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Abstract. In real world, in order to transform an abstract and generic
cryptographic scheme into actual physical implementation, one usually
undergoes two processes: mathematical realization at algorithmic level
and physical realization at implementation level. In the former process,
the abstract and generic cryptographic scheme is transformed into an
exact and specific mathematical scheme, while in the latter process the
output of mathematical realization is being transformed into a physi-
cal cryptographic module runs as a piece of software, or hardware, or
combination of both. In black-box model (i.e. leakage-free setting), a
cryptographic scheme can be mathematically realized without affecting
its theoretical security as long as the mathematical components meet
the required cryptographic properties. However, up to now, no previous
work formally show that whether one can mathematically realize a leak-
age resilient cryptographic scheme in existent ways without affecting its
practical security.

Our results give a negative answer to this important question by in-
troducing attacks against several kinds of mathematical realization of a
practical leakage resilient cryptographic scheme. Our results show that
there may exist a big gap between the theoretical tolerance leakage rate
and the practical tolerance leakage rate of the same leakage resilient
cryptographic scheme if the mathematical components in the mathemat-
ical realization are not provably secure in leakage setting. Therefore, on
one hand, we suggest that all (practical) leakage resilient cryptographic
schemes should at least come with a kind of mathematical realization.
Using this kind of mathematical realization, its practical security can
be guaranteed. On the other hand, our results inspire cryptographers
to design advanced leakage resilient cryptographic schemes whose prac-
tical security is independent of the specific details of its mathematical
realization.

Keywords: Physical Attacks, Leakage Resilient Cryptography, Mathe-
matical Realization, Physical Realization.



1 Introduction

Countermeasures for protecting against physical attacks (such as the most s-
tudied side-channel attacks) are taken on three levels: the software level, the
hardware level, and the combination of the above two levels. However, these
countermeasures have many issues [2,3]. In order to solve these pressing issues
from the area of practical security about implementation, S. Dziembowski et al.
firstly proposed one general and theoretical methodology called Leakage Resilient
Cryptography (LRC) [2,3].

In real world, in order to transform an abstract and generic cryptographic
scheme into actual physical implementation, one usually undergoes two pro-
cesses: mathematical realization at algorithmic level and physical realization at
implementation level. Mathematical realization refers to a process in which an
abstract and generic cryptographic scheme is transformed into an exact and spe-
cific mathematical scheme (After this process, we say the cryptographic scheme
is mathematically realized.). This means that all the cryptographic components
utilized by the cryptographic scheme are instantiated with exact and specif-
ic mathematical components. For example, for a public key encryption scheme
based on cycle groups with prime order, the implementor chooses specific math-
ematical representation of the group elements in this process. Another example
is that the implementor chooses AES-128 or 3DES to mathematically realize
a cryptographic scheme which uses block ciphers as a building block. Physical
realization refers to a subsequent process in which any exact and specific math-
ematical scheme (the output of mathematical realization) is transformed into a
physical cryptographic module that runs as a piece of software, or hardware, or
combination of both.

Both for cryptographic schemes in black-box model and leakage resilient cryp-
tographic schemes, it has turned out that practical security highly depends on
the details of the physical realization. For example, the physical cryptanalysis
results of the leakage resilient cryptographic scheme in paper [24] do not con-
tradict its theoretical security proof and show that the tolerance leakage rate
that is assumed in the theoretical security depends on the details of the physical
realization.

Motivation In recent years, in the field of LRC, many leakage models have
been proposed. These leakage models are mainly based on two different leakage
properties.

“Only Computation Leaks Information” There are some leakage models
that follow the “Only Computation Leaks Information” axiom, which states that
memory contents that are not accessed during computation, do not leak [4]. This
axiom is regarded as the most representative axiom according to side-channel
attacks. Leakage resilient stream cipher [3], practical leakage resilient PRNG
[26], and leakage resilient ElGamal encryption scheme [1] follow this axiom are
given out.

“Memory Leakage” Inspired by [5], Akavia et al. [7] introduced the leak-
age model of “security against memory attacks” where one requires that the
scheme remains secure even if the adversary obtains bounded memory leakages

2



about the secret key. Public key encryption schemes under this leakage property
were introduced in [8]. Continuous Memory Leakage [15,16,17] extends Memory
Leakage.

There are some other leakage models, such as Bounded Retrieval Model
[9,10,11,12,13,14] and Auxiliary Input Model [27,28]. Theoretical security of a
leakage resilient cryptographic scheme in these leakage models holds only for
physical attacks which rigorously fit the claimed leakage model.

In this paper, we concentrate on mathematical realization. In black-box mod-
el (i.e. leakage-free setting), a cryptographic scheme can be mathematically re-
alized without affecting its theoretical security as long as all the mathematical
components in the mathematical realization meet the required cryptographic
properties. In leakage setting, we say a leakage resilient cryptographic scheme
is practically secure after it is mathematically realized if the practical tolerance
leakage rate equals to its theoretical tolerance leakage rate even if the adversary
knows all the details of the mathematical realization1 and can obtain leakage
bits from any position of all the mathematical components in the mathematical
realization by exploiting efficient computable leakage functions (if possible ac-
cording to the leakage property, e.g. “Only Computation Leaks Information” or
“Memory Leakage”). If a kind of mathematical realization of the leakage resilient
cryptographic scheme can guarantee the practical security of the leakage resilient
cryptographic scheme, we call this kind of mathematical realization is practically
secure for simplicity. However, up to now, no previous work formally show that
whether one can mathematically realize a leakage resilient cryptographic scheme
in existent ways without affecting its practical security.

