
On Evaluating Circuits with Inputs Encrypted by

Different Fully Homomorphic Encryption Schemes

Zhizhou Li and Ten H. Lai
Department of Computer Science and Engineering

The Ohio State University, Columbus, USA

{lizh, lai}@cse.ohio-state.edu

Abstract

We consider the problem of evaluating circuits whose inputs are encrypted with possibly different
encryption schemes. Let C be any circuit with input x1, . . . , xt ∈ {0, 1}, and let Ei, 1 ≤ i ≤ t, be
(possibly) different fully homomorphic encryption schemes, whose encryption algorithms are Enci.
Suppose xi is encrypted with Ei under a public key pki, say ci ← Enci(pki, xi). Is there any algorithm
Evaluate such that Evaluate(C, 〈E1, pk1, c1〉, . . . , 〈Et, pkt, ct〉) returns a ciphertext c that, once decrypted,
equals C(x1, . . . , xt)? We propose a solution to this seemingly impossible problem with the number of
different schemes and/or keys limited to a small value. Our result also provides a partial solution to
the open problem of converting any FHE scheme to a multikey FHE scheme.

Keywords: Fully Homomorphic Encryption, Multi-Scheme FHE, Trivial Encryptions, Ciphertext
Trees, Multiparty Computations.

1 Introduction

We are interested in the following question: given ciphertext ψ1, . . . , ψt of different encryption schemes,
is it possible to evaluate a function over these ciphertexts? More precisely, for 1 ≤ i ≤ t, suppose message
xi is encrypted to ψi by encryption scheme Ei under key pki; we are interested in an algorithm Evaluate
that given any circuit C, ciphertexts ψ1, . . . , ψt, and their respective encryption methods 〈Ei, pki〉, will
produce a ciphertext ψ which, once decrypted, gives C(x1, . . . , xt).

This problem is a generation of Fully Homomorphic Encryption (FHE). An FHE scheme is an en-
cryption scheme that allows one to evaluate any circuit with FHE-ciphertexts. Gentry [Gen09a, Gen09b]
invented the first such scheme, and since then several other FHE schemes have been proposed (e.g.,
[BV11a, SV10, vDGHV10]). An FHE scheme consists of four algorithms, E = 〈KeyGen,Enc,Dec,Eval〉,
where Eval is an algorithm that given a circuit C, a public key pk and encryptions of x1, . . . , xt, evaluates
C(x1, . . . , xt) using only xi’s ciphertexts. Such schemes are single-keyed : all x1, . . . , xt are encrypted
under a single key. However, a single key FHE does not fit for Multiparty Computation (MPC).

Recently, a new concept called Multikey Fully Homomorphic Encryption (MK-FHE) has been pro-
posed [LATV12]. By definition, the evaluation algorithm of an MK-FHE scheme can evaluate any circuit
on ciphertexts encrypted under different keys. Such a scheme can be used to construct MPC protocols:
each party encrypts its secret data using its own key; then they use the multikey evaluation algorithm
to evaluate a circuit over the ciphertexts; the resulting ciphertext can be decrypted to the wanted result
of the multiparty computation. In [LATV12], the authors show how to convert an NTRU-based FHE
scheme into an N -key FHE scheme (which is used for on-the-fly MPC), and they point out that several
other schemes [BV11a, Gen09a, SV10, vDGHV10] can also be converted. An interesting open problem
raised in [LATV12] is whether every FHE scheme can be made multikey.

1

We are interested in a more challenging problem called Multi-Scheme FHE. Let C be any circuit
with input x1, . . . , xt, and let Ei = (KeyGeni,Enci,Deci,Evali), 1 ≤ i ≤ t, be possibly different fully
homomorphic encryption schemes, whose encryption algorithms are Enci. Suppose xi is encrypted with Ei
under public key pki, say ci ← Enci(pki, xi). Is it possible to homomorphically evaluate C on ciphertexts
c1, . . . , ct? That is, is there any algorithm Evaluate such that Evaluate(C, 〈Ei, pki, ci〉1≤i≤t) returns a
ciphertext c that, once decrypted, equals C(x1, . . . , xt)?

This problem is of theoretical as well as practical interest. When applied to (cloud assisted) multiparty
computation, our approach is “stateless”: no setup phase is required, a participant only needs to upload a
ciphertext once and she will not be asked for more information during the computation. Compare to the
on-the-fly MPC [LATV12], our solution allows a cloud to perform offline MPC on any FHE ciphertexts
stored on it, (but it still has to ask the ciphertext owners to jointly decrypt the result). In multiparty
computation, the participating parties may for various reasons fail to agree on using a same FHE scheme.
Participants from different countries, different companies, or different political parties may have their
own preferred FHE schemes. In such situations, a multi-scheme Evaluate will come in handy.

1.1 Related Work

Much research attention has been paid to utilizing FHE in Multiparty Computation Problems. The
paper [vDJ10] first shows that it is impossible to construct an MPC protocol in which a subset of the
participants can always decode the resulting ciphertext, because such a protocol leads to a construction
of program obfuscator, which is proved impossible in [BGI+01].

Literature [AJLA+12] uses the key-homomorphism property of some FHE schemes to make possible
multiparty computation. An FHE scheme is key-homomorphic if pk = f(pk1, . . . , pkt) is a valid public
key, then there exists f ′ such that sk = f ′(sk1, . . . , skt) is the corresponding decryption key of pk. The
joint public key pk is used for encryption and evaluation. A secure protocol is needed to decrypt the
result using secret keys sk1, . . . , skt.

In literature [LATV12], the authors define the MK-FHE scheme as a family of encryption scheme
{E(N)}N>0 where each scheme can handle up to N distinct keys. The on-the-fly MPC protocol based
on N -key FHE is then parameterized by N : the parties first jointly determines E(N) by agreeing on a
parameter set q = q(N), then they independently generate public key (pk, sk) ← KeyGen(q), encrypt
their own messages and use the Eval algorithm to evaluate a circuit. If more parties want to join in the
computation, they have to agree on a new parameter set. Also, a secure decryption protocol is needed
to decrypt the result.

1.2 Our Results

To the best of our knowledge, this paper is the first to consider multi-scheme FHE. We focus on the
problem of evaluating circuits with differently encrypted FHE ciphertexts. We design an algorithm
Evaluate to solve the problem, as stated below:

Theorem 1 (Main Result). Suppose Ei = (KeyGeni,Enci,Deci,Evali) (1 ≤ i ≤ t) is a FHE scheme with
plaintext space {0, 1}, pki is a public key generated by Enci; message xi ∈ {0, 1}, and ci ← Enci(pki, xi)
is an encryption of xi with scheme Ei. There exists an algorithm Evaluate such that given any circuit C
and ciphertexts c1, . . . , ct, Evaluate(C, 〈Ei, pki, ci〉1≤i≤t), it returns a ciphertext c which can be decrypted
to C(x1, . . . , xt).

Our proof of the theorem is constructive: we propose such an algorithm Evaluate, or more precisely,
we describe how to construct such an algorithm. A key concept to be introduced to the design of the
algorithm is ciphertext tree. A ciphertext tree is a representation of a ciphertext that has been encrypted

2

by multiple schemes/keys. We will formally show that FHE schemes (perhaps with slight changes) are
well defined for the tree structures.

The complexity of Evaluate (in terms of the output ciphertext size) is polynomial in the lengths of the
input ciphertexts, which implies that it is polynomial in λ, the security parameters of the FHE schemes;
however, it could be exponential in t, the number of different 〈Ei, pki〉 pairs. The reason is that the
output of the algorithm is a ciphertext tree, and we know that a fully grown tree has size exponential in
its depth (for a ciphertext tree, the depth is t). As a result, the time complexity of algorithm Evaluate
is exponential in t in the worst case. It is a open problem whether we can reduce the the output tree
to polynomial size. Some partial results are discussed in Section 6.3. Despite this limitation, we believe
that our scheme is still useful for many applications where the the number of participants is limited.

Another interesting open problem is how to securely decrypt ciphertexts ψ produced by the multi-
scheme Evaluate(C, 〈Ei, pki, ci〉1≤i≤t). (This is also still an open problem for MK-FHE.) In light of recent
impossibility results in [vDJ10], it is not hard to see that encrypting ψ entails all the secret keys ski
corresponding to pki. With ψ produced by our proposed Evaluate, a straight way to decrypt it is by
decrypting it with decryption algorithm Deci and secret key ski one by one for i from t to 1. (This will
become clear shortly.) This way of decrypting works for some applications, e.g., no decryption key owners
are corrupted or colluded against others. Otherwise, a more secure decryption method is needed.

