret-Value-Extract, and then receives rID .
He can obtain the partial-private-key DID∗ = r−1

ID∗(pkID∗,1). If AI has
DID∗ , he can generate any forged signature of (ID∗,m∗).

C.8 Insecurity of the proposed scheme 5

This scheme is only secure against the SS-SV-Type I adversary, thus it can-
not withstand the SU-Type I adversary’s attacks.

• SU-AI first submits (ID∗,m∗) to N-Sign, and receives the signature σ.
AI randomly chooses t ∈ Z∗q and sends (ID∗, pk′ID∗) as the new public
key to Public-Key-Replace where pk′ID∗ = pkID∗ + tP. Finally, AI can
generate a forged signature σ∗ = σ + tH1(m∗||ID∗) of (ID∗,m∗) where
σ∗ has never been returned by N-Sign.
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D Proof of Lemma 2

If there exists an S-Type II adversary AII who can break the strong unforge-
ability of the proposed scheme 6 by winning the security game, then we
can construct an algorithm C which can depend on AII ’s forgery to solve
the CDH problem.

Let (G1,GT) be bilinear groups with the bilinear map ê. Given P,aP,bP
where a,b are unknown, C ’s purpose is to compute abP, which is the out-
put of the CDH problem. C acts as the challenger. AII is eligible for ac-
cessing the oracles. The three hash functions H0,H1,H2 will be random
oracles.

Setup: C chooses s∈ Z∗q at random. C then sets Ppub = sP and sends
param= {G1,GT , ê,P,Ppub} and the master secret key, msk= s, to AII .

Query: AII can adaptively access the following oracles in a polynomial
number of times.

1. Create-User: C maintains K-list which is initially empty. AII can sub-
mit ID i to this oracle. For AII ’s request, C first chooses a number
t ∈ {1, ...,qC} at random.

(1) If i 6= t, C randomly chooses vi ,v′i , rID i ∈Z∗q and sets H0(ID i ||pkID i ,2||Ppub)=
v′i , DID i ,1 = vi + v′is, DID i ,2 = pkID i ,2 = viP, pkID i ,1 = rID i P, and the
secret value rID i .

(2) If i = t, C randomly chooses vt ,v′t ∈Z∗q and sets H0(ID i ||pkID i ,2||Ppub)=
v′i , DID i ,1 = vi +v′is, DID i ,2 = pkID i ,2 = viP, pkID i ,1 = bP, and the se-
cret value rID i =⊥.

In both cases, C will add the outputted tuple
(ID i ,H0(ID i ,Ppub),DID i , rID i , pkID i ,1, pkID i ,2) on K-List. If AII submits
ID i to ask for the public key or H0(ID i ,Ppub), C returns pkID i ,1, pkID i ,2

or H0(ID i ||pkID i ,2||Ppub) according to K-list.

2. Public-Key-Replace: AII can submit (pk′ID i ,1, pk′ID i ,2) to this oracle for
replacing the public key. If ID i has been created, C replaces the orig-
inal (pkID i ,1, pkID i ,2) with the new (pk′ID i ,1, pk′ID i ,2); otherwise, it out-
puts ⊥.

3. Secret-Value-Extract: AII can submit ID i to this oracle. C outputs ⊥
if ID i has not been created. Else, if ID i = IDt , C returns failure and
terminates; otherwise, C returns rID i from K-list.

4. H1 queries: C maintains H1-list which is initially empty. AII can sub-
mit Mi = (mj , IDk, pkIDk,Ppub) to the random oracle H1. C outputs ⊥
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if ID i has not been created. Otherwise, C performs as follows for the
request Mi .

– If IDk 6= IDt , C randomly chooses αi ∈ Z∗q and sends Yi = yiP as
H1(Mi) to AII . C therefore adds the outputted tuple (Mi ,yi ,Yi ,ci =⊥
) on H1-list.

– Otherwise, IDk = IDt , C randomly chooses yi ∈ Z∗q and flips a
biased-coin, ci ∈ {0,1}, with Pr[ci = 1] = β and Pr[ci = 0] = 1−β.
(The value, β < 1, will be considered later.) In the case of ci = 1,
C sends Yi = yi(aP) as H1(Mi) to AII . In the case of ci = 0, C sends
Yi = yiP as H1(Mi) to AII . Finally, C adds the outputted tuple
(Mi ,yi ,Yi ,ci) on H1-list.

