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Abstract. We take a closer look at the Open Protocol for Access Control, Identification,
and Ticketing with privacY (OPACITY). This Diffie–Hellman-based protocol is supposed
to provide a secure and privacy-friendly key establishment for contactless environments. It
is promoted by the US Department of Defense and meanwhile available in several standards
such as ISO/IEC 24727-6 and ANSI 504-1. To the best of our knowledge, so far no detailed
cryptographic analysis has been publicly available. Thus, we investigate in how far the
common security properties for authenticated key exchange and impersonation resistance,
as well as privacy-related properties like untraceability and deniability, are met.

OPACITY is not a single protocol but, in fact, a suite consisting of two protocols, one called

Zero-Key Management (ZKM) and the other one named Fully Secrecy (FS). Our results

indicate that the ZKM version does not achieve even very basic security guarantees. The FS

protocol, on the other hand, provides a decent level of security for key establishment. Yet,

our results show that the persistent-binding steps, for re-establishing previous connections,

conflict with fundamental privacy properties.

1 Introduction

OPACITY is short for the Open Protocol for Access Control, Identification, and Ticketing with
privacY. It is a Diffie–Hellman-based protocol to establish secure channels in contactless envi-
ronments. According to Eric Le Saint of the company ActivIdentity, co-inventor in the patent
application [57], the development has been sponsored by the US Department of Defense [58].
The inventors have declared the contributions to OPACITY to be a statutory invention with the
United States Patent and Trademark Office, essentially allowing royalty-free and public usage
of the contribution. The protocol has been registered as an ISO/IEC 24727-6 authentication
protocol [33] and is specified in the draft ANSI 504-1 national standard (GICS) [30]. Informal
yet outdated descriptions are available through the homepage of the Smart Card Alliance [3].1

1.1 Security Assessment of OPACITY

As Eric Le Saint emphasizes in his description of OPACITY [58], “This protocol was designed
expressly to remove the usage restrictions on contactless transactions while still delivering high

1We stress that none of the authors of the present paper has been involved in the development of OPACITY,
or is employed by ActivIdentity, or is supported by a non-academic governmental agency for conducting this
research.
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performance security and privacy.” Surprisingly, we are not aware of any profound and public
cryptographic analysis of the protocol, including clear claims about security and privacy goals.
The best effort, in terms of the Smart Card Alliance, seems to be compliance with standards
[3]:

“The protocol strictly follows U.S. government and international standards. It has
been assessed for compliance with the NIST standard for key establishment protocols
(SP 800-56A). As a consequence, further protocol design reviews are unnecessary
prior to FIPS 140-2 security certification.”

It is of course not the case —and we do not think that the Smart Card Alliance statement
suggests so— that compliance with SP 800-56A, or certification according to FIPS 140-2, in-
stantaneously gives strong cryptographic security guarantees. The NIST document SP 800-56A
[50] only provides useful but, nonetheless, high-level recommendations for key-establishment
schemes based on the discrete logarithm problem, and specifies some schemes from ANSI X9.42.
To the best of our knowledge, it has not been shown formally yet under which conditions pro-
tocols complying with SP 800-56A are also cryptographically secure (in whatever sense). This
is particularly true as OPACITY supports renegotiation techniques and also states privacy
enhancement as an additional goal. Neither property is discussed in SP 800-56A.

Similarly, even if OPACITY was FIPS 140-2 certified and thus checked by an accredited
authority, this does not necessarily imply strong security guarantees either. An obvious testi-
mony to this argument are the easy attacks on FIPS 140-2 level 2 certified USB memory tokens
where access was always granted for a fixed string, independently of the password [20, 21].
Certification according to FIPS 140-2, and this is acknowledged in the standard, only intends
“to maintain the security provided by a cryptographic module” in the utilized environment; the
“operator of a cryptographic module is responsible for ensuring that the security provided by
the module is sufficient.” (see [48]).

Hence, we believe that OPACITY deserves a closer cryptographic look. Clearly, there are
many practical protocols which lack such an analysis, or have at least not been scrutinized
publicly. What makes OPACITY a worthwhile object for a cryptographic analysis is:

• OPACITY is standardized and may thus be deployed extensively in the near future. This
is all the more true as it is a general purpose protocol, suitable, for instance, for use in
access control for buildings, but also for ticketing in transport systems [58].

• OPACITY does not seem to be deployed broadly yet. It is our firm belief that protocols
should be rigorously analyzed before they are actually employed, in order to prevent
damage caused by weaknesses discovered after deployment. Furthermore, patching a
popular protocol in use is often intricate and progresses slowly (see the example of MD5-
based certificates [61]).

• OPACITY still has a decent level of abstract description complexity. While nonetheless
being quite complex underneath, especially taking into account different execution modes
such as renegotiation steps (called persistent binding for OPACITY), this should be con-
trasted with similar protocols like SSL/TLS where conducting cryptographic proofs is
tedious; such works often focus on particular parts or (modified) versions of the protocol
[26, 46, 55, 35].

Another point, which we initially thought speaks for OPACITY, is the availability of an open
source implementation on Source Forge [52]. Unfortunately, as later confirmed by the developers
of OPACITY [59], this implementation seems to refer to an outdated version. The differences
were sufficiently large such that we did not investigate the source code in detail about the
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realization of the cryptographic concepts; nonetheless, we occasionally consulted the source
code in order to extrapolate, in case some specification details were missing.

1.2 Our Results

OPACITY is a family of key-exchange protocols based on Elliptic Curve Cryptography. It
comes in two versions, called Zero-Key Management (O-ZKM) and Full Secrecy (O-FS). The
first name is due to the fact that the terminal does not need to maintain registered public keys.
As such, the parties in the O-ZKM protocol run a Diffie–Hellman based key-exchange protocol
using an ephemeral key on the terminal’s side and a static (presumably on-card generated) key
for the card. The experienced reader may immediately spot the weakness in this approach:
since the terminal only uses ephemeral keys, anyone can in principle impersonate the terminal
and successfully initiate a communication with the card! Before we go into further details of
the security of the protocols, let us point out that the second protocol, O-FS, uses long-term
keys on both sides and runs two nested Diffie–Hellman protocols, each one with the static key
of the parties and an ephemeral key from the other party. This at least rules out obvious
impersonation attacks.

Targeted Security Properties. Obviously, OPACITY aims at establishing a secure chan-
nel between the parties and to provide some form of entity authentication, especially imper-
sonation resistance against malicious cards. Yet, at the same time, OPACITY also seems to
target privacy properties. There seems to be a general and rough agreement what we expect
from a “secure” key-exchange protocol, despite technical differences in the actual models [5, 16].
We opted for the common Bellare-Rogaway (BR) model for key exchange but we also consider
key-compromise impersonation resistance and leakage of ephemeral secrets in the related eCK
model [41]. We note that cryptographic analysis of similar key exchange protocols, such as for
NIST’s KEA [4, 42, 39] or for the ANSI X9.63 specified UM protocols [4, 44] cannot be trans-
ferred to OPACITY, as these protocols differ in security-relevant details and do not support
renegotiation (and do not touch privacy issues); we comment on the differences within.

The privacy requirements for OPACITY are, however, less clear than the ones for key secrecy.
This is all the more true as they are never specified in the accompanying documents. An earlier
version of the OPACITY protocol description [60] mentions the following two goals for the O-FS
protocol:

• “The OPACITY protocol does not divulge any data that allows the correlation of two
protocol executions with same ICC [card] during an OPACITY session.”

• “The OPACITY protocol does not divulge any identifier associated to a particular ICC
or card holder during an OPACITY session.”

The first requirement resembles the well-known notion of untraceability for protocols. We adopt
the framework of Ouafi and Phan [53] which can be seen as a “BR-like” definition of the Juels and
Weiss model [36], matching our approach for the key-agreement part. While the renegotiation
steps build into the protocol allow for a simple attack on untraceability we can show that, if we
remove these steps from the protocol O-FS does, in fact, achieve untraceability. For O-ZKM,
on the other hand, even without renegotiation untraceability is not fulfilled.

The second desirable privacy property seems to be weaker in that it allows linkability in
principle, but tries to hide the card’s or the card holder’s identity. We therefore introduce a
notion called identity hiding which also follows the BR attack model, but instead of preventing
the adversary from distinguishing between two cards —as for untraceability— we only guarantee
that one cannot deduce the card’s certificate (i.e., its identity).
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OPACITY-ZKM OPACITY-FS
BR key secrecy (only passive and if modified) X
+ forward secrecy — (only weak)
Impersonation Resistance (only cards) (only cards)
Untraceability — (only w/o persistent binding)
Identity Hiding — X
(Outsider) Deniability (only w/o persistent binding) (only w/o persistent binding)

Table 1: Security properties of the OPACITY protocol

Basically, identity hiding is similar to recognizing a person without knowing the person’s
name. By contrast, untraceability is similar to not being able to tell that a particular person
has been seen twice (this is independent of a person’s name). Clearly, identity hiding gives
weaker anonymity guarantees than untraceability or anonymity of credential systems [10, 17].
Even direct anonymous attestation [11] or cross-domain anonymity as in the case of the German
identity card [6] support linkability only within specified domains but are otherwise untraceable.
Hence, the notion of identity hiding should be taken with caution.

Another desirable privacy property for OPACITY may be deniability [25], that is, the inabil-
ity to use transcripts of communications as proofs towards third parties. Although not explicitly
listed as a goal, it may be advantageous for a multi-purpose card protocol like OPACITY. There
are different approaches and levels of deniability [9, 23, 24, 22, 28]; in light of what OPACITY
can achieve we focus on a very basic level protecting only against abuse of transcripts between
honest parties (denoted outsider deniability here).

Finally, the goal of the OPACITY protocols is to establish a key which is subsequently
used to secure communication between the card and the terminal. As such, one is of course
interested in the security of the secure messaging protocol of OPACITY as well as in the overall
composition of the key-agreement protocol and the secure messaging. Here, we rely on recent
results for the secure composition of BR-secure key-exchange protocols [14, 12]. We next discuss
and illustrate exactly which security levels are achieved by OPACITY.

Achieved security properties. Our results are summarized in Table 1. The protocol
O-ZKM cannot achieve BR-security against malicious terminals. Even for passive adversaries
(which can only observe executions between honest parties) the protocol is not known to be
secure; it does fulfill BR-security only after a slight modification of the protocol. While this
modification is provably necessary to conduct a security proof in the BR model, we note that the
O-ZKM standard seems to contain further security-critical ambiguities and functional misspecifi-
cation, which we conservatively interpreted to the advantage of the protocol (see Appendix A.1).
The O-FS protocol achieves BR-security under the Gap Diffie–Hellman assumption [51] in the
random-oracle model, assuming that the underlying cryptographic primitives are secure.2 As
for impersonation resistance, since the terminal does not authenticate towards the card, we can
only hope to achieve security against malicious cards. This is met for both protocols given that
the underlying message authentication scheme is secure.

As far as privacy is concerned, we show that neither protocol achieves untraceability nor
even a weakened form of untracebility. For O-ZKM this is quite clear, as parts of the card’s
certificate are sent in clear. For O-FS the certificate is encrypted, yet we show that it is
easy to desynchronize the cards’ states and hence, due to persistent binding, to mount privacy
attacks via desynchronization attacks. If, on the other hand, we only consider O-FS without
renegotiation (and thus without any accumulated state), untraceability is met. Note that this

2This apparently innocent assumption about the security of the primitives has a hidden layer underneath.
OPACITY is not fully specified in the standards and operates in some arguably doubtful modes, so this assumption
must be taken with caution. We comment on this later.
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is not the case for O-ZKM, that is, even without persistent binding (i.e., renegotiation) O-ZKM
is traceable.

For identity hiding, we can show that it is met by O-FS but not by O-ZKM. However, let
us note that O-ZKM contains steps which indicate that some form of identity hiding was aimed
for: parts of the identity are only sent encrypted. Nevertheless an easy attack exists.

Concerning (outsider) deniability, we again only give a conditional result: OPACITY with-
out persistent binding can be proved (outsider) deniable both for O-FS and O-ZKM. Persistent
binding does, however, allow for simple attacks in many of the existing models for deniability,
as well as, in our rather weak model of outsider deniability. Furthermore, persistent binding
opens the door to physical attacks, for example, by simply comparing the state of the physical
registers containing the persistent binding information of a terminal and card, one could ex-
tract high-confidence proofs that the card and terminal have been partnered in at least a single
session.

2 Security Model

We define five major desirable security properties for the OPACITY protocol. The first one is
the standard Bellare and Rogaway [5] notion for authenticated key-exchange, which captures the
fact that the derived keys are secure. The second property is (card) impersonation resistance,
mainly useful for access control applications (at metro stations, buildings, etc.). The last three
properties refer to privacy: untraceability guarantees that cards cannot be tracked by outsiders;
identity-hiding ensures that card certificates (or identifiers) remain private from outsiders; and
deniability ensures that communication transcripts cannot be used as a proof towards third
parties.

2.1 Key Secrecy (Authenticated Key Exchange)

We analyze OPACITY with respect to key secrecy in the real-or-random security model by
Bellare and Rogaway [5]. Roughly speaking, an adversary should not be able to tell apart a
genuine session key from a uniformly sampled key from the key space. The security model
defines so-called sessions, describes an attack model, and shows a winning condition for an
adversary.

Sessions. The model considers a set of honest participants, which we call terminal or card in
the OPACITY scenario. At the outset, participants are associated with a long-term key pair
(sk, pk) and we assume that the public keys pk are certified by a certification authority CA.
In particular, the CA checks the well-formedness of the key (e.g., that the keys are generated
correctly). However, parties need not provide a proof of knowledge of the corresponding secret
key to the CA. Each participant may run several instances of the key agreement protocol Π
concurrently; we call the j-th instance of party P by Pj . In order to derive a session key, protocol
Π is executed between two instances of the corresponding parties. An instance is called initiator
(resp. respondent) if it sends the first (resp. second) message in the protocol. In OPACITY, the
initiator is always the terminal and the respondent is always the chip card. We do not restrict
parties to be of either type, though, i.e., any party can potentially act as either terminal or
card.

Upon successful termination of Π we assume that the participating instance Pi outputs a
session key k, the session identifier sid, and a partner identifier pid of the intended partner. For
O-FS the partner identity is determined through (the identity in the) certificate. The O-ZKM
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version has no terminal authentication, and so the card cannot identify the partner; here the
pid field is left empty.

Attack Model. Each user instance can be accessed by an adversary, which we denote A,
by means of an oracle providing the interface of the protocol instance. The adversary has full
control of the network and schedules the delivery of possibly tampered messages. Initially, A
receives all (registered) public keys of all participants, also called honest users. Afterwards, the
adversary may register parties with arbitrarily chosen public keys, and since we do not assume
proofs of knowledge in the registration phase, adversarial public keys may even be identical to
the keys of honest users. Parties for which the adversary registers a key are called adversarially
controlled or malicious, alternatively.

The adversary may query the following oracles:

Init(P, i, par) initializes a session i of honest user P for parameters par. This command makes
party Pi automatically the initiator of a subsequent protocol run. In OPACITY, par
indicates if the terminal should start a re-negotiation or not and this choice is, thus,
under full control of the adversary. Similarly, for a card the parameter par indicates if the
card can run re-negotiation in principle.

Execute(P, i, par, P ′, j) causes the honest users P and P ′ to run the protocol Π for (fresh)
instances i and j, where Pi acts as the initiator and takes parameters par. The final
output is the transcript of a protocol execution. This query simulates a passive attack
where the adversary merely eavesdrops the network.

Send(P, i,m) causes the instance i of honest user P to proceed with the protocol upon receiving
message m. The output is the message generated by P for m and depends on the state of
the instance. This query simulates an active attack of the adversary where the adversary
pretends to be the partner instance.

Reveal(P, i) returns the session key of the input instance. The query is answered only if the
session key was generated and the instance has terminated in accepting state and the user
is not controlled by the adversary. This query models the case when the session key has
been leaked. We assume without loss of generality that the adversary never queries about
the same instance twice.