The idea behind our algorithm is simple. Observe that if the evaluation circuit Eval of an FHE can
handle any circuit, it can also handle the evaluation circuit of another scheme, or even itself. We call this
“evaluation of Eval” the nested evaluation algorithm (Section 6). Intuitively, Eval takes ciphertexts as
input; evaluating this Eval requires the encryption of its input, that is, “encryption of ciphertexts.” We
call them multiple encryptions, denoted Encpkn . . .Encpk1(·). We employ tree structure to succinctly and
precisely define multiple encryption, then we show the slightly modified FHE scheme E is well defined for
the ciphertext trees (Section 5).

The nested evaluation algorithm takes multiple encryptions as input, however, the Evaluate is only
given regular ciphertexts. To convert a regular ciphertext to a multiple encryption (without additional
information from the original encryptor), we introduce the concept of trivial encryptions, namely, “a
message is its own encryption” under the context of FHE (Section 4). Then we show that a regular
ciphertext can be made a valid ciphertext tree using trivial encryption (Section 5.3). Finally, evaluating
a circuit on these trees yields a ciphertext tree, the desired encryption of the circuit’s result (Section 6.3).

2 Preliminary

A homomorphic encryption scheme E consists of four algorithms, KeyGen, Enc, Dec, and Eval, where
KeyGen, Enc, Dec are like that of a regular encryption scheme, and Eval is an evaluation algorithm that
takes as input a circuit C, a public key pk, a tuple of ciphertexts, 〈ψi〉i∈I under pk, and outputs a
ciphertext under pk. That is,

ψ ← Eval(pk, C, ψ1, . . . , ψt).

Eval is said to be correct for a circuit collection C if for any circuit C ∈ C, any key pair (pk, sk) output
by KeyGen, and any plaintexts x1, . . . , xt, it holds that

If ψi ← Encpk(xi) for i = 1, . . . , t and ψ ← Eval(pk, C, x1, . . . , xt)
then Decsk(ψ) = C(x1, . . . , xt) (1)

Definition 1. (Homomorphic Encryption) An encryption scheme E is said to be homomorphic for
a collection of circuits C if it has an evaluation algorithm Eval that works correctly for circuits in C.

Definition 2. (Fully Homomorphic Encryption) An encryption scheme E fully homomorphic if it
is a homomorphic encryption scheme with respect to all circuits.

3

3 Multi-Scheme FHE

Loosely speaking, in the definition of multikey FHE [LATV12] (see Definition 14 in the appendix), if we
allow key pairs (pki, ski) to be associated with different FHE schemes, then we have a multi-scheme FHE
scheme.

Definition 3. (Multi-Scheme FHE or MS-FHE) A multi-scheme fully homomorphic encryption
scheme is a set of (single-key) fully homomorphic encryption schemes E(i) = 〈KeyGen(i),Enc(i),Dec(i),Eval(i)〉
together with two additional algorithms Decrypt and Evaluate:

• Decrypt is a deterministic algorithm that, on input a ciphertext ψ and scheme-key pairs 〈si, ski〉,
outputs a plaintext:

x← Decrypt(〈s1, sk1〉, . . . , 〈st, skt〉, ψ)

where si indicates scheme E(si) and ski is a secret key generated by KeyGen(si).

• Evaluate: Takes as input a circuit C, a number of 3-tuples 〈si, pki, ψi〉, 1 ≤ i ≤ t, where si is an
index indicating scheme E(si), pki is a public key generated by KeyGen(si), and ψi is a ciphertext
under encryption key pki and scheme E(si), i.e., ψi ← Enc(si)(pki, xi) for some plaintext xi. The
output of Evaluate is a ciphertext:

ψ := Evaluate(C, 〈s1, pk1, ψ1〉, . . . , 〈st, pkt, ψt〉).

It is required that the following conditions hold:

• Correctness: The scheme is correct if for any t > 0, any t-input circuit C, any t key pairs 〈pki, ski〉
generated by KeyGen(si)(1λ), and any t ciphertexts ψi, where 1 ≤ i ≤ t, it holds that

If ψi ← Enc(si)(pki, xi) and ψ := Evaluate(C, 〈s1, pk1, ψ1〉, . . . , 〈st, pkt, ψt〉)
then C(x1, . . . , xt) = Decrypt(〈s1, sk1〉, . . . , 〈st, skt〉, ψ).

• Compactness in security parameter λ: The MS-FHE scheme is compact in security parameter
λ if there are polynomials d and e such that, for every value of the security parameter λ, Decrypt and
Evaluate can be expressed as circuits of sizes at most d(λ) and e(λ), respectively. (The underlying
FHE schemes E(i) are implicitly assumed to be compact.)

The following compactness condition is highly desirable for MS-FHE. We did not include it in Defini-
tion 3 as a requirement because it is still yet unknown whether this condition can be met by any MS-FHE
scheme. For more discussion on schemes that are compact in t, see section 6.3.

Definition 4. (Compactness in t) Let t be the number of different pairs (si, pki) that are used in
evaluating a circuit. An MS-FHE scheme is compact in number of schemes if there are polynomials d and
e such that, for every value of t, Decrypt and Evaluate can be expressed as circuits of sizes at most d(t)
and e(t), respectively.

Remark 1. If a same FHE scheme is used (i.e., all si are equal, but pki may be different), then multi-
scheme FHE becomes multikey FHE as defined in [LATV12] (or Definition 14 in the appendix). If in
addition all key pairs (pki, ski) are the same, then it becomes the classic (single-key) FHE as defined in
[Gen09b].

4

4 Trivial Encryptions in FHE

We first show that given any FHE scheme E = 〈KeyGen,Enc,Dec,Eval〉, we can modify it such that 0 and
1 are valid encryptions of 0 and 1, respectively. We call the ciphertexts 0, 1 the trivial encryptions and
an FHE with trivial encryption TE-FHE.

Definition 5 (Trivial Encryption). An FHE scheme is said to have the trivial encryption property
if for every key pair (pk, sk) output by the key generation algorithm, it holds that b ∈ {0, 1} is a valid
ciphertext of b, i.e., Dec(sk, b) = b.

Example 1. In [Gen09a], Gentry proposed to use weakened ciphertexts to achieve better efficiency in
computation. Trivial encryptions are the extreme case of weakened ciphertexts. Roughly speaking, FHE
schemes based on ideal lattices tend to have trivial encryptions. The “over integers” FHE [vDGHV10]
also has trivial encryptions: at a very high level, the scheme encrypts a bit b as pq + 2n + b where the
key p is a large integer, q a randomly sampled number, n a random noise. When q = 0 and n = 0, the
resulting ciphertext b is an encryption of message b under any valid key p.

Although it is not known whether all FHEs have the trivial encryption property, we can convert any
FHE to a TE-FHE scheme by adding 0 and 1 to the ciphertext space.

Lemma 1. An FHE scheme E with plaintext space {0, 1} and ciphertext space R ⊆ {0, 1}+ can be
converted into an FHE scheme E ′ having the trivial encryption property. Furthermore, the resulting
scheme E ′ has ciphertext indistinguishability if E does.

Proof. (Sketch only.) The full proof is provided in Section A.1. Let E be an FHE scheme with plaintext
space {0, 1} and ciphertext space R ⊆ {0, 1}+ ({0, 1}+ denotes the set of all non-empty bit strings). Let
f : R 7→ {0, 1}≥2 be a one-to-one function that maps every ciphertext to a string of length at least 2.
Set the new ciphertext space as f(R) ∪ {0, 1} and set 0, 1 the trivial ciphertext of 0 and 1, respectively
(need to change the algorithms in E accordingly), thus yielding a TE-FHE E ′.

5 Multiple Encryptions

The intuition of our multi-key evaluation algorithm is that, if the input encryptions are of the same
structure Encpkn . . .Encpk1(·), then we can use a nested evaluation algorithm Evalpkn . . .Evalpk1(·) to pro-
duce a ciphertext of the same structure, which then can be decrypted by Decsk1 . . .Decskn−1Decskn(·) to
a plaintext. In the following discussion, denote Encpki = Enci(pki, ·) the encryption scheme of Ei with key
pki. Decski and Evalpki are similarly defined.