5. H2 queries: C maintains H2-list which is initially empty. AII can sub-
mit Mi = (mj , IDk, pkIDk,Ppub) to the random oracle H2. C outputs ⊥
if ID i has not been created. Otherwise, C performs as follows for the
request Mi . C randomly chooses αi ∈Z∗q and sends Ri = αiP as H2(Mi)
to AII . Finally, C adds the outputted tuple (Mi ,αi ,Ri) on H2-list.

6. S-Sign: AII can submit γi = (IDk,mj) as a signature query. C outputs
⊥ if ID i has not been created. Otherwise, C performs as follows for
(IDk,mj) according to K,H1,H2-lists.

– If IDk 6= IDt , C generates the signature σi = yi · pkIDk,1 +DIDkRi .
– If IDk = IDt and ci = 0, C generates the signature σi = yi · pkIDk,1+

DIDkRi .
– If IDk = IDt and ci = 1, C returns failure and terminates.

Forgery: After all queries, AII outputs a forgery (m∗, ID∗,σ∗). By as-
sumption, AII wins this game because σ∗ is valid where pkID∗ is the orig-
inal public key. If ID∗ 6= IDt , C outputs failure and terminates this game.
Otherwise, in the case of ID∗ = IDt , C performs as follows.

(1) C checks H2-list. If c∗ = 0, C outputs failure and terminates.

(2) Otherwise, in the case of c∗ = 1, C depends on AII ’s forgery to solve
the CDH problem. Since σ∗ is valid and pkID∗,1 = aP is the original
public key, we suppose the following equation holds,

ê(σ∗,P) = ê(pkID∗,1,H1(m∗||ID∗||pkID∗||Ppub)) ·
ê(pkID∗,2,H2(m∗||ID∗||pkID∗||Ppub)) ·
ê(hPpub,H2(m∗||ID∗||pkID∗||Ppub))
where h = H0(ID∗||pkID∗,2||Ppub).
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Based on K,H1,H2-lists, the forged signature can be transformed into
σ∗ = y∗(abP)+ α∗vtP+ α∗v′tPpub where y∗ is obtained from H1-list, α∗
from H2-list, and vt ,v′t from K-list. Eventually, C utilizes σ∗ to solve
the CDH problem and output abP= 1

y∗ (σ
∗−α∗vtP−α∗v′tPpub).

The algorithm C is done through the above simulation, which remains
to compute the probability that C solves the CDH problem. Hence, we
show the three events if C succeeds.

• E1: C does not abort in the Query phase.

• E2: The forged signature σ∗ is valid on (m∗, ID∗, pkID∗).

• E3: C does not abort in the Forgery phase.

The probability of C is Pr[C (P,aP,bP)→abP] = Pr[E1∧E2∧E3] = Pr[E1]Pr[E2]Pr[E3]
because E1, E2 and E3 are independent.

Claim 2. C does not abort in the Query phase with Pr[E1]≥ (1− 1
qC

)qV (1−β)qS.

C does not output failure in Secret-Value-Extract with probability (1−
1
qC

)qV , and does not output failure in S-Sign with probability (1−( 1
qC

)β)qS≥
(1−β)qS. Hence, Pr[E1]≥ (1− 1

qC
)qV (1−β)qS.

In addition, Pr[E2] = ε and Pr[E3] = β/qC. The probability of C is Pr[C (P,aP,bP)→
abP]≥ (1− 1

qC
)qV (1−β)qS( β

qC
)ε. However, β(1−β)qS could be maximized at

β = 1
1+qS

, so Pr[C (P,aP,bP)→ abP]≥ (1− 1
qC

)qV (1− 1
1+qS

)qS( 1
qC(1+qS)

)ε. On the
other hand, for the performance, τ is denoted by the running time of AII ,
and τ′ of C . AII can ask at the most qH1 H1 queries and qH2 H2 queries where
qH1 = qH2 = qS+1. We conclude τ′ ≤ τ +2qCτsm+qH1τsm+qH2τsm+qSτsm=
τ+(2qC +3qS+2)τsm. The proof of this lemma is complete.
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