Corrupt(P ) enables the adversary to obtain the party’s long-term key sk and its internal state
st, e.g., for persistent binding, but without the ephemeral session values. This is the so-
called weak-corruption model. In the strong-corruption model the adversary also obtains
in addition the state information including random coins and ephemeral values of all
instances of user P . The corrupt queries model complete user compromise and allow to
model forward secrecy. Since we analyze stateful protocols, we have to also account for the
internal (persistent) state of party P , apart from any long-term secrets. Upon corruption,
user P and all its instances are considered to be adversarial controlled.

Test(P, i) is initialized with a random bit b. Assume the adversary makes a test-query about
(P, i) during the attack and that the instance has terminated in accepting state, holding a
secret session key k. Then, the oracle returns k if b = 0 or a random key k′ from the domain
of keys if b = 1. If the instance has not terminated yet or has not accepted or the user
is adversarially-controlled, then the oracle returns ⊥. This query should determine the
adversary’s success to tell apart a genuine session key from an independent random key.
We assume that the adversary only makes a single Test-query during the attack, even if
we deal with stateful executions; a hybrid argument extends this to multiple test-queries.
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Register(P ∗, pk∗) allows the adversary to register a public key pk∗ in the name of a new user
(identity) P ∗. The user and all its instances are immediately considered to be adversarially
controlled.

In addition, since we work in the random oracle model, the attacker may also query a random
hash function oracle.

We assume that the adversary always knows if an instance has terminated and/or accepted.
This seems to be inevitable since the adversary can send further messages to check for the status.
We also assume that, for accepting runs, the adversary learns session and partner identifiers.

We consider here active adversaries who might run protocol instances concurrently. This is
modeled by giving the adversary access to the Send() oracle. A passive adversary is prohibited
to query Send() but, instead, may receive transcripts of Π instances via Execute(). The goal
of an adversary is to distinguish genuine session keys from random ones in a so-called fresh
instance, as defined below. This is formalized by giving the adversary access to the Test-oracle.

Partner, Correctness, and Freshness. We call two instances Pi and P ′j partnered if
both have terminated in an accepting state, and they share the same sid. In this case, the
pid indicates the intended partner. Correctness of a key agreement protocol Π requires that
participants in an honest, untampered execution of Π output the same session key, that each pid
points to the corresponding partner, and that the participating instances are then partnered.

In order to define the security of an authenticated key exchange (AKE) we require the notion
of freshness. We call an instance Pi fresh, if there has been (i) no Reveal(P, i) query at any
point, (ii) no Reveal(P ′, j) where P ′j is partnered with Pi, (iii) no Corrupt(·) queries, and (iv)
neither Pi nor a partner of Pi is adversarially-controlled.

When we consider forward secrecy, we allow Corrupt(P )-queries if there was no previous
Test(P, i)-query or if so, then the instance Pi must be involved in one Execute(·)-query only
and, in particular, no Send(P, i,m)-query. Instances which are fresh with respect to forward
secrecy are called fsec-fresh. This notion basically means that even if a party loses its long-term
secrets and/or its internal state has leaked, the session keys of previous executions (before the
disclosure) of the protocol Π remain private. Even future executions of honest parties (using
possibly ephemeral hidden values) maintain secure. We also introduce weak forward secrecy
where we relax forward secrecy by disallowing the adversary to query Corrupt(P ) before a
Test(P, i)-query. This rules out that future executions between honest parties remain private.
Thus, only executions of honest parties before corruptions remain secure.

On a Single Test-query. In general it suffices to consider only a single Test-query, since
the case for multiple queries for many sessions follows by a hybrid argument [1], decreasing
the success probability of an adversary by a factor equal to the number of queries made. Even
only stated for stateless KE protocols, their arguments easily extend to stateful KE protocols
since the state is never revealed unless a Corrupt-query is made. However, this execution cannot
considered fresh anymore.

AKE Security. Eventually, the adversary A outputs a guess b′ for the secret bit b used in the
Test-oracle. The adversary is successful iff: b = b′, and the instance Pi in the Test-oracle is fresh
(resp. [weakly] fsec-fresh). We are interested in the advantage of the adversary over the simple
guessing probability of 1/2. We usually consider security relative to the adversary’s parameters,
such as its running time t, the number qe of initiated executions of protocol instances of Π, and,
modeling the key derivation function as a random oracle, the number qh of random oracle
queries of the adversary. For some of the security notions we also make the number of Test
queries explicit through a parameter qt.
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Definition 2.1 (Key Secrecy) We call a protocol Π, running for security parameter λ, (t, qe, qh, ε)-
secure if no algorithm running in time t, invoking qe instances of Π and making at most qh
queries to the random oracle can win the above experiment with probability greater than 1

2 + ε.
We call the value

∣∣Pr[A wins]− 1
2

∣∣ the advantage of the algorithm A, and we denote the maxi-

mum over all (t, qe, qh)-bounded A by Advake
Π (t, qe, qh).

Analogously, we denote by Advake-fsec
Π,A resp. Advake-wfsec

Π,A the advantage of algorithm A when
considering forward secrecy resp. weak forward secrecy.

Further Desirable Security Properties. The BR model is a strong security model
providing confidentiality of agreed session keys and authenticity (i.e., at most a partner will
hold the same derived keys). In addition, one can show forward secrecy when adapting the
freshness notion. However, as pointed out by LaMacchia et al. [41], some attack scenarios
are not considered in the BR model. For this reason, LaMacchia et al. [41] proposed the eCK
model, an extension of the AKE model by Canetti and Krawczyk [16], whose additional security
properties follows.

Key-Compromise Impersonation (KCI). Here, an adversary cannot impersonate herself
to a party even if she is in possession of this party’s long-term secret.

Leakage of ephemeral secrets. Here the model allows leakage of internal information of a
session, i.e. even if the adversary learns the randomness used in a given execution and can
therefore compute the ephemeral keys, the corresponding session key remains confidential.

2.2 Impersonation Resistance

The notion of authenticated key exchange ensures that only a partner can compute the session
key. For some application scenarios, however, we may also need that the terminal can be sure of
the card’s identity. This could be guaranteed by subsequent use of the computed session keys,
but this is application-dependent. Impersonation resistance, as defined here, gives instead direct
guarantees and is closer to the security of identification schemes. We give a strong definition
based on the BR framework, which includes common properties like passive and active security
for identification schemes. Still, note that we only consider impersonation by malicious cards
(not terminals).

The attack model resembles AKE, but this time there are no Test-queries. The adversary’s
goal is to impersonate an honest card, without using trivial Man-in-the-Middle relaying attacks
or making the terminal accept a card which has not been issued (resp. certified) by the certifi-
cation authority CA. More formally, the terminal must accept in some session sid for partner
id pid, such that (a) pid is not adversarially controlled, and (b) there is no accepting card ses-
sion for honest card pid with the same sid (including also the case that party pid has not been
registered with a public key). If this happens we say that the adversary wins.

Definition 2.2 (Impersonation Resistance) We call a protocol Π, running for security pa-
rameter λ, (t, qe, qh, ε)-impersonation resistant if no algorithm running in time t, invoking qe
instances of Π and making at most qh queries to the random oracle can win the above experiment
with probability greater than ε. We call the value Pr[A wins] the advantage of the algorithm A,
and we denote the maximum over all (t, qe, qh)-bounded A by AdvirΠ(t, qe, qh).
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2.3 Privacy for Key Exchange

Privacy in cryptography comes in many different flavors. The OPACITY documentation does
not clarify exactly which properties the protocol is aiming for. We discuss two reasonable
notions.

2.3.1 Untraceability

The notion of untraceability [53, 36] requires that any adversary, able to observe honest card-to-
terminal interactions and to interact with cards and terminals in a Man-in-the-Middle fashion,
cannot link two key-exchange sessions of the same card (else, the owner of the card might be
traced through their card). In our analysis, we consider only a very weak form of untraceability
since even this is not achieved by the OPACITY protocols. As we will see, O-ZKM is trivially
traceable. The reason for O-FS not achieving untraceability is mainly due to the use of rene-
gotiation techniques (a.k.a., persistent binding) that leaks some information about the internal
state of cards and terminals.

In the weak untraceability experiment, the adversary invokes only a single Test session,
which runs an honest execution between an honest terminal and one of two cards, all selected
by the adversary. More concretely, the model is the same as before except that the Test-oracle
now takes as input three identities: those of an honest terminal T and of two honest cards
C0, C1. The adversary may decide on the parameters input to these parties; it suffices for our
impossibility result to alway use persistent binding. The oracle (which may be queried only
once) then flips a bit b and runs an honest, fresh execution between the chosen terminal T and
either the left or the right card (depending on b). The adversary tries to predict the bit b.

Definition 2.3 ((Weak) Untraceability) We call a protocol Π, running for security param-
eter λ, (t, qe, qh, ε)-untraceable if no algorithm A running in time t, invoking qe instances of
Π and making at most qh queries to the random oracle, can win the above experiment with
probability greater than 1

2 + ε. We call the value
∣∣Pr[A wins]− 1

2

∣∣ the advantage of the algorithm
A, and we denote the maximum over all (t, qe, qh)-bounded A by Advtrace

Π (t, qe, qh).

For plain untraceability consider the same experiment as above, but with an adversary that
can run multiple Test-sessions. Thus, we consider (t, qe, qt, qh)-bounded adversaries, where qt
denotes the number of test-sessions.

2.3.2 Identity Hiding

Intuitively, an adversary against untraceability should not even link two sessions run by the
same card. A weaker notion, called identity hiding, only stipulates that an adversary is unable
to know which card authenticates (though she may know that she has seen this card authenticate
before). Thus, untraceability hides both the identity (i.e., the certificate) of the card and its
history (e.g., its state). By contrast, identity hiding only hides the certificate.

An approach previously used in the literature, e.g. [62], is to consider a distinguishing game
where an adversary must distinguish between it interacting with a real card and terminal from
interacting with a simulator, which does not know the certificates. The idea is that the simulator
should be able to provide the adversary with a view of the protocol that is indistinguishable
from the real one. However, the use of persistent binding makes this approach problematic. In
particular, if the simulator tries to authenticate to an honest terminal, it will be rejected (as it
cannot forge a valid certificate), enabling the adversary to trivially tell it apart from an honest
card if it learns the outcome of the session. Moreover, even if we restrict the adversary’s view
such that she cannot see the result of key-exchange sessions, she can still notice, by looking at
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the control bytes of terminals and cards, whether they are synchronized or not (i.e. whether
they used persistent binding or not). However, let us stress the fact that, though linkability
through the use of persistent binding is a valid attack against untraceability, it should not,
intuitively speaking, be valid against identity-hiding as by this the adversary does not learn
anything “real” about the identity of a card.

We choose a different approach to model identity hiding again starting from the previously
defined BR-like approach for key secrecy. That is, we use the identical security model as for key
exchange, but with one exception: we assume a special card C∗ exists, for which two certified
key-pairs (sk∗0, pk

∗
0, cert∗0), (sk∗1, pk

∗
1, cert∗1) are generated under (potentially different) identities.

The adversary is initially given the certificates and public keys of all honest parties, except for
C∗, together with the assignment of the keys and certificates to the cards. The adversary also
receives the two pairs (pk∗0, cert∗0), (pk∗1, cert∗1) and the corresponding identities (but not the
information which pair is actually used). At the start of the game, a bit b is flipped and C∗
is instantiated with (sk∗b , pk

∗
b , cert∗b). When the Test oracle is queried, it returns the handle for

card C∗, allowing the adversary to access this card by using all the previous oracles, apart from
Corrupt. The adversary must predict the bit b, i.e. it must learn whether card C∗ is associated
with the left or right key pair. The only restriction is that the partner id pid output in any
of the possibly multiple Test sessions by the tested card C∗ is always an identity of an honest
terminal (if the terminal is malicious the adversary trivially decrypts the encrypted certificate).
Furthermore, no Corrupt queries must be issued to terminals or to C∗.

Note that in our model the adversary does not choose the key pairs/certificates adaptively
(after having received a list of valid certificates). One can easily extend the model to enable
adaptive selection of the targeted card and its two potential certificates. Yet, such a model
is equivalent (up to a factor equal to the square of the number of certificates) to our simpli-
fied model if key generation and certification are stateless; we can simply predict the chosen
certificates with the claimed probability.

Definition 2.4 (Identity Hiding) We call a protocol Π, running for security parameter λ,
(t, qe, qt, qh, ε)-identity-hiding if no algorithm A running in time t, invoking qe instances of Π,
including qt Test-sessions, and making at most qh queries to the random oracle, can win the
above experiment with probability greater than 1

2 + ε. We call the value
∣∣Pr[A wins]− 1

2

∣∣ the
advantage of the algorithm A, and we denote the maximum over all (t, qe, qt, qh)-bounded A by
Advid-hide

Π (t, qe, qt, qh).

2.4 Deniability for Key Exchange

Deniability allows a party to deny its participation in a protocol execution when its partner
likes to prove this fact to a third party. We discuss various notions of deniability [25, 23, 18,
64, 63, 22, 24].

The notion of deniable authentication, introduced in [25] and later on extensively studied,
provides both the seemingly opposite features of authentication and deniability: the sender
can prove that a given message actually originates from him, but no malicious receiver can
convince anyone else that the message was sent by that sender. Formally, the communication
is required to be efficiently simulatable or, in other terms, the transcripts do not reveal any
evidence of the interaction. From this perspective, deniability appears very close to the notion
of zero knowledge [29]. An excellent comparison which emphasizes connections and separations
between the two notions can be found in [54].

Deniability has been modified for several scenarios. A weaker property called partial denia-
bility [23] holds when the transcripts are only peer-independent. Consider a KE session between
two parties T and C (initiator and responder). If the two parties T and C interact, and one of

10



the two (say, C is the adversary here) tries to prove, right after the interaction, that it was her
interacting with the other party (T ). In other words, partial deniability prevents C to prove
that she has been T ’s peer, but does not prevent her to show that T actually took part in
some KE execution. Partial deniability is weaker than the standard property in that a party
executing a KE session cannot later deny having done so, but still no malicious partner can
provide evidence to be the actual peer. A property related to partial deniability is the so-called
peer-deniability [18].Stronger notions of deniability have been defined, too. Forward deniabil-
ity [22] requires the protocol to be statistical zero-knowledge. Another strong (and somewhat
less intuitive) flavor of deniability, involving an on-line judge which can interact with protocol
participants during the execution, has been introduced in [24].

Deniability in the context of KE [23] allows each participant to deny having shared a session
key with its partner: after the execution, no one (neither the parties involved nor outsiders) can
convince a third party that the protocol execution took place. Indeed, whatever is generated
during an honest interaction could also have been produced efficiently by the adversary herself.
As pointed out in [23], deniability for KE requires not only the entire transcripts, but also the
session keys, to be simulatable.

Finally, let us remark that deniability and untraceability (and also identity hiding) are
incomparable. Deniability covers the issue that an execution took place. In contrast, untrace-
ability, and in a sense also identity hiding, disguises who participated, but it may still not be
possible to generate the communication without this partner.

Our model of Deniable KE. For OPACITY we target only a very basic level of deniability
that we call outsider deniability. Intuitively outsider deniability protects against the external
abuse of transcripts between honest parties. As we will see, O-ZKM does not even achieve this
simple level of protection (even if we do restrict it to not use persistent binding). For O-FS the
picture is not as clear. We can show that with the use of persistence binding our model, and in
fact, any of the above mentioned is not achieved. If we, however, remove persistent binding from
the protocol we can show that O-FS is outsider deniable. We have not investigated whether or
not stronger forms deniability are met by O-FS without persistent binding.