5.1 Multiple Encryptions and Ciphertext Trees

This section introduces the notion of multiple encryption and defines two corresponding notations,
Encpkn . . .Encpk2Encpk1(·) and Decsk1 . . .Decskn−1Decskn(·). Roughly speaking, multiple encryption is “en-
crypting a message multiple times”. For a plaintext b ∈ {0, 1}, the multiple encryption of b encrypted
under FHE scheme Ei by keys pki for i = 1, . . . , n is the “ciphertext” resulting from the following pro-
cedure. Envision a bit string ψ initially consisting of a single bit b. For i from 1 to n, we repeatedly
encrypt every bit x ∈ ψ using scheme Ei and key pki, and substitute that bit x with its ciphertext
Encpki(x). (We denote by Encpki the encryption algorithm of Ei with key pki; similarly, Decski and Evalpki
denote the decryption and evaluation of scheme Ei using key ski or pki, respectively.) Then we obtain a
multi-encryption ciphertext of b under keys pk1, . . . , pkn — namely, Encpkn . . .Encpk2Encpk1(b). (This is
not a formal definition, which will follow soon.) For instance, suppose b is encrypted by pk1 into xyz; and

5

(b)

(x)

c d e

(y)

f g

(z)

h k

(b)

x y zb
Encpk1 Encpk2

Figure 1: (Multiple) Encryptions Viewed as Ciphertext Trees. From left to right: plaintext b as a single
node tree; ciphertext Encpk1(b) as a tree; multiple encryption Encpk2Encpk1(b) as a tree. A node in
paratheses means this node is unlabeled.

x, y, z are encrypted by pk2 into cd, efg, hk, respectively; then we have ψ = cdefghk ← Encpk2Encpk1(b),
where b, c, d, e, f, g, h, k, x, y, z ∈ {0, 1}.

Now, if ψ is a multi-encryption ciphertext of b under different schemes and keys 〈E1, pk1〉, . . . , 〈En, pkn〉,
it is naturally required that decrypting ψ in turn with keys skn, . . . , sk1 will yield b. That is, if ψ ←
Encpkn . . .Encpk2Encpk1(b), then we should have Decsk1 . . .Decskn−1Decskn(ψ) = b, or the scheme will not
be correct. For instance, in the above example, we want it to hold that

Decsk1Decsk2(cdefghk) = Decsk1

(
Decsk2(cde)Decsk2(fg)Decsk2(hk)

)
= Decsk1(xyz) = b.

This example illustrates that the ciphertext cdefghk should have some structure such as (cde)(fg)(hk).
We choose trees to represent such structures.

Definition 6. [Ciphertext Tree] A ciphertext tree is a rooted tree with two properties: (1) all leaves
are at the same level and (2) each leaf is labeled by a bit (0 or 1) while internal nodes are not labeled.

Given a scheme E , we extend the encryption scheme Enc into a scheme Ẽnc whose input is a ciphertext
tree.

Definition 7. [Encryption of Ciphertext Tree] If T is a ciphertext tree, we denote by Ẽncpk(T) a
ciphertext tree that results from T by, for each leaf x of T , adding tx = |Encpk(x)| children to x and
labeling them by the tx bits of Encpk(x), one bit per child, from left to right. The original leaves of T
now become internal nodes and unlabeled.

For example, as seen in Figure 1, a plaintext b is a single node tree (on the left); ciphertext Encpk1(b) =

xyz is again a tree Ẽncpk1(b), with root b (unlabeled) and leaves x, y and z. Encrypting the ciphertext

tree Ẽncpk1(b) is encrypting the leaves, e.g., Encpk2(x) = cde, attach c, d, e to x then unlabel x.
Note: We emphasize that encrypting a tree T is not hiding the tree structure of T ; instead, only

the labels of leaves are encrypted. Thus, from Ẽncpk(T), one can tell the tree structure of T without
decrypting it.

In practice, a tree is encoded as a bit string. Let Encoding be an encoding scheme that encodes a
ciphertext tree T into a string. Suppose S := Encoding(T). Note that encrypting every bit in S does not

yield the encoding of Ẽncpk(T). Instead, we define

Ẽncpk(S) , Encoding(Ẽncpk(T)).

We employ the tree structure to succinctly and precisely define multiple encryption.

6

Definition 8. [Multiple Encryption] Given schemes and their keys 〈E1, pk1〉, . . . , 〈En, pkn〉, and a
plaintext b ∈ {0, 1}, we view b as a single node ciphertext tree labeled by b, and recursively define

Ẽncpkn Ẽncpkn−1 . . . Ẽncpk1(b) , Ẽncpkn
(
Ẽncpkn−1 . . . Ẽncpk1(b)

)
.

However, for simplicity of notation (with perhaps a little abuse), we sometimes write Ẽncpkn Ẽncpkn−1 . . . Ẽncpk1(b)
simply as EncpknEncpkn−1 . . .Encpk1(b).

Thus, a plaintext b is equivalent to a single-node tree; an ordinary ciphertext Encpk(b) may be viewed
as a tree of depth 1; and the n-key encryption of b, Encpkn . . .Encpk2Encpk1(b) is a ciphertext tree of depth
n.

Since EncpknEncpkn−1 · · ·Encpk1(·) is a randomized algorithm, EncpknEncpkn−1 · · ·Encpk1(b) is not unique.
We introduce the following notation for convenience of exposition.

Definition 9. Denote by Tpk1,...,pkn the set of all ciphertext trees that may be output by the multiple
encryption algorithm EncpknEncpkn−1 . . .Encpk1(·). That is,

Tpk1,...,pkn ,
{
T : T ← EncpknEncpkn−1 · · ·Encpk1(b), b ∈ {0, 1}

}
.

Ciphertext trees in the same Tpk1,...,pkn are said to have the same structure.

Decrypting a ciphertext tree T is the reverse of encrypting a tree. (See Fig. 1 for illustration.)

Given a ciphertext tree T ∈ Tpk1,...,pkn and decryption key skn, D̃ec(skn, T) yields a tree in Tpk1,...,pkn−1 .
Recursively define

D̃ecsk1D̃ecsk2 . . . D̃ecskn(T) , D̃ecsk1 . . . D̃ecskn−1

(
D̃ecskn(T)

)
. (2)

Again, we write D̃ecsk1 . . . D̃ecskn simply as Decsk1 . . .Decskn . It is clear that if all Ei = 〈KeyGeni,Enci,
Deci,Evali〉 are correct encryption schemes with plaintext space {0, 1}, then

Decsk1Decsk2 . . .Decskn
(
EncpknEncpkn−1 . . .Encpk1(b)

)
= b. (3)

5.2 Evaluating Circuits with Ciphertext Trees as Inputs

Under some circumstances, Eval can be modified to accept ciphertext trees (as opposed to pure cipher-
texts) as input and produces a ciphertext tree of the same structure as output. We first define the scope
of circuits Γi that can be evaluated by such an algorithm. In the following definition, we view a ciphertext
tree as a directed graph with each leaf labeled by a bit.

Definition 10. Denote by Γi (i ≥ 1) the set of circuits C for which the following conditions hold:

1. the input and output of C are depth i ciphertext trees of the same structure (for example, T :=
C(T1, . . . , Ts), with T, T1, . . . , Ts ∈ Tpk1,...,pki);

2. the graph (or the topology, the nodes and edges of the ciphertext tree without labels) of output T
are determined by the graphs of T1, . . . , Ts (without knowing the latter’s labels of leaves);

3. T ’s labels of leaves are computed from the labels of leaves of T1, . . . , Ts.

Define Γ0 as the set of circuits whose inputs and output are single-node trees (of depth 0).

7

We now derive from Eval an evaluation algorithm Ẽval that can evaluate C ∈ Γi. Specifically, suppose
T = C(T1, . . . , Ts), where C ∈ Γi and, without loss of generality, T, T1, . . . , Ts ∈ Tpk1,...,pki . Let T ′j ←
Enc(pk, Tj) be an encryption of Tj under key pk, where 1 ≤ j ≤ s. Then Ẽval works as follows.

Algorithm/Circuit Ẽval

input: C ∈ Γi; pk; T ′1, . . . , T
′
s ∈ Tpk1,...,pki,pk, where T ′j ← Ẽnc(pk, Tj) for some Tj ∈ Tpk1,...,pki

1.

output: a ciphertext T ′ such that D̃ecpk(T
′) = C(T1, . . . , Ts).

1. Compute from T ′j the graph (tree structure, without labels) of Tj and denote it by G(Tj), 1 ≤ j ≤ s.

2. Determine G(T), the graph of T . (This can be done because of property 2 of Def. 10. By Def. 7,
G(Tj) is not hidden in T ′j . It is able to follow the steps of C to reproduce the G(T) given the graphs
of Tj ’s.)

