A Closer Look at HMAC

Krzysztof Pietrzak

IST Austria

April 12th 2013

Abstract. Bellare, Canetti and Krawczyk [BCK96] show that cascading an ε -secure (fixed input length) PRF gives an $O(\varepsilon nq)$ -secure (variable input length) PRF when making at most q prefix-free queries of length n blocks. We observe that this translates to the same bound for NMAC (which is the cascade without the prefix-free requirement but an additional application of the PRF at the end), and give a matching attack, showing this bound is tight. This contradicts the $O(\varepsilon n)$ bound claimed by Koblitz and Menezes [KM12].

Definitions. For a keyed function $\mathsf{F} : \{0,1\}^c \times \{0,1\}^b \to \{0,1\}^c$ we denote with $\mathsf{casc}^{\mathsf{F}} : \{0,1\}^{2c} \times \{0,1\}^{b*} \to \{0,1\}^c$ (where $\{0,1\}^{b*} = \bigcup_{z \in \mathbb{N}} \{0,1\}^{bz}$) the cascade (aka. Merkle-Damgård) construction build from F as

 $\mathsf{casc}^{\mathsf{F}}(k, m_1 \| \dots \| m_n) = y_n$ where $y_0 = k$ and for $i \ge 1$: $y_i = \mathsf{F}(y_{i-1}, m_i)$

 $\mathsf{nmac}^{\mathsf{F}}$ is $\mathsf{casc}^{\mathsf{F}}$ with an additional application of F at the end (using some padding if b > c).

$$\mathsf{nmac}^{\mathsf{F}}((k_1, k_2), M) = \mathsf{F}(k_2, \mathsf{casc}^{\mathsf{F}}(k_1, M))$$

A variable input length function $G : \{0,1\}^{2c} \times \{0,1\}^{b*} \to \{0,1\}^{c}$ is a (ε, t, q, n) -secure PRF (for fixed input length functions we omit the parameter n) if for any adversary A of size t, making q queries, each of length at most n (in *b*-bit blocks) and \mathcal{R} denoting a uniformly random function with the same domain

$$\left| \Pr_{k \leftarrow \{0,1\}^c} [\mathsf{A}^{G(k,.)}] \to 1] - \Pr_{\mathcal{R}} [\mathsf{A}^{\mathcal{R}(.)} \to 1] \right| \le \varepsilon$$

Upper Bound.

Theorem 1 ([BCK96] casc^F is a **PRF**¹). If F is an (ε, t, q) -secure PRF then casc^F is an (ε', t', q, n) -secure PRF with if queried on prefix-free messages

 $\varepsilon' = O(\varepsilon qn)$ $t' = t - \tilde{O}(qn)$

¹ This is Theorem 3.1 in the full version of [BCK96]

http://charlotte.ucsd.edu/ mihir/papers/cascade.pdf

As any q-query distinguisher who can find a collision in $\mathsf{casc}^{\mathsf{F}}$ with advantage $\delta \in O(\varepsilon qn)$ can be turned into a distinguisher for $\mathsf{casc}^{\mathsf{F}}$ with advantage $\delta - q^2/2^c$ (as the probability that a random function collides on any q queries is $\leq q^2/2^c$), we get

Corollary 1. Let F be as in the above theorem. Then for any q distinct messages M_1, \ldots, M_q of length at most n

$$\Pr_{k \leftarrow \{0,1\}^c}[\exists i \neq j : \mathsf{casc}^{\mathsf{F}}(k, M_i) = \mathsf{casc}^{\mathsf{F}}(k, M_j)] = O(\varepsilon qn)$$

Note that unlike in Theorem 1, in Corollary 1 we did not require the messages to be prefix-free. The reason we can drop this requirement is that we can make the M_i 's prefix free by adding some block $X \in \{0, 1\}^b$ (that does not appear in any of the M_i 's) at the end of every message. This will make the messages prefix-free, but will no decrease the collision probability.²

Proposition 1 (nmac^F is a **PRF**). If F is an (ε, t, q) -secure PRF then nmac^F is an (ε', t', q, n) -secure PRF with

$$\varepsilon' = O(\varepsilon qn)$$
 $t' = t - \tilde{O}(qn)$

Proof. Let $\mathsf{nmac}_+^{\mathsf{F}}$ denote $\mathsf{nmac}_+^{\mathsf{F}}$, but where the outer application of $\mathsf{F}(k_2, .)$ is replaced with a random function $\mathcal{R}(.)$. By the security of F , one cannot distinguish $\mathsf{nmac}_+^{\mathsf{F}}$ from $\mathsf{nmac}_+^{\mathsf{F}}$ but with advantage ε (by a reduction of complexity $\tilde{O}(qn)$).