Outsider deniability forbids any outsider, which observes the communication between honest
terminals and cards, to convince a third party (i.e., a judge) that a given card C and a given
terminal T have been involved in a KE session. Note that the third party is not given the
long-term secrets of the alleged card and terminal, that is, it is only given publicly available
data. It is instructive to imagine that two parties T and C execute a KE session in the presence
of an adversary E which merely eavesdrops on the communication. Informally, no message that
the terminal and the card exchange should give E any help in proving to the judge that T and C
have ever interacted. Stated differently, E could produce transcripts of the communication (and
session keys) that ‘look authentic’ herself, even without observing the actual execution. As for
zero knowledge, we formalize that E could produce ‘genuine-looking’ messages (and keys) by
letting an efficient simulator S succeed with the same probability, and require that no efficient
distinguisher A can tell, by looking at either honest transcripts or simulated ones, whether they
are real or not. In our case, since we only consider honest executions, we can simply substitute
E by the transcript of the execution.

The attack model is again identical to that of key secrecy, but for a modified Test-oracle.
A query to Test contains a pair of identities C and T . We assume the existence of a PPT
algorithm S which simulates protocol runs between honest parties. In particular, the simulator
receives public inputs of these parties (that is, the certificates and identities, but not the corre-
sponding secret keys) as well as the parameters passed to the parties, and it needs to emulate
the transcript as well as the the session key. Whenever the adversary invokes Test, depending
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on a random bit b, either a real protocol execution is performed (i.e., an Execute-query) or S
simulates the communication. The resulting transcripts are given to A. Note that this means
that A is passive during the test. The adversary’s goal is to return a prediction b′ of bit b.

We say that a protocol is (outsider) deniable if A wins in the experiment above with prob-
ability not significantly higher than 1/2. In the definition below, the adversary plays the role
of a judge who receives transcripts and has to decide whether they come from a real execution
or they are produced by the simulator.

Definition 2.5 (Outsider Deniability) We call a protocol Π, running for security parameter
λ, (t, qe, qt, ε)-outsider-deniable if no algorithm running in time t and invoking qe instances of Π,
including qt Test-sessions, can win the above experiment with probability greater than 1

2 + ε. We
call the value

∣∣Pr[A wins]− 1
2

∣∣ the advantage of the algorithm A, and we denote the maximum

over all (t, qe, qt)-bounded A by Advdeny
Π (t, qe, qt).

Asymptotically, the protocol is outsider-deniable if every polynomial (in λ) time algorithm has
advantage negligible in λ.

3 The OPACITY Protocols

The OPACITY suite consists of two key-exchange protocols, one called OPACITY with Zero-
Key Management (O-ZKM), the other one called OPACITY with Full Secrecy (O-FS). In the
authors’ words O-ZKM is “a lightweight option best suited to protect contact or contactless
transactions when terminals are not capable of protecting static secrets or supporting a hardware
security module” [60]. O-FS, on the other hand is, again in the words of the authors’:

“optimized for contactless authentication transactions between a Secure Element
and a remote entity, when mutual authentication is necessary or when it is nec-
essary that the identity of the Secure Element or card holder is never revealed to
unauthorized parties. An external third-party without privilege should not be able
to associate the identity of the card holder to a transaction made with the card. Un-
der this mode the protocol protects end-to-end sensitive information that needs to be
transported to or from the Secure Element, and which remains sensitive and valuable
after the transaction or the session is completed. For instance in key management
use cases, when the key material that is communicated must remain protected for
confidentiality at least during the life time of the key.”[60]

Both protocols allow a terminal T and a card C to agree upon session keys skMAC, skEnc, skRMAC

(for command authentication, encryption, and response authentication). Note, however, that
though subsumed under the same protocol suite, the two protocols are nonetheless quite dif-
ferent, the main difference being that O-ZKM has only one-sided authentication, i.e., the card
authenticates to the terminal but not vice versa. In Figure 1 we give a slightly simplified de-
scription of O-FS (i.e., without persistent binding). The full protocols, as well as a line by line
description are given in the appendix on pages 41.

3.1 Protocol Descriptions

Both protocols (O-ZKM and -FS) consist of two rounds, the first one initialized by the terminal.
Our description closely follows the original formulation in the standards. We make, however,
minor changes in notation so as to simplify the diagram and improve legibility. We also change
some variable names to be more compliant to standard cryptographic descriptions of protocols.
A list of variable names, their intended meanings, and a pointer to the original name is given in
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Table 2 on page 16. We give a shortened description of the O-FS protocol, without renegotiation,
in Figure 1.

From a bird’s-eye view the O-FS protocol works as follows. Both the terminal and the
card hold a certified key pair (pkT , skT ) and (pkC , skC), respectively. The protocol works over a
suitable elliptic curve E ; as such, secret keys are the discrete logarithms of the corresponding
public keys (for some generator G). Both parties also generate an ephemeral key pair for each
session, denoted by (epkT , eskT ) and (epkC , eskC). The terminal first transmits its public keys
pkT (encapsulated in the certificate) and epkT , together with a control byte CBT for specifying
different modes and for indicating a renegotiation request. The first Diffie-Hellman key is
computed via the static key pkT of the terminal and the card’s ephemeral key. Analogously,
the second Diffie-Hellman key is derived from the terminal’s ephemeral key epkT and the card’s
long-term key pkC . Both keys are then used in a cascade of two key-derivation steps to derive
the session keys. The card replies with its encrypted certificate (for privacy reasons), a MAC
for authentication, a control byte for renegotiation, and its ephemeral public key. Assuming
both parties are honest, the terminal can decrypt and validate the card’s certificate, validate
the MAC, and compute the session keys, too.

OPACITY-ZKM. The main difference between the ZKM and the FS protocol is that in ZKM
the terminal does not hold a long-term secret. Consequently, during key exchange, only the
card authenticates. To protect the privacy of the card holder the protocol provides for a mode
where the user-specific data from the certificate — the so called GUID— is only sent encrypted.
Whether or not this mode is to be used is specified by the terminal using a bit in its control
byte CBT (RET GUID). In case RET GUID is not set the standard is regrettably ambiguous. We
interpret the standard in the following way. In case RET GUID is not set, the client sends its
certificate in the clear. That is, in line 8 of the protocol description the unchanged certificate is
stored in variable blindID instead of the blinded certificate. This must be the case as in line 45
the terminal extracts GUID from the certificate in case RET GUID is not set. The terminal needs
to know the full certificate in order to validate it.

3.2 Preliminaries

Certificates. OPACITY uses certificates in the card verifiable certificate format (CVC)
which is standardized as part of ISO 7816 — Part 8 [32]. Apart from the owner’s public key
and an identifier for the certification authority, certificates contain application-specific data
which can be used to identify the card holder. In OPACITY, this 128-bit field is called GUID
and identifies the holder of the card. O-ZKM encrypts GUID using AES and the derived session
key. O-FS, on the other hand, encrypts the entire certificate under an intermediate key. The
(outdated) source code uses AES in CBC mode with the constant 0-vector as initialization
vector. In O-FS since the key is derived freshly upon every invocation and only used for a single
encryption, this should not pose a security threat. For O-ZKM, on the other hand, the session
key is used; this might compromise security.

Formally we consider a certification scheme as a signature scheme where the signer is a
certification authority (CA). We denote such a scheme as a tuple (C.KGen,C.Sign,C.Vrf).
The key generation algorithm, executed by a CA, outputs a pair of keys (skCA, pkCA) ←
C.KGen(1λ); given the identifier IDU of a user, plus other information relative to U (to specify:
For sure, a static public key pkU ), the CA embeds U ’s credentials into a certificate certU ←
C.Sign(IDU , pkU , . . . ; skCA). Everybody can validate the certificate certU by checking whether
the algorithm C.Vrf(certU ; pkCA) outputs 1.
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Terminal T (certT , pkT , skT , pkCA) Card C(certC , pkC , skC , pkCA)

1 (eskT , epkT )← KeyGen(1λ)
certT ,epkT ,CBT−−−−−−−−−−−−−−−−−−→

if C.Vrf(certT , pkCA) = 0 abort 2

17 epkC := otID extract IDT , pkT from certT 3

18 validate epkC belongs to domain of E initialize control byte CBC 4

19 Z1 ← DHE (skT , epkC)
20 (k1, k2)← KDF(Z1, len, info(IDT , epkC)) validate pkT belongs to domain of E 5

21 certC ← AES−1
k1

(OpaqueData) (eskC , epkC)← KeyGen(1λ) 6

22 if C.Vrf(certC , pkCA) = 0 abort Z1 ← DHE (eskC , pkT ) 7

23 extract pkC from certC (k1, k2)← KDF (Z1, len, info(IDT , epkC)) 8

24 delete temporary keys Z1, k1 OpaqueData← AESk1 (certC) 9

25 Z← DHE (eskT , pkC) otID := epkC 10

Z← DHE (skC , epkT ) 11

delete temporary keys Z1, k1 12

26

(skcfrm, skMAC, skEnc, skRMAC, nextOtID, nextZ)
← KDF(Z, len, info(

IDT , otID|1..8 , epkT |1..16 , k2
))

(skcfrm, skMAC, skEnc, skRMAC, nextOtID, nextZ)
← KDF(Z, len, info(

IDT , otID|1..8 , epkT |1..16 , k2
))

13

27 delete keys Z, k2, eskT , epkT delete temporary keys Z, k2, eskC , epkC 14

28

check authcrypt =
CMACskcfrm (

"KC 1 V"‖otID|1..8‖IDT ‖epkT |1..16
)

authcrypt← CMACskcfrm (
"KC 1 V"‖otID|1..8‖IDT ‖epkT |1..16
)

15

29 delete skcfrm delete skcfrm 16

OpaqueData, authcrypt, CBC , otID

Figure 1: The shaded parts describe OPACITY with Full Secrecy without persistent binding. The complete
protocol, as well as a line by line description is provided in the appendix on pages 41ff. The unshaded lines
should give a high-level overview of the underlying Diffie-Hellman key exchange.

Other functionalities used by protocols. The protocols use a key-derivation function
KDF as specified in NIST SP 800-56A (§5.8.1) [50], CMAC for message authentication as specified
in NIST SP 800-38B [49] (CMAC is also used as PRF in the key-derivation function) and AES-
128 (no mode specified). As hash function, SHA-256 or SHA-512 are deployed. In the analysis
below we model KDF through a random oracle. The injective function info is defined according
to NIST SP 800-56A and prepares the input to the key-derivation function (it can be thought
of the length-encoded concatenation of its input). The input to info, and therefore to the key-
derivation function, contains the terminal’s identity IDT (not specified in detail, but we assume
that this value is globally unique and also determines the terminal’s certificate certT uniquely)
and usually parts of the ephemeral keys otID = epkC and epkT , like the leftmost 8 or 16 bytes,
otID|1..8 and epkT |1..16, respectively.

Security Parameter. OPACITY specifies 6 parameter sets describing the length of keys
and nonces, block-ciphers, and hash functions. The standard set CS2 recommends to use
SHA-256 as hash function, AES-128 for encryption and MACs, and ECDH-256 for static and
ephemeral keys. Nonces are 16 bytes long. By contrast, the “very strong security” setting (CS6)
uses SHA-512, AES-256, ECDH-512, and 32-byte nonces. In the first case it is claimed that the
resulting channel strength is 128 bits, and for CS6 the channel strength is supposedly 256.

Persistent Binding. Both protocols can be run in a renegotiation mode which gives a slight
performance increase if card and terminal have already successfully exchanged keys. This mode,
called persistent binding, requires both parties to store an intermediate secret value which is
used to compute the new session keys upon renegotiation. For the O-ZKM this saves both sides
a Diffie–Hellman (DH) function evaluation, and for the FS-protocol both sides save two DH-
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evaluations and one AES evaluation. To indicate if persistent binding should be (or has been)
used, the terminal (and resp. the card) sends a control byte CBT (resp. CBC). We use the following
syntax for persistent binding (PB): The variable CBT (PB) returns a boolean value indicating if the
terminal would like to use persistent binding, if possible. The variable CBC(PB) is set by the card
if it has used persistent binding for the current protocol execution. The variable C.supports(PB)
returns a boolean value, indicating whether the card supports persistent binding or not. In case
the terminal does not support PB then it sets CB(PB) = ⊥. To implement persistent binding
both parties have to store certain values in a registry. We denote by PB.contains(v) a boolean
value indicating whether the registry contains an entry under key v or not.

Persistent Binding in O-ZKM. An interesting difference between the two protocols is the
way persistent binding (the renegotiation) is implemented. In the ZKM-protocol the card’s id,
which is defined as the first 8 byte of a hash of the blinded certificate is used to identify the
card for persistent binding. In contrast, the FS-protocol uses a one-time identifier otID which
is generated for the next session together with the current session keys. Using the card’s id has
the disadvantage of making the protocol trivially linkable, as the identity is sent in the clear.

3.3 Related DH Key-Agreement Protocols

We only discuss Diffie-Hellman-based key exchange protocols which are very similar in structure
to OPACITY, i.e., pairwise mix static and ephemeral Diffie-Hellman keys of the partners; other
protocols like (H)MQV [43, 38] or OAKE [63] are structurally further away, despite being also
based on the DH protocol. The following discussion about the difference between OPACITY
and closely related protocols, in particular, also applies to such more distinct protocols.

The underlying Diffie-Hellman key-agreement protocol in OPACITY resembles the struc-
ture of the Key Exchange Algorithm (KEA) [47], designed by the NSA for the FORTEZZA
cryptographic suite. KEA involves two parties A and B holding a static key pair (a, aG) and
(b, bG) respectively, aG and bG being public. The protocol is roughly as follows: A generates an
ephemeral secret key x, computes the corresponding ephemeral public key xG and sends it to B
which, in turn, generates an ephemeral key pair (y, yG) and returns yG to A. Hence, both par-
ties compute ayG, bxG and, eventually, invoke a key-derivation function on input (ayG, bxG) to
derive the session keys. A complete description of the KEA protocol, combined with a security
analysis, is presented in [42]. The authors show a weakness of the scheme and suggest how to
fix it by proposing a new variant KEA+, essentially a modification of KEA which includes the
participants’ identities in the computation of the session keys. A further modification, called
KEA+C, integrates a key-confirmation phase into the protocol. A protocol very similar to
KEA+ has been analyzed cryptographically in [39].

Another closely related approach are the schemes described by ANSI X9.63 [4], called “Uni-
fied Model” (UM) key-agreement protocols. The UM protocols describe several variants to
combine ephemeral and static Diffie-Hellman keys for key exchange. The UM protocols have
been analyzed cryptographically in [44]. Neither of the two OPACITY variants seems to be
subsumable under any member of the UM family, though.

Although sharing a similar skeleton —a DH key-agreement protocol using both static and
ephemeral keys— the analyses of KEA, UM and their variants [42, 39, 44] can only serve as a very
vague starting point for OPACITY; the protocols differ in numerous security-relevant details.
One distinctive property of our analysis here is also that we investigate low-level details more
explicitly. Considering such details makes the evaluation more delicate and complex but, on the
other hand, gives a more concrete perception of the (in)security of the actual protocol. This,
in particular, also concerns the renegotiation step in OPACITY which is neither supported by
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KEA nor by UM. Our analysis for OPACITY also needs to take additional privacy properties
into account. Hence, even if OPACITY resembles the other schemes, the existing analyses
provide rather weak implications for OPACITY’s overall security (if any at all).