3. Expand T as follows. For each leaf node z of T , construct the subcircuit Cz of C that computes the
label of z. The inputs of Cz involve only leaves of T1, . . . , Ts, say nodes y1, . . . , yu (by property 3
of Definition 10). That is, z = Cz(y1, . . . , yu).2 Call ψz := Eval(Cz, pk, ψ1, . . . , ψu) to evaluate Cz,
where ψj = Encpk(yj) are available in T ′1, . . . , T

′
s. Attach the resulting ciphertext ψz bit-by-bit to

node z as its children.

4. Output the resulting ciphertext tree as T ′.

It is evident that the ciphertext tree T ′ generated above is an encryption of T (under pk); decrypting
the leaves of T ′ then labeling the parents with the resulting plaintexts will produce T . We state this as
a lemma for ease of reference.

Lemma 2. The ciphertext T ′ output by Ẽval satisfies D̃ecsk(T
′) = T , C(T1, . . . , Ts).

For a given circuit C and key pk, define

Ẽval[C, pk](T ′1, . . . , T
′
s) , Ẽval(C, pk, T ′1, . . . , T ′s). (4)

Ẽval[C, pk] is an algorithm that takes ciphertext trees as input and produces a ciphertext tree as output.
If C ∈ Γi, the input and output ciphertext trees are of the same structure. For example, if C manipulates
ciphertext trees in Tpk1,...,pki , Ẽval[C, pk] will operate on Tpk1,...,pki,pk. We will have more discussions on
this in Definition 13.

Now we will show Ẽval[C, pk] ∈ Γi+1 for C ∈ Γi if the regular Eval outputs fixed length ciphertexts.
This lemma will play an important role in subsequent sections.

Definition 11. The regular evaluation algorithm Eval outputs fixed length ciphertexts if given a circuit
C, a public key pk and any valid ciphertexts ψ1, . . . , ψv, ψ = Eval(C, pk, ψ1, . . . , ψv), it holds that |ψ| =
LC,pk(|ψ1|, . . . , |ψv|) for some polynomial LC,pk (in which we may omit the pk for simplicity).

Remark 2. In the above definition, we assume that the regular Eval (given C and pk) is an algorithm
that if the lengths of inputs are fixed, the length of output is fixed. If given a circuit, a public key and the
lengths of all input ciphertexts, the regular Eval can be expressed as a boolean circuit that has

∑v
j=1 |ψj |

input lines and |ψ| = LC(|ψ1|, . . . , |ψv|) output lines. If the output length is bounded by some polynomial,
e.g., |ψ| ≤ LC(|ψ1|, . . . , |ψv|), we may also satisfy the assumption by, for instance, adding padding bits to
ψ until its length reaches LC(|ψ1|, . . . , |ψv|) and/or by changing the encoding of the ciphertexts.

1When i = 0, Tpk1,...,pki is defined to consist of the single-node trees.
2Here we use z, y1, . . . , yu to denote both nodes and their labels.

8

Lemma 3. Let C ∈ Γi be a circuit. Assume that a regular evaluation Eval outputs fixed length ciphertexts,
then Ẽval[C, pk] (which is derived from Eval) is in Γi+1.

Proof. The full proof is provided in Section A.2. It is worth mentioning that Γi for i ≥ 1 are not empty.
Notice that Γ0 is the set of all circuits, we have Ẽval1[C, pk1] ∈ Γ1 (Ẽval1 is derived from Eval1), so

Γ1 is not empty. In particular, define circuit Evali := Ẽvali[C, pki] ∈ Γi for some C ∈ Γi−1, we have

Ẽvali+1[Eval
i, pki+1] ∈ Γi+1. The idea of “evaluating Ẽval” is used in constructing the nested evaluation

in Section 6.2.

5.3 Making Multiple Encryption From Single Encryption

This section shows how to view an ordinary single-key ciphertext as a multikey ciphertext tree. Let
〈E1, pk1〉, . . . , 〈Et, pkt〉 be TE-FHE schemes and their public keys, and Tpk1,...,pkt the set of ciphertext
trees generated by those pairs. Consider an ordinary encryption of a plaintext b under key pki, say,
ψi ← Encpki(b) where 1 ≤ i ≤ t. (Note: ψi is a bit string.) We show how to construct a ciphertext tree
T (ψi) ∈ Tpk1,...,pkt that naturally corresponds to ψi. This way, an ordinary ciphertext can be uniquely
translated into a ciphertext tree. We first explain the translation process by an example.

b

b1

b1

b2

b2

· · ·

· · ·

bn

bnEncpk2Encpk1(b) :

Encpk1(b) :

b

b

b′1 b′2 · · · b′n

Figure 2: Examples for Making Single Encryption to Multiple Encryption.

Figure 2 shows how to convert ciphertext ψ1 ← Encpk1(b) and ψ2 ← Encpk2(b) into ciphertext trees
T (ψ1), T (ψ2) ∈ Tpk1,pk2 . Suppose ψ1 = b1b2 . . . bn. The tree on the left of Fig. 2 is the ciphertext tree
corresponding to ψ1, where a plaintext b is encrypted by pk1 into b1b2 . . . bn, each bit of which, bi, is then
encrypted by trivial encryption (using pk2) into bi itself. (The internal nodes of ciphertext trees have no
labels; we include them in the figure only to illustrate the process.) As another example (the right tree
in Fig. 2), suppose ψ2 = b′1 · · · b′n ← Encpk2(b). Encrypting b into b (by trivial encryption using key pk1)
and then encrypting b into b′1 . . . b

′
n using pk2, we obtain a 2-key ciphertext tree for ψ2.

In general, to translate an ordinary ciphertext under key pki, say ψi = b1b2 . . . bn ← Encpki(b), to a
t-key ciphertext tree Tpk1,...,pki , we start with a single node representing the plaintext b; encrypt b to b
by trivial encryption for i− 1 times (using keys pk1, . . . , pki−1, respectively); then encrypt b to ψi using
key pki; then, encrypt each bit bj of ψi by trivial encryption for t− i times (i.e., using keys pki+1, . . . , pkt,
respectively). The resulting ciphertext tree T (ψi) has depth t; every internal node has a single child —
since the bit corresponding to that node is encrypted by trivial encryption — except for the node at
depth i− 1, which has exactly |ψi| children; the |ψi| leaves of the tree are each labeled by a bit in ψi, in
the natural left-to-right order. T (ψi) is evidently unique in Tpk1,...,pkt .

Definition 12. For ψi ← Enc(pki, b), denote by T (j)(ψi) the jth intermediate ciphertext tree during the
construction of T (ψi), with T (0)(ψi) being the starting tree (with a single node) and T (t)(ψi) the final
tree. Note that the labels of the leaves of these trees are

Leaves(T (j)(ψi)) =

{
b for j < i
ψi for j ≥ i (5)

9

6 Circuit Evaluation with Multiple Encryptions

Let Ei = 〈KeyGeni,Enci,Deci,Evali〉, i = 1, . . . , t be fully homomorphic encryption schemes with the
trivial encryption property. Let C be a circuit and for 1 ≤ i ≤ t, let ψi ← Enci(pki, xi) be an encryption
of xi under key pki. We develop an algorithm Evaluate(C, 〈E1, pk1, ψ1〉, . . . , 〈Et, pkt, ψt〉) that returns a
ciphertext tree T ∈ Tpk1,...,pkt that can be correctly decrypted to C(x1, . . . , xt) using keys sk1, . . . , skt.

6.1 Basic Idea

X X(1) X(2) · · · X(t)
Encpk1 Encpk2 Encpk3 Encpkt

C C(1) C(2) · · · C(t)
Evalpk1 Evalpk2 Evalpk3 Evalpkt

C(X) C(1)(X(1)) C(2)(X(2)) · · · C(t)(X(t))
Decpk1 Decpk2 Decpk3 Decpkt

Figure 3: Ideas behind the multikey evaluation algorithm

Figure 3 shows the basic idea behind our nested evaluation algorithm. Let C be a circuit and X =
(x1, . . . , xt) its input. We wish to compute C(X) without knowing X but only its ciphertext tree under
various schemes and keys 〈Ei, pki〉, 1 ≤ i ≤ t. Since Ei are FHE schemes, corresponding to C there is (at
least conceptually) a circuit C(1) such that if X is bitwise encrypted by pk1 to X(1), then C(1)(X(1)) will
decrypt to C(X) by sk1. (We will precisely define X(i) and C(i) soon.) Now, for C(1), there is a circuit C(2)
(derived from Eval2) such that if X(1) is bitwise encrypted by pk2 to X(2), then C(2)(X(2)) will decrypt
to C(1)(X(1)) by sk2. This reasoning is repeated until we reach X(t) and C(t). During this process, if
we use the ciphertext trees that trivially created from single ciphertexts ψi ← Encpki(xi) as described in
Section 5.3, we are able to produce a ciphertext tree for C(x1, . . . , xt).

