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Abstract. Bellare, Canetti and Krawczyk [BCK96] show that cascad-
ing an ε-secure (fixed input length) PRF gives an O(εnq)-secure (variable
input length) PRF when making at most q prefix-free queries of length
n blocks. We observe that this translates to the same bound for NMAC
(which is the cascade without the prefix-free requirement but an addi-
tional application of the PRF at the end), and give a matching attack,
showing this bound is tight. This contradicts the O(εn) bound claimed
by Koblitz and Menezes [KM12].

Definitions. For a keyed function F : {0, 1}c × {0, 1}b → {0, 1}c we de-
note with cascF : {0, 1}2c×{0, 1}b∗ → {0, 1}c (where {0, 1}b∗ =

⋃
z∈N{0, 1}bz)

the cascade (aka. Merkle-Damg̊ard) construction build from F as

cascF(k,m1‖ . . . ‖mn) = yn where y0 = k and for i ≥ 1 : yi = F(yi−1,mi)

nmacF is cascF with an additional application of F at the end (using some
padding if b > c).

nmacF((k1, k2),M) = F(k2, casc
F(k1,M))

A variable input length function G : {0, 1}2c × {0, 1}b∗ → {0, 1}c is a
(ε, t, q, n)-secure PRF (for fixed input length functions we omit the pa-
rameter n) if for any adversary A of size t, making q queries, each of
length at most n (in b-bit blocks) and R denoting a uniformly random
function with the same domain∣∣∣∣ Pr

k←{0,1}c
[AG(k,.)]→ 1]− Pr

R
[AR(.) → 1]

∣∣∣∣ ≤ ε
Upper Bound.

Theorem 1 ([BCK96] cascF is a PRF1). If F is an (ε, t, q)-secure
PRF then cascF is an (ε′, t′, q, n)-secure PRF with if queried on prefix-
free messages

ε′ = O(εqn) t′ = t− Õ(qn)

1 This is Theorem 3.1 in the full version of [BCK96]
http://charlotte.ucsd.edu/ mihir/papers/cascade.pdf



As any q-query distinguisher who can find a collision in cascF with ad-
vantage δ ∈ O(εqn) can be turned into a distinguisher for cascF with
advantage δ − q2/2c (as the probability that a random function collides
on any q queries is ≤ q2/2c), we get

Corollary 1. Let F be as in the above theorem. Then for any q distinct
messages M1, . . . ,Mq of length at most n

Pr
k←{0,1}c

[∃i 6= j : cascF(k,Mi) = cascF(k,Mj)] = O(εqn)

Note that unlike in Theorem 1, in Corollary 1 we did not require the
messages to be prefix-free. The reason we can drop this requirement is
that we can make the Mi’s prefix free by adding some block X ∈ {0, 1}b
(that does not appear in any of the Mi’s) at the end of every message.
This will make the messages prefix-free, but will no decrease the collision
probability.2

Proposition 1 (nmacF is a PRF). If F is an (ε, t, q)-secure PRF then
nmacF is an (ε′, t′, q, n)-secure PRF with

ε′ = O(εqn) t′ = t− Õ(qn)

Proof. Let nmacF+ denote nmacF, but where the outer application of F(k2, .)
is replaced with a random function R(.). By the security of F, one cannot
distinguish nmacF from nmacF+ but with advantage ε (by a reduction of

complexity Õ(qn)).
The output of nmacF+(.) = R(casc(k1, .)) is uniformly random, as long

as all the outputs of the inner casc(k1, .) function are distinct. This implies
that distinguishing nmacF+ from random is at most as hard as provoking
a collision on the inner function (by Theorem 1.(i) [Mau02]), and more-
over adaptive strategies do not help (by Theorem 2 from [Mau02]). By
Corollary 1 we can upper bound this advantage by O(εqn). ut

Note that the reduction we just gave is non-uniform as Corollary 1 does
not specify how to actually find the messages Mi. To get a uniform reduc-
tion we use the fact from any adversary A who can distinguish nmacF+ from
random with advantage δ one can actually extract messages M1, . . . ,Mq

on which nmacF+ collides with expected probability at least δ by simply in-
voking A and collecting its queries, while answering them with uniformly
random values. We then can make these Mi’s prefix-free (if they are not
already) by adding some block X to all of them, and now can use these
to distinguish cascF from random with probability δ.

2 As for any X, cascF(k,Mi) = cascF(k,Mj)] ⇒ cascF(k,Mi‖X) = cascF(k,Mj‖X)]



Lower Bound. We show that Proposition 1 is tight.

Proposition 2. If PRFs exist, there exists an (ε, t, q)-secure PRF F where
nmacF can be very efficiently (in time Õ(qn)) distinguished from random
with advantage Ω(εqn).

Proof. We start with any (ε/2, t, q)-secure PRF F′ from which we con-
struct a (ε, t, q)-secure F by considering any set of “weak keys” K of size
2c(ε/2), say the keys where the first c− log ε−1 bits are 0. We then define
F as

F(k, .) = F′(k0, .) if k 6∈ K and F(k, .) = 0c otherwise

So, F behaves as F′, except for weak keys where it’s constantly 0c (we can
replace 0c with any other weak key). It’s not hard to show that F is a
(ε, t, q)-secure PRF, i.e. compared to F′ we loose at most an ε/2 term in
distinguishing advantage by redefining it on an ε/2 fraction of the keys.

Assume we make two queries M0,M1 to nmacF(k = (k1, k2), .), which
are sampled by first sampling an n−1 block long queryM = m1‖ . . . ‖mn−1 ∈
{0, 1}b(n−1 at random and then setting M0 = M‖x0,M1 = M‖x1 for any
x0 6= x1.

If one of the n − 1 intermediate values in the evaluation of the inner
function cascF(k1,M) is in K, then the output of cascF(k1,M‖x) is 0n.
As this happens with probability ≈ (n− 1)ε/2

Pr
k1,k2

[nmacF((k1, k2),M0) = nmacF((k1, k2),M1) = F(k2, 0
c)] = Θ(nε)

If we query nmacF on q/2 such random and independently sampled mes-
sage pairs M0,M1, the probability to observe a collision for at least one
such pair is Θ(nεq). As we expect to see a collision for such a pair when
querying a random function with probability only O(q/2c) we get a dis-
tinguishing advantage of Θ(nεq) as claimed.
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