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Abstract

We study ballot independence for election schemes. First, we formally
define ballot independence as a cryptographic game and prove that ballot
secrecy implies ballot independence. Secondly, we introduce a notion of
controlled malleability and prove that it is sufficient for ballot indepen-
dence. We also prove that non-malleable ballots are sufficient for ballot
independence. Thirdly, we prove that ballot independence is sufficient for
ballot secrecy in a special case. Our results show that ballot independence
is necessary in election schemes satisfying ballot secrecy. Furthermore, our
sufficient conditions enable simpler proofs of ballot secrecy.

1 Introduction

Voters should be able to express their free will in elections without fear of
retribution; this property is known as privacy. Cryptographic formulations of
privacy depend on the specific setting and ballot secrecy1 [DKR06,BHM08,CS13]
has emerged as a de facto standard privacy requirement of election schemes.

• Ballot secrecy. A voter’s vote is not revealed to anyone.

Ballot secrecy provides privacy in an intimidation-free environment and stronger
properties such as receipt-freeness and coercion resistance [DKR09] provide pri-
vacy in environments where intimidation may occur. Bernhard et al. [BCP+11,
BPW12b, BPW12a] propose a cryptographic formalisation of ballot secrecy.

∗An earlier version [SB13] of this paper was presented at ESORICS’13.
1The terms privacy and ballot secrecy occasionally appear as synonyms in the literature

and we favour ballot secrecy because it avoids confusion with other privacy notions, such as
receipt-freeness and coercion resistance, for example.
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However, their definition does not capture the publication of tallying proofs2

and we extend the definition of ballot secrecy by Bernhard et al. to support the
publication of such proofs3 (Section 3).

Ballot independence [Gen95,CS13] is seemingly related to ballot secrecy.

• Ballot independence. Observing another voter’s interaction with the elec-
tion system does not allow a voter to cast a meaningfully related vote.

Indeed, Cortier & Smyth [CS13, SC11, CS11] attribute a class of ballot secrecy
attacks to the absence of ballot independence. However, ballot independence has
not been formally defined and its relationship with ballot secrecy is unknown.
In Section 4, we propose a definition of ballot independence and give sufficient
conditions to achieve this notion, including a construction for election schemes
from encryption schemes satisfying our notion of controlled-malleable encryption
(a generalisatin of non-malleable encryption).

In traditional paper-based elections, physical mechanisms can be used to
achieve privacy, for instance, ballots are completed in isolation inside polling
booths, placed into locked ballot boxes, and mixed with other ballots before
tallying. (See Schneier [Sch13] for a detailed, informal security analysis of Pa-
pal elections.) By comparison, the provision of ballot secrecy is more difficult
in end-to-end verifiable election schemes, since ballots are posted on publicly
readable bulletin boards. Nonetheless, ballot secrecy is a de facto standard
property of election schemes and, hence, must be satisfied. The aforementioned
physical mechanisms also provide an assurance of ballot independence in paper-
based elections. However, the motivation for election schemes satisfying ballot
independence is unclear. Indeed, Bulens, Giry & Pereira [BGP11, §3.2] ques-
tion whether ballot independence is a desirable property of election schemes
and highlight the investigation of voting schemes which allow the submission of
related votes whilst preserving ballot secrecy as an interesting research direc-
tion. Moreover, in the context of the Helios [Adi08,AMPQ09] election scheme,
Desmedt & Chaidos [DC12] present a protocol which allows Bob to cast the
same vote as Alice, with Alice’s cooperation, and claim that Bob cannot learn
Alice’s vote. We prove that ballot secrecy implies ballot independence (Sec-
tion 5), thereby providing an argument to end the ballot independence debate:
ballot independence is a necessary property of election schemes (assuming ballot
secrecy is required). In addition, we critique the results by Desmedt & Chaidos
and argue that their security results do not support their claims.

Finally, we present a class of election schemes for which ballot secrecy and
ballot independence coincide (Section 6). It follows that our construction for

2The ESORICS’13 version of this paper [SB13] incorrectly claims that the definition of
ballot secrecy by Bernhard et al. [BCP+11, BPW12b, BPW12a] allows election schemes that
reveal voters’ votes to be proven secure. This erroneous claim was made on the basis that
definitions by Bernhard et al. gave the adversary access to tallying proofs, which appears
to be true with reference to [BCP+11, Algorithm 4], but is forbidden by the correctness
property [BCP+11, Figure 1].

3Galindo & Cortier [GC13] have shown that our original presentation of ballot se-
crecy [SB13, Definition 5] is too strong, since it is incompatible with verifiability, and we
revise our definition in this paper.
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election schemes from controlled-malleable encryption schemes satisfies ballot
secrecy.

Related work. The concept of independence was introduced by Chor et al.
[CGMA85] and studied in the context of election schemes by Gennaro [Gen95].
Cortier & Smyth [CS11,SC11,CS13] have discovered attacks on ballot secrecy in
several election schemes and considered the relationship to independence [CS13,
Section 7]; their evidence suggests ballot secrecy implies ballot independence in
homomorphic voting systems such as Helios. However, Cortier & Smyth did
not make any formal claims, because ballot independence had not been formally
defined. By comparison, in this paper, we present a formal definition of ballot
independence and prove that ballot secrecy implies ballot independence. Finally,
proving that ballot secrecy can be satisfied by election schemes constructed
from non-malleable encryption schemes has been shown by Bernhard, Pereira
& Warinschi [BPW12b] and, in this paper, we generalise their result by proving
that controlled-malleable encryption is sufficient.

2 Preliminaries

We adopt standard notation for the application of probabilistic algorithms A,
namely, A(x1, . . . , xn; r) is the result of running A on input x1, . . . , xn and
coins r. Moreover, A(x1, . . . , xn) denotes A(x1, . . . , xn; r), where r is chosen at
random. We write x ← α for the assignment of α to x. In addition, we write
x ←R S for the assignment of a random element from the set S to x. Vectors
are denoted using boldface, for example, x. We extend set membership notation
to vectors: we write x ∈ x (respectively, x 6∈ x) if x is an element (respectively,
x is not an element) of the vector x.

2.1 Non-malleable encryption

Let us recall the standard syntax for asymmetric encryption schemes.

Definition 1 (Asymmetric encryption scheme). An asymmetric encryption
scheme is a triple of efficient algorithms (Gen,Enc,Dec) such that:

• The key generation algorithm Gen takes a security parameter 1n as input
and outputs a key pair (pk , sk), where pk is a public key and sk is a private
key.

• The encryption algorithm Enc takes a public key pk and message m as
input, and outputs a ciphertext c.

• The decryption algorithm Dec takes a private key sk and ciphertext c as
input, and outputs a message m or the special symbol ⊥ denoting failure.