Definition 13. Let E = 〈KeyGen,Enc,Dec,Eval〉 be a FHE scheme and Ẽval derived from Eval be the
modified evaluation algorithm which evaluates a circuit on ciphertext trees. For a (fixed) circuit C with
t input lines and a (fixed) key pk, let Eval[C, pk] denote the following single key algorithm:

Algorithm Eval[C, pk]

input: ciphertext trees T1, . . . , Tt, where Ti ← Ẽnc(pk, xi) for 1 ≤ i ≤ t.

output: a ciphertext tree T := Ẽval(C, pk, T1, . . . , Tt).

That is, Eval[C, pk] takes ciphertext trees T1, . . . , Tt as input, calls Ẽval(C, pk, T1, . . . , Tt)3 to produce a
ciphertext tree T , and returns T . We emphasize that C, pk are “constants” that have been “hardwired”
into the algorithm Eval[C, pk].

Assumptions: We assume that every regular Evali for 1 ≤ i ≤ t is deterministic (as opposed to
probabilistic); also assume that Evali outputs fixed length ciphertext given C and pki (see Definition
11), such that Evali[C, pki] ∈ Γi if C ∈ Γi−1 (by Lemma 3). For any circuit C and encryption key pki
Evali[C, pki] can be expressed as a circuit, which for simplicity of notation is also denoted by Evali[C, pki].
(Note that if the time complexity of the algorithm is polynomially bounded, then the corresponding
circuit has a polynomial size.)

3The modified Eval that accepts ciphertex trees as input. As discussed in Section 5.2, Eval can be modified such that it
accept depth 1 ciphertext as input and the result is a depth 1 ciphertext tree.

10

6.2 Nested Evaluation Circuits

For a given circuit C (with t input lines) and keys pk1, . . . , pkt, let C(0) = C, and for 1 ≤ i ≤ t, recursively
define C(i) to be the circuit that evaluates C(i−1) using key pki:

C(i) , Evali[C(i−1), pki]
= Evali

[
Evali−1[C(i−2), pki−1], pki

]
= Evali

[
Evali−1[· · · [Eval1[C, pk1], · · ·], pki−1], pki

]
.

These circuits C(i) are “nested” evaluation algorithms. The input of circuit C(1) = Eval1[C, pk1] is the
bitwise encryption of X under key pk1 — namely, Enc1(pk1, x1), . . . ,Enc1(pk1, xt), which by Definition
9 are each a ciphertext tree in Tpk1 . The output of C(1) is an encryption of C(X), under key pk1.
C(2) = Eval2[C(1), pk2], again by Definition 13, takes as input the encryptions of C(1)’s input, that is,
Encpk2Encpk1(x1), . . . ,Encpk2Encpk1(xt) ∈ Tpk1,pk2 . The output, by definition, is an encryption of C(1)’s
output, under key pk2; so it is in Tpk1,pk2 . In general, for i ≤ t, circuit C(i) takes as input ciphertext trees

Encpki . . .Encpk1(xj) ∈ Tpk1,...,pki for 1 ≤ j ≤ t

and outputs a ciphertext tree in Tpk1,...,pki . Let X(i) = (Encpki . . .Encpk1(x1), . . . ,Encpki . . .Encpk1(xt))
denote the array of input ciphertext trees of C(i). Define the nested evaluation algorithms C(i) for i =
1, . . . , t as follow:

Algorithm/Circuit C(i)

input: ciphertext trees X(i) = (Encpki . . .Encpk1(x1), . . . ,Encpki . . .Encpk1(xt)).

output: ciphertext tree ψ(i) := Ẽvali
(
C(i−1), pki,Encpki . . .Encpk1(x1), . . . ,Encpki . . .Encpk1(xt)

)
.

The following lemma indicates that the circuits constructed above are well defined.

Lemma 4. For 1 ≤ i ≤ t, ψ(i) is a ciphertext tree in Tpk1,...,pki and Decsk1 . . .Decski(ψ
(i)) = C(X).

6.3 Final Evaluation Algorithm

Recall that our goal was Evaluate(C, 〈E1, pk1, ψ1〉, . . . , 〈Et, pkt, ψt〉). Using the circuits developed above,
C(t)(X(t)) will give the value (ciphertext tree) of Evaluate (see Fig. 3), provided that we can obtain X(t)

from (ψ1, . . . , ψt). To this end, we use the method developed in Section 5.3 to construct ciphertext trees
T (i)(ψj) ∈ Tpk1,...,pki from single-key ciphertexts ψj .

From Definition 12, we see that X̃(i) = (T (i)(ψ1), . . . , T
(i)(ψi), T

(i)(xi+1), . . . , T
(i)(xt)) is a valid value

of X(i). Using X̃(i) as input to C(i), we have the following construction:
The multi-key evaluation algorithm Evaluate for t keys is based on circuits C(i) and encryption trees

X̃(i), it is precisely defined as follows:

Algorithm Evaluate
(
C, 〈E1, pk1, ψ1〉, . . . , 〈Et, pkt, ψt〉

)
input: A (description of) circuit C, encryption schemes and their public keys 〈E1, pk1〉, . . . , 〈Et, pkt〉,

ciphertexts ψ1, . . . , ψt, each encrypted under one of Encpk1 , . . . ,Encpkt .

step 1: Construct T (t)(ψj) from ψj for j = 1, . . . , t.

step 2: Construct the sequence of circuits C(1), . . . , C(t), where C(i) is the circuit to implement
algorithm Evali[C(i−1), pki].

11

step 3: Output ψ := C(t)
(
T (t)(ψ1), . . . , T

(t)(ψt)
)
.

We claim that C(t), t ∈ N is the desired multikey evaluation algorithm for t keys, its output is a cipher-
text tree ψ(t) ∈ Tpk1,...,pkt that can be correctly decrypted to C(x1, . . . , xt) with secret keys sk1, . . . , skt.

Lemma 5 (Correctness). If ψ := Evaluate
(
C, 〈E1, pk1, ψ1〉, . . . , 〈Et, pkt, ψt〉

)
, then Decsk1 . . .Decskt(ψ) =

C(x1, . . . , xt).

Remark 3. According to Definition 2.1.2 in [Gen09a], an FHE is a non-trivial scheme if the size of
decryption circuit is bounded by a polynomial of the security parameter, but is independent of the size of
circuit C. Similarly, a multi-scheme FHE is non-trivial if the size of its Decrypt circuit is independent of
|C|, see the compactness requirement in Definition 3. Because Evaluate outputs a ciphertext tree, Decrypt
is defined as Decsk1Decsk2 . . .Decskt , it is independent of the size of circuit, and is compact if underlying
FHE schemes are all compact.

Performance Analysis. We assume that the regular Evali outputs fixed length ciphertexts (see
Definition 11). Given ciphertexts ψj , Evaluate constructs trees T (t)(ψj), whose nodes are mostly trivial

encryptions. The tree T 1 = Ẽval1(C, pk1, T (1)(ψ1), T
(1)(x2), . . . , T

(1)(xt)) has LC1(|ψ1|, 1, . . . , 1) nodes

on level 1. For each i = 2 . . . , t, the tree T i = Ẽvali(C(i−1), pki, T (i)(ψi), T
(i)(xi+1), . . . , T

(i)(xt)) has

LC(i−1)

i (|ψi|, 1, . . . , 1) leaves on level i (see the proof of Lemma 5 for more details). The total number N
of nodes in ψ = T t will be

N =
t∑

j=1

Πj
i=1L

C(i−1)
(|ψi|, 1, . . . , 1). (6)

This total number is polynomial of lengths of ψi’s, the length of input ciphertexts (and also the security
parameters λi of each Ei, which determine the lengths of the input ciphertexts). Number N simplifies to
N =

∑t
j=1 Πj

i=1L(|ψi|) = O
(
Πt
i=1L(|ψi|)

)
assuming LC(n, 1, . . . , 1) = L(n) for any circuit C of polynomial

size, where n is the size of regular input ciphertext. However, it is exponential in t, the number of different
schemes/keys in use.