In this paper, in order to answer this important question, we will take the
leakage resilient ElGamal encryption scheme instantiated over arbitrary group-
s of prime order p (where p − 1 is not smooth) in the paper [1]2 (i.e. scheme
EG∗) as an example. The scheme EG∗ is constructed in a leakage model that fol-
low the “Only Computation Leaks Information” axiom. For simplicity, we only
concentrate on how to mathematically realize the process of generating random
numbers ri for scheme EG∗ and ignore other abstract cryptographic components
which also need to be mathematically realized. We will introduce four different
kinds of mathematical realization of scheme EG∗. In each mathematical real-
ization, we use generic Random Number Generator (RNG) or Pseudorandom
Number Generator (PRNG) to mathematically realize the process of generating
random numbers ri (Note that, PRNG is used widely for generating random
numbers in practice.). We want to see whether or not the four kinds of mathe-
matical realization are practically secure by attacks against them.

1 According to Kerckhoffs’ principle, this assumption is reasonable.
2 The same leakage resilient ElGamal scheme instantiated over bilinear groups of prime
order p (where p − 1 is not smooth) is leakage resilient in the generic-group model
(i.e. scheme BEG∗). However, it is very hard to implement the generic-group model in
practice. This drawback of the generic-group model goes against our recommendation
to at least provide mathematical realization for a cryptographic scheme. Therefore,
in this paper, we consider the scheme EG∗ which can be implemented in practice
easily.
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Note that, in this paper, we only consider mathematical realization, not phys-
ical realization. That is to say, our work is regardless of any specific physical
attack against physical realization.

Our Contributions Main contributions of this paper are two-folds as fol-
lows. First, by some counterexamples, our research gives a negative answer to
the important question that whether one can mathematically realize a leakage
resilient cryptographic scheme in existent ways without affecting its practical se-
curity. There may exist a big gap between the theoretical tolerance leakage rate
and the practical tolerance leakage rate of the same leakage resilient crypto-
graphic scheme if the mathematical components in the mathematical realization
are not provably secure in leakage setting.

Second, for any leakage resilient cryptographic scheme, tolerance leakage rate
reflects its expected security. Therefore, (accurate or rough) estimation of toler-
ance leakage rate of any leakage resilient cryptographic scheme does make very
good sense. For each of the four kinds of mathematical realization of scheme EG∗,
this paper specifies an upper bound of the practical tolerance leakage rate that
scheme EG∗ can tolerate by-product. These upper bounds are the best known so
far, even thought it might not be the tightest one.

Organization of This Paper The rest of this paper is organized as fol-
lows. In Section 2, we first present some basic symbols, notations, and concepts.
Then, we briefly review the scheme EG∗. Section 3 introduces the four kinds
of mathematical realization of scheme EG∗ and their practical tolerance leakage
rate. Section 4 concludes the whole paper.

2 Preliminaries

In this section, we first present some symbols, notations, and concepts used
throughout this paper. Then, we briefly review the scheme EG∗.

2.1 Symbols, Notations, and Concepts

If S is a binary bit string, we denote the most significant a bits of S by S[a] and
denote the least significant b bits of S by S[b]. We denote the length of S by |S|
and assume that the binary bit string representation of all the elements in Zp

has the same length. We denote the least significant bit of S is the 1st bit of S
and the most significant bit of S is the |S|th bit of S. We use the symbol [S](i) to

denote the ith bit of S.

2.2 Brief Description of scheme EG∗

We describe the scheme EG∗ = (KG∗
EG,Enc

∗
EG,Dec1

∗
EG,Dec2

∗
EG) and the corre-

sponding security definition in the same way as that in the paper [1]. Let the
security parameter of scheme EG∗ is κ. Let Gen denote a probabilistic algorithm
that outputs a cyclic group G of order p, where p is a strong prime and |p| = κ.
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The scheme EG∗ is described as a Key Encapsulation Mechanism (KEM) and is
shown as follows:

KG∗
EG(κ): Compute (G, p)

∗←− Gen(n), g
∗←− G, x

∗←− Zp, h = gx. Choose

random σ0
∗←− Z∗

p and set σ′
0 = xσ−1

0 mod (p). The public key is pk = (G, p, h)
and the secret key is sk = x. Two secret states are σ0 and σ′

0.

Enc∗EG(pk): Choose random r
∗←− Zp. Let C ← gr ∈ G and K ← hr ∈ G. The

ciphertext is C and the symmetric key is K.
Dec1∗EG(σi−1, C): Choose random ri

∗←− Z∗
p, σi = σi−1ri mod (p), K ′ = Cσi ,

return(ri,K
′).