Moreover, the scheme must be correct: for all (pk , sk) ← Gen(1n), we have
for all messages m and ciphertexts c ← Encpk (m), that Decsk (c) = m with
overwhelming probability.
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Non-malleability [DDN91,BDPR98,DDN00] is a standard computational se-
curity model used to evaluate the suitability of encryption schemes. Intuitively,
if an encryption scheme satisfies non-malleability, then an adversary is unable to
construct a ciphertext “meaningfully related” to a challenge ciphertext, thereby
capturing the idea that ciphertexts are tamper-proof. This notion can be
captured by a pair of cryptographic games – namely, SuccCPA

A,Π and SuccCPA
A,Π,$

– between an adversary and a challenger. The first three steps of both games
are identical. First, the challenger constructs a key pair (pk , sk). Secondly, the
adversary A executes the algorithm A1 on the public key pk and outputs the
pair (M, s), where M is a sampling algorithm for some message space and s is
some state information. Thirdly, the challenger randomly selects a plaintext x
from the message space; at this point, the challenger in SuccCPA

A,Π,$ performs an
additional step, namely, the challenger samples a second plaintext x′. Fourthly,
the challenger constructs a ciphertext y ← Encpk (x). Fifthly, the adversary
executes algorithm A2 which outputs a relation R and a vector of ciphertexts
y. Finally, the challenger decrypts y and outputs the corresponding plaintexts
x. The encryption scheme satisfies non-malleability if the adversary’s relation
R cannot meaningfully relate x and x. Formally, Definition 2 recalls the non-
malleability game proposed by Bellare et al. [BDPR98].

Definition 2 (Non-malleable encryption). Let Π = (Gen,Enc,Dec) be an asym-
metric encryption scheme, A = (A1, A2) be an adversary, and

NM-CPAA,Π(n) := |SuccCPA
A,Π (n)− SuccCPA

A,Π,$(n)|

where SuccCPA
A,Π (n) and SuccCPA

A,Π,$(n) are defined below, and n is a security pa-
rameter.

SuccCPA
A,Π (n) = Pr [(pk , sk)← Gen(1n); (M, s)← A1(pk);

x←R M ; y ← Encpk (x); (R,y)← A2(M, s, y);

x← Decsk (y) : y 6∈ y ∧ ⊥ 6∈ x ∧ R(x,x)]

SuccCPA
A,Π,$(n) = Pr [(pk , sk)← Gen(1n); (M, s)← A1(pk);

x, x′ ←R M ; y ← Encpk (x); (R,y)← A2(M, s, y);

x← Decsk (y) : y 6∈ y ∧ ⊥ 6∈ x ∧ R(x′,x)]

In the above games we insist that the message space is valid (that is, |x| = |x′|
for any x, x′ ←R M given non-zero probability in the message space) and sam-
plable in polynomial time, and the relation R is computable in polynomial time.
We say Π satisfies NM-CPA if for all probabilistic polynomial-time adversaries
A and security parameters n, there exists a negligible function negl such that
NM-CPAA,Π(n) ≤ negl(n).



3 ELECTION SCHEMES AND BALLOT SECRECY 5

3 Election schemes and ballot secrecy

Based upon Bernhard et al. [BCP+11, BPW12b, BPW12a], we define a syntax
for election schemes as follows.

Definition 3 (Election scheme). An election scheme is a tuple of efficient
algorithms (Setup,Vote,BB,Tally) such that:

• The setup algorithm Setup takes a security parameter 1n as input and
outputs a bulletin board bb, vote space m, public key pk, and private key
sk, where bb is a multiset and m is a set.

• The vote algorithm Vote takes a public key pk and vote v ∈ m as input,
and outputs a ballot b.

• The bulletin board algorithm BB takes a bulletin board bb and ballot b as
input, where bb is a multiset. It outputs bb ∪ {b} if successful (i.e., b is
added to bb) or bb to denote failure (i.e., b is not added).

• The tally algorithm Tally takes a private key sk and bulletin board bb
as input, where bb is a multiset. It outputs a multiset v representing
the election result if successful or the empty set ∅ to denote failure, and
auxiliary data aux .

Moreover, the scheme must satisfy the following correctness property: for all
parameters (bb0,m, pk , sk) ← Setup(1n), votes v ∈ m, multisets bb, ballots
b ← Votepk (v), bulletin boards bb′ ← BB(bb, b) and tallying data (v, aux ) ←
Tallysk (bb) and (v′, aux ′)← Tallysk (bb′), we have with overwhelming probability
that bb′ = bb ∪ {b} and if v 6= ∅, then v′ = v ∪ {v} and |v| = |bb|, otherwise,
v′ = ∅.

In comparison with earlier presentations by Bernhard et al., the tally algorithm
outputs auxiliary data aux , in addition to the election outcome, which can be
used to store signatures of knowledge proving that the election result has been
correctly computed from the bulletin board, for example. Moreover, our cor-
rectness condition, asserting that the election result corresponds to the multiset
of votes cast, is new. Although the correctness condition restricts the applica-
bility of our definition – for example, we cannot model schemes with weighted
votes nor schemes which only reveal the winning candidate (as opposed to the
number of votes for each candidate) – we believe it is useful for simplicity. In
addition, we explicitly define the bulletin board and election result as multisets,
make some minor changes to error handling, and merge some functionality into
a single function4.

We demonstrate the applicability of our definition by recalling the construc-
tion (Definition 4) for election schemes proposed by Bernhard et al. [BCP+11,

4In essence, the tally algorithm defined by Bernhard et al. outputs a tally τ and an addi-
tional algorithm is used to compute the election result v from τ . We combine the functionality
of these two algorithms into a single function.
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BPW12b]. We stress that more sophisticated schemes can also be captured –
for example, Bernhard et al. [BCP+11,BPW12b,BPW12a] model Helios – but
the following scheme is sufficient for our purposes.

Definition 4 (Enc2Vote). Given an asymmetric encryption scheme Π = (Gen,
Enc,Dec), we define the election scheme Enc2Vote(Π) as follows.

• Setup takes a security parameter 1n as input and outputs (∅,m, pk , sk),
where (pk , sk)← Gen(1n) and m is the encryption scheme’s message space.

• Vote takes a public key pk and vote v ∈ m as input, and outputs Encpk (v).

• BB takes a bulletin board bb and ballot b as input, where bb is a multiset.
If b ∈ bb, then the algorithm outputs bb (denoting failure), otherwise, the
algorithm outputs bb ∪ {b}.

• Tally takes as input a private key sk and a bulletin board bb, where bb is
a multiset. It outputs the multiset {Decsk (b) | b ∈ bb} and auxiliary data
⊥.

Intuitively, given an asymmetric encryption scheme Π satisfying NM-CPA, the
construction Enc2Vote(Π) derives ballot secrecy from Π until tallying and the
Tally algorithm maintains ballot secrecy by returning the number of votes for
each candidate as an unordered multiset of votes5.

Ballot Secrecy

Ballot secrecy is a de facto standard property of election schemes and, based
upon Bernhard et al. [BCP+11, BPW12b, BPW12a], we formalise a crypto-
graphic game for ballot secrecy (Definition 5). We will describe the differences
between our formalisation and earlier presentations after our definition.