Discussions. It is a open problem whether there exists an algorithm Evaluate that is polynomial
in t. On possible direction is using the trivial encryption to reduce the internal nodes of the output
tree. We are interested in some special sets of ciphertext trees of polynomial size (in t). If such trees
are closed under multiplication and addition, i.e., multiplying or adding such trees will yield a tree in
the same set, the whole evaluation process would be limited to polynomial time. Our point is, although
the algorithm in the worst case C(t) is exponential in t due to the output size is large, it is still possible
that the algorithm becomes an efficient one (by limiting the calculation to some special set of ciphertext
trees).

Remark 4. In algorithm Evaluate
(
C, 〈E1, pk1, ψ1〉, . . . , 〈Et, pkt, ψt〉

)
, we assumed for simplicity of presen-

tation that inputs are encrypted by different schemes. If some of the inputs are encrypted by the same
scheme and/or key, our method will still work by generalizing algorithm Evaluate to

Evaluate
(
C, 〈E1, pk1, ψ11, . . . , ψ1m1〉, . . . , 〈Et, pkt, ψt1, . . . , ψtmt〉

)
.

7 Summary and Future Work

We proposed a generic method to evaluate circuits whose inputs are encrypted with (possibly) different
FHE schemes. Our intention was to resolve the solvability issue of the seemingly impossible multi-scheme
FHE problem. As a generic method, it did not make use of any algebraic or algorithmic properties of

12

individual FHE schemes except the trivial ciphertext property. The most important is to improve the
efficiency of Evaluate algorithms. As our future work, we will consider specific FHE schemes, especially
known multikey FHE schemes, and explore the possibility of merging them into an efficient multi-scheme
FHE scheme. Another open problem, as mentioned in the introduction, is to design efficient and secure
decryption algorithms or protocols for multi-scheme FHE.

References

[AJLA+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan,
and Daniel Wichs, Multiparty computation with low communication, computation and inter-
action via threshold fhe, Advances in Cryptology–EUROCRYPT 2012 (2012), 483–501.

[BGI+01] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vad-
han, and Ke Yang, On the (im)possibility of obfuscating programs, Advances in Cryptology
CRYPTO 2001 (Joe Kilian, ed.), Lecture Notes in Computer Science, vol. 2139, Springer
Berlin / Heidelberg, 2001, pp. 1–18.

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan, Efficient fully homomorphic encryption from
(standard) lwe, FOCS, 2011, pp. 97–106.

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan, Fully homomorphic encryption from ring-lwe
and security for key dependent messages, Advances in Cryptology CRYPTO 2011 (Phillip
Rogaway, ed.), Lecture Notes in Computer Science, vol. 6841, Springer Berlin/Heidelberg,
2011, pp. 505–524.

[CKV10] Kai-Min Chung, Yael Kalai, and Salil Vadhan, Improved delegation of computation using
fully homomorphic encryption, Advances in Cryptology–CRYPTO 2010 (2010), 483–501.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi, Batch fully homomorphic
encryption over the integers, Tech. report, Cryptology ePrint Archive, Report 2013/036,
2013.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias, Multiparty computa-
tion from somewhat homomorphic encryption, CRYPTO (Reihaneh Safavi-Naini and Ran
Canetti, eds.), Lecture Notes in Computer Science, vol. 7417, Springer, 2012, pp. 643–662.

[Gen09a] Craig Gentry, A fully homomorphic encryption scheme, Ph.D. thesis, Stanford University,
2009.

[Gen09b] Craig Gentry, Fully Homomorphic Encryption Using Ideal Lattices, Proceedings of the 41st
annual ACM symposium on Theory of computing, STOC ’09, 2009, pp. 169–178.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno, Non-interactive verifiable computing:
Outsourcing computation to untrusted workers, CRYPTO, 2010, pp. 465–482.

[GH11] Craig Gentry and Shai Halevi, Implementing gentrys fully-homomorphic encryption scheme,
Advances in Cryptology–EUROCRYPT 2011 (2011), 129–148.

[GHS12] Craig Gentry, Shai Halevi, and Nigel Smart, Fully homomorphic encryption with polylog
overhead, Advances in Cryptology–EUROCRYPT 2012 (2012), 465–482.

13

[GMW87] O. Goldreich, S. Micali, and A. Wigderson, How to play any mental game, Proceedings of
the nineteenth annual ACM symposium on Theory of computing (New York, NY, USA),
STOC ’87, 1987, pp. 218–229.

[Kil88] Joe Kilian, Founding crytpography on oblivious transfer, Proceedings of the twentieth annual
ACM symposium on Theory of computing, STOC ’88, 1988, pp. 20–31.

[KK12] Vladimir Kolesnikov and Ranjit Kumaresan, Improved secure two-party computation via
information-theoretic garbled circuits, Security and Cryptography for Networks (2012), 205–
221.

[LATV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan, On-the-fly multiparty com-
putation on the cloud via multikey fully homomorphic encryption, STOC (Howard J. Karloff
and Toniann Pitassi, eds.), ACM, 2012, pp. 1219–1234.

[SS10] Damien Stehlé and Ron Steinfeld, Faster fully homomorphic encryption, Advances in
Cryptology-ASIACRYPT 2010 (2010), 377–394.

[SV10] N. Smart and F. Vercauteren, Fully homomorphic encryption with relatively small key and ci-
phertext sizes, Public Key Cryptography PKC 2010 (Phong Nguyen and David Pointcheval,
eds.), Lecture Notes in Computer Science, vol. 6056, Springer Berlin / Heidelberg, 2010,
pp. 420–443.

[vDGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan, Fully homomorphic
encryption over the integers, EUROCRYPT, 2010, pp. 24–43.

[vDJ10] Marten van Dijk and Ari Juels, On the impossibility of cryptography alone for privacy-
preserving cloud computing, Proceedings of the 5th USENIX conference on Hot topics in
security (Berkeley, CA, USA), HotSec’10, USENIX Association, 2010, pp. 1–8.

[Yao82] Andrew C. Yao, Protocols for secure computations, Proceedings of the 23rd Annual Sym-
posium on Foundations of Computer Science (Washington, DC, USA), SFCS ’82, IEEE
Computer Society, 1982, pp. 160–164.

[Yao86] Andrew Chi-Chih Yao, How to generate and exchange secrets, Proceedings of the 27th An-
nual Symposium on Foundations of Computer Science (Washington, DC, USA), SFCS ’86,
IEEE Computer Society, 1986, pp. 162–167.

A Proofs

A.1 Proof of Lemma 1

Proof. Let E = 〈KeyGen,Enc,Dec,Eval〉 be an FHE scheme with plaintext space {0, 1} and ciphertext
space R ⊆ {0, 1}+ ({0, 1}+ denotes the set of all non-empty bit strings). Assume that E does not
have the trivial encryption property, or we are done. We will convert E to an FHE scheme E ′ =
〈Gen′,Enc′,Dec′,Eval′〉 with the trivial encryption property. The idea is to append or prepend all ci-
phertexts in R with a fixed string of l ≥ 0 such that every ciphertext now has length at least 2. Then
add 0 and 1 to R as the trivial ciphertext of 0 and 1, respectively.

Specifically, let f(r) = 0‖r be a function that prepends r ∈ R with a 0 bit. (Every string in f(R)
now has at least two bits.) Construct an FHE scheme E ′ = 〈KeyGen′,Enc′,Dec′,Eval′〉 as follows.

• KeyGen′: Same as the KeyGen of E .

14

• Enc′: On input a plaintext b and a public key pk, output b with probability p, and run c← Enc(pk, b)
and output f(c) with probability 1− p, where p is a negligible value, say p = 2−λ with λ being the
security parameter. Thus,

Enc′(pk, b) ,

{
b with a negligible probability p
f
(
Enc(pk, b)

)
with probability 1− p

(Note: 0, 1 are now valid ciphertexts of 0, 1, respectively.)

• Dec′: On input a ciphertext c′ and decryption key sk, if c′ ∈ {0, 1}, return c′; if c′ ∈ f(R), return
Decsk

(
f−1(c′)

)
; otherwise, return FALSE.

(Note: the new ciphertext space is R′ = {0, 1} ∪ f(R). In the rest of the proof, the ciphertexts in
R′ and those in R will be referred to as E ′-ciphertexts and E-ciphertexts, respectively.)