Dec2∗EG(σ
′
i−1, (ri,K

′)): Set σ′
i = σ′

i−1r
−1
i mod (p), and K = K ′σ′

i . The sym-
metric key is K and the updated states are σi and σ′

i.
The theoretical security definition of scheme EG∗ is CCLA1 which was intro-

duced in the paper [1]. In CCLA1, the two leakage functions fi and gi are efficient
computable functions adaptively chosen by the adversary and get as inputs only
the secret states that are actually accessed during computation. The leakage
functions can simulate any computation with the inputs and output any kind
of leakages that might occur. The only restriction about the leakage functions
is that the ranges of the leakage functions are bounded by leakage parameter λ.
For scheme EG∗, the leakage functions fi and gi are as follows:

Λi ← fi(σi−1, ri), Λ′
i ← gi(σ

′
i−1, (ri,K

′), r−1
i ), and |Λi| ≤ λ, |Λ′

i| ≤ λ.

Note that, when the theoretical security is considered, only {σi−1, ri} and
{σ′

i−1, (ri,K
′), r−1

i } are the inputs of the leakage functions. However, when the
practical security is considered, according to the “Only Computation Leaks Infor-
mation” axiom, the information in any position of all the mathematical compo-
nents in the mathematical realization could be the inputs of the leakage functions
as long as the position is actually accessed during computation.

Although the authors of the paper [1] didn’t prove the theoretical security of
scheme EG∗ and only presented the following conjecture, the crucial technique
of scheme EG∗ (i.e. multiplicative secret sharing) is used widely in the context
of LRC [30,31,32] and scheme EG∗ is more practical than other leakage resilient
cryptographic schemes. Therefore, we take the scheme EG∗ as an example.

Conjecture 1 The scheme EG∗ is CCLA1 secure if p− 1 has a large prime
factor (say, p− 1 = 2q for a prime q).

The authors of the paper [1] conjectured that roughly λ equals to 0.25|p| bits in
[23] (i.e. the theoretical tolerance leakage rate λ/|p| = 0.25). Thus the number
of total tolerance leakage bits in one decapsulation query equals to 2λ = 0.5|p|
bits.

We use λ/|p| to denote tolerance leakage rate of scheme EG∗ and define
ρ = (|fi| + |gi|)/|p|. Any implementation of scheme EG∗ will be secure against
every side-channel attack that rigorously fits the leakage model, i.e. as long as
the amount of information that is leaked during each invocation is sufficiently
bounded, and moreover the cryptographic device adheres the “Only Computation
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Leaks Information” axiom. However, the authors said nothing about how to
mathematically realize the process of generating random numbers ri for scheme
EG∗. Therefore, the implementors may use True Random Number Generator
(TRNG) or PRNG to mathematically realize this process in practice.

3 Four Kinds of Mathematical Realization of Scheme EG∗

and Their Practical Security

It is well known that one can use TRNG or PRNG to generate random numbers.
Although there exist some TRNGs, PRNG is used more widely than TRNG in
practice. The reasons of this fact are in the following. First, TRNG requires
a naturally occurring source of randomness. Designing a hardware device or
software program to exploit this randomness and produce a bit sequence that is
free of biases and correlations is a difficult task. Second, for most cryptographic
applications, the random number generator must not be subject to observation
or manipulation by an adversary. However, TRNG is subject to influence by
external factors, and also to malfunction. Third, the generation of true random
number is an inefficient procedure in most practical environments. Finally, it
may be impractical to securely store and transmit a large number of true random
bits if these are required in applications. Therefore, we mainly consider the case
of utilizing PRNG to mathematically realize the process of generating random
numbers in this paper.

In this section, we will introduce four kinds of mathematical realization of
scheme EG∗. In each mathematical realization, the process of generating random
numbers ri is mathematically realized by generic RNG or specific PRNG. We
want to see whether the four kinds of mathematical realization are practically
secure by presenting specific attacks against them. The goal of all our attacks is
to recover the secret key x. To achieve this goal, our attacks need to obtain all
the bits of the random number ri for each invocation of the decapsulation query
of scheme EG∗. The adversary can recover all the bits of σi and σ′

i (i = 0, 1, . . .)
and obtain a candidate value x′ of the real secret key x. The adversary can verify
the correctness of x′ by a correct pair (C,K).

In the first kind of mathematical realization, we assume the process of gener-
ating random numbers ri is mathematically realized by generic RNG and the ad-
versary does not know the internal mathematical structure of the generic RNG.
The attack against this kind of mathematical realization (denoted by ATTACK
I) can also be viewed as an attack against the theoretical security of scheme
EG∗. ATTACK I satisfies the leakage model of scheme EG∗ defined in the paper
[1] except that it requires a high leakage rate. Therefore, ATTACK I poses no
threat on the theoretical security of scheme EG∗.