Informally, our game proceeds as follows. First, the challenger executes the
setup algorithm to construct a bulletin board bb0, a vote space m, a public key
pk , and a private key sk ; the challenger also initialises a bulletin board bb1 as
a copy of bb0 and selects a random bit β. Secondly, the adversary executes the
algorithm A1. The algorithm A1 has access to an oracle O as follows: O(v0, v1)
allows the adversary to honestly cast a vote v0 ∈ m on bulletin board bb0 and
honestly cast a vote v1 ∈ m on bulletin board bb1, where the votes are cast using
ballots constructed by the Vote algorithm; O(b) allows the adversary to cast a
ballot b, where b is constructed by the adversary and might be rejected by the
bulletin board; and O() returns the bulletin board bbβ . Thirdly, the challenger
computes the election result v and auxiliary data aux as follows: if the honestly
cast votes on the bulletin board bb0 correspond to the honestly cast votes on the

5Definition 4 rectifies a mistake in the presentation by Bernhard, Pereira & Warin-
schi [BPW12b] which outputs a vector of votes (rather than a multiset) ordered by the time at
which each vote was cast and therefore does not provide ballot secrecy, since there is a map-
ping between the order in which votes were cast and the votes. (Bernhard et al. [BCP+11]
avoid this problem in a similar fashion.)



3 ELECTION SCHEMES AND BALLOT SECRECY 7

bulletin board bb1, then the challenger reveals the election result and associated
auxiliary data for bbβ , otherwise, the challenger reveals the election result for bb0

and auxiliary data ⊥, thereby preventing the adversary from trivially revealing
β when the honestly cast votes differ. (The distinction between bb0 and bb1 is
trivial when the honestly cast votes differ, because the adversary can test for the
presence of honestly cast votes in the election result.) Formally, we introduce
the multisets L0 and L1 to record the honestly cast votes on bulletin boards bb0

and bb1, and model the correspondence between bulletin boards as an equality
test on L0 and L1, that is, we compute (v, aux )← Tallysk (bbβ), if L0 = L1, and
aux ←⊥; (v, aux ′) ← Tallysk (bb0), otherwise. Finally, the adversary executes
the algorithm A2 on the election result v, auxiliary data aux , and any state
information s provided by A1. The election scheme satisfies ballot secrecy if the
adversary has less than a negligible advantage over guessing the bulletin board
she interacted with.

Definition 5 (IND-SEC: Ballot secrecy). Let Γ = (Setup,Vote,BB,Tally) be
an election scheme, A = (A1, A2) be an adversary, and IND-SECA,Γ(n) be the
quantity defined below, where n is the security parameter.

2 ·Pr [L0 ← ∅;L1 ← ∅; (bb0,m, pk , sk)← Setup(1n); bb1 ← bb0; β ←R {0, 1};
s← AO1 (m, pk) : A2(v, aux , s) = β]− 1

In the above game, L0 and L1 are multisets, the oracle O is defined below, and
v and aux are defined as follows: if L0 = L1, then (v, aux ) ← Tallysk (bbβ),
otherwise, aux ←⊥; (v, aux ′)← Tallysk (bb0).

• O(v0, v1) executes L0 ← L0∪{v0};L1 ← L1∪{v1}; b0 ← Votepk (v0); b1 ←
Votepk (v1); bb0 ← BB(bb0, b0); bb1 ← BB(bb1, b1), if v0, v1 ∈ m.

• O(b) assigns bb′β ← bbβ, executes bbβ ← BB(bbβ , b) and if bbβ 6= bb′β,
then executes bb1−β ← BB(bb1−β , b).

• O() outputs bbβ.

We say Γ satisfies ballot secrecy if for all probabilistic polynomial-time adver-
saries A and security parameters n, there exists a negligible function negl such
that IND-SECA,Γ(n) ≤ negl(n).

Our game captures a setting where an adversary can cast ballots on behalf of a
subset of voters, whom we call dishonest voters, and controls the distribution of
votes cast by the remaining voters, whom we call honest voters, but honest vot-
ers always cast ballots constructed by the Vote algorithm. Furthermore, at the
end of the election, the adversary obtains the election result. Intuitively, if the
adversary loses the game, then the adversary is unable to distinguish between
the bulletin boards bb0 and bb1, hence, the adversary cannot distinguish be-
tween an honest ballot b0 ∈ bb0 and an honest ballot b1 ∈ bb1, therefore, voters’
votes cannot be revealed. On the other hand, if the adversary wins the game,
then there exists a strategy to distinguish honestly cast ballots. For example,
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suppose an adversary in control of one dishonest voter can violate ballot secrecy
in a referendum with two honest voters, when: all voters participate, each voter
casts a valid vote, and no auxiliary data is produced (as per the Enc2Vote con-
struction, we can model the absence of auxiliary data using a constant symbol
such as ⊥). In this setting, we require a vote space {v0, v1} and the adversary
must make three oracle calls, namely, O(v0, v1), O(v1, v0), and O(b). It follows
that the election result will be {v0, v1, v}, where v is the adversary’s vote. More-
over, the adversary must have a strategy to generate b such that the adversary’s
vote v is related to either v0 or v1, otherwise, the election results from both
bulletin boards will be equal and the adversary cannot win the game. We stress
that a unanimous election result – for instance, the election result generated by
tallying the bulletin board bbβ produced by the oracle calls O(v0, v1), O(v0, v1),
and O(b), where b contains the vote vβ – will always reveal all voters’ votes and
we tolerate this factor in our game by challenging the adversary to guess the bit
β, rather than the distribution of votes.

Comparing IND-SEC and our original presentation. Our original pre-
sentation of ballot secrecy [SB13, Definition 5] always outputs auxiliary data
derived from tallying: we compute (v, aux ) ← Tallysk (bbβ), if L0 = L1, and
(v, aux )← Tallysk (bb0), otherwise. Galindo & Cortier [GC13] have shown that
this definition is too strong, since it is incompatible with verifiability, in part-
ciular, verification will succeed if β = 0 and fail if β = 1, in the case L0 6= L1.
We overcome this limitation by weakening our original definition, in particular,
we compute aux ←⊥; (v, aux ′)← Tallysk (bb0), when L0 6= L1.

4 Ballot independence

Intuitively, if an election scheme satisfies ballot independence, then an adversary
is unable to construct a ballot that will be accepted by the election’s bulletin
board and be meaningfully related to a non-adversarial ballot from the bulletin
board [CS13, Section 7.2], thereby capturing the notion that accepted ballots
are tamper-proof. Building upon inspiration from non-malleable encryption, we
formalise ballot independence as a non-malleability game.

4.1 Non-malleability game

The concept of non-malleability and first formalisation is due to Dolev, Dwork
& Naor [DDN91, DDN00]. Bellare et al. [BDPR98] build upon these results to
introduce NM-CPA (Definition 2) and based upon NM-CPA, we formalise ballot
independence (Definition 6) as a pair of cryptographic games: SuccBB

A,Π and

SuccBB
A,Π,$. The first three steps of both games are identical. First, the challenger

sets up the keys, vote space, and bulletin board. Secondly, the adversary gets
the vote space m, the public key pk and the board bb as input and must return
a distribution M on the vote space. The adversary may also read the board
and submit ballots of his own. Thirdly, the challenger samples a vote v from
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M . At this point the two games diverge: in SuccBB
A,Π, the challenger constructs

a ballot Votepk (v) and adds it to the bulletin board; whereas, in SuccBB
A,Π,$, the

challenger samples a second vote v′ from M , constructs a ballot Votepk (v′) and
adds it to the bulletin board. Fourthly, the adversary must compute a relation
R which is intended to distinguish the election results produced by the two
games. Finally, the challenger tallies the election and evaluates the relation
R on the vote v and, after removing the challenge vote, the election result.
The adversary’s advantage is the difference between the probabilities that his
relation is satisfied in each game.