Notation OPACITY Format Description
KeyGen Generate ephemeral ECC key pair according to SP800-56A.
IDT IDsH 8 byte Identifier of terminal (part of certT in FS).
IDC IDsICC 8 byte First 8 bytes of hash of blinded card certificate (only used in

ZKM).
certT CH CVC Format Terminal’s certificate in the CVC format (ISO 7816 — Part 8).
certC CICC CVC Format Card’s certificate in the CVC format (ISO 7816 — Part 8).
cert∗C C∗ICC Blinded card’s certificate (with GUID removed).
pkCA QrootH Verification key issued by the CA (to validate certificates).
skT , pkT dsH, QsH SP800-56A Terminal’s static secret and public ECC keys.
skC , pkC dsICC, QsICC SP800-56A Card’s static secret and public ECC keys.
eskT , epkT deH, QeH SP800-56A Terminal’s ephemeral secret and public ECC keys
eskC , epkC deICC, QeICC SP800-56A Card’s ephemeral secret and public ECC keys
OpaqueData OpaqueDataICC AES encryption of certificate or nonce nC
blindID iccID in ZKM Blinded certificate (cert∗C) or card identifier (IDC).
nC NICC 16 byte Nonce
len len 1 byte Length of key material to be generated by KDF as specified in

SP800-56A.
otID OTIDICC 8 byte / epkC One time identifier for persistent binding, or public ephemeral

key of card.
CBT CBH 1 byte Control byte sent by terminal
CBC CBICC 1 byte Control byte sent by card
authcrypt AuthCryptogramICC 16 byte Message Authentication Code, AES-128-CMAC, as specified in

SP800-38B
"KC 1 V" "KC 1 V" 6 byte Predefined message string, value is set to “00 00 00 00 00 00”
k1, k2 K1,K2 16 byte Temporary keys
Z1 Z1 Temporary secret (point on elliptic curve E ) computed during

the FS protocol.
Z Z Shared secret (point on elliptic curve E ) used in KDF to gen-

erate session keys.
DHE EC DH Elliptic curve Diffie–Hellman function (relative to curve E )

specified in SP800-56A

Table 2: Notation used in protocol descriptions (lengths are for Cipher Suite CS2)

4 Security Analysis of O-FS

In the following section we present a security analysis for O-FS. A similar analysis for the
weaker O-ZKM is given in Appendix A.

The concrete security parameters proposed for O-FS can be found in Section 3; however, for
the sake of generality, our analysis features abstract parameters, e.g. instead of the concrete bit
size of the proposed curve E , defined on the field K, we write #E (K) (this is, in fact, the size of
a prime-order subgroup of points). Thus, our analysis formally bounds the success probability
of adversaries for any proposed set of parameters. We also denote the set of nonces nC chosen
by the chip card by N , and its size by |N |, respectively.

We note that the protocol itself is not perfectly correct in the sense that two honest parties
may not derive the same session keys. The reason is that the random values otID, used as entries
in the registry to identify previous connections, may yield collisions in the persistent binding
registry which would disallow the parties to reconnect. However, the likelihood of this event is
in the order of q2

e · 2−`otID for qe executions and `otID-bit values for otID. Hence, for `otID ≥ 128,
as recommended, we may simply neglect such mismatches in our analysis. Nonetheless, it would
be preferable to specify the behavior for this case clearly in the protocol description.
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4.1 Security Assumptions

We prove O-FS secure under the elliptic curve Gap Diffie–Hellman (GDH) assumption [51] (by
default we assume all hard problems are on elliptic curves, omitting to state this explicitly).
Informally, the GDH assumption states that the CDH problem remains hard even when given
access to an oracle DDH(·, ·, ·), which tells whether three group elements form a Diffie–Hellman
tuple or not. More formally, let 〈G〉 be an (additive) group of prime order q and generator
G ∈ E . The GDH problem is (t, Q, ε)-hard in 〈G〉 if any algorithm A running in time t and
making at most Q queries to DDH can, on input 〈G〉, G, sG, tG, for random s, t, compute stG
with probability at most ε. We write AdvGDH(t, Q) for (a bound on) the probability of any
(t, Q)-bounded A solving the GDH problem.

Definition 4.1 (GDH Assumption.) The Gap Diffie–Hellman problem is (t, Q, ε)-hard, in
a group 〈G〉 of prime order q and generator G, if any algorithm A with running time t, which
makes at most Q queries to a DDH oracle, wins the following experiment with probability at
most ε:

pick x, y ∈ Zq
compute Z ← ADDH(·,·,·)(〈G〉, G, xG, yG)
output 1 iff Z = DH(xG, yG)

We use standard cryptographic notation for the other involved primitives. The certification
scheme Cert = (C.KGen,C.Sign,C.Vrf) is modeled as a signature scheme where the signer is a

certification authority (CA); Advforge
Cert (t, Q) denotes the maximal probability of forging a fresh

certificate within t steps and after requesting at most Q certificates. We use AdvIND-CPA
AES (t, Q)

to denote the maximal probability of distinguishing AES ciphertexts (in CBC mode) within
t steps for at most Q challenge ciphertexts (see the remark in Section 3.2 about the actual

encryption mode), and Advforge
CMAC(t, Q) for the maximal probability of forging a CMAC in t

steps after seeing at most Q MACs. Finally, the key-derivation function (KDF) is modeled as
a random oracle.

4.2 Key Secrecy

For the key-secrecy proof we consider sessions as indicated in Section 2, such that the session
id sid for O-FS is set as sid = (otID|1..8, IDT , epkT |1..16); the partner id pid is set to the identity
IDT on the card’s side resp. to the unique card’s identity GUID on the terminal’s side. We
observe that session id’s are usually preferred to comprise the entire communication transcript.
The reason is that, roughly, the more information contained in sid, the “tighter” the binding of
session keys to specific executions. In this sense, our formally more loose (but, according to the
protocol, presumably inevitable) choice for sid’s here ties executions to partners, identified via
parts of the public keys and the ephemeral keys. Indeed, one easy enhancement for the protocol
would be to include the card’s certificate in the key-derivation step, or at least its entire public
key.

The next theorem shows that O-FS is secure as a key agreement protocol, i.e., O-FS pro-
vides key secrecy. We stress that the theorem and its proof cover the full protocol, including
renegotiation.

Theorem 4.2 (Key Secrecy of O-FS) In the random-oracle model, we have

Advake
ΠOFS

(t, qe, qh) ≤ Advforge
Cert (t, qe) +

3qe(2qe + qh)

2min{`k2 ,`Z}

+ 2q2
e ·AdvGDH(t+O(λ · qe log qe), 2qe + qh)

17



where λ denotes the security parameter, t the running time of adversary A, and qe (resp. qh)
the number of executions (resp. queries to the random oracle), and `k2 and `Z denote the bit
lengths of values k2 resp. Z.

Proof. The approach we use to prove security is game-based: we start from GAME0, the original
attack against key secrecy, and gradually turn it into GAME6 via intermediate experiments in
such a way that the probability of winning GAMEi and GAMEi+1 are negligibly close, and, in
last game, the adversary wins with target probability 1/2 exactly.

Description of GAME0. This corresponds to the original attack on the O-FS protocol ΠOFS.

Description of GAME1. This game works as GAME0 but aborts if the adversary successfully
sends to an honest party a valid certificate for a public key that has not been registered with
the certification authority CA before. In particular, this would mean that the adversary must
have forged a certificate for a chosen identity and public key. In that case, this adversary can be
straightforwardly turned into a successful attacker against the underlying certification scheme,
i.e., she outputs a “fresh” certificate which verifies under public key pkCA. This is done by
simulating the key exchange game, knowing all the parties secrets, and playing against the CA.
Thus, we have

Pr[GAME0] ≤ Pr[GAME1] + Advforge
Cert (t, qe).

We next show that the adversary most likely will not make a call to the KDF in the first
invocation (line 8) about the same input as honest cards:

Description of GAME2. This game works as GAME1 but now, if the adversary A makes a
hash query to the KDF for a Diffie–Hellman key Z1 computed by an honest card for a session
without persistent binding in which it receives the identity IDT of an honest terminal in the
first message, we abort the game.

More precisely, the “bad” event leading to abort happens whenever A queries the KDF on
(Z1 = DH(epkT , skC), ∗, info(∗, epkC)) such that there exist an accepting session where certT
with its unique identity IDT points to an honest party. We now show that the probability of
querying the KDF on this value is bounded by the probability of breaking the GDH assumption.
Suppose A queries the KDF for a DH key as defined above: we can turn A into an adversary
AGDH which breaks the GDH assumption. Recall that given (the description of the group
and) two group elements sG, tG, the task of AGDH is to compute stG. Informally, AGDH

uses the following technique. She tries to guess the session Ci (and a partner session Tj) for
i, j ∈ {1, . . . , qe} for which the adversary A queries on the DH key DH(eskC , pkT ). For this card
session Ci, we set the ephemeral public key as epkC = sG, and the long-term public key of the
terminal as pkT = tG. Here we use the fact that the card session involves some certT received
in the first message, which uniquely identifies the honest terminal, its certificate, and its public
key pkT (according to GAME1). In other words we can safely inject the given public key. In
fact, for an adversarially controlled terminal the adversary would otherwise be able to compute
the key Z1.

If the guess of AGDH is correct, at some point A asks the right query (Z1, ∗, info(IDT , epkC)):
AGDH can now invoke the DDH oracle to detect this query, i.e., AGDH can check whether
DDH(sG, tG,Z1) = 1. Finally, AGDH outputs Z1 and stops, winning the game. We do, however,
encounter one problem here: We may need to be able to compute DH keys for other sessions
of the parties we have injected the keys for, i.e., if the adversary invokes a session of the
terminal certT with a malicious card such that the adversary could in principle compute the
DH key easily while AGDH cannot. In order to overcome this we use some “list-based” approach
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basically storing the DH values implicitly through (unordered) pairs {X,Y } and use our DDH
oracle to check if a query about some W is for the “right” key W = DH(X,Y ); if so, we answer
consistently, else we can assign a new random value and store the new entry in the list. Hence,
we actually need two lists, one for queries {X,Y } of honest parties, and one for queries W of the
adversary, and we need to make sure that both lists are consistent all the time. If we succeed in
doing so, then the approach is perfectly aligned to answer hash queries with a random oracle;
it is even more fine grained.

We discuss more rigorously how AGDH simulates a suitable ‘key-exchange environment’ for
A, i.e., the way she answers queries requested by A or by parties monitored by her. Basically,
AGDH simulates all steps of honest parties in A’s attack with an important difference. We let
AGDH store tuples (honest, {S, T}, IDT , epkC , y) for queries (DH(S, T ), ∗, info(IDT , epkC)) made
by honest parties, and use tuples of the form (malicious,Z1, IDT , epkC , y) for adversarially chosen
queries, where y denotes the answer. Note that we use the unordered pair {S, T} as an implicit
representation of DH(S, T ) = DH(T, S) which we cannot compute, but for which we can test
equality with any group element later via the DDH oracle. The simulation in more detail works
as follows.

Answers to A’s queries to KDF. For any tuple (Z1, ∗, ∗), AGDH invokes the DDH oracle on
input (sG, tG,Z1).

- If DDH(sG, tG,Z1) = 1, then AGDH outputs Z1 and halts. In this case AGDH has
already found the DH key and can abort.

- Otherwise, AGDH checks whether the value Z1 has already appeared in previous exe-
cutions of the protocol: if there exist entries
(honest, {X,Y }, IDT , epkC , y) such that DDH(X,Y,Z1) = 1, or
(malicious,Z1, IDT , epkC , y), then AGDH returns y.

- In case no such entries are found, the adversary AGDH picks a random value y, stores
the tuple (malicious,Z1, IDT , epkC , y), and returns y.

Answers to honest parties’ queries to KDF. Whenever an honest party P requests (Z1, ∗, ∗),
we have to distinguish two cases:

- An honest party P asks a query (Z1, ∗, ∗), where Z1 ← DH(X,Y ) such that P knows
either logX or log Y (i.e. values x, y such that X = xG and Y = yG). In other
words, P did not receive one of the injected public (resp. ephemeral) keys sG or
tG, but a complete key pair (x, xG) generated by AGDH. Hence P can compute the
value Z1 itself: it does so and, eventually, makes the oracle-query. Then, adversary
AGDH returns y such that there is an entry (honest, {X,Y }, IDT , epkC , y) where Z1 =
DH(X,Y ), or, otherwise, y is taken from a tuple (malicious,Z1, IDT , epkC , y). IfAGDH

has not already stored such a tuple, a new entry (honest, {X,Y }, IDT , epkC , y) for a
random y is created by her.

- An honest party P is supposed to derive Z1 = DH(S, T ), but it knows neither
s = logS nor t = log T (i.e., P is one of the parties which received injected public
keys sG and tG). In this case, AGDH looks for entries (honest, {S, T}, IDT , epkC , y)
in the list of honest entries; if she finds none, she looks for a malicious entry
(malicious,Z1, IDT , epkC , y) which satisfies DDH(S, T,Z1) = 1. If she finds such an
entry she can again abort prematurely with success. If there are no such entries, she
picks y uniformly at random. Eventually, she returns y. If no successful query has
been requested then, when A outputs her verdict b, then AGDH returns failure and
stops.
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Now, we have to rely on the adversary Amaking her successful query in session Ci with our guess
of partner Tj . This happens with probability at least 1/q2

e because A’s view is independent of
the choice of i and j. In that case, AGDH successfully locates and outputs the DH value of the
GDH challenge. Furthermore, the simulation is otherwise faithful and AGDH can, for example,
answer Reveal queries with help of the simulated random oracle.

The running time of AGDH is t + O(λ · qe log qe) due to maintaining the oracle-queries list
for entries of assumed size O(λ), and she makes at most 2qe + qh queries to the DDH oracle.
Hence, we have

Pr[GAME1] ≤ Pr[GAME2] + q2
e ·AdvGDH(t+O(λ · qe log qe), 2qe + qh).

The next game extends the argument to the second KDF call (line 13), but now also including
the case of persistent binding being used.

Description of GAME3. This game works as GAME2 but now, if the adversary A makes a
hash query to the KDF for a Diffie–Hellman key Z and k2 computed by an honest card, for a
session in which it receives the identity IDT of an honest terminal in the first message, we abort
the game.

According to the previous game, the adversary never queries the first KDF (in a session
without persistent binding) about the input Z1. Hence, fromA’s point of view the part k2 in such
an execution is basically an unknown value (noting that the k1 part which is used to compute
the ciphertext is independent). The only information the adversary has about k2 are random
oracle values derived from it, e.g., through a Reveal query to the card to obtain the session keys,
but unless the adversary “accidentally” finds k2 by querying the random oracle about the entire
pre-image involving k2 —which is even harder than merely finding k2 — the value remains
unknown to A. Taking into account the at most 2qe distinct queries of honest parties to the
random oracle, conservatively assuming that A knows these values, the probability of finding
the pre-image including the random `k2-bit value k2 is at most (2qe + qh) · 2−`k2 . Summing over
all at most qe values for k2 appearing in executions of honest cards yields that the probability
of A querying the random oracle about some k2 value, is at most qe(2qe + qh) · 2−`k2 .

The same line of reasoning now applies to the value nextZ in such executions, inductively
for all subsequent renegotiation runs. The probability of the adversary asking the `Z-bit value
nextZ is bounded above by qe(2qe + qh) · 2−`Z . In summary we thus have

Pr[GAME2] ≤ Pr[GAME3] +
2qe(2qe + qh)

2min{`k2 ,`Z}
.

Next we turn to the case of honest terminals. Note that the situation is slightly different than
in case of an honest card, because the adversary can in principle send an ephemeral key epkC
for which it knows the secret key and can thus compute Z1 and query the KDF in the first
invocation. This has not been possible for the terminal’s certified public key in the previous
games; it concretely shows up in the reduction to the Gap Diffie-Hellman problem where we
injected the given key as pkT into the simulation. However, we can still conclude that the input
to the second key derivation step cannot be computed by the adversary.

Description of GAME4. This game works as GAME3 but now we abort the game, if the
adversary A makes a hash query to the KDF for a Diffie–Hellman key Z computed by an honest
terminal for a session without persistent binding in which it receives a valid certificate certC for
user GUID of an honest card.

The reduction to the GDH problem follows as in the case of GAME2:

Pr[GAME3] ≤ Pr[GAME4] + q2
e ·AdvGDH(t+O(λ · qe log qe), 2qe + qh).