The output of $\mathsf{nmac}_+^{\mathsf{F}}(.) = \mathcal{R}(\mathsf{casc}(k_1,.))$ is uniformly random, as long as all the outputs of the inner $\mathsf{casc}(k_1,.)$ function are distinct. This implies that distinguishing $\mathsf{nmac}_+^{\mathsf{F}}$ from random is at most as hard as provoking a collision on the inner function (by Theorem 1.(i) [Mau02]), and moreover adaptive strategies do not help (by Theorem 2 from [Mau02]). By Corollary 1 we can upper bound this advantage by $O(\varepsilon qn)$.

Note that the reduction we just gave is non-uniform as Corollary 1 does not specify how to actually find the messages M_i . To get a uniform reduction we use the fact from any adversary A who can distinguish $\mathsf{nmac}_+^{\mathsf{F}}$ from random with advantage δ one can actually extract messages M_1, \ldots, M_q on which $\mathsf{nmac}_+^{\mathsf{F}}$ collides with expected probability at least δ by simply invoking A and collecting its queries, while answering them with uniformly random values. We then can make these M_i 's prefix-free (if they are not already) by adding some block X to all of them, and now can use these to distinguish $\mathsf{casc}^{\mathsf{F}}$ from random with probability δ .

² As for any X, $\mathsf{casc}^{\mathsf{F}}(k, M_i) = \mathsf{casc}^{\mathsf{F}}(k, M_j)] \Rightarrow \mathsf{casc}^{\mathsf{F}}(k, M_i || X) = \mathsf{casc}^{\mathsf{F}}(k, M_j || X)]$

Lower Bound. We show that Proposition 1 is tight.

Proposition 2. If PRFs exist, there exists an (ε, t, q) -secure PRF F where nmac^F can be very efficiently (in time $\tilde{O}(qn)$) distinguished from random with advantage $\Omega(\varepsilon qn)$.

Proof. We start with any $(\varepsilon/2, t, q)$ -secure PRF F' from which we construct a (ε, t, q) -secure F by considering any set of "weak keys" \mathcal{K} of size $2^{c}(\varepsilon/2)$, say the keys where the first $c - \log \varepsilon - 1$ bits are 0. We then define F as

 $\mathsf{F}(k,.) = \mathsf{F}'(k0,.)$ if $k \notin \mathcal{K}$ and $\mathsf{F}(k,.) = 0^c$ otherwise

So, F behaves as F', except for weak keys where it's constantly 0^c (we can replace 0^c with any other weak key). It's not hard to show that F is a (ε, t, q) -secure PRF, i.e. compared to F' we loose at most an $\varepsilon/2$ term in distinguishing advantage by redefining it on an $\varepsilon/2$ fraction of the keys.

Assume we make two queries M_0, M_1 to $\mathsf{nmac}^{\mathsf{F}}(k = (k_1, k_2), .)$, which are sampled by first sampling an n-1 block long query $M = m_1 \| \ldots \| m_{n-1} \in \{0, 1\}^{b(n-1)}$ at random and then setting $M_0 = M \| x_0, M_1 = M \| x_1$ for any $x_0 \neq x_1$.

If one of the n-1 intermediate values in the evaluation of the inner function $\mathsf{casc}^{\mathsf{F}}(k_1, M)$ is in \mathcal{K} , then the output of $\mathsf{casc}^{\mathsf{F}}(k_1, M || x)$ is 0^n . As this happens with probability $\approx (n-1)\varepsilon/2$

 $\Pr_{k_1,k_2}[\mathsf{nmac}^\mathsf{F}((k_1,k_2),M_0)=\mathsf{nmac}^\mathsf{F}((k_1,k_2),M_1)=\mathsf{F}(k_2,0^c)]=\Theta(n\varepsilon)$

If we query $\mathsf{nmac}^{\mathsf{F}}$ on q/2 such random and independently sampled message pairs M_0, M_1 , the probability to observe a collision for at least one such pair is $\Theta(n\varepsilon q)$. As we expect to see a collision for such a pair when querying a random function with probability only $O(q/2^c)$ we get a distinguishing advantage of $\Theta(n\varepsilon q)$ as claimed.

References

- [BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Pseudorandom functions revisited: The cascade construction and its concrete security. In 37th Annual Symposium on Foundations of Computer Science, pages 514–523. IEEE Computer Society Press, October 1996.
- [KM12] Neal Koblitz and Alfred Menezes. Another look at hmac. Cryptology ePrint Archive, Report 2012/074, 2012. We refer to the 14th revision of http://eprint.iacr.org/cgi-bin/versions.pl?entry=2012/074 (posted on Jan. 6th).
- [Mau02] Ueli M. Maurer. Indistinguishability of random systems. In Lars R. Knudsen, editor, Advances in Cryptology – EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages 110–132. Springer, April / May 2002.