Definition 6 (NM-BB: Ballot independence). Let Γ = (Setup,Vote,BB,Tally)
be an election scheme, A = (A1, A2) be an adversary, and

NM-BBA,Γ(n) := |SuccBB
A,Π(n)− SuccBB

A,Π,$(n)|

where SuccBB
A,Π(n) and SuccBB

A,Π,$(n) are defined below, and n is the security
parameter.

SuccBB
A,Π(n) = Pr [(bb,m, pk , sk)← Setup(1n); (M, s)← AO1 (m, pk);

v ←R M ; b← Votepk (v); bb← BB(bb, b); R← AO2 (s);

(v, aux )← Tallysk (bb) : R(v, v\{v})]

SuccBB
A,Π,$(n) = Pr [(bb,m, pk , sk)← Setup(1n); (M, s)← AO1 (m, pk);

v, v′ ←R M ; b← Votepk (v′); bb← BB(bb, b); R← AO2 (s);

(v, aux )← Tallysk (bb) : R(v, v\{v′})]

In the above games we let O be defined as follows: O(b) executes bb← BB(bb, b)
and O() outputs bb. Moreover, we insist the vote space sampling algorithm M
and the relation R are computable in polynomial time, and for all v ←R M
we have v ∈ m. We say Γ satisfies NM-BB (or ballot independence) if for
all probabilistic polynomial-time adversaries A and security parameters n, there
exists a negligible function negl such that NM-BBA,Γ(n) ≤ negl(n).

Intuitively, if an adversary wins the game, then the adversary is able to con-
struct a relation R which holds for a challenge ballot b ← Votepk (v) but fails
for b ← Votepk (v′). However, we must avoid crediting the adversary for trivial
and unavoidable relations which hold iff the challenge vote appears in the elec-
tion result, hence, we remove the challenge vote from the election result. By
contrast, if the adversary can derive a ballot containing the challenge vote and
the bulletin board accepts such a ballot, then the adversary can win the game.
For example, suppose an election scheme allows the bulletin board to accept
duplicate ballots and witness that an adversary can win the game as follows,
namely, the adversary selects M as a uniform distribution on m, calls O(b) with
the challenge ballot b, and defines a relation R(v, v) that holds iff v ∈ v; in
this setting, R(v, {v}) always holds at the end of SuccBB

A,Π, whereas, R(v, {v′})
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holds with probability 1/m at the end of SuccBB
A,Π,$, since v′ is sampled inde-

pendently from v. Finally, if an adversary loses the game, then the adversary
is unable to construct a suitable relation, hence, there is no ballot which the
bulletin board will accept such that the ballot is related to Votepk (v) but not
Votepk (v′), therefore, the adversary cannot cast a ballot which is meaningfully
related to an honest voter’s ballot.

Comparing NM-BB and NM-CPA. The main distinction between the no-
tion of non-malleability (Definition 2) and our definition of ballot independence
is: NM-CPA universally quantifies over ciphertexts, whereas, NM-BB quantifies
over ballots accepted by the bulletin board. It follows that non-malleability
for encryption is intuitively stronger than ballot independence, since non-malle-
ability for encryption insists that the adversary cannot construct ciphertexts
meaningfully related to the challenge ciphertext, whereas, ballot independence
tolerates meaningfully related ballots, assuming that they are rejected by the
bulletin board algorithm BB. For example, suppose an adversary A includes
the challenge ciphertext in the vector y and observe that this adversary cannot
win NM-CPAA,Π(n), due to the constraint y 6∈ y; by comparison, suppose an ad-
versary B copies the challenge ballot b and observe that this adversary can win
NM-BBB,Γ(n). Nonetheless, for ballot independence, the bulletin board must
not contain meaningfully related ballots and, hence, checking for meaningfully
related ballots is a prerequisite of the bulletin board algorithm BB.

4.1.1 Non-malleable ballots are sufficient.

Non-malleability for encryption prevents the adversary from constructing a ci-
phertext meaningfully related to the challenge ciphertext and, hence, it follows
that non-malleable ballots are sufficient for ballot independence. Indeed, we
can derive non-malleable ballots in our Enc2Vote construction using encryption
schemes satisfying NM-CPA.

Proposition 1. Given an encryption scheme Π satisfying NM-CPA, the election
scheme Enc2Vote(Π) satisfies ballot independence.

In Proposition 1, it is sufficient for the bulletin board algorithm, defined by
Enc2Vote(Π), to reject ballots that already appear on the bulletin board since
non-malleability prevents the adversary from creating ballots meaningfully re-
lated to honest voters’ votes (except for exact copies). The proof is essentially
the same as that of [BPW12b, Theorem 4.2].

More generally, we could adapt the non-malleability game for encryption
(Definition 2) to a non-malleability game for ballots. In this setting, given
an election scheme satisfying our non-malleability game for ballots and such
that the bulletin board algorithm rejects duplicates, we believe that the elec-
tion scheme satisfies ballot independence. Formalising this result is a possible
direction for future research.
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4.2 Indistinguishability game

Our non-malleability game (NM-BB) captures an intuitive notion of ballot in-
dependence, however, the definition is relatively complex and security proofs
in this setting are relatively difficult. Bellare & Sahai [BS99] observed simi-
lar complexities with definitions of non-malleability for encryption and show
that NM-CPA is equivalent to a simpler, indistinguishability-based notion. In a
similar direction, we introduce an indistinguishability game IND-BB for ballot
independence and, based upon Bellare & Sahai’s proof, show that our games
NM-BB and IND-BB are equivalent.

We model ballot independence as an indistinguishability game between an
adversary and a challenger (Definition 7). Informally, the game proceeds as
follows. First, the challenger initialises the bulletin board bb, defines the vote
space m, and constructs a key pair (pk , sk). Secondly, the adversary executes
the algorithm A1 on the public key pk and vote space m, and outputs the
triple (v0, v1, s), where v0, v1 ∈ m and s is some state information. Thirdly, the
challenger randomly selects a bit β, computes a challenge ballot b, and updates
the bulletin board with b. Fourthly, the adversary executes the algorithm A2

which outputs some state t. Next, the challenger computes the election result
v. Finally, the adversary executes the algorithm A3 on the input t and v\{vβ}.
The election scheme satisfies ballot independence if the adversary has less than
a negligible advantage over guessing the bit β.

Definition 7 (IND-BB: Ballot independence). Let Γ = (Setup,Vote,BB,Tally)
be an election scheme, A = (A1, A2, A3) be an adversary, n be the security
parameter and IND-BBA,Γ(n) the cryptographic game defined below.

2 · Pr [(bb,m, pk , sk)← Setup(1n); (v0, v1, s)← AO1 (m, pk); β ←R {0, 1};
b← Votepk (vβ); bb← BB(bb, b); t← AO2 (s); (v, aux )← Tallysk (bb) :

A3(t, v\{vβ}) = β]− 1

In the above game we let O be defined as follows:

• O(b) executes bb← BB(bb, b)

• O() outputs bb

Moreover, we insist that v0, v1 ∈ m. We say Γ satisfies IND-BB (or ballot
independence) if for all probabilistic polynomial-time adversaries A and security
parameters n, there exists a negligible function negl such that IND-BBA,Γ(n) ≤
negl(n).