20



The next game also covers the case of a renegotiation step:

Description of GAME5. This game works as GAME4 but now, if the adversary A makes a
hash query to the KDF for a value Z computed by an honest terminal for a session in which
it received (or recovered from the registry) user identity GUID of an honest card, we abort the
game.

If persistent binding is not used then the claim follows from the previous game. Else, it
inductively follows as in GAME3 that the adversary queries the random oracle about Z with
probability at most qe(2qe + qh) · 2−`Z :

Pr[GAME4] ≤ Pr[GAME5] +
qe(2qe + qh)

2`Z
.

We have reached the point where no adversary queries the pair Z and k2 derived in a session
of an honest party with a partner identity of an honest party. We note that adversarially
controlled partners for the tested session are ruled out by definition, and unregistered identities
cannot occur in test sessions according to GAME1. However, this still does not necessarily
yield a secure key exchange protocol, since instead of computing the session keys, an adversary
could enforce the same input to the final KDF function with identical pair Z and value k2 in
another execution with an honest party. Then, if another honest session yielded the same input,
a Reveal-query for this session would clearly help the adversary to distinguish the tested session
key from random. We next argue why this event cannot happen. To this end recall that such
a Reveal-query must be for an unpartnered session, i.e., with a different session id sid.

Description of GAME6. This game works as GAME5, but aborts if there are two honest
parties with both accepting sessions yielding identical input to the final KDF but which are not
partnered.

Note that sid = (otID|1..8, IDT , epkT |1..16) and that the function info is injective. Hence, the
data from session identifiers enters the second KDF evaluation (for both new and renegotiation
steps) such that distinct sid’s for unpartnered sessions yield distinct input to the KDF. Hence,
any call to KDF by another honest unpartnered party is for a different input than in the test
session. Put differently, the derived key in a tested session is independent from keys derived by
other (unpartnered) parties.

Pr[GAME5] ≤ Pr[GAME6].

Thus, we have eventually reached a game where the adversary can merely guess the secret
bit b because no unpartnered sessions have the same KDF input and the adversary never
queries the KDF function on the same input as an honest party does in a fresh session. Hence,
Pr[GAME6] ≤ 1

2 . Summing up all probabilities for game transitions yields the claim for the
original attack in GAME0. �

Note that key secrecy does not rely on the security of the authenticated encryption (which
only enters the impersonation resistance proof), nor the secrecy of the certificate (which is only
used for privacy). At the same time neither step does harm to key secrecy.

(Weak) Forward Secrecy. Next, we investigate the (weak) forward secrecy of the O-FS
protocol, where we allow the Test-oracle to be queried on (w)fsec-fresh sessions. We start
with weak forward secrecy. Here, party corruptions are allowed only after the (fresh) test
session ended in an accepting state. So, even if the long-term secrets and internal states of one
participant leaks, any previous session keys are still confidential.
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Learning the long-term key of only one party is now no longer sufficient to break key secrecy.
More precisely, terminal corruptions enables one to emulate the terminal’s behavior and compute
the intermediate secret Z1. However, the value Z remains unknown and querying the random
oracle on Z still reduces to the GDH problem. Analogously, learning the card’s long-term secret
skC can be used to find Z, but Z1 (and hence, k2) still look random to the adversary.

The internal state of each party consists of the values nextZ and nextOtID, needed in per-
sistent binding. These values, together with the session keys for this particular execution, are
obtained by calling the KDF on previously computed values Z and k2. Since Z and resp. k2

are computed from fresh ephemeral secrets, resp. sampled randomly, this preimage remains un-
known to the adversary. Thus, she cannot recompute the hash value so as to learn the session
key for the fresh instance queried to the Test-oracle. In the random oracle model, these session
keys remain private.

Note that the notion wfsec-freshness only allows for the corruption of one participant—more
precisely, the party whom the session belongs to—of the execution. Thus O-FS provides weak
forward secrecy. Yet, we cannot prove forward secrecy for O-FS. In fact, an adversary knowing
the state of a party, in particular the persistent binding table, can compute the session key by
looking up the correct partner and corresponding nextZ and transcript generated by an instance
through an Execute-query. In other words, if persistent binding is used, no ephemeral or long-
term secrets are used in computing the session key, but rather a persistent binding table entry.
Clearly, this cannot achieve forward secrecy.

On Further Desirable Security Properties. According the resistance against Key-
Compromise Impersonation (KCI) attacks we observe the following. Let us consider first the
case where a terminal obtains the long-term secret of a chip card, i.e., skC . This secret is used
to compute the value Z on the card’s side. However, it only requires ephemeral secrets of the
terminal to compute this value, and thus, it does not help the terminal to authenticate and, in
particular, to compute or obtain the input k2 to the KDF. The same arguments hold for the
opposite case. The knowledge of a terminal’s long-term secret skT is used to compute Z1 which
a card can compute by its ephemeral secrets. The intermediate secret Z remains unknown to
the card. The card would need to forge a MAC to authenticate and still would not be able to
distinguish the session key from random.

On possession of both ephemeral secret keys eskC and eskT an adversary can compute both
intermediate secrets Z1 and Z. Hence, O-FS does not provide security against leakage of internal
randomness.

4.3 Impersonation Resistance

In this section we show that O-FS achieves impersonation resistance. Recall that this means
that a malicious card cannot make an honest terminal accept, unless it is a pure relay attack
and there is a card session with the same sid.

Theorem 4.3 (Impersonation Resistance of O-FS) In the random-oracle model, we have

Advir
ΠOFS

(t, qe, qh) ≤ 2qe ·Advforge
CMAC(t+O(λ · qe log qe), 0)

+ 4qe ·Advake
ΠOFS

(t, qe, qh)

where λ denotes the security parameter, t the running time of adversary A, and qe (resp. qh)
the number of executions (resp. queries to the random oracle).

The proof follows (almost) directly from the key secrecy proof, noting that in order to be
able to impersonate one would need to compute a MAC for the secure key skcfrm.

22



Proof. The proof is straightforward given the key secrecy of the scheme, together with the
property that the card computes a message authentication code over the (encrypted) certificate.
Assume that the adversary mounts an impersonation attack and that there exists a session sid
for which the honest terminal decrypts, accepts the MAC and the certificate. Then we show
how to break key secrecy as follows: Initially guess one of the at most qe executions and when
the terminal in this execution receives the card’s message, then call the Test-oracle to receive
either the session key or a random string. Here we slightly abuse notation and assume that
our adversary also receives skcfrm or a random key, in addition to the other key components;
by symmetry to the other keys this does not violate key secrecy in this case here. Next try
to decrypt the card’s certificate, to verify the MAC and the certificate. If this succeeds then
output b′ = 0, else return a random bit b′.

Note that the proof of key secrecy actually shows that the terminal rejects any invalid or
not issued certificate; this is already covered by the bound for key secrecy. This also holds for
collisions among session keys among unpartnered sessions. Both properties are also necessary
for key secrecy and thus are taken care of by the key-secrecy advantage. Also observe that the
adversary against impersonation resistance does not make Test-queries, hence our adversary
makes at most one Test-query. Furthermore, the terminal has not been corrupted at that point,
and there is no partnered card. Hence, the terminal’s session is fresh, and disclosing skcfrm (or a
random key) cannot help to break key secrecy because this key has not been used intentionally
by an honest party yet; it may of course be the case that an independent input to the key
derivation function yields the same output, but this is irrelevant for the analysis (because it
is already covered by the MAC unforgeability that another randomly chosen key matches the
attacked key).

Given that the impersonation adversary is successful with non-negligible probability, we
would hence guess the “right” execution with probability 1/qe. In this case, we would predict
b correctly with non-negligible probability: If b = 0 then our prediction b′ is correct; if b = 1
then we can only accept if the MAC verifies under the independent random key output in the
Test-query. The probability here is bounded by the probability of forging a MAC in a key-only
attack. The latter is negligible by assumption. In any other case we guess b correctly with
probability 1

2 .
Overall, the success probability for predicting b is given by at least

1
2 + 1

2qe
·Advir

ΠOFS
(t, qe, qh) given b = 0

1
2 −Advforge

CMAC(t+O(λ · qe log qe), 2qe + qh), 0) given b = 1.

Rearranging the equations this yields in the claimed advantage. Namely,

Prob
[
b = b′

]
− 1

2 = 1
2 · Prob

[
b = b′

∣∣ b = 0
]

+ 1
2 · Prob

[
b = b′

∣∣ b = 1
]
− 1

2

≥ 1
4qe
·Advir

ΠOFS
(t, qe, qh)− 1

2 ·Advforge
CMAC(t+O(λ · qe log qe), 2qe + qh), 0),

and observing that Prob[ b = b′]− 1
2 ≤ Advake

ΠOFS
(t, qe, qh), we get the desired bound. �

4.4 Privacy

4.4.1 Untraceability

It is easy to see that the fully-fledged O-FS protocol (with renegotiation, a.k.a., persistent bind-
ing) is not untraceable: this is because the control byte reveals some information about the
internal state of the card trying to authenticate. Persistent binding also allows other attacks,
such as denial-of-service (DoS) or desynchronization attacks. Essentially, the adversary can
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ensure that a targeted card stores persistent-binding information for a particular (honest) ter-
minal, while the terminal does not store the same information; in the next honest session run
between them, the parties are desynchronized and thus the card will not authenticate. Indeed,
let an adversary A first run Execute for a card C0 and a terminal T (thus initializing persistent
binding for this card in the next session). Then A forwards T , C0, and another card C1 to the
Test-oracle. Then the adversary observes the honest control byte CBCb output by the challenge
card in its execution with the honest terminal T : if CBCb denotes that persistent binding is used,
then A guesses b = 0; else, she sets b = 1. In practice this attack models an adversary able to
tell whether a card was identified by a specific terminal before or it is a new user.

A different attack, frequent in authentication scenarios, is a denial-of-service (DoS) attack,
where the adversary first runs a Man-in-the-Middle interaction between an honest terminal T
and an honest card C0. Now A forwards the terminal’s first message to the card; eventually C0

generates the keys and stores the identity of T and the persistent binding data in its memory.
Then the card sends its message to the terminal, including the control byte CBC , which denotes
that the card has used persistent binding. The adversary either flips this bit or simply drops
the message, making the terminal reject and, in particular, not compute the value nextZ. Now
A runs the Test-query for the same terminal T , the card C0, and a new card C1. When an
honest execution is run between T and the challenge card, if this is card C0, then it generates
a random value of OpaqueData, which will be rejected by the terminal, whereas card C1 will be
accepted by the terminal. The adversary guesses bit b accordingly.

In practice the attacks, though perfectly valid, have their limitations. In particular, an
adversary can recognize a desynchronized card only once and only when the card approaches
a terminal it has already visited. The desynchronization is not permanent, as the card and
terminal can simply run their key agreement from scratch (rather than use persistent binding).
Further note that if we do not consider persistent binding, then O-FS achieves untraceability
(this follows essentially as for deniability, see Section 4.5).

4.4.2 Identity Hiding

Though O-FS does not attain untraceability, it does, nevertheless, provide identity hiding. This
holds as long as we assume that the unspecified mode of encryption of certC with AES is secure
(see our remark in Section 3.2).

Theorem 4.4 (Identity-Hiding in O-FS) In the random-oracle model, we have

Advid-hide
ΠOFS

(t, qe, qt, qh) ≤ 1

2
+ Advforge

Cert (t, qe) +
2qt(2qt + qh)

2`k2

+ q2
e ·AdvGDH(t+O(λ · qe log qe), 2qe + qh)

+
qeqt

#E (K)
+ qt ·AdvIND-CPA

AES (t+O(qt)) .

where λ denotes the security parameter, t the running time of the adversary, and qe (resp. qt, qh)
the number of executions (resp. Test-sessions and queries to the random oracle).

Proof. Very roughly, we need to show that no information about the certificate of card C∗ is
leaked. One potential threat in this regard is the encrypted transmission of the certificate under
key k1. But the adversary may also be able to deduce something about the certificate from the
other data sent by the card, e.g., through the authentication data which depends on the card’s
public key which, in turn, is linked to the certificate and its identity.

We can re-use the proof for key secrecy to a large extend, applying the same initial game
hops. The essential difference, however, is that it now no longer matters if the key sessions
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leak or not: indeed, the identity hiding game must hide the assignment of certificates to cards,
rather than the derived session keys. From a more technical point of view, we no longer have
the concept of freshness, and Reveal queries can be made at arbitrary times.

We first give a sketch of the first part of the proof re-using the steps for key secrecy. The
original game GAME0 is the identity-hiding game. In a first game hop, in GAME1 we exclude
the possibility that an adversary forges a certificate for a valid terminal (this is identical to
the first game hop for the key-secrecy proof), and we lose a term equal to the advantage of a
forger against the certification scheme. In the second game hop, GAME2 is lost if the adversary
queries the same input Z1 to the random oracle used by the honest test card, in a test session
without persistent binding (again, this game hop is identical as the transition to GAME2 in the
key secrecy proof). We lose a term q2

e ·AdvGDH(t+O(λ · qe log qe), 2qe + qh). At this point, we
can argue that k1 and k2 are independent random strings.

The next game hop is again similar to the key-secrecy proof: in GAME3 we abort the game
if the adversary makes a hash query for values Z and k2 computed by the honest test card.
As in the key-secrecy proof, this part is not dependent on whether persistent binding is used,
the argument running as before. There is, however, a small modification. In the key-secrecy
proof, we must account for an adversary guessing the value of nextZ, in case persistent binding
is used. This was a crucial step in the key-secrecy proof, as it enabled to compute session
keys for persistent binding. However, in identity-hiding, it is immaterial whether the adversary
can compute the session key for a future session. Indeed, if persistent binding is used, then
the string OpaqueData is random, thus revealing no information about the certificate, and no
further computations using the secret or public keys of the card are made in generating authcrypt
(which always verifies, since the test card is honest). Thus, we only lose a factor 2qt(2qt+qh)

2
`k2

in

the reduction.
At this point, our proof diverges from the key-secrecy proof, since our focus here is not to

hide the session keys, but rather to hide the certificate of the test card. We describe the next
games in more detail.

Description of GAME4. This game is equivalent to the previous game, except that the
honest terminals and the test card C∗b use an independent and randomly chosen skcfrm for any
session in which the KDF was queried on some honest input (Z, k2) which appears in any of
the qt test sessions. More specifically, if such a query was made, all honest parties making the
query change the key to the same random confirmation key. This ensures that the test cards
use random confirmation keys (not depending on the certificates), and thus the string authcrypt
reveals no information about the certificate. Crucially, note that terminals also use the same
random key for the sessions where they are partnered with the honest test card. This ensures
that the terminal always verifies authcrypt for a tested card, making this game indistinguishable
from GAME3. Note that at this point, the adversary’s view is inconsistent with the outputs of
the random oracle; however, the adversary never queries the random oracle on inputs (Z, k2)
used in test sessions (by GAME3). We lose no security in this game hop.

Description of GAME5. This game is identical to the previous game, except that we abort
and declare the adversary to lose if any honest card chooses the same value epkC as the value
chosen by the test card in any of the qt test sessions. The reason is that we would like the keys
k1 used by the cards in the test sessions to be independent: so far, we have only proved that
they are unknown to the adversary. Indeed, in the next game we will use a similar technique as
in GAME4 to argue that k1 can be changed to a value chosen uniformly and independently at
random. The probability of a collision among the keys epkC appearing in one of the qe executions
and one of qt test executions is at most qeqt · 1

#E (K) . If no collision occurs, then since info is
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injective, all test sessions evaluate the KDF on distinct inputs (Z1, len, info(IDT , epkC)). Thus,

Pr[GAME4] ≤ Pr[GAME5] +
qeqt

#E (K)
.

Description of GAME6. At this point, we replace by independent random values, all the
values of k1 computed by partnered honest terminals and the test card C∗, in any session in
which the KDF was queried on some honest input (Z1, len, info(IDT , epkC)) appearing in any of
the qt test sessions. This can be done without loss of security: the fact that k1 is essentially
random to the adversary is guaranteed after GAME2, while GAME5 ensures that all the outputs
for distinct values (Z1, len, info(IDT , epkC)) in the test sessions are independent. As in GAME4

we have no security loss.