In the rest three kinds of mathematical realization, we assume the process
of generating random numbers ri is mathematically realized by three specific
PRNGs. For convenience, the attacks against the three kinds of mathematical
realization are denoted by ATTACK II. ATTACK II have the same basic princi-
ple as ATTACK I. However, it is amazing that the results of ATTACK II show

6



that the practical tolerance leakage rate of scheme EG∗ will decrease dramatical-
ly when some specific PRNGs are used to mathematically realize the process of
generating random numbers ri. The decrease of the practical tolerance leakage
rate shows the impacts of mathematical realization over practical security of
leakage resilient cryptographic schemes.

In the following, we will introduce the four kinds of mathematical realization
and the attacks against them. Finally, we will show some discussions and results
of the attacks. For both ATTACK I and ATTACK II, we assume the random
number ri is generated by Algorithm 1.

Algorithm 1 The Algorithm of Generating Random Numbers ri
Input: no input
Output: a random number ri
Step 1 Invoke generic RNG or PRNG to generate a new random number t and
|t| = |ri|.
Step 2 If t = 0 then return to Step 1 else go to Step 3.
Step 3 If t < p then go to Step 4 else go to Step 5.
Step 4 Let ri := t and return ri.
Step 5 Let ri := t mod p and return ri.

3.1 Mathematical Realization Using Generic RNG

If the process of generating random numbers ri is mathematically realized by
generic RNG, we can attack this kind of mathematical realization as follows
(ATTACK I):

In the 1st invocation of decapsulation query of scheme EG∗, the adversary
chooses the leakage functions as follows:

f1(σ0, r1) = ⟨[σ0](1), r
[|p|/2]
1 ⟩, g1(σ

′
0, (r1,K

′), r−1
1 ) = ⟨[σ′

0](1), r1[|p|/2]⟩.

Now, the adversary knows r1 (r1 := r
[|p|/2]
1 ∥ r1[|p|/2]), r

−1
1 (Note that, the

prime number p is public.), σ0[1], and σ′
0[1]. In the 2nd invocation of decapsulation

query, the adversary chooses the leakage functions as follows:

f2(σ1, r2) = ⟨[σ1r
−1
1 mod p](2), r

[|p|/2]
2 ⟩ = ⟨[σ0](2), r

[|p|/2]
2 ⟩,

g2(σ
′
1, (r2,K

′), r−1
2 ) = ⟨[σ′

1r1 mod p](2), r2[|p|/2]⟩ = ⟨[σ′
0](2), r2[|p|/2]⟩.

After the 2nd invocation of decapsulation query, the adversary knows r1, r
−1
1 ,

r2, r
−1
2 , σ0[2], and σ′

0[2]. LetR{a,b} :=
∏b

s=a rs mod p andR−1
{a,b} :=

∏b
s=a r

−1
s mod

p. In the ith (i = 2, . . . , |p| − 1) invocation of decapsulation query, the adversary
chooses the leakage functions as follows:
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fi(σi−1, ri) = ⟨[σi−1R
−1
{1,i−1} mod p](i), r

[|p|/2]
i ⟩ = ⟨[σ0](i), r

[|p|/2]
i ⟩,

gi(σ
′
i−1, (ri,K

′), r−1
i ) = ⟨[σ′

i−1R{1,i−1} mod p](i), ri[|p|/2]⟩ = ⟨[σ′
0](i), ri[|p|/2]⟩.

In the |p|th invocation of decapsulation query, the adversary chooses the
leakage functions as follows:

f|p|(σ|p|−1, r|p|) = ⟨[σ|p|−1R
−1
{1,|p|−1} mod p](|p|)⟩ = ⟨[σ0](|p|)⟩,

g|p|(σ
′
|p|−1, (r|p|,K

′), r−1
|p| ) = ⟨[σ

′
|p|−1R{1,|p|−1} mod p](|p|)⟩ = ⟨[σ′

0](|p|)⟩.

In this way, after invoking the decapsulation query |p| times, the adver-
sary knows all the bits of σ0 and σ′

0. Then, he can recover a candidate value
x′ = σ0σ

′
0 mod p of the real secret key x. Then, the adversary can verify the

correctness of x′ by a correct pair (C,K). The attack process is shown in Figure
3 in Appendix B.

To successfully execute ATTACK I, the leakage parameter λ should achieve
0.5|p| + 1 bits, which is larger than 0.25|p|. Therefore, ATTACK I poses no
threat on the theoretical security of scheme EG∗. Note that, ATTACK I can
also be executed after the ith decapsulation query similarly. After the adversary
obtaining σi and σ′

i, he can recover a candidate value x′ = σiσ
′
i mod p of the

real secret key x.

3.2 Mathematical Realization Using Specific PRNG

Now, we assume that the process of generating random numbers ri is mathemat-
ically realized by specific PRNG. According to Kerckhoffs’ principle, the adver-
sary knows the concrete mathematical structure of the specific PRNG used by
the mathematical realization. When the PRNG is invoked to generate a random
number ri in the decapsulation query, all the internal secret states of the PRNG
which are actually accessed during computation can be leaked to the adversary
due to the “Only Computation Leaks Information” axiom.