Intuitively, if an adversary wins the game, then the adversary is able to distin-
guish between challenge ballots b← Votepk (v0) and b← Votepk (v1). As per our
NM-BB game, we avoid trivial and unavoidable distinctions by removing the
challenge vote from the election result.

Our ballot independence games are based on standard security models for en-
cryption: NM-BB is based on non-malleability whereas IND-BB game is based on
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indistinguishability. Bellare and Sahai [BS99] have shown that non-malleability
is equivalent to a notion of indistinguishability for encryption and we adapt
their proof to show that NM-BB and IND-BB are equivalent.

Theorem 1 (NM-BB = IND-BB). Given an election scheme Γ, we have Γ
satisfies NM-BB if and only if Γ satisfies IND-BB.

Theorem 1 relates the advantage of an adversary casting a vote meaningfully
related to an honest voter’s vote to an advantage in guessing the honest voter’s
vote, in a setting where the election result does not contain the honest voter’s
vote.

Proof. Let Γ = (Setup,Vote,BB,Tally). For the forward implication, suppose
Γ does not satisfy IND-BB, hence, for any negligible function f , there ex-
ists an adversary A = (A1, A2, A3) and a security parameter n such that
IND-BBA,Γ(n) > f(n), moreover, IND-BBA,Γ(n) > 2 · f(n), since doubling a
negligible function produces another negligible function. Let us show that Γ
does not satisfy NM-BB, by constructing an adversary B = (B1, B2) as follows:

Algorithm B1. Given input m and pk , the algorithm computes (v0, v1, s) ←
AO1 (m, pk) and outputs ({v0, v1}, ({v0, v1}, s)).

Algorithm B2. Given input ({v0, v1}, s), the algorithm computes t← AO2 (s),
selects some random coins r, and outputs the relation R such that R(v, v)
holds if v = vg and fails otherwise, where g ← A3(t, v; r).

Let us consider executions of SuccBB
B,Π(n) and SuccBB

B,Π,$(n).

• First, SuccBB
B,Π(n), where a single vote v is sampled from M . By inspecting

the values provided to the embedded instance of A, we see that the dis-
tribution of these values is identical to if A were interacting with IND-BB
directly. The use of A3 is in a non-black-box manner but this does not
matter: it is still invoked exactly one time in the game. Hence, the prob-
ability that A3’s output matches the challenger’s bit β is equal to the
probability that A wins the IND-BB game, that is, strictly greater than
(2 · f(n) + 1)/2.

• Secondly, SuccBB
B,Π,$(n), where two votes v and v′ are sampled from M .

The value v is independent of A’s perspective, indeed, v could be sampled
after A3 has terminated and immediately before evaluating the relation
R. It follows immediately that R holds iff v = vg, where g is A3’s output
and g is independent of v. Hence, the probability that R holds is 1/2.

The advantage of our adversary B in NM-BB is therefore strictly greater than (2·
f(n)+1)/2−1/2 = f(n), concluding this direction of the proof by contraposition.

For the reverse implication, suppose Γ does not satisfy NM-BB, hence, for
any negligible function f there exists an adversary A = (A1, A2) and a security
parameter n such that NM-BBA,Γ(n) > 2 · f(n). Let us construct an adversary
B = (B1, B2, B3) against IND-BB as follows:
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Algorithm B1. Given input m and pk , the algorithm computes (M, s) ←
AO1 (m, pk); v0, v1 ←M and outputs (v0, v1, (v0,M, s)).

Algorithm B2. Given input (v0,M, s), the algorithm computes R← AO2 (M, s)
and outputs (v0, R).

Algorithm B3. Given input (v0, R) and v, the algorithm evaluates R(v0, v)
and if the relation holds, then the algorithm outputs 0, otherwise, the
algorithm outputs 1.

If the challenger selects β = 0 in IND-BB, then the embedded adversary A sees
exactly the same distribution of values as in SuccBB

B,Π(n), otherwise (β = 1), A
sees the same distribution as in the second SuccBB

B,Π,$(n). Let g be B’s guess in
IND-BB. The success probability of B is:

Pr[β = g] = Pr[β = 0] · Pr[g = 0 | β = 0] + Pr[β = 1] · Pr[g = 1 | β = 1]
= 1/2 · (Pr[g = 0 | β = 0] + Pr[g = 1 | β = 1])
= 1/2 · (Pr[R(v0, v)] + (1− Pr[R(v1, v)]))
= 1/2 + 1/2 · NM-CPAA,Π(n)

Since 1/2 + 1/2 · NM-CPAA,Π(n) > 1/2 + f(n), the advantage of B is greater
than f(n), concluding the proof.

4.3 Controlled malleability is sufficient

Recall that ballot independence tolerates meaningfully related ballots, assuming
they are rejected by the bulletin board. It follows intuitively that we can weaken
the requirement for an NM-CPA encryption scheme in Proposition 1, assuming
we modify Enc2Vote’s bulletin board algorithm to reject ballots meaningfully re-
lated to existing ballots on the bulletin board. We start with a simple example.
Given an encryption scheme satisfying NM-CPA, we can derive a new encryp-
tion scheme by prepending a random bit to all ciphertexts and removing this
bit before decryption. This new encryption scheme does not satisfy NM-CPA,
however, we can derive an election scheme satisfying ballot independence using
Enc2Vote if we modify Enc2Vote’s bulletin board algorithm as follows: given a
bulletin board bb and ballot b, reject b if it is identical to any ballot already on
bb up to the first bit. This example shows that non-malleable ballots are not
necessary for ballot independence. Let us now formalise a notion of controlled
malleability6, denoted NM-CPA/R (pronounced “NM-CPA modulo R”), which
we will show is sufficient for ballot independence.

Definition 8 (Controlled malleability). Let Π = (Gen,Enc,Dec) be an asym-
metric encryption scheme and R be an efficiently computable equivalence rela-
tion on Π’s ciphertext space. We say that Π satisfies NM-CPA/R (or controlled
malleability) if for all efficient adversaries A the following probability is negli-
gible

6The term is taken from Chase et al. [CKLM12] who introduce controlled malleability for
zero-knowledge proofs.
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Pr
[
(pk , sk)← Gen(1n);β ←R {0, 1} : Achalβ ,dec(pk) = β

]
where the oracles chal and dec are defined as follows and each oracle may be
called once, in any order.

• chalβ takes two messages m0 and m1 of equal length as input, computes
c∗ ← Encpk(mβ), and outputs c∗.

• dec takes a vector c of ciphertexts as input. If chalβ has previously output
a ciphertext c∗ such that R(c, c∗) holds for some c ∈ c, then output ⊥,
otherwise, output Decsk(c).

Our definition generalises non-malleability for encryption, in particular, NM-CPA
= NM-CPA/R, when R is the identity. Moreover, we note that our definition
could be adapted to a notion of CCA2/R by allowing arbitrarily many decryption
queries. The construction Enc2Vote can be generalised to asymmetric encryp-
tion schemes satisfying controlled malleability as follows.