Description of GAME7. Finally in this game hop, the test card always encrypts certificate
cert∗0. We reduce a successful adversary distinguishing GAME6 to GAME7 to a multi-IND-
CPA game, where each instance of the IND-CPA game is initialized with a value of k which is
independent and chosen at random (this indeed fits our situation, since GAME6 guarantees that
all the computed k1 values are independent). By a hybrid argument, we can show that for every
adversary A playing a multi-IND-CPA game running in time tA with qt sessions there exists an
adversary B playing the single-instance IND-CPA game running in time tB = tA +O(qt), such
that it holds that: Advmulti-IND-CPA

AES (t, qt) ≤ qt ·AdvIND-CPA
AES (t + O(qt)). In particular, we can

write:
Pr[GAME6] ≤ Pr[GAME7] + qt ·AdvIND-CPA

AES (t+O(qt)).

At this point the adversary cannot distinguish between the use of cert∗0 (for b = 0) and cert∗1
(for b = 1) with better-than-guessing probability, because in both cases cert∗0 is encrypted now.
Thus,

Pr[GAME7] ≤ 1

2
.

This complete the proof of identity hiding. �

4.5 Deniability of O-FS

The theorem below shows that O-FS satisfies outsider deniability, but only in the restricted
scenario which does not allow renegotiation.

Theorem 4.5 (Deniability of O-FS) In the standard model, O-FS without persistent bind-
ing is outsider-deniable.

In the following proof, we assume that parties’ certificates are stored in a public list. This
implicitly gives the simulator (and the adversary as well) access to static public keys. As the
result holds for O-FS without persistent binding, we let each user ignore the control byte sent
by its peer. Observe that the protocol is designed in a way that makes the terminal neglect its
own requests (to use the PB mode) whenever the card refuses to do so. Having this scenario
in mind, we can assume wlog. that a terminal always demands to renegotiate while the card
always declines.

Proof. Intuitively, the reason why the protocol’s transcripts are simulatable is that each message
is either computable without knowledge of any long-term secret or indistinguishable from values
randomly chosen from a suitable space.

Consider two honest users T and C. We need to describe how the simulator computes mes-
sages indistinguishable from honest transcripts. In O-FS, the messages sent from the terminal
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are (i) its certificate certT , (ii) an ephemeral public key epkT and (iii) its control byte CBT .
From the card side, we have (iv) otID, (v) OpaqueData, (vi) authcrypt and (vii) the control byte
of the card CBC . In addition, (viii) the session keys must be simulatable. As discussed above,
we assume that the terminal asks for renegotiation, but the card does not allow. This indeed
eases the simulator’s computation, as it can simply set the control bytes of terminal and card
CBT and CBC accordingly.

In the simulator’s description which follows we denote values that S computes by adding ?

in superscript. This allows to explicitly distinguish simulated values from “real” values.

Simulator S(IDT , IDC):
1. Set CB?T and CB?C ;
2. Obtain certificates certT , certC ;
3. Generate ephemeral keys for the terminal (esk?T , epk

?
T )← KeyGen(1λ);

4. Generate ephemeral keys for the card (esk?C , epk
?
C)← KeyGen(1λ);

5. Extract long-term public key pkT from certT .
6. Compute Z?1 ← DHE (esk?C , pkT );
7. Compute intermediate keys (k?1, k

?
2)← KDF (Z?1, len, info(IDT , epk

?
C));

8. Compute encrypted value OpaqueData? ← AESk?1(certC) and set otID? := epk?C ;

9. Compute Z? ← DHE (esk?T , pkC);
10. Compute values sk?cfrm, sk

?
MAC, sk

?
Enc, sk

?
RMAC by invoking

KDF(Z?, len, info(IDT , otID
?
|1..8 , epk

?
T |1..16, k

?
2));

11. Compute tag authcrypt? ← CMACsk?cfrm
("KC 1 V"‖otID?|1..8‖IDT ‖epk

?
T |1..16);

12. Return (certT , epk
?
T , CB

?
T ) as the terminal’s output, (OpaqueData?, authcrypt?, CB?C , otID

?)
for the card’s, and session keys (sk?MAC, sk

?
Enc, sk

?
RMAC).

Observe that the simulator computes messages exactly as the terminal and the card would
except for the shared secret Z?. In the actual protocol, the card honestly obtains Z by using
the terminal’s ephemeral public key pkT and its own secret key eskC . Since the simulator does
not know the card’s secret key (fixed in the KE experiment), but does know ephemeral keys
of both card and terminal (it can choose these values itself), it can compute ‘the right value’
DHE (pkC , esk

?
T ) = DHE (skC , epk

?
T ). The only difference between real and simulated executions

is that, in the latter, the simulator picks fresh ephemeral keys: all the other values are derived
‘honestly’ from public values and these keys. Since ephemeral keys are freshly chosen at random
for any new execution and not given to the adversary, she has no way to check whether they
come from a real execution or from a simulation of it. �

The proof can be read by observing that an outsider, being restricted not to interfere with
the parties involved in a KE execution, does not have enough information to convince a third
party that the protocol execution between two given users T and C actually took place. She
could indeed have produced fake (yet authentic-looking) transcripts by herself. Note, however,
that the simplicity of the argument above is due to the weakness of the notion of deniability
against outsiders.

Salvaging Untraceability. We have already shown how the use of persistent binding
makes cards traceable. A natural question is whether neglecting the renegotiation mode could,
as in the case of deniability, overcome the problem. Concerning O-FS without persistent bind-
ing, we observe that untraceability does hold and, moreover, it follows almost immediately from
the fact that the protocol is outsider-deniable.

We stress again that, in general, the notion of untraceability is not implied by deniabil-
ity. However, in the case of O-FS with no renegotiation, untraceability follows from the above
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proof of outsider deniability. By looking at the protocol transcripts, an adversary cannot learn
whether the transcript was simulated or generated honestly. Furthermore, two simulated runs
of the protocol involving the same terminal T but two different cards C0 and C1 are indistin-
guishable. Indeed, the only message that could partially reveal information regarding which
one of the two cards is running the protocol is the encryption of the card’s certificate. On
the other hand, as a ciphertext hides the content of its underlying plaintext, it should be hard
to distinguish encryptions of certC0 and certC1 , thus simulated transcripts involving a given
terminal T and either C0 or C1 look almost the same. Hence, it follows from deniability that
also the corresponding honest executions between T and C0, or T and C1, are indistinguishable:
〈T , C0〉 ≈ S(T , C0) ≈ S(T , C1) ≈ 〈T , C1〉, as untraceability requires.

5 Security of the Channel Protocol

Here we discuss briefly the security of the secure messaging (used both in ZKM and FS) and of
the composition of the channel with the key agreement step.

Secure Messaging. Once the keys are generated the parties use them to secure the com-
munication. The description [30] proposes two modes, one for command and response MACs
without confidentiality (using keys skMAC and skRMAC, respectively), and the other one for en-
crypted data transfer under the key skEnc used by both parties. If only authenticity is required,
then the data is secured according to ISO 7816-4 [31]; in case encryption is used the protocol
basically follows the encrypt-then-MAC approach, first encrypting the payload.

Alarmingly, according to the standard [30], the terminal can ask the card via the control
byte to only create a single key skEnc = skRMAC = skMAC, operating in a special mode (ONE SK).
Sharing the key among different primitives usually needs a cautionary treatment. It remains
unclear why OPACITY implements this mode, but it does not seem to be recommendable from
a pure security perspective. In what follows we assume that independent keys are used instead.

Encryption for the encrypt-then-MAC approach in the secure messaging is not further spec-
ified in [30]. The (outdated) implementation relies on AES encryption with a prepended, fixed-
length session counter. The counter is implemented as a type short which usually limits the
range to two bytes. The parties’ counter values seem to be synchronized, yet the recipient seems
to increment the counter before the MAC is actually verified and does not perform any check
on the counter value himself (beyond the verification through the MAC). The message to be
encrypted is first padded.

For authentication the parties first pad the message (or ciphertext) according to ISO 7816-4,
basically prepending a MAC chaining value of 16 bytes before computing an AES-based CMAC
[8, 34] according to SP 800-38B [49]. Only the first 8 bytes of the output are attached as the
authentication code. Yet, the full 16 bytes are stored locally and used as the MAC chaining
value for the next computation. Interestingly, while the approach is perfectly compliant with
ISO 7816-4, the standard SP 800-38B actually suggests to use sequence numbers, time stamps,
or nonces for protecting against replay attacks [49]. Potentially, the session counter used for
encryption could have been used here. Also note that command MACs and response MACs are
treated slightly differently, in addition to using different keys, but nonetheless follow the same
pattern outlined here.

We omit a formal analysis of secure messaging which, except for the single-key mode, follows
the common cryptographic approaches. It would be nonetheless interesting to provide such an
analysis, taking into account recent attacks and models for such steps [37, 2, 55, 56]. However,
it is beyond our scope here.
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Composition. Clearly, a secure key-exchange protocol and secure messaging on their own
may not be enough to ensure the security of the composed protocol. Several approaches exist to
bridge this gap, ranging from monolithic analysis of the composed protocol, to general-purpose
compositional frameworks like Canetti’s Universal Composition (UC) model [15]. The latter has
been successfully applied to analyze and construct securely composable key-exchange protocols
[16]. However, security of key exchange in the UC model (and comparable simulation-based
frameworks [40]) already imposes strong requirements on the protocols which are hard to meet.

Recent attempts by Brzuska et al. [14, 12] aim to provide compositional guarantees for game-
based notions of key exchange, in particular, for BR-secure protocols. Roughly, they show that if
the key exchange protocol is BR-secure and provides a property called public session matching,
then the derived keys securely replaces fresh random keys in any symmetric-key protocol. The
public session matching here allows one at any point to identify sessions which agree on the
same key, given the public but adversarial controlled network communication of all concurrently
executed protocol runs. Brzuska et al. [14] discuss a counter example where the adversary can
re-randomize the encrypted transmissions internally such that matching becomes infeasible.

For O-FS we can deduce from our result about BR security and assuming secure messaging,
that the composition of the two steps is also secure if public session matching holds. This
property is given here because one can match outgoing messages of the terminal with ingoing
messages to the card directly (i.e., certT , epkT are sent in clear), and vice versa the card’s
message contains the ”unique identifier“ authcrypt which the adversary cannot change (e.g., re-
randomize) when delivering to the terminal, without making the terminal reject. Hence, public
session matching holds and, assuming secure messaging, therefore security of the composed
protocol in the sense of [14] also holds.

For O-ZKM the protocol cannot be shown to be BR-secure, because the derived encryption
key skEnc is already used in the key exchange step to encrypt the GUID. Hence, the composition
result in [14] does not apply. In principle, using a concurrent work of Brzuska et al. [12] one could
argue about the security of the composed protocol in such cases. Since we do not recommend
the use O-ZKM in the first place we omit such an analysis.

6 Conclusion

Our analysis reveals that, from a cryptographic point of view, O-FS achieves a decent level of
key secrecy, but has clear restrictions on privacy guarantees. For one, privacy could be improved
by also encrypting the card’s control byte CBC for persistent binding, hiding the fact if the card
has been used in connection with that terminal before. Whereas the situation for O-FS is
arguable, we do not recommend O-ZKM for deployment. This is due to its rather weak security
guarantees for (terminal) authentication and the weaker form of identity hiding.

Our analysis also shows common problems in making precise security claims about real
protocols. Like with every cryptographic (or scientific) model we have to abstract out some
details. This can be an impediment in particular in view of the fact that the protocol can operate
in various modes, e.g., for compatibility reasons. This complexity is the cryptographer’s enemy,
discussing all possibilities is often beyond a reasonable approach. However, omitting some of
these modes is dangerous, as they often admit back doors for attackers. There are some potential
back doors for OPACITY as well, e.g., the single-key mode ONE SK for secure messaging. This
is magnified by the fact that OPACITY is not fully specified with respect to all relevant details
(e.g., which encryption mode is used for OpaqueData). Also, the binding of sessions to their
keys is rather loose as merely a partial transcript of the execution enters the key derivation
resp. message authentication. In this sense, it should be understood that our (partly positive)
cryptographic analysis has its inherent limitations.
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A Security Analysis of O-ZKM

A.1 Ambiguities in the O-ZKM Standard

Before discussing the security guarantees provided by O-ZKM we need to remark on two prob-
lems due to ambiguous descriptions, or misspecification, in the standard. The first problem
occurs in line 45 (see the protocol description on page 42) where the terminal supposedly should
recover the card’s identity GUID from the certificate. However, in case persistent binding is not
used, the card always sends the blinded certificate (i.e., with GUID removed) and hence GUID
cannot be recovered given the blinded certificate cert∗C only. If, on the other hand, persistent
binding is used, then the card only sends the first 8 bytes of the hash value of its blinded cer-
tificate, i.e., HASH(cert∗C)|1..8 and, thus, again there is no way for the terminal to recover the
card’s GUID. As value GUID is, surprisingly, never used by the terminal anyways, we simply
treat line 45 as non-existent.

The second, more dangerous problem is in line 46 where the terminal supposedly validates
the card’s certificate. The issue is that, at this point, the terminal may not have computed the
certificate. In case persistent binding is used, the card only transmits the truncated hash of its
blinded certificate and, thus, the terminal can in no way recover the corresponding certificate.
On the other hand, in case persistent binding is not used, only the blinded certificate is sent to
the terminal: to recover the certificate, the terminal is dependent on the card sending its GUID
(encrypted) in addition to the blinded certificate. A malicious card may, however, not always
do this. A cheap fix to this problem might be to not check certificates in the persistent binding
branch and to treat the incapability of the terminal to recover the certificate as evidence that
the certificate is invalid, in case persistent binding is not used. Yet, the problem is not as readily
fixable as will become apparent given the following attack.

Consider the protocol with the two fixes as described above. Then a malicious card can
mount the following attack to authenticate towards an honest terminal. First, it chooses a key
pair skC , pkC and generates an (invalid) certificate containing its public key pkC . It then engages
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a terminal in a first authentication session, which will eventually reject as the certificate is
invalid. However, during the process, the terminal’s computation includes a value nextZ which
can also be computed by the malicious card. Furthermore, the terminal stores the value in its
persistent binding registry taking the hash of the fake certificate as look-up key. Thus, in a
second session with the same terminal, the card can now authenticate using persistent binding
as its certificate won’t be checked anymore.

To circumvent the just described attack we assume the following fix. In case of persistent
binding, we assume that no certificate is validated. Otherwise, if persistent binding is not used
and the terminal cannot validate the certificate (due either to its invalidity or to the terminal
not being able to recover the certificate) we assume that the terminal removes the previously
added entry from its persistent binding registry. Note also that this prevents a trivial “flooding”
attack where a malicious card injects invalid entries into the terminal’s registry.

In any case, the ambiguities with respect to the description of O-ZKM are alarming, as this
may lead to flawed implementations. The following (already weak) security guarantees should
thus only be taken with another grain of salt.

A.2 Key Secrecy

In this section, we analyze the security of O-ZKM as an authenticated key agreement. Unfortu-
nately, we cannot show security with respect to the BR model as described in Section 2. This
is due to the fact that here only the chip card authenticates during a protocol execution: as
terminals are not required to authenticate, they have no assigned secrets. These kind of proto-
cols are also called one-way authenticated key agreement protocols. To our knowledge, there is
only one security model considering one-way authentication due to Goldberg et al. [28], while
few others are tailor-made for the respective analyzed protocols (e.g., [27] for Tor, and [45] for
TLS). We observe that O-ZKM cannot be proven secure in the model of Goldberg et al. [28],
since it is based on the eCK model [41] which, unlike BR, considers leakage of ephemeral keys.
Neither O-FS nor O-ZKM is resistant against such leakage.