We know that if the adversary obtains all the bits of all the secret states
(such as the seed) of any PRNG, he can totally recover the output of the PRNG
trivially. Therefore, for ATTACK II, we do not allow the adversary to obtain all
bits of all the secret states of the PRNG from leakages directly in one invocation.
Specifically speaking, what the adversary can obtain from leakage functions in
one invocation of the decapsulation query of scheme EG∗ includes only part
of bits about the internal secret states of the PRNG and part of bits about
the output of the PRNG. But the amount of leakages is bounded by λ (the
leakage parameter) bits. The central idea of ATTACK II is that the adversary
tries to recover all bits of the seed of the PRNG (not from direct leakages)
using the specific mathematical structure of the PRNG with at most λ bits from
leakages. In this manner, we show the impacts of mathematical realization over
the practical security for the leakage resilient scheme EG∗.
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We surprisingly find that practical tolerance leakage rate of scheme EG∗ will
reduce to a value less than 0.25 when three specific PRNGs are used to math-
ematically realize the process of generating random numbers ri. Therefore, the
corresponding three kinds of mathematical realization are not practically secure.
The three specific PRNGs are ANSI X9.17 PRNG, ANSI X9.31 PRNG, and FIP-
S 186 PRNG for DSA per-message secrets. We also assume that the seed of the
specific PRNG is refreshed in each invocation of the decapsulation query.

3.2.1 Case 1: ANSI X9.17 PRNG and ANSI X9.31 PRNG

The ANSI X9.17 PRNG [18] has been used as a general purpose PRNG in
many applications. Let Ekey (resp. Dkey) denotes DES E-D-E two-key triple-
encryption (resp. decryption) under a key key, which is generated somehow at
initialization time and must be reserved exclusively used only for this generator.
The key is a internal secret state of the PRNG which is never changed for every
invocation of the PRNG. ANSI X9.17 PRNG is shown in Algorithm 2.

Algorithm 2 ANSI X9.17 PRNG

Input: a random (and secret) 64-bit seed seed[1], integer v, and Ekey.
Output: v pseudorandom 64-bit strings (denoted by output[1], . . . , output[v]).
Step 1 For l from 1 to v do the following:

1.1 Compute Il = Ekey(input[l]), where input[l] is a 64-bit representation of
the system date/time.

1.2 output[l] = Ekey(Il
⊕

seed[l])
1.3 seed[l + 1] = Ekey(Il

⊕
output[l])

Step 2 Return (output[1], output[2], . . . , output[v])

Suppose that each input[l] (l = 1, 2, . . . , v) has 10 bits that the adversary
does not know (We assume these 10 bits are the least significant 10 bits of each
input[l].). This is a reasonable assumption for many systems1 [22]. Before doing
our attack, due to the fact that key is never changed for every invocation of the
PRNG (stateless), the adversary can completely obtain key from leakage func-
tion fi by invoking the decapsulation query repeatedly. In each invocation, the
leakage function fi leaks only part of bits about key (not all the bits of key). Af-
ter knowing key completely, the adversary continually invoke the decapsulation
query for |p| times. Let

statei+u := {output[1]i+u, input[1]i+u[10], . . . , input[v]i+u[10]}

and the leakage functions are defined as follows:
For u = 1,

fi+u(σi+u−1, ri+u) = ⟨[σi](1), statei+u⟩,
1 For example, consider a millisecond timer, and an adversary who knows the nearest
second when an output was generated.

9



gi+u(σ
′
i+u−1, (ri+u,K

′), r−1
i+u) = ⟨[σ′

i](1)⟩.

For u = 2, . . . , |p| − 1,

fi+u(σi+u−1, ri+u) = ⟨[σi+u−1R
−1
{i+1,i+u−1} mod p](u), statei+u⟩,

gi+u(σ
′
i+u−1, (ri+u,K

′), r−1
i+u) = ⟨[σ′

i+u−1R{i+1,i+u−1} mod p](u)⟩.

For u = |p|,

fi+u(σi+u−1, ri+u) = ⟨[σi+u−1R
−1
{i+1,i+u−1} mod p](|p|)⟩ = ⟨[σi](|p|)⟩

gi+u(σ
′
i+u−1, (ri+u,K

′), r−1
i+u) = ⟨[σ′

i+u−1R{i+1,i+u−1} mod p](|p|)⟩ = ⟨[σ′
i](|p|)⟩.

The adversary obtains

{output[1]i+u, input[1]i+u, . . . , input[v]i+u}, (u = 1, . . . , |p| − 1)

and he can further compute

seed[1]i+u := Dkey(output[1]i+u)⊕ Ekey(input[1]i+u).

Then the adversary can easily get

seed[s]i+u := Ekey(Ekey(input[s− 1]i+u)⊕ output[s− 1]i+u)

as well as

output[s]i+u := Ekey(Ekey(input[s]i+u)⊕ seed[s]i+u), (s = 2, 3, . . . , v).

Thus the adversary obtain all the bits of ri for every decapsulation query. Figure
1, Figure 2, and Table A.1 in Appendix A show that the mathematical realization
of scheme EG∗ is not practically secure any more, if it uses ANSI X9.17 PRNG
for strong prime p with size larger than 700 bits.