Definition 9 (Enc2Vote/R). Suppose Π = (Gen,Enc,Dec) is an asymmetric
encryption scheme and R is an efficiently computable equivalence relation on Π’s
ciphertext space, we define Enc2Vote/R(Π) = (Setup,Vote,BB,Tally) as follows.
Let the Setup, Vote and Tally algorithms be given by Enc2Vote(Π). The BB
algorithm takes bb and b as input, where bb is a multiset. If there exists b′ ∈ bb
such that R(b, b′), then BB outputs bb, otherwise, BB outputs bb ∪ {b}.

Assuming that the relation R does not relate fresh, honestly generated cipher-
texts in Π’s ciphertext space to other values (Definition 10), we can ensure
that Enc2Vote/R(Π) satisfies the correctness condition of election schemes and,
hence, Enc2Vote/R(Π) is an election scheme satisfying ballot independence by
(Proposition 2).

Definition 10 (Sparse relation). Let Π = (Gen,Enc,Dec) be an asymmetric en-
cryption scheme and R be an efficiently computable equivalence relation on Π’s
ciphertext space. We say R is a sparse relation if for all (pk, sk)← Gen, c and
m, we have c′ ← Enc(m, pk) yields R(c, c′) = 0 with overwhelming probability.

Proposition 2. Suppose Π is an asymmetric encryption scheme and R is an
efficiently computable and sparse equivalence relation on Π’s ciphertext space
such that Π satisfies NM-CPA/R. We have Enc2Vote/R(Π) satisfies ballot in-
dependence.

The proof of Proposition 2 is similar to the proof of [BPW12b, Theorem 4.2].
Intuitively, we could adapt the controlled malleability game for encryption

(Definition 8) to a controlled malleability game for ballots. In this setting, given
an election scheme satisfying our controlled malleability game for ballots and
such that the bulletin board algorithm rejects duplicates, we believe that the
election scheme satisfies ballot independence. Moreover, the generalised def-
inition would allow us to consider whether controlled malleability for ballots
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is necessary for ballot independence. (Clearly such results cannot be consid-
ered using controlled malleability for encryption, since this definition excludes
election schemes based upon alternative cryptographic primitives, such as com-
mitments, for example.) Formalising this result is a possible direction for future
research.

4.4 Design paradigms and discussion.

We derive the following design paradigms from our results: 1) use non-malleable
ballots (Section 4.1), or 2) identify and reject related ballots using controlled
malleability (Section 4.3). The latter paradigm is particularly useful when bal-
lots contain malleable data such as voter identities or pseudonyms, since we
can tolerate malleability and provide provable security. Moreover, it facilitates
more realistic models of election schemes in comparison with earlier work, for
example, Bernhard et al. [BCP+11,BPW12b,BPW12a] abstractly model Helios
ballots as non-malleable ciphertexts, whereas, in practice, Helios ballots embed
non-malleable ciphertexts in malleable JavaScript Object Notation (JSON) data
structures (this is particularly relevant, since Smyth & Cortier [SC10, §4.1] have
shown that the JSON structures introduces vulnerabilities).

5 Ballot secrecy implies ballot independence

In this paper, all election schemes satisfy correctness: the bulletin board al-
gorithm BB adds honestly constructed ballots to the bulletin board, the tally
algorithm Tally includes honest votes in the election result, and the number of
votes in an election result corresponds to the number of ballots (that is, each
ballot contains one vote). In this setting, an election scheme satisfying ballot
secrecy also satisfies ballot independence.

Theorem 2 (Ballot secrecy implies ballot independence). Given an election
scheme Γ = (Setup,Vote,BB,Tally) satisfying ballot secrecy, we have Γ satisfies
ballot independence.

Theorem 2 relates an advantage in guessing an honest voter’s vote in a setting
where the election result does not contain the honest voter’s vote to an advantage
in the ballot secrecy game where the election result does include the honest
voter’s vote. It follows that an advantage in casting a vote meaningfully related
to an honest voter’s vote translates into an advantage in guessing an honest
voter’s vote, hence, we have shown that ballot independence is necessary for
ballot secrecy in election schemes defined by Definition 3.

The proof of Theorem 2 is standard: by contradiction, we construct an
adversary B = (B1, B2) against IND-SEC from a successful adversary A =
(A1, A2, A3) against IND-BB such that B ensures A’s perspective of the bul-
letin board and election result are consistent with IND-BB. Before explaining
how we ensure that A’s perspective is consistent, let us briefly review the dis-
tinction between A’s and B’s perspectives of their respective bulletin board and
election result.
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• In IND-BB, the adversary A1 expects OA() = bb such that b ∈ bb implies
A1 previously called OA(b). Moreover, adversaries A2 and A3 expect
OA() = bb ∪ {b′} such that b′ is the challenge ballot and b ∈ bb implies
A1 or A2 previously called OA(b). Furthermore, A3 observes the election
result v\{vβ}, where vβ is the challenge vote and (v, aux )← Tallysk (bb).

• By comparison, in IND-SEC, the adversary B expects OB() = bb such that
b ∈ bb implies B previously called OB(b) or OB(v0, v1), and in the latter
case the oracle constructed b = Votepk (vβ). Furthermore, B observes
the election result v, where (v, aux ) ← Tallysk (bbβ), if L0 = L1, and
(v, aux ′)← Tallysk (bb0), otherwise.

It follows immediately that A2 and A3 will observe a challenge ballot on the
bulletin board, whereas, B will not. In addition, the challenge vote will be
removed from the election result observed by A3, whereas no votes are removed
from the election result observed by B. Let us now informally explain how
B ensures that A’s perspective of the bulletin board and election result are
consistent with IND-BB. First, B ensures that a challenge ballot appears on the
bulletin board observed by adversaries A2 and A3 by calling OB(v0, v1), where
votes v0 and v1 are output by A1. Secondly, the adversary B calls OB(v1, v0)
and inputs the election result v\{v1, v0} to A3, where (v, aux ) ← Tallysk (bb).
We remark that tallying after the first step will produce an election result which
includes the challenge vote vβ and does not correspond to the election result
expected by A; the second step overcomes this problem.

Proof of Theorem 2. Suppose Γ = (Setup,Vote,BB,Tally) is an election scheme
with ballot secrecy that does not satisfy IND-BB, hence for any negligible func-
tion f there exists an adversary A = (A1, A2, A3) and security parameter n such
that IND-BBA,Γ(n) > f(n). We construct an adversary B = (B1, B2) against
IND-SEC as follows.

Algorithm B1. Given input m and pk , the algorithm proceeds as follows.
First, B1 computes (v0, v1, s) ← AOA

1 (m, pk), handling any oracle calls
from A1 as follows: if A1 calls OA(b), then B1 calls OB(b), similarly, if
A1 calls OA(), then B1 computes bb ← OB() and returns bb to A1. Sec-
ondly, B1 creates the challenge ballot and adds it to the bulletin board
by computing OB(v0, v1). Thirdly, B1 computes t ← AOA

2 (s), handling
any oracle calls from A2 as before. Finally, B1 computes OB(v1, v0); and
outputs t.

Algorithm B2. Given input v, aux and t, the algorithm computes A3(t, v \
{v0, v1}) and outputs A3’s guess.