• Eval′: Given as input a public key pk, a circuit C, and E ′-ciphertexts c′1, c
′
2, . . . , c

′
t ∈ R′, where t is

the number of input lines of C, we will convert E ′-ciphertexts c′i into E-ciphertexts ci, call the Eval
of E to evaluate the circuit, convert the resulting E-ciphertext into an E ′-ciphertext, and output the
latter. To that end, let xi denote the plaintext of c′i, 1 ≤ i ≤ t. (So, Eval′ is to evaluate C(x1, . . . , xt)
homomorphically.) Let ψb ← Encpk(b) be any E-ciphertext of b ∈ {0, 1}. For 1 ≤ i ≤ t, compute a
E-ciphertext ci of xi as follows:

ci :=

 ψc′i if c′i ∈ {0, 1}, i.e., a trivial encryption under E ′

f−1(c′i) otherwise

Now, evaluate circuit C using the Eval algorithm of E and convert the resulting E-ciphertext into
an E ′-ciphertext, which is the output of Eval′(pk, C, c′1, . . . , c′t). That is,

c := Eval(pk, C, c1, . . . , ct) and Eval′(pk, C, c′1, . . . , c′t) := c′ := f(c).

Trivial Encryption: The scheme E ′ thus constructed clearly has the trivial encryption property.

Correctness: We need to show Dec′sk(c
′) = C(x1, . . . , xt), where c′ := f(c) and c := Eval(pk, C, c1, . . . , ct).

Since ci is an E-ciphertext of xi and E is fully homomorphic, we have C(x1, . . . , xt) = Decsk(c). On
the other hand, by definition of Dec′, Dec′sk(c

′) = Decsk(f
−1(c′)) = Decsk(c). Hence, Dec′sk(c

′) =
C(x1, . . . , xt).

Compactness: The circuit complexity of Dec′ is the complexity of Dec plus that of f−1. The latter
is polynomial in λ since E is a compact FHE. (Note that the complexity of f−1 is not higher than Dec.)
Hence, E is compact.

Security: Since Eval′ can never produce 0 or 1 (trivial ciphertexts), a challenge E ′-ciphertext must be
produced by Enc′. Since there is a one-to-one correspondence between E-ciphertexts and nontrivial E ′-
ciphertexts (defined by f) and since the probability of trivial E ′-ciphertexts being produced is negligible,
the probability that an adversary can distinguish E ′-ciphertexts is at best negligibly larger than that of
distinguishing E-ciphertexts. Hence E ′ is as secure as E in terms of ciphertext indistinguishability.

A.2 Proof of Lemma 3

Proof. To show Ẽval[C, pk] ∈ Γi+1 we need to show the three conditions in Definition 10 hold for Ẽval[C, pk]:
(1) the input and output are ciphertext trees of depth i + 1; (2) the graph of T ′ is determined alone by
the graphs of T ′1, . . . , T

′
s; (3) the labels of leaves of T ′ are determined by those of T ′1, . . . , T

′
s.

15

Checking the input/output trees of Ẽval[C, pk], we readily see that condition (1) holds for all C ∈ Γi:

suppose, w.l.o.g., C ∈ Γi takes input and output in Tpk1,...,pki , Ẽval[C, pk] will operate on the encryptions

(under pki) of trees in Tpk1,...,pki , that is, Ẽval[C, pk]’s input and output are in Tpk1,...,pki,pk, trees of depth
i+ 1. We need to check condition (2) and (3) in the definition.

First consider i = 0. The set of Γ0 is the set of all circuits whose inputs and output are single
node tree; circuits that output a single bit fall in this category. Suppose T = C(T1, . . . , Ts), where

C ∈ Γ0, T, T1, . . . , Ts are single nodes. Ẽval[C, pk] accepts ciphertext trees T ′1, . . . , T
′
s ∈ Tpk as input and

outputs a ciphertext tree T ′ ∈ Tpk. It will do the following to produce T ′: C outputs a single node, so

Ẽval[C, pk] knows that G(T) is a single node (see step 1 and 2 of the Ẽval). The label of T is calculated

as T = C(T1, . . . , Ts); in the step 3 of Ẽval, the algorithm will call Eval to evaluate C, producing an
encryption of the label:

ψ := Eval(C, pk, ψ1, . . . , ψs)

where ψj := Enc(pk, Tj) is a ciphertext (rather than a tree), whose bits are the labels of T ′j . Ẽval will
then attach all bits of ψ to the leaf node in G(T), resulting in the tree T ′. Now we check condition (2):
G(T ′) is a root with |ψ| leaves; because Eval is an algorithm that outputs fixed length ciphertexts, so the
length of ψ is determined by the lengths of ψj :

|ψ| = LC,pk(|ψ1|, . . . , |ψs|),

since |ψj | is the number of leaves of T ′j , thus once the graphs of T ′1, . . . , T
′
s are known, |ψ| (hence the

graph of T) is determined. Condition (2) is satisfied. To see condition (3), the labels of T ′ is computed

from the labels of the input trees. Therefore, Ẽval[C, pk] ∈ Γ1 for C ∈ Γ0.
We will show if the lemma holds for some i ≥ 1, it will also hold for i = i+1. Suppose T = C(T1, . . . , Ts)

where T, T1, . . . , Ts ∈ Tpk1,...,pki . Given ciphertexts T ′j ← Ẽnc(pk, Tj) for 1 ≤ j ≤ s, Ẽval[C, pk] will do

the following to produce T ′. It repeats what C does to produce the graph of T (see step 2 in Ẽval’s

algorithm). Next it deals with the “labels” of T . Ẽval[C, pk] evaluates the label for a leaf z of T : suppose

z = Cz(y1, . . . , yu) where y1, . . . , yu are labels of all leaves in T1, . . . , Ts; Ẽval[C, pk] calls

ψz = Eval(Cz, pk, ψ1, . . . , ψu)

where ψk = Enc(pk, yk) for 1 ≤ k ≤ u. Then Ẽval[C, pk] attaches the bits of ψz to node z; repeatedly
doing so for all leaves yields the tree T ′.

We shall see that ciphertexts ψ1, . . . , ψu can be found in T ′1, . . . , T
′
s: suppose yk (1 ≤ k ≤ u) is a

leaf/label of input tree Tj (1 ≤ j ≤ s); by Definition 7 of Ẽnc, if ciphertext tree T ′j is an encryption of
Tj , then T ′j contains Tj (or more precisely, G(Tj) is isomorphic to a sub-graph of G(T ′j), this sub-graph
contains all internal nodes and their edges of G(T ′j), but does not include any leaf node of G(T ′j)), each
leaf/label yk of Tj has children in T ′j , the labels of these children compose a ciphertext ψk of yk.

Now we can check the condition (2). The non-leaf part of graph G(T ′) is isomorphic to G(T), because
G(T) is determined by the graphs of input trees, so the non-leaf sub-graph of G(T ′) is determined by the
non-leaf subgraphs of T ′1, . . . , T

′
s (see step 2 of the algorithm); each leaf z in T has an “image” z′ in T ′

(z′ is a unlabeled intermal node in T ′), z′ has |ψz| leaves, where

|ψz| = LCz ,pk(|ψ1|, . . . , |ψu|).

Given C, |ψz| is only determined by |ψ1|, . . . , |ψu|, and each |ψk| is the number of children of leaf yk from
the input tree T ′j , this information can be obtained from the graph of T ′j ; it needs not to know the values

of ψk before determining |ψz|, the number of children of z in T . That means Ẽval[C, pk] is able to produce

16

the graph of T ′ when given the graphs of T ′1, . . . , T
′
s, it satisfies property (2) in the definition. To see the

condition (3): the labels of T ′ are calculated from the labels of the T ′1, . . . , T
′
s by evaluating each Cz. So

we have Ẽval[C, pk] ∈ Γi+1, the lemma holds.
It is worth mentioning that Γi for i ≥ 1 are not empty. We have shown that Γ0 is the set of all circuits

and Ẽval[C, pk] ∈ Γ1, Γ1 is not empty. In particular, suppose the circuit Evali , Ẽvali[C, pki] ∈ Γi, so

Ẽvali+1[Eval
i, pki+1] ∈ Γi+1. The idea of “evaluating Ẽval” is used in constructing the nested evaluation

in Section 6.2.