Note that ANSI X9.31-1998 Appendix A 2.4 in [21] introduces PRNGs using
3-key triple DES or AES. In 3-key triple DES case, due to the fact that input[l],
seed[l] and output[l] have the same length as that of ANSI X9.17 PRNG, we can
obtain the same attack result as that of the attack against ANSI X9.17 PRNG.
Our attack is still valid for this PRNG using AES-128 similarly. Therefore, we
do not introduce the attack against this PRNG for AES-128 case here. Figure 1,
Figure 2, and Table A.2 in Appendix A show that the mathematical realization
of scheme EG∗ is not practically secure any more, if it uses ANSI X9.31 PRNG
Using AES-128 for strong prime p with size larger than 756 bits.

Analysis Although these PRNGs are not secure even in leakage-free setting
if the adversary knows the key, what we want to emphasize here is the draw-
backs of the mathematical structures of these PRNGs, which make these PRNGs
become insecure in leakage setting.

The designers of these PRNGs exploit block ciphers (such as DES, 3DES, and
AES-128) to mathematically realize an abstract One-Way Permutation (OWP).
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The PRNGs (ANSI X9.17 PRNG or ANSI X9.31 PRNG) themselves can com-
pute the output of the OWP because they know the keys of the block ciphers. In
leakage-free setting, if the adversary does not know the keys, he can not recover
the inputs of the block ciphers (i.e. the seeds of the PRNGs) and the “One-Way”
property holds. However, in leakage setting, the adversary can obtain the keys
completely from leakages because they are stateless. This means that the One-
Way Permutation is replaced by a “One-Way Trapdoor Permutation” and the
adversary obtains the trapdoor (i.e. the stateless keys) from leakages. Therefore,
the “One-Way” property does not hold any more.

Due to the drawbacks, we think possible solutions which can defend our
attacks are as follows: Solution 1 Using advanced mathematical components to
mathematically realize the abstract OWP to guarantee the “One-Way” property
in leakage setting. Solution 2 To make the key key become stateful may be
another possible solution. This means that the implementor needs to refresh the
key and to guarantee the adversary can not obtain the key completely in every
invocation of the PRNG.

3.2.2 Case 2: FIPS 186 PRNG for DSA Pre-message Secrets

The Digital Signature Standard (DSS) specification (FIPS 186) [19] also de-
scribes a fairly simple PRNG based on SHA or DES, which is used for generating
DSA per-message secrets. This PRNG is shown in Algorithm 3.

Algorithm 3 FIPS 186 PRNG for DSA pre-message secrets

Input: an integer v and a 160-bit prime number q.
Output: v pseudorandom numbers output[1], . . . , output[v] in the interval [0, q− 1],
which may be used as the per-message secret numbers in the DSA.

Step 1 If the SHA based G function is to be used in step 4.1 then select an integer
160 ≤ b ≤ 512. If the DES based G function is to be used in step 4.1 then set
b← 160.
Step 2 Generate a random (and secret) b-bit seed seed[1].
Step 3 Define the 160-bit string str = efcdab89 98badcfe 10325476 c3d2e1f0
67452301 (in hexadecimal).
Step 4 For l from 1 to v do the following:

4.1 output[l]← G(str, seed[l]) mod (q).
4.2 seed[l + 1]← (1 + seed[l] + output[l]) mod (2b).

Step 5 Return (output[1], output[2], . . . , output[v]).

For general purpose PRNG, mod q operation in this PRNG could be omitted.
It is necessary only for DSS where all arithmetic is done mod q. In this paper,
we only consider the DES version of this PRNG, where the G function is based
on DES. Therefore, the seed (as well as the output) of this PRNG is 160 bits
long. We show the attack against this PRNG when |p| = 964 bits as an example.
To generate a 964 bits long random number, one needs to invoke this PRNG 7
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times (v = 7) iteratively to obtain a 1120 bits long random number and discards
output[v][156]. Let

statei = {output[1][40]i , output[2]
[30]
i , output[3]

[20]
i ,

output[4]
[10]
i , output[5]

[10]
i , output[6]

[6]
i , output[7]

[4]
i }.

The leakage functions are as follows:
For i = 1,

fi(σi−1, ri) = ⟨[σ0](1), seed[1]
[120]
i , statei⟩,

gi(σ
′
i−1, (ri,K

′), r−1
i ) = ⟨[σ′

0](1)⟩.

For i = 2, . . . , |p| − 1,

fi(σi−1, ri) = ⟨[σi−1R
−1
{1,i−1} mod p](i), seed[1]

[120]
i , statei⟩,

gi(σ
′
i−1, (ri,K

′), r−1
i ) = ⟨[σ′

i−1R{1,i−1} mod p](i)⟩.

For i = |p|,

fi(σi−1, ri) = ⟨[σi−1R
−1
{1,i−1} mod p](i)⟩ = ⟨[σ0](|p|)⟩,

gi(σ
′
i−1, (ri,K

′), r−1
i ) = ⟨[σ′

i−1R{1,i−1} mod p](i)⟩ = ⟨[σ′
0](|p|)⟩.