The embedded adversary A sees the same distribution of all elements as in the
IND-BB game for the same value of β. Indeed, the challenge ballot is com-
puted in the same manner, OA() produces the expected multiset of ballots (we
stress that the ballot introduced in the final step of B1 — to ensure that the
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election result is consistent with A3’s expectations – never appears in a mul-
tiset output by OA(), since this ballot is added to the bulletin board after all
oracle calls by A), and the election result observed by A3 is as expected. It
follows that B guesses β correctly with the same advantage as A and, therefore,
IND-SECB,Γ(n) > f(n), concluding our proof.

5.1 Critique of Desmedt & Chaidos’s Helios variant

Intuitively, Theorem 2 contradicts the results by Desmedt & Chaidos [DC12],
who claim to provide a variant of the Helios election scheme which allows Bob
to cast the same vote as Alice, with Alice’s cooperation, whilst preventing Bob
from learning Alice’s vote. In their protocol, Bob selects Alice’s ballot from the
bulletin board and communicates with Alice to generate a new ballot that is
guaranteed to contain the same vote as Alice’s. Desmedt & Chaidos’s security
claim is true before the election result is announced, since Bob gains no advan-
tage in guessing Alice’s vote. However, after the election result is announced,
the claim is false. We can informally contradict this claim – using results by
Cortier & Smyth [CS11, SC11, CS13] – in an election with voters Alice, Bob
and Charlie: if Bob casts the same vote as Alice, then Bob can learn Alice’s
vote by observing the election result and checking which candidate obtained
at least two votes (that is, Bob can learn Alice’s vote when the election result
is not unanimous). We believe the erroneous claim by Desmedt & Chaidos is
due to an invalid inference from their computational security result. Indeed,
although the result [DC12, Theorem 1] is correct, their model does not support
their claims for real world security: Desmedt & Chaidos consider a passive ad-
versary that cannot observe the election result, whereas, we believe a practical
notion of security must consider an active adversary who can cast ballots and
observe the election result, since this captures the capabilities of an attacker in
the real world. Nonetheless, a weaker notion of ballot secrecy may be satisfi-
able in Desmedt & Chaidos’s variant of Helios, assuming Alice never cooperates
with the adversary. Clearly, no claims can be made about Bob’s knowledge of
Alice’s vote in this setting. We have shown Desmedt & Chaidos our results and
Chaidos agrees with our findings [Cha13].

5.2 Discussion

We have shown that election schemes satisfying ballot secrecy must also satisfy
ballot independence. However, we must concede that alternative formalisms of
election schemes may permit different results. Indeed, Cortier & Smyth [CS13,
Section 7.1] present a result to the contrary using anonymous channels, which
are implicitly excluded from our model. Moreover, our model also excludes
settings where the adversary cannot control a majority of voters and places some
restrictions on the election result, namely, the election result is captured as a
multiset which reveals the number of votes for each candidate. In this setting,
an election result can be computed from a partial election result if the votes of
the remaining voters are known. This property is implicitly used in our proof of
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Theorem 2, where we take the election result and challenge vote, and compute
the partial election result which removes the challenge vote. On the other hand,
some practical election schemes do not have this property. For example, consider
an election scheme which announces the winning candidate, but does not provide
a breakdown of the votes for each candidate [BY86, HK02, HK04, DK05]. It
follows that knowledge of a partial election result can only be used to derive the
election result if the adversary controls a majority of voters. Similarly, given
an election result and knowledge of a minority of votes, a partial election result
which excludes the known votes cannot be derived. In this setting, we believe
election schemes can satisfy ballot secrecy but not ballot independence, since
casting a minority of related ballots is not sufficient to reveal a voter’s vote.
Formal treatment of this case and consideration of whether such schemes are
practical is a possible direction for future work.

6 Sufficient conditions for ballot secrecy

The main distinctions between our ballot secrecy (IND-SEC) and ballot inde-
pendence (IND-BB) games are as follows.

1. The challenger in our ballot independence game explicitly defines a chal-
lenge ballot and adds the ballot to the bulletin board, whereas, the chal-
lenger in our ballot secrecy game provides the adversary with an oracle
OB(·, ·).

The two formulations are similar, indeed, the challenger’s computation b ←
Votepk (vβ); bb← BB(bb, b) is similar to an oracle call OB(v0, v1). Moreover, a
hybrid argument will show that it does not matter if we give the adversary only
one challenge ballot or many oracle calls.

2. The adversary in our ballot secrecy game has access to the auxiliary data
produced during tallying, but the adversary in our ballot independence
game does not.

The second point distinguishes our two games shows that ballot secrecy is
stronger than independence and Footnote 5 gives a case where it is strictly
stronger: the presentation of the Enc2Vote construction by Bernhard, Pereira &
Warinschi provides ballot independence, but the auxiliary data maps voters to
votes, thereby violating ballot secrecy. Nonetheless, by denying the adversary
access to auxiliary data we can show that the two games are equivalent (The-
orem 3) and, hence, in the absence of auxiliary data, ballot independence is a
sufficient condition for ballot secrecy, in particular, Enc2Vote and Enc2Vote/R
are constructions for election schemes satisfying ballot secrecy.

Theorem 3 (NM-BB = IND-SEC, without auxiliary data). Suppose Γ = (Setup,
Vote,BB,Tally) is an election scheme such that there exists a constant symbol
⊥ and for all parameters (bb0,m, pk , sk)← Setup(1n), multisets bb and tallying
data (v, aux ) ← Tallysk (bb), we have aux =⊥. It follows that Γ satisfies ballot
secrecy if and only if Γ satisfies ballot independence.
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Proof. Suppose Γ is an election scheme that does not satisfy IND-BB, hence for
any negligible function f there exists an adversary A and security parameter
n such that IND-BBA,Γ(n) > f(n). The adversary B defined in the proof of
Theorem 2 is such that IND-SECB,Γ(n) > f(n). It remains to show that ballot
independence implies ballot secrecy.

Suppose Γ is an election scheme that does not satisfy IND-SEC, hence for any
negligible function f there exists an adversary B = (B1, B2) and security param-
eter n such that IND-SECB,Γ(n) > f(n). The probability of IND-SECB,Γ(n) >
f(n) without making any two-element oracle calls, with input from the voting
scheme’s vote space, is 1/2, since IND-SEC with β = 0 is identical to IND-SEC
with β = 1 in this case. Accordingly, without loss of generality, we can assume
that B1 makes at least one such two-element oracle call (in cases where the
assumption does not hold, we let A guess β randomly, without losing any of B’s
advantage). We shall use B to construct an adversary A = (A1, A2, A3) Let q be
an upper bound on the number of two-element oracle calls made by B1. We can
assume that q is polynomial in the security parameter, because B is efficient.
We proceed by introducing hybrid games G0, . . . , Gq. For 0 ≤ i ≤ q let Gi be
the game defined below.

(bb0,m, pk , sk)← Setup(1n); bb1 ← bb0; s← BO1 (m, pk);

g ← B2(v,⊥, s); output g

In the above game, the oracle O is defined below, and v is defined as follows,
namely, (v, aux )← Tallysk (bb0).