Therefore, our analysis of O-ZKM relies on a different approach. We adhere to the BR
model, but slightly modify the notion of freshness of a session by requiring one more condition.
That is, we call a session ZKM-fresh if the conditions of the BR model are satisfied and if
the session is derived by an Execute-query. Basically, this means that we only consider passive
adversaries. This additional restriction guarantees that neither the terminal nor the card are
adversarially controlled and that any random choice is made by honest parties. This is inevitable
in order to avoid the following attack: the adversary sends her message to an arbitrary card
on behalf of an honest terminal (note that terminals can be considered honest because they do
not authenticate and, thus, the adversary does not need to corrupt any terminal in order to
successfully impersonate it); hence, she computes the session keys in this session and then queries
the partner session to the Test-oracle. As neither Reveal nor Corrupt-queries took place, the
partner session is fresh. Moreover, terminal and chip card are not controlled by the adversary.
Finally, as the adversary computed the same session keys as in the tested session, she trivially
wins the AKE experiment.

In O-ZKM we encounter another obstacle. Security proofs in the BR model provide strong
security properties; in particular, session keys derived by BR-secure KE protocols are indistin-
guishable from suitable values uniformly sampled from the key domain. However, this cannot
be ensured if (part of) the session key is already used in the execution, for instance, to confirm
the knowledge of secrets via message authenticated codes. An adversary would simply pick the
session key given by the Test-oracle and check its validity by re-performing the computation of
a MAC as in the actual execution. Thereby, the adversary trivially tells apart genuine session
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keys from random ones.
Key confirmation takes place in various KE protocols and is handled in different ways.

For instance, the key exchange protocols PACE and EAC deployed in the current German
electronic ID card were analyzed for a modified version such that the key derivation function
outputs another distinct key only for the purpose of key confirmation [7, 19]. In the random-
oracle model, the knowledge of this additional ephemeral key does not help the adversary to
win the experiment. If the messages to be processed within the KE step differ in structure with
the ones processed in the subsequent secure channel protocol, then the actual protocol is secure
if the modified one is.

An alternative approach is proposed by Brzuska et al. [12] where the authors show that a
relaxed notion of BR provides security if one further shows that the derived keys are suitable for
the cryptographic primitives used in the following channel protocol. That is, session keys can
be used already in the key exchange step, as long as this does not interfere with the subsequent
deployment; in our case if the channel protocol ensures that the values encrypted have a different
format than the one encrypted in the key exchange step. For more details on both approaches,
we refer to [13].

For our analysis, we use the former approach and let the key derivation function (KDF)
output an additional key skEncG which is used to encrypt the GUID of the card. Thus, we
replace line 14 and 37 in the ZKM protocol (cf. Figure 3) by

(skcfrm, skMAC, skEnc, skEncG, skRMAC, nextZ)← KDF(Z, len, info(IDC , IDT , epkT |1..16 , nC)),

and line 21 (resp. line 44) by

encGUID := GUID⊕ AESskEncG(IV ) (resp. GUID := encGUID⊕ AESskEncG(IV )).

The following theorem refers to such a modified protocol, that we denote Π′OZKM. We implicitly
assume that the key derivation function (KDF) and any hash function used within the protocol
are modeled as random oracles.

For the key-secrecy proof we consider sessions as indicated in Section 2, such that the session
id sid for Π′OZKM is set as sid = (HASH(cert∗C)|1..8 , IDT , epkT |1..16, nC); the partner id pid is set
to empty on the card’s side since the terminal does not authenticate to the chip. Vice versa,
the partner id pid is set to GUID on the terminal’s side. Note that including the nonces in the
session identifiers essentially makes them for executions with honest cards unique. In this sense,
there is most likely at most one partnered session with the same KDF output (unless the KDF
accidentally creates collisions).

Theorem A.1 (Key Secrecy of OPACITY Zero-Key Management) In the random or-
acle model, we have

Advake
Π′OZKM,A

≤ 2q2
e ·AdvGDH

A (t+O(λ · qe log qe), 2qe + qh) +
qe(2qe + qh)

2`Z

where λ denotes the security parameter, t the running time of adversary A, qe (resp. qh) the
number of executions (resp. hash computations), and `Z denotes the bit length of the Z.

We note that both the protocols Π′OZKM and ΠOZKM are, strictly speaking, not complete. That
is, while the card uses the globally unique IDT to identify renegotiation data, and thus cannot
start a wrong persistent binding session, the terminal recovers sessions via the 8 first bytes IDC
of the hashed certificate. Assuming a decent hash function one may assume that these values
are quasi unique, but there is nonetheless a probability of about q2

e · 2−64 that different cards
yield the same identifier IDC of length `IDC = 64.

Proof. The following proof is similar to the proof of key secrecy for O-FS (see Theorem 4.2).
We begin with GAME0, the original attack against key secrecy.
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Description of GAME0. This corresponds to the original attack on the protocol Π′OZKM.

Description of GAME1. This game works as GAME0 but now we abort the game if the
adversary A makes a hash query to the KDF for a Diffie–Hellman key Z computed by an honest
card in a ZKM-fresh session without persistent binding.

The reduction to the GDH problem follows as in the case of GAME2 for O-FS (see Theo-
rem 4.2):

Pr[GAME0] ≤ Pr[GAME1] + q2
e ·AdvGDH(t+O(λ · qe log qe), 2qe + qh).

Note that, while in GAME2 for O-FS adversary AGDH injects the challenge in epkC and pkT ,
we now inject the challenge in epkT and pkC . The remainder follows analogously.

Description of GAME2. This game works as GAME1 but now we abort the game if the
adversary A makes a hash query to the KDF for a Diffie–Hellman key Z computed by an honest
terminal in a ZKM-fresh session without persistent binding.

The reduction to the GDH problem follows as in the case of GAME1:

Pr[GAME1] ≤ Pr[GAME3] + q2
e ·AdvGDH(t+O(λ · qe log qe), 2qe + qh).

The next game also covers the case of a renegotiation step:

Description of GAME3. In this game we also consider the persistent binding branch. That
is, this game works as GAME2 but now we also abort the game, if the adversary A makes a
hash query to the KDF for a Diffie–Hellman key Z computed by an honest card or an honest
terminal in the single Test-session.

According to the previous games, the adversary never queries the KDF (in a ZKM-fresh
session without persistent binding) about the input Z as computed by an honest terminal or
card. Hence, from A’s point of view the part nextZ in a fresh session, and thereby in the
Test-session, is basically an unknown value. As the adversary makes at most qh queries to the
KDF (where we also have to take the at most 2qe other distinct queries by honest parties into
account), and there appear at most qe many distinct values for nextZ the probability of finding
a pre-image to nextZ can be bound by 2qe(qe + qh) · 2−`Z .

Thus, we have

Pr[GAME2] ≤ Pr[GAME3] +
qe(2qe + qh)

2`Z
.

We have reached the point where no adversary queries the secret Z derived in a session of an
honest party with a partner identity of an honest party. However, this still does not necessarily
yield a secure key exchange protocol, since instead of computing the session keys, an adversary
could enforce the same input to the KDF function with identical Z in another execution with
an honest party. Then, if another honest session yielded the same input, a Reveal-query for this
session would clearly help the adversary to distinguish the tested session key from random. We
next argue why this event cannot happen. To this end recall that such a Reveal-query must be
for an unpartnered session, i.e., with a different session id sid.

Description of GAME4. This game works as GAME3, but aborts if there are two honest
parties with both accepting sessions yielding identical input to the KDF but which are not
partnered.
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Note that sid = (HASH(cert∗C)|1..8 , IDT , epkT |1..16,nC) and that the function info is injective.
Hence, the data from session identifiers enters the KDF evaluation (for both new and renego-
tiation steps) such that distinct sid’s for unpartnered sessions yield distinct input to the KDF.
Hence, any call to KDF by another honest unpartnered party is for a different input than in
the test session. Put differently, the derived key in a tested session is independent from keys
derived by other (unpartnered) parties.

Pr[GAME3] ≤ Pr[GAME4].

Thus, we have eventually reached a game where the adversary can merely guess the secret
bit b because no unpartnered sessions have the same KDF input and the adversary never
queries the KDF function on the same input as an honest party does in a fresh session. Hence,
Pr[GAME4] ≤ 1

2 . Summing up all probabilities for game transitions yields the claim for the
original attack in GAME0. �

(Weak) Forward Secrecy. It is easy to see that O-ZKM does not offer forward secrecy
and not even weak forward secrecy. Indeed, when corrupting a card’s instance and learning
its long-term secret enables to compute the intermediate secret Z. Together with the nonce
nC which is included in the transcript, an adversary can clearly compute the session keys and
distinguish genuine session keys from random. Hence, O-ZKM is not (weakly) forward-secure.

On Further Desirable Security Properties. We cannot prove resistance against Key-
Compromise Impersonation (KCI) attacks because the terminal does not authenticate at all.
Since the terminal has no long-term secrets a malicious chip cannot take advantage of it to
authenticate and/or compute the session key. Hence, O-ZKM does not provide security against
KCI.

According to leakage of ephemeral secrets, we identify eskT as the only ephemeral secret in
O-ZKM since the nonce nC is sent to the channel and, thus, is public. The knowledge of eskT
suffices, however, to compute the intermediate secret Z and subsequently, compute the session
key. Therefore, leakage of ephemeral break the protocol security as a key agreement totally.

A.3 Impersonation Resistance

Impersonation resistance of the original O-ZKM protocol (or our modified one for key secrecy)
follows almost as in the case of O-FS. We have to take into account, though, that we have shown
key secrecy for passively observed executions only, whereas impersonation resistance should hold
for malicious cards. But note that, independently of whether the transmitted card’s certificate
in an impersonation attempt with an honest terminal contains GUID in encrypted form or as
plain text, there can be at most one honest card carrying a valid certificate with this GUID; any
other GUID for an unregistered or an adversarially-controlled card would otherwise violate the
unforgeability of certificates. Since the terminal eventually checks the validity of the certificate
this implies that for a successful impersonation the adversary needs to use the valid certificate
of an honest card.3 We next argue that the fact that the public key is certified basically requires
to break the Gap Diffie-Hellman problem, or to forge a MAC.

If persistent binding is not used in an impersonation attempt, then the card certificate
includes the genuine public key of the honest card and the argument that the adversary can
never query the KDF about the value Z applies as in the proof of key secrecy under the Gap

3Recall that we assume that changes in the registry are undone again (or that the corresponding entry is
deleted) if the eventual certificate verification fails, such that only entries for the genuine card are listed in
further renegotiation steps (see Appendix A.1).
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Diffie-Hellman assumption. If persistent binding is used, on the other hand, the adversary can
only win if it manages to “confuse” the honest terminal in trying to reconnect with a different
IDC , possibly belonging to a session of a malicious card, or if it can compute nextZ for the correct
value IDC of a previous run of the honest terminal and the honest card. Assuming that HASH
behaves like a random oracle, the former happens with probability q2

e ·2−`IDC only (for `IDC ≥ 64);
the latter would contradict the key secrecy (because entries in the registry for such a “good”
IDC could have been only created with a run involving the genuine public key of the card, by our
above assumption about registry updates, and could not have been computed by the adversary).
Given that the adversary cannot derive the session key in an impersonation attempt, and that
there is no unpartnered session with the same input to the KDF, the adversary needs to forge
a MAC for an unknown key (as in the proof for O-FS). This shows impersonation resistance.

A.4 Privacy

Untraceability. The OPACITY protocol with Full Secrecy O-FS does not preserve untrace-
ability. In fact, in Section 4.4 we showed two attacks that allow an adversary to tell two cards
apart by using persistent binding. Both attacks are still valid for the OPACITY protocol with
Zero-Key Management. The O-ZKM protocol is susceptible to another attack. In particular,
cards can always be recognized and traced from terminal to terminal, since they send, as part of
their response, the blinded identifier blindID. If persistent binding is used, blindID is a constant
value, i.e., the first eight bytes of the hash of the certificate; else, if persistent binding is not
used, then the value is again constant consisting of the blinded certificate, i.e., the certificate
from which the identity GUID was removed. Since there is no freshness introduced into the
hash, a card C always sends in clear, to any terminal it visits, the same string blindID. Thus,
cards using the O-ZKM protocol are never untraceable. This attack is much stronger than the
attacks against the O-FS protocol, enabling easy linkability between sessions of the same card.

Identity-Hiding. The protocol also does not achieve identity-hiding. Consider the following
attack. We assume that the adversary knows the list of all certificates and thus the list of all
valid GUIDs. On observing an honest execution the certificate is send in the clear except for
the part that contains the GUID which is sent only encrypted. At this point it can simply try
all possible GUID, insert each into the partial certificate and check if it validates. Thus in time
O (#GUID) (where #GUID denotes the number of tested identities) an adversary can recover
the identity of a card that was used in an honest execution.

A.5 Deniability of O-ZKM

With an argument analogous to the one we use to prove deniability of O-FS, we show that
also O-ZKM satisfies outsider deniability. We stress that both results hold only conditionally,
since we need to assume that parties never renegotiate. Do note, that unlike for the O-FS
case untraceability does not follow for O-ZKM. That is, O-ZKM without persistent binding is
outsider deniable, but not untraceable.

Theorem A.2 In the standard model, O-ZKM without persistent binding is outsider-deniable.

The idea behind the proof is as in Theorem 4.5, namely it is easy to simulate the tran-
scripts of honest KE runs. Indeed, the simulator can compute messages indistinguishable from
real transcripts by using public values (i.e., static public keys) and by computing the missing
information by itself (after generating the single ephemeral key pair).
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Terminal T Card C

1 (eskT , epkT )← KeyGen(1λ)
certT ,epkT ,CBT−−−−−−−−−−−−−−−−−−→

if C.Vrf(certT , pkCA) = 0 abort 2

extract IDT , pkT from certT 3

initialize CBC according to O-FS mode 4

look for IDT in PB registry 5

/* if IDT is not registered or PB is not supported */
if ¬CBT (PB) OR ¬C.supports(PB) OR ¬PB.contains(IDT ) 6

validate pkT belongs to domain of E 7

(eskC , epkC)← KeyGen(1λ) 8

Z1 ← DHE (eskC , pkT ) 9

(k1, k2)← KDF (Z1, len, info(IDT , epkC)) 10

OpaqueData← AESk1 (certC) 11

otID := epkC 12

Z← DHE (skC , epkT ) 13

delete temporary keys Z1, k1 14

else 15

obtain Z, otID from PB registry (key IDT ) 16

generate nonce nC 17

OpaqueData := nC 18

k2 := nC 19

update control byte: CBC(PB) := > 20

/* compute session keys */
(skcfrm, skMAC, skEnc, skRMAC, nextOtID, nextZ)

← KDF(Z, len, info(IDT , otID|1..8 , epkT |1..16 , k2)) 21

delete temporary keys Z, k2, eskC , epkC 22

authcrypt← CMACskcfrm ("KC 1 V"‖otID|1..8‖IDT ‖epkT |1..16 ) 23

delete skcfrm 24

/* if card supports PB and terminal requested PB */
if C.supports(PB) AND CBT (PB) 25

register nextZ, nextOtID for IDT in PB registry 26

OpaqueData,authcrypt,CBC ,otID←−−−−−−−−−−−−−−−−−−−
/* if IDC is not registered
but card used PB */

27 if ¬PB.contains(otID) AND CBC(PB)
28 delete eskT
29 restart O-FS with CBT (PB) = ⊥
30 if ¬CBC(PB)
31 epkC := otID
32 validate epkC belongs to domain of E
33 Z1 ← DHE (skT , epkC)
34 (k1, k2)← KDF(Z1, len, info(IDT , epkC))

35 certC ← AES−1
k1

(OpaqueData)