After the adversary getting the most significant 120 bits of the seed (i.e.

seed[1]
[120]
i (i = 1, 2, . . . , |p|−1)) from leakages, he could compute all the possible

values of the least significant 40 bits of seed[1]i (i.e. seed[1]i[40]) and gets 240

candidate values of seed[1]i. Denote a candidate value by seed[1]′i. For each
seed[1]′i, the adversary computes

state′i = {output[1]
′[40]
i , output[2]

′[30]
i , output[3]

′[20]
i ,

output[4]
′[10]
i , output[5]

′[10]
i , output[6]

′[6]
i , output[7]

′[4]
i }.

using seed[1]′i and tests the correctness of this candidate value seed[1]′i using
statei obtained from leakages. For the correct candidate value seed[1]′i (i.e.
seed[1]i), state

′
i must equal to statei. This test fails with extremely low prob-

ability. For larger size p, the adversary also obtain seed[1]
[120]
i from leakages.

The number of total leakage bits about the output of the PRNG keeps 120 bits
unchanged but the distribution of the leakage bits is changed. For every output
block output[l] (l = 1, 2, . . . , v), the adversary must obtain some bits about it
from leakages (In other words, there does not exist a block of the output of the
PRNG (output[l],l ∈ {1, 2, . . . , v}) such that no bit of the block leaks.).

We verified our attack by experiments for different size p. For each size of
|p| ∈ {1120, 1280, 1440, 1600} bits, we generated 500 sets of random data and
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ran the above test with the 500 sets of random data. The success rates of all the
experiments were 100%. Therefore, our attack is valid. Giving out theoretical
success rate of our attack would be interesting but is beyond the scope of this
paper. Figure 1, Figure 2, and Table A.3 in Appendix A show that the mathe-
matical realization of scheme EG∗ is not practically secure any more, if it uses
this PRNG for strong prime p with size larger than 964 bits.

Analysis It is well known that one bit difference in the input of G function
will cause many bits difference in the output of G function. Moreover, this PRNG
is invoked iteratively to generate random numbers. These drawbacks make our
attack become valid.

3.3 Discussions and The Results of Our Attacks
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Fig. 1. Minimum ρ required to successful-
ly recover x for different kinds of mathe-
matical realization
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Fig. 2. Minimum λ/|p| required to suc-
cessfully recover x for different kinds of
mathematical realization

Figure 1. shows the minimum ρ required to successfully recover x for dif-
ferent kinds of mathematical realization. Figure 2. shows the minimum λ/|p|
required to successfully recover x for different kinds of mathematical realization.
According to [29], for long-term security, 1024-bit or larger modulus should be
used. Therefore, we can see that if the implementor uses the above-mentioned
four PRNGs to mathematically realize the process of generating random num-
bers ri for scheme EG∗, the corresponding mathematical realization will not be
practically secure any more.

From Figure 1 and Figure 2, we find that if the process of generating random
numbers ri is leakage-free, our attacks will become invalid. However, assuming
the process of generating random numbers ri is leakage-free contradicts with the
“Only Computation Leaks Information” axiom. Therefore, we must notice the
impacts of mathematical realization over practical security for leakage resilient
cryptographic schemes.
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The process of generating random numbers ri for scheme EG∗ can also be
mathematically realized by TRNGs or other PRNGs. However, it is very difficult
to rule out all the attacks against TRNGs or other PRNGs, which can make the
corresponding mathematical realizations become practically insecure in leakage
setting. The reason is that the security of these specific mathematical algorithms
(TRNGs or PRNGs) in leakage setting is usually based on cryptanalysis but is
not based on rigorous proof (i.e. in provable security way).

Although practical tolerance leakage rate can be made arbitrarily small for
Case 2 with the increase of the size of p, the success of all our attacks against
these PRNGs is not depend on the size of p but is depend on the drawbacks
about the mathematical structures of these PRNGs. The authors of the paper [1]
conjectured that the theoretical tolerance leakage rate λ/|p| of scheme EG∗ equals
to 0.25. If the actual value of λ > 0.25|p|, all our attacks are valid. Otherwise, if
the actual value of λ < 0.25 · |p|, some attacks against these PRNGs may become
invalid. However, there still exist some kinds of mathematical realization which
are not practically secure. For example, for large size p, our attack against FIPS
168 PRNG is still valid.

In paper [26], a practical leakage resilient PRNG in the standard mod-
el was introduced. This leakage resilient PRNG is based on (ϵ, s, n/ϵ)−secure
weak Pseudorandom Function (wPRF) F(k, pr) : {0, 1}κ × {0, 1}n → {0, 1}m.
The symbol pr denotes public randomness. The initial state of this PRNG is
(pr0, pr1, k0) for public randomness (pr0, pr1)

∗←− ({0, 1}n)2 and the random seed

k0
∗←− {0, 1}κ. This leakage resilient PRNG can be instantiated with any length-

expanding wPRF (m > κ), which in turn can be mathematically realized from
any secure block cipher BC : {0, 1}κ × {0, 1}n → {0, 1}κ. That is, if BC is
an (ϵ, s, 2q)−secure wPRF, then F(k, prl ∥ prr) = BCk(prl) ∥ BCk(prr) is an
(ϵ, s, q)−secure wPRF.