A.3 Proof of Lemma 4

Proof. By induction. For i = 1, algorithm C(1) takes a tuple of ciphertext trees X(1) = 〈Encpk1(x1), . . . ,
Encpk1(xs)〉 as input, it calls the modified Eval (see Lemma 3) and gets a ciphertext tree ψ(1) :=

Ẽval1
(
C, pk1,Encpk1(x1), . . . ,Encpk1(xt)

)
, where D̃ecsk1(ψ(1)) = C(X) (by Lemma 2).

Now consider C(2). Since C(1) = Eval1[C, pk1] ∈ Γ1, C(2) can use Ẽval to evaluate C(1) and output a ci-

phertext tree ψ(2). By Lemma 2, ψ(2) ∈ Tpk1,pk2 and Dec(sk2, ψ
(2)) = ψ(1) and thus D̃ecsk1D̃ecsk2(ψ(2)) =

C(X). Also, by Definition 10 and Lemma 3, C(2) = Eval2[C(1), pk2] ∈ Γ2.
Assume ψ(i−1) = C(i−1)(X(i−1)) is a ciphertext in Tpk1,...,pki−1

and Decsk1 . . .Decski−1
(ψ(i−1)) = C(X)

for i ≤ t. Again, by lemma 3, C(i−1) ∈ Γi−1. The circuit C(i) has ciphertext trees X(i), it calls

ψ(i) = Ẽvalii
(
C(i−1), pki,Encpki . . .Encpk1(x1), . . . ,Encpki . . .Encpk1(xt)

)
,

where Encpki . . .Encpk1(xj) = X
(i)
j comes from X(i). By Lemma 2, the output ψ(i) is an encryption of

C(i−1)(X(i−1)), that is, D̃ec(pki, ψ) = C(i−1)(X(i−1)) = ψ(i−1). By the induction hypothesis,

Decsk1 . . .Decski(ψ
(i)) = Decsk1 . . .Decski−1

(
D̃ecski(ψ

(i))
)

= Decsk1 . . .Decski−1
(ψ(i−1)) = C(X).

By Definition 10 and Lemma 3, C(i) = Eval[C(i−1), pki] ∈ Γi. It shows that the lemma is true for i if it is
true for i− 1, by induction, the lemma is true for i = 1, . . . , t.

A.4 Proof of Lemma 5

Proof. In the first step of Evaluate, the algorithm constructs T (t)(ψj) ∈ Tpk1,...,pkt . As a result, the inputs
of C(i) are T (i)(ψ1), . . . , T

(i)(ψi) and T (i)(xi+1), . . . , T
(i)(xt), the trivial trees of variables xi+1, . . . , xt. We

will study how to evaluating a circuit with such trees.
C(1) calls Ẽval with T (1)(ψ1), T

(1)(x2), . . . , T
(1)(xt) then outputs a tree T 1. Notice that T (1)(xj) is a

tree with single leaf labeled xj (for j = 2, . . . , t); Ẽval computes the leaves labels by Eval
(
C, pk1, ψ1, x2,

. . . , xt
)
, which, given the algorithm Eval, circuit C and value of ψ1, is a function (circuit) of x2, . . . , xt:

Eval
(
C, pk1, ψ1, x2, . . . , xt

)
= fEval,C,ψ1(x2, . . . , xt),

denote the function fEval,C,ψ1 , f1. By assumption, Eval outputs ciphertext of length LC(|ψ1|, 1, . . . , 1), it
is also the number of leaves in T 1; denote f1k the sub-circuit of f1 which generates the kth bit. Label the
kth leaf in T 1 by f1k . Now T 1 is a tree whose leaves are labeled by functions, it decrypts to C(x1, . . . , xt)
given any value of x2, . . . , xt.
C(2) will in turn evaluate f1 = fEval,C,ψ1 given ciphertexts trees T (2)(ψ1), T

(2)(ψ2), T
(2)(x3), . . . , T

(2)(xt).
then outputs a tree T 2. Since the value of ψ1 is known (the leaves of T (2)(ψ1) are the bit-wise trivial
encryptions of ψ1), C(2) is able to construct the function fEval,C,ψ1 . As shown in the proof of Lemma
3, the graph of T 1 is known if given encryptions of input trees of C(1); the leaves of T 1 are labeled by

17

f1. C(2) evaluates these labels using Eval(f1k , pk2, ψ2, x3, . . . , xt) (ψ2, x3, . . . , xt are encryptions of f1’s
input) then attaches the result to the leaves of T 1. Again, Eval(f1, pk2, ψ2, x3, . . . , xt) is a function
fEval,f

1,ψ2(x3, . . . , xt) = fEval,C,ψ1,ψ2(x3, . . . , xt), we denote it by f2(x3, . . . , xt). By assumption, the kth

leaf in T 2 has Lf1k children, each children is labeled by a sub-function of f2. According to Lemma 2,
T 2 is an encryption of T 1 in the sense that substitute variables x3, . . . , xt with any values, it holds that
D̃ecsk2(T 2) = T 1, where we have Decsk1Decsk2(T 2) = C(x1, . . . , xt).

This argument of C(i) can be repeated for i = 3, . . . , t. In the final stage, C(t) evaluates the labels
f t−1(xt) = fEval,C,ψ1,...,ψt−1(xt) with xt’s ciphertext ψt. The output tree T t is a ciphertext tree, decrypting
it with skt results in T t−1, which, by induction, decrypts to C(x1, . . . , xt) by secret keys skt−1, . . . , sk1.
Evaluate outputs ψ := T t, we have Decpk1 . . .Decpkt(ψ) = C(x1, . . . , xt), that completes the proof.

B Definition of Multi-Key FHE (From [LATV12])

We are interested in an encryption scheme with an evaluation algorithm Eval that allows the input
ciphertexts ψi to be encryptions under different keys pki:

ψ ← Eval(C, pk1, . . . , pkt, ψ1, . . . , ψt) (7)

where ψi ← Encpki(xi). Such an encryption scheme is a multikey fully homomorphic encryption scheme.
The concept of multikey FHE was first proposed in [LATV12], where a multikey FHE scheme is

defined as a family of encryption schemes {E(N) = 〈KeyGen,Enc,Dec,Eval〉}N>0, where each E(N) is an
N -key FHE scheme.

Our definition of multikey FHE captures the essence of multikey FHE as defined in [LATV12], but is
simpler.

Definition 14. (MultiKey FHE or MK-FHE) A multikey fully homomorphic encryption scheme
consists of four algorithms: E = 〈KeyGen,Enc,Dec,Eval〉.

• KeyGen is a randomized algorithm that, on input a security parameter λ, outputs a pair of public
and secret keys: (pk, sk)← KeyGen(1λ).

• Enc is a randomized algorithm that, on input a public key pk and a plaintext x, outputs a ciphertext:
ψ ← Enc(pk, x).

• Dec is a deterministic algorithm that, on input a ciphertext ψ and secret keys sk1, . . . , skt, outputs
a plaintext: x← Dec(sk1, . . . , skt, ψ).

• Eval is an algorithm that on input a circuit C, public keys pk1, . . . , pkt and ciphertexts ψ1, . . . , ψt
where ψi ← Enc(pki, xi) for i = 1, . . . , t, outputs a ciphertext:

ψ := Eval(C, pk1, . . . , pkt, ψ1, . . . , ψt).

It is required that the following conditions hold:

• Correctness: For any t > 0, any t-input circuit C, any t-tuple of key pairs {〈pki, ski〉}ti=1 generated
by KeyGen(1λ), and any t-tuple of ciphertexts {ψi}ti=1, it holds that

If ψi ← Enc(pki, xi) for i = 1, . . . , t and ψ ← Eval(C, pk1, . . . , pkt, ψ1, . . . , ψt)

then C(x1, . . . , xt) = Dec(sk1, . . . , skt, ψ).

18

• Compactness: The MK-FHE scheme is compact if there are polynomials d and e such that, for
every value of the security parameter λ and every value of t (number of distinct keys), Dec and Eval
can be expressed as circuits of sizes at most d(λ, t) and e(λ, t), respectively.

The notion of N -key FHE [LATV12] can be defined as a multikey FHE with no more than N different
keys used in evaluating a circuit:

Definition 15. (N-key FHE) An N -key FHE scheme E(N) = 〈KeyGen,Enc,Dec,Eval〉 is a multikey
FHE with the restriction that no more than N different keys may be used in evaluating a circuit (i.e., the
set of key pairs {〈pki, ski〉}ti=1 in the correctness condition consists of no more than N different pairs).

Note that the compactness condition of N -key FHE in [LATV12] requires |ψ| ≤ P (λ,N) for some
polynomial P .

19