• O(v0, v1) executes b0 ← Votepk (v0); b1 ← Votepk (vk); bb0 ← BB(bb0, b0);
bb1 ← BB(bb1, b1), where k = 1 for the first i queries and k = 0 for any
subsequent query.

• O(b) assigns bb′1 ← bb1, executes bb1 ← BB(bb1, b) and if bb1 6= bb′1, then
executes bb0 ← BB(bb0, b).

• O() outputs bb1.

We insist that two-element oracle queries always provide inputs from m.
We demonstrate that the adversary B’s perspective in G0 is equivalent to B’s

perspective in the IND-SEC game when β = 0. The inputs to B1 can trivially
be observed to be equivalent in both instances, because they are generated by
Setup. Moreover, B1’s oracle access is equivalent in each case, because bb0 in
IND-SEC is equivalent to bb1 in G0. It follows that B1’s output is equivalent
in both settings. Furthermore, the tallies generated in both G0 and IND-SEC
are equivalent, because bb0 and bb1 are equivalent in G0. Since our hypothesis
asserts that the auxilliary data output by tallying is a constant symbol, it follows
that the inputs to B2 are equivalent in both instances.

Similarly, we demonstrate that the adversary B’s perspective in Gq is equiv-
alent to B’s perspective in the IND-SEC game when β = 1. As before, the inputs
to B1 can trivially be observed to be equivalent in both instances. Moreover,
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since q is an upper bound on the number of two-element oracle calls made by B1,
the oracle definitions in Gq and IND-SEC are identical, with the exception of up-
dating L0 and L1 in IND-SEC (which does not influence B1’s perspective). Once
again, it follows that B1’s output is equivalent in both settings. Furthermore,
the tallies generated in both G0 and IND-SEC are equivalent, in particular, G0

tallies bb0, which is equivalent to either of the following cases: 1) tallying bb1

in IND-SEC when L0 = L1, because bb1 is equivalent to bb0 in this case; or
2) tallying bb0 in IND-SEC. As before, we conclude that the inputs to B2 are
equivalent in both instances.

It follows that B’s advantage against IND-SEC is B’s distinguishing advan-
tage between G0 and Gq. Moreover, since B has non-negligible advantage of
distinguishes G0 and Gq, there exists an integer i such that 0 ≤ i < q and
B distinguishes Gi and Gi+1 with non-negligible advantage, more precisely, we
have the following fact.

Fact 1. The adversary B distinguishes Gi and Gi+1 with probability greater
than IND-SECB,Γ(n)/q for some integer i such that 0 ≤ i < q.

Proof of Fact 1. Let pi be the probability that the adversary B outputs 1 fol-
lowing an interaction with Gi, where 0 ≤ i ≤ q. The probability is taken over all
random choices in this experiment. Since B is an IND-SEC adversary with a non-
negligible distinguishing probability, the quantity IND-SECB,Γ(n) = |pq − p0| is
non-negligible. We write this as a telescope sum:

|pq − p0| = |(pq − pq−1) + (pq−1 − pq−2) + . . .+ (p1 − p0)|

Repeatedly applying the inequality |a+ b| ≤ |a|+ |b| we find:

IND-SECB,Γ(n) ≤ |(pq − pq−1)|+ |(pq−1 − pq−2)|+ . . .+ |(p1 − p0)|

The largest of the quantities on the right-hand side must therefore be at least
IND-SECB,Γ(n)/q, concluding the proof of Fact 1.

Using Fact 1 we proceed the proof of Theorem 3. By Fact 1, let i be an
integer such that B distinguishes Gi and Gi+1 with probability greater than
IND-SECB,Γ(n)/q, where 0 ≤ i < q. The probability of B distinguishing games
Gi and Gi+1 with fewer than than i+ 1 two-element oracle queries is 1/2, since
the two games are identical until the i + 1 such query. Accordingly, without
loss of generality, we can assume that B makes at least i+ 1 two-element oracle
queries and construct the adversary A as follows (in cases where there are fewer
than i+ 1 queries, we can let A guess randomly).

Algorithm A1. Given input m and pk , A1 initialises multisets L0 ← ∅ and
L1 ← ∅, and runs BOB

1 (m, pk). Oracle calls by B1 are handled as follows.

• OB(b): A1 calls OA(b).

• OB(): A1 computes bb← OA() and returns bb to B1.
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• OB(v0, v1): For the first i calls, A1 computes

b← Votepk (v1);OA(b);L0 ← L0 ∪ {v0};L1 ← L1 ∪ {v1}

For call i + 1, A1 suspends B1 and saves its state as t, and outputs
(v0, v1, (t, v0, L0, L1)) to the challenger.

(A1 terminates on the i+1-st two-element oracle query.)

Algorithm A2. Given input (t, vc0, L0, L1), A2 resumes B1 with state t. Ora-
cle calls by B1 are handled as above, except calls OB(v0, v1), which are
handled as follows: b← Votepk (v0);OA(b). When B1 outputs some state
s, A2 returns (s, vc0, L0, L1).

Algorithm A3. Given input (s, vc0, L0, L1) and v, A3 assigns v′ ← {vc0} ∪ L0 ∪
(v \ L1), computes g ← B2(v′,⊥, s), and outputs g. (Informally, the
assignment computes the result v′ by replacing all the votes that came
from two element oracle calls made by B1 – namely, the votes in the
multiset L1 – with the votes in the multiset L0.)

This construction provides a view of either Gi or Gi+1 towards B, in particu-
lar, OB(v0, v1) queries compute bbβ ← BB(bbβ , b), where β is choosen by the
challenger and b is defined as follows: b ← Votepk (v1) for the first i queries,
b ← Votepk (vβ) for the i + 1 query, and b ← Votepk (v0) for any subsequent
queries. Moreover, v′ is computed as if β = 0. It follows that the construction
provides a view of Gi, if β = 0, and Gi+1, otherwise (i.e., β = 1). We preserve
the distinguishing advantage f(n) of B in our adversary A against IND-BB.

The ESORICS’13 version of this paper suggests circumstances under which
Theorem 3 could be generalised: we hinted that a stronger notion of ballot se-
crecy coincides with ballot independence for zero-knowledge auxiliary data [SB13,
Remark 16]. Unfortunately, such a result cannot hold, because we have seen that
the stronger notion of ballot secrecy is incompatible with verifiability (Section 3),
whereas ballot independence is compatible with verifiability, i.e., verifiable elec-
tion schemes with zero-knowledge auxiliary data satisfy ballot independence but
not the strong notion of ballot secrecy. Considering whether NM-BB = IND-SEC
for zero-knowledge auxiliary data is a possible direction for future work.

7 Conclusion

We have formalised ballot independence in a variant of the model for election
schemes proposed by Bernhard et al. Our main results are as follows. Bal-
lot secrecy implies ballot independence; the converse holds too if there is no
auxiliary data. Furthermore, we provide some sufficient conditions for ballot
independence and, hence, ballot secrecy: we show that non-malleable ballots
are sufficient for independence and secrecy, and introduce a weaker notion of
controlled-malleable encryption which is also sufficient, moreover, this notion is
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better suited to modelling the way ballots are handled in practice (for example,
by Helios). In addition, we show that the variant of Helios proposed by Desmedt
& Chaidos does not satisfy ballot secrecy.
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