Note that, the amount of leakages this PRNG can tolerate (denoted by λprng)
equals to log(ϵ−1)/6 and depends on the hardness of the underlying wPRF F [20].
Thus, if F is secure against adversaries of super-polynomial size (i.e. ϵ = 2ω(logκ)),
then the amount of leakages λprng equals to ω(logκ), which is quite small. If
λ = 0.25|p| ≤ λprng, the size of the seed k0 (i.e. κ) should be much larger than
|p|. What’s worse, even if the wPRF F is exponentially hard (i.e. ϵ = 2−Ω(κ)),
ϵ = 2−aκ (a ∈ (0, 1]) and λprng = aκ/6. This PRNG is leakage resilient if and only
if κ ≥ 1.5|p| (λ = 0.25|p| ≤ λprng). For large size p, a secure block cipher with
1.5|p| bits long key size is unrealistic. Therefore, this leakage resilient PRNG is
not suitable to mathematically realize the process of generating random numbers
ri for scheme EG∗.

The secret key x can also be recovered with an attack method based on
Hidden Number Problem [23,25] with lower theoretical tolerance leakage rate
(i.e. 3

8 |p|+ o(|p|)) than that of ATTACK I. However, practical tolerance leakage
rate of this attack method (also equals to 3

8 |p| + o(|p|)) is higher than that of
ATTACK II when only the process of generating random numbers ri is math-
ematically realized with PRNGs because this attack method requires leakages
from σi and σ′

i but does not require leakages from ri.
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4 Conclusions and Future Work

Our results show that there may exist a big gap between the theoretical tolerance
leakage rate and the practical tolerance leakage rate of the same leakage resilient
cryptographic scheme if the mathematical components in the mathematical real-
ization are not provably secure in leakage setting even if the theoretical security
of the leakage resilient cryptographic scheme still holds. However, the security
of the mathematical components in leakage setting is usually based on crypt-
analysis. Moreover, based on the state-of-the-art approach of cryptography, to
rigorously prove the security of the mathematical components in leakage set-
ting is rather difficult. Due to the goal of Leakage Resilient Cryptography is to
theoretically solve the pressing issues from the area of practical security about
implementation. This great difficulty will hinder the application of leakage re-
silient schemes.

It is well known that specifying all details of implementation in a leakage
model is tedious. Moreover, it is not clear if it is feasible at all to prove the
security without assuming some kind of bounded leakages at higher abstraction
level (like mathematical realization at algorithmic level). The paper [6] shows
that it is very difficult to state assumptions at logic gate level. So, even from
the practical point of view, working at mathematical realization in algorithmic
level seems appealing. Therefore, we suggest that all (practical) leakage resilient
cryptographic schemes should at least come with a kind of mathematical real-
ization. Using this kind of mathematical realization, the practical security of the
leakage resilient cryptographic scheme can be guaranteed. Our results also in-
spire cryptographers to design advanced leakage resilient cryptographic schemes
whose practical security is independent of the specific details of mathematical
realization.

In this paper, we only consider the mathematical realization of the process of
generating random numbers. Whether mathematical realization of other cryp-
tographic components would affect the practical security of a leakage resilient
cryptographic scheme is still not known. For other leakage resilient cryptograph-
ic schemes in different kinds of leakage models, we anticipate similar problems
are also existent. These questions themselves are rather interesting and worthy
of research.
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Appendix A: The Result of Our Attacks

We use ρATTACKI (resp. ρATTACKII) to denote the specific value of ρ for AT-
TACK I (resp. ATTACK II). We define λATTACKI (resp. λATTACKII) to denote
the specific value of leakage parameter λ for ATTACK I (resp. ATTACK II). We
use v to denote how many times the PRNG is invoked to generate ri.

Table A.1. Attack results about ANSI X9.17 PRNG
|p| (in bits) ρATTACKI ρATTACKII λATTACKI λATTACKII v (times)

700 100.29% 25.14% 351 175 11

704 100.28% 25.00% 353 175 11

832 100.24% 23.56% 417 195 13

960 100.21% 22.50% 481 215 15

1088 100.18% 21.69% 545 235 17

Table A.2. Attack results about ANSI X9.31 PRNG Using AES-128
|p| (in bits) ρATTACKI ρATTACKII λATTACKI λATTACKII v (times)

756 100.26% 25.13% 379 189 6

768 100.26% 24.74% 385 189 6

896 100.22% 22.32% 449 199 7

1024 100.20% 20.51% 513 209 8

1152 100.17% 19.10% 577 219 9

Table A.3. Attack results about about FIPS 186 PRNG
|p| (in bits) ρATTACKI ρATTACKII λATTACKI λATTACKII v (times)

964 100.21% 25.10% 483 241 7

1120 100.18% 21.61% 561 241 7

1280 100.16% 18.91% 641 241 8

1440 100.14% 16.81% 721 241 9

1600 100.13% 15.13% 801 241 10

Appendix B: The Attack Processes
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