36 if C.Vrf(certC , pkCA) = 0 abort
37 extract pkC and GUID from certC
38 Z← DHE (eskT , pkC)
39 delete temporary keys Z1, k1
40 else
41 k2 := OpaqueData
42 obtain Z and GUID from PB registry (key otID)

/* compute session keys */

43
(skcfrm, skMAC, skEnc, skRMAC, nextOtID, nextZ)

← KDF(Z, len, , info(IDT , otID|1..8 , epkT |1..16 , k2))

44 delete keys Z, k2, eskT , epkT
45 check authcrypt = CMACskcfrm ("KC 1 V"‖otID|1..8‖IDT ‖epkT |1..16 )

46 delete skcfrm
47 if C.supports(PB)
48 update PB registry for C: register nextZ and GUID under nextOtID

Figure 2: OPACITY with Full Secrecy
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Terminal T Card C

1 (eskT , epkT )← KeyGen(1λ)
IDT ,epkT ,CBT−−−−−−−−−−−−−−−−−→

IDC := HASH(cert∗C)|1..8 2

initialize CBC according to O-ZKM mode 3

look for IDT in PB registry 4

/* if IDT is not registered or PB is not supported */
if ¬CBT (PB) OR ¬C.supports(PB) OR ¬PB.contains(IDT ) 5

validate epkT belongs to domain of E 6

Z← DHE (skC , epkT ) 7

blindID := cert∗C /* see Section 3.1 */ 8

else 9

obtain Z from PB registry (key IDT ) 10

blindID := IDC 11

update control byte: CBC(PB) := > 12

/* compute session keys */
generate nonce nC 13

(skcfrm, skMAC, skEnc, skRMAC, nextZ)
← KDF(Z, len, info(IDC , IDT , epkT |1..16 , nC)) 14

delete Z 15

authcrypt← CMACskcfrm ("KC 1 V"‖IDC‖IDT ‖epkT |1..16 ) 16

delete skcfrm 17

/* if card supports PB and terminal requested PB */
if C.supports(PB) AND CBT (PB) 18

register nextZ for IDT in PB registry 19

/* if reader requested GUID */
if CBT (RET GUID) 20

encGUID := GUID⊕ AESskEnc (IV ) 21

update control byte: CBC(RET GUID) := > 22

else encGUID := null 23

blindID,nC ,authcrypt,encGUID,CBC←−−−−−−−−−−−−−−−−−−−−−
/* recover card id */

24 if ¬CBC(PB)
25 cert∗C := blindID
26 IDC := HASH(cert∗C)|1..8
27 else IDC := blindID

/* if card used PB and terminal can’t find card in registry, restart protocol */
28 if ¬PB.contains(IDC) AND CBC(PB)
29 delete eskT
30 restart O-ZKM with CBT (PB) = ⊥

31 if ¬CBC(PB)
32 extract pkC from cert∗C
33 validate pkC belongs to domain of E
34 Z← DHE (eskT , pkC)
35 delete eskT
36 else obtain Z from PB registry (key IDC)

/* compute session keys */

37
(skcfrm, skMAC, skEnc, skRMAC, nextZ)

← KDF(Z, len, info(IDC , IDT , epkT |1..16 , nC))

38 delete Z
39 check authcrypt = CMACskcfrm ("KC 1 V"‖IDC‖IDT ‖epkT |1..16 )

40 delete skcfrm

41 if C.supports(PB)
42 update PB registry for C: register nextZ under IDC

43 if CBC(RET GUID)
44 GUID := encGUID⊕ AESskEnc (IV )
45 else extract GUID from certC
46 if C.Vrf(certC , pkCA) = 0 abort

Figure 3: OPACITY with Zero Key Management
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Table 3: Steps of Card in FS-protocol

Line Step Description
certT ,epkT ,CBT−−−−−−−−−−−−−→ Receive terminal’s certificate, ephemeral public

key and control byte CBT . Control byte defines
whether or not card should use persistent binding.

2 if C.Vrf(certT , pkCA) = 0 abort Validate the terminal’s certificate and abort if ver-
ification fails.

3 extract IDT , pkT from certT Extract public key from certificate.
4 initialize CBC according to O-FS mode Initialize control byte CBT indicating that the FS-

protocol is to be used and specifying whether card
supports persistent binding.

5 look for IDT in PB registry If card supports persistent binding, lookup termi-
nal in registry.

6 if ¬CBT (PB) OR ¬C.supports(PB) OR ¬PB.contains(IDT ) If persistent binding is not to be used (card or
terminal does not support PB or terminal cannot
be found in registry), then

7 validate pkT belongs to domain of E Validate terminal’s public key with respect to el-
liptic curve E .

8 (eskC , epkC)← KeyGen(1λ) Generate ephemeral elliptic curve key pair.
9 Z1 ← DHE (eskC , pkT ) Compute intermediate value Z1 using Diffie–

Hellman function DHE with terminal’s public and
card’s private ephemeral key.

10 (k1, k2)← KDF (Z1, len, info(IDT , epkC)) Generate temporary keys k1 and k2.
11 OpaqueData← AESk1(certC) Encrypt card certificate under key k1 and store

result in variable OpaqueData.
12 otID := epkC Store card’s ephemeral public in variable otID.
13 Z← DHE (skC, epkT ) Compute Z using Diffie–Hellman function on

card’s private and terminal’s public ephemeral
keys.

14 delete temporary keys Z1, k1 Delete temporary keys.
15 else Else, if persistent binding is to be used.
16 obtain Z, otID from PB registry (key IDT ) Lookup values Z and otID in persistend binding

registry under key IDT (the terminal’s id).
17 generate nonce nC Generate a nonce.
18 OpaqueData := nC Store nonce in variable OpaqueData.
19 k2 := nC Store nonce in variable k2.
20 update control byte: CBC(PB) := > Update the card’s control byte to indicate that per-

sistent binding was used.

21
(skcfrm, skMAC, skEnc, skRMAC, nextOtID, nextZ)

← KDF(Z, len, info(IDT , otID|1..8 , epkT |1..16 , k2))
Comptue session keys and values nextOtID and
nextZ which are needed for future persistent bind-
ing sessions.

22 delete temporary keys Z, k2, eskC , epkC Delete remaining temporary keys.
23 authcrypt← CMACskcfrm("KC 1 V"‖otID|1..8‖IDT ‖epkT |1..16) Compute a MAC over the first 8 bytes of otID

(card’s public ephemeral key or value from PB reg-
istry), the terminal’s id and the first 16 bytes of
the terminal’s public ephemeral key.

24 delete skcfrm Delete key skcfrm that was used for computing the
MAC in previous line.

25 if C.supports(PB) AND CBT (PB) If card supports and terminal requests persistent
binding, then

26 register nextZ, nextOtID for IDT in PB registry Store nextZ, nextOtID under key IDT in persistent
binding registry.

OpaqueData,authcrypt,CBC ,otID←−−−−−−−−−−−−−−−−− Send data to terminal. Value OpaqueData is either
the encrypted card certificate or a nonce (if PB was
used), authcrypt is a MAC, otID is used for PB or
contains card’s public ephemeral key, and CBC is
the cards control byte indicating whether persis-
tent binding is supported and whether it was used.
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Table 4: Steps of Terminal in FS-protocol

Line Step Description

1 (eskT , epkT )← KeyGen(1λ) Generate elliptic curve ephemeral key
pair.

certT ,epkT ,CBT−−−−−−−−−−−−−→ Send certificate, ephemeral public key and
control byte CBT to card. Control byte de-
fines whether or not card should use per-
sistent binding.

OpaqueData,authcrypt,CBC ,otID←−−−−−−−−−−−−−−−−− Receive data from card. Value
OpaqueData is either the encrypted
card certificate or a nonce (if PB was
used), authcryptis a MAC, otID is used
for PB or contains card’s public ephemeral
key, and CBC is the cards control byte
indicating whether persistent binding is
supported and whether it was used.

27 if ¬PB.contains(otID) AND CBC(PB) If card used persistent binding, but ter-
minal cannot find card in registry (under
key otID), then

28 delete eskT Delete private ephemeral key.
29 restart O-FS with CBT (PB) = ⊥ Restart OPACITY requesting not to use

persistent binding.
30 if ¬CBC(PB) If card did not use persistent binding.
31 epkC := otID Value otID contains the card’s public

ephemeral key.
32 validate epkC belongs to domain of E Verify card’s public key with respect to

elliptic curve E .
33 Z1 ← DHE (skT , epkC) Compute intermediate value Z1 using the

Diffie–Hellman function DHE .
34 (k1, k2)← KDF(Z1, len, info(IDT , epkC)) Compute keys k1, k2 using the key deriva-

tion funktion with input Z1.
35 certC ← AES−1

k1
(OpaqueData) Decrypt card’s certificate with key k1

36 if C.Vrf(certC , pkCA) = 0 abort Verify card’s certificate and abort if verif-
cation fails.

37 extract pkC and GUID from certC Extract card’s public key and the owner’s
identity (GUID) from certificate.

38 Z← DHE (eskT , pkC) Compute intermediate value Z using the
Diffie–Hellman function DHE with card’s
public and terminal’s private ephemeral
keys.

39 delete temporary keys Z1, k1 Delete temporary keys, which are no
longer needed.

40 else
41 k2 := OpaqueData Set variable k2 to received value

OpaqueData (which should contain
the nonce used by the card).

42 obtain Z and GUID from PB registry (key otID) Lookup values Z and GUID in persistent
binding registry which is stored at address
otID.

43
(skcfrm, skMAC, skEnc, skRMAC, nextOtID, nextZ)

← KDF(Z, len, , info(IDT , otID|1..8 , epkT |1..16 , k2))
Comptue session keys and values
nextOtID and nextZ which are needed for
future persistent binding sessions.

44 delete keys Z, k2, eskT , epkT
45 check authcrypt = CMACskcfrm("KC 1 V"‖otID|1..8‖IDT ‖epkT |1..16) Verify MAC authcryptand abort if verifi-

cation fails
46 delete skcfrm
47 if C.supports(PB) If the card supports persistent binding,

then

48
update PB registry for C: register nextZ and

GUID under nextOtID
Store value nextZ and GUID under key
nextOtID in persistent binding registry.
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Table 5: Steps of Terminal in ZKM-protocol

Line Step Description

1 (eskT , epkT )← KeyGen(1λ) Generate an elliptic curve ephemeral key pair
for the terminal.

IDT ,epkT ,CBT−−−−−−−−−−−−−−−−→ Send terminal ID, the public key and a con-
trol byte indicating whether to use persistent
binding and whether to return an encrypted
GUID.

blindID,nC ,authcrypt,encGUID,CBC←−−−−−−−−−−−−−−−−−−− Card returns value blindID, a nonce n,
mac authcrypt, encrypted GUID encGUID (or
null), and the card’s control byte.

24 if ¬CBC(PB) If card did not use persistent binding
(CBC(PB) = ⊥)

25 cert∗C := blindID Value blindIDcontains blinded certificate
(without GUID).

26 IDC := HASH(cert∗C)|1..8 Obtain card ID (first 8 bytes of hash of
blinded certificate)

27 else IDC := blindID Else (if card used PB), value blindIDcontains
card’s ID.

28 if ¬PB.contains(IDC) AND CBC(PB) If PB registry does not contain card IDC and
card used persistent binding, then

29 delete eskT Delete private ephemeral key.
30 restart O-ZKM with CBT (PB) = ⊥ Restart protocol requesting not to use per-

sistent binding.
31 if ¬CBC(PB) If card did not use persistent binding, then
32 extract pkC from cert∗C Extract card’s public key from certificate.
33 validate pkC belongs to domain of E Validate public key with respect to elliptic

curve E .
34 Z← DHE (eskT , pkC) Compute intermediate value Z via Diffie–

Hellman function DHE .
35 delete eskT Delete private ephemeral key.
36 else obtain Z from PB registry (key IDC) Else, if card used PB, obtain Z from PB reg-

istry.

37
(skcfrm, skMAC, skEnc, skRMAC, nextZ)

← KDF(Z, len, info(IDC , IDT , epkT |1..16 , nC))
Compute session keys, the key for validat-
ing MAC authcrypt(skcfrm), and 16 byte value
nextZ which will later be stored in PB reg-
istry.

38 delete Z Delete intermediate value Z.
39 check authcrypt = CMACskcfrm("KC 1 V"‖IDC‖IDT ‖epkT |1..16) Validate message authentication code

authcryptand return an authentication error
if verification fails.

40 delete skcfrm Delete key for MAC verification.
41 if C.supports(PB) If card supports persistent binding, then
42 update PB registry for C: register nextZ under IDC update the PB registry and store value nextZ

under key IDC.
43 if CBC(RET GUID) If the card returned an encrypted GUID, then
44 GUID := encGUID⊕ AESskEnc(IV ) Decrypt GUID
45 else extract GUID from certC See Section A.1.
46 if C.Vrf(certC , pkCA) = 0 abort Validate the certificate. See Section A.1.
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Table 6: Steps of Card in ZKM-protocol

Line Step Description
IDT ,epkT ,CBT−−−−−−−−−−−−−−−−→ Receive terminal ID, the terminals public

ephemeral key and a control byte indicating
whether to use persistent binding and whether
to return an encrypted GUID.

2 IDC := HASH(cert∗C)|1..8 Compute card’s id: first 8 bytes of hash of
blinded certificate (certificate without GUID).

3 initialize CBC according to O-ZKM mode Initialize card’s control byte for the ZKM
mode. Control byte contains info that ZKM
is to be used and whether card supports per-
sistent binding.

4 look for IDT in PB registry If card supports persistent binding, lookup ter-
minal in PB registry.

5 if ¬CBT (PB) OR ¬C.supports(PB) OR ¬PB.contains(IDT ) If card and terminal support PB, terminal re-
quested to use PB and terminal is in PB registry,
then

6 validate epkT belongs to domain of E Validate terminal’s public key with respect to
elliptic curve E .

7 Z← DHE (skC, epkT ) Computed intermediate value Z using Diffie–
Hellman function DHE .

8 blindID := cert∗C /* see Section 3.1 */ Store blinded certificate in variable blindID.
This line is ambigously specified. It seems that
if RET GUID is not set, that then certificate is
send in the clear. Also see Section 3.1 and
line 45 in the terminal steps.

9 else Else, if persistent binding is to be used, then
10 obtain Z from PB registry (key IDT ) Get intermediate value Z from persistent bind-

ing registry.
11 blindID := IDC Set variable blindIDto card’s id.
12 update control byte: CBC(PB) := > Update the control byte to indicate that per-

sistent binding was used.
13 generate nonce nC Generate 16 byte nonce.

14
(skcfrm, skMAC, skEnc, skRMAC, nextZ)

← KDF(Z, len, info(IDC , IDT , epkT |1..16 ,nC))
Compute session keys, the key for validat-
ing MAC authcrypt(skcfrm), and 16 byte value
nextZ which will later be stored in PB registry.

15 delete Z Delete intermediate value Z.
16 authcrypt← CMACskcfrm("KC 1 V"‖IDC‖IDT ‖epkT |1..16) Compute MAC on ids of card and terminal

and the first 16 bytes of terminal’s public key
using key skcfrm.

17 delete skcfrm Delete key skcfrm.
18 if C.supports(PB) AND CBT (PB) If card supports PB and terminal requests to

use it, then
19 register nextZ for IDT in PB registry Store value nextZ in persistent binding registry

under the terminal’s id.
20 if CBT (RET GUID) If terminal requests an encrypted GUID, then
21 encGUID := GUID⊕ AESskEnc(IV ) Encrypt GUID using key skEnc and store it in

variabel encGUID.
22 update control byte: CBC(RET GUID) := > Update control byte indicating that GUID was

encrypted.
23 else encGUID := null Else set variable encGUID to null.

blindID,nC ,authcrypt,encGUID,CBC←−−−−−−−−−−−−−−−−−−− Return value blindID(blinded certificate or
card’s ID), nonce n, mac authcrypt, encrypted
GUID encGUID (or null), and the card’s control
byte.
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