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Abstract

Traditionally, in attribute-based encryption (ABE), an access structure is con-

structed from a linear secret sharing scheme (LSSS), a boolean formula or an access

tree. In this work, we encode the access structure as their minimal sets, which

is equivalent to the existence of a smallest monotonic span program for the char-

acteristic function of the same access structure. We present two leakage-resilient

attribute-based encryption schemes, ciphertext-policy ABE (LR-CP-ABE) and key-

policy ABE (LR-KP-ABE), that can tolerate private key and master key to be

partially leaked. By using our encoding mechanism, we obtain short ciphertext in

LR-CP-ABE and short key in LR-KP-ABE. Also, our schemes have higher decryp-

tion efficiency in that the decryption cost is independent to the depth of access

structures. Meanwhile, our proposed schemes provide the tolerance of both master

key leakage and continual leakage in the sense that there are many master keys

for universal set Σ and many private keys per attribute set S. We explicitly em-

ploy a refresh algorithm to update a (master) key while the leakage information

will beyond the allowable leakage bound. The schemes are proven to be adaptively

leakage-resilient secure in the standard model under the static assumptions in com-

posite order bilinear groups.

Keywords: Leakage resilience, Attribute-based encryption, Minimal set, Monotone

access structure

1 Introduction

In encryption systems, we could imagine encrypting a data under a policy which specifies

under what conditions key-holder is allowed to decrypt the data. Attackers are modeled

as probabilistic polynomial time machines with input/output access to the algorithm,
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and the algorithm is considered secure if it is infeasible for any such adversary to break

the system. Most existing public key encryptions allow a party to encrypt data to a

particular user, but are unable to efficiently handle more expressive types of encrypted

access policy. In attribute-based encryption (ABE), ciphertexts and keys are associated

with sets of attributes and access policies over attributes. A key holder is able to decrypt

a ciphertext if and only if the attributes satisfies the associated access policy. There

are two kinds of ABE systems: cipertext-policy ABE (CP-ABE), where ciphertexts are

associated with access policies and keys are associated with sets of attributes, and key-

policy ABE (KP-ABE), where keys are associated with access policies and ciphertexts

are associated with sets of attributes.

The original ABE construction proposed by Sahai and Waters [SW05] was limited to

specify as threshold access policies, which was limited to implement formula consisting

of one threshold gate. Goyal et al. [GPSW06] subsequently improved the expressibility

of access policy by allowing the key to express any monotonic access structure over

attributes. To achieve a more expressive access policy over many attributes, some ABE

systems make use of techniques from linear secret-sharing schemes (LSSS) or boolean

formulas as access policies. Recently, Hohenberger and Waters [HW13] presented a

fast decryptable key-policy ABE system in which ciphertexts can be decrypted with a

constant number of pairings.

Lewko et al. [LOS+10] employed monotone span programs (MSPs) as access struc-

ture and then constructed a CP-ABE and a KP-ABE respectively that are proven to

be adaptively secure in composite bilinear groups. However, the ciphertext in CP-ABE

and the key in KP-ABE are polynomial in size of MSPs, and the decryptions are in-

efficient since the pairings of decryption are linearly to the number of rows in MSPs.

In [Wat11], Waters introduced a new technique for realizing CP-ABE under concrete

and noninteractive cryptographic assumptions, which allow any encryptor to specify

access control in terms of an LSSS matrix. Goyal et al. [GJPS08] presented a bound-

ed CP-ABE construction, in which they showed how to transform a KP-ABE system

into a CP-ABE one. In particular, they provided a mapping onto a universal access

tree of up to depth d formulas consisting of threshold gates of input size m. Recently,

Boyen [Boy13] constructed an ABE based on lattice that the security assumptions are

derived from post-quantum hardness.

Considering the attributes in access formulae or LSSS matrices, an attribute can be

used once in an access policy. Although we can obtain multi-show attribute by setting

a fixed bound on the maximum times of an attribute be used, however, this is inefficient

since it causes the larger scale size of public key as well as the size of key in CP-ABE.

Recently, Lewko and Waters [LW12] proposed a new selective proof technique to support

multi-show attribute and obtains an adaptive security in CP-ABE system.

Many access policies in ABE are specified as LSSS. However, there is a close relation

between LSSS and MSP. Beimel [BGP97] proved that the existence of an efficient LSSS

for a specific MSP access structure is equivalent to the existence of a smallest MSP.

Later, Nikova et al. [NNP05] provided a theoretical lower bound for any MSP by using

some linear algebraic machineries, where the size of a MSP is at least the size of the

critical set of minimal sets for the corresponding monotone access structure plus the
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size of the critical set for the minimal sets of the dual of access structure minus one,

i.e., the computation complexity for an access structure Γ is bounded by |H|+ |H⊥| − 1

where H and H⊥ denote the critical set of minimal sets for an access structure Γ and

Γ⊥ respectively. Pandit and Barua [PB12] used minimal sets to describe general access

structure in ABE systems and constructed the corresponding (hierarchical) encryption

schemes. By virtue of the result in [NNP05], they also indicate that there exist classes

of monotone access structures for which the size of MSP is at least polynomial in the

number of attributes in access structure, but the number of minimal sets in the access

structure is constant.

Recent research shows that many cryptographic schemes are vulnerable to side-

channel attacks on the keys by the interaction of an adversary by measuring the timing,

power-consumption, temperature, radiation, acoustics and so on [AGV09,ADN10,AD-

W09, BG10, CDR10, DHLW10, DLWW11, YZ12, ZYT12]. The concept of leakage re-

silience models security of a cryptographic algorithm in the presence of an adversary

who uses non-traditional way learn information about the private key. The adversary

is strengthened in this model and is allowed to observe leakage from the content of

private key. Leakage-resilient cryptosystems are designed to remain secure even if some

information about the private key is leaked. Instead, we should take into account the

key leakage in ABE system and then construct leakage-resilient ABE schemes. Also,

in order to provide an efficient decryption cost, we use the minimal set to describe the

monotone access structure in our leakage-resilient ABE systems.

In this work, we focus on the model of memory attacks or relative-leakage model

[AGV09]. In this model, the attacker can learn any efficiently computable function of

any private key, subject only to the restriction that the total amount of information

learned is bounded by predetermined parameter `. Our goal is to devise ABE schemes

resilient to key leakage with:

(i) comparable efficiency to previously known systems,

(ii) construction and security in the standard model, and

(iii) better leakage rate.

Leakage attacks are formalized by allowing the adversary to submit leakage functions

to a leakage oracle to be applied on the key with an adaptive manner, that is, the

adversary can choose different leakage functions at different point of time based on its

view and prior leakage. We allow the adversary to handle all key generation and key

leakage queries within the dual system encryption framework, eliminating the need for

a separate technique to achieve leakage resilience. This enables us to allow leakage from

multiple keys which can decrypt the challenge ciphertext, as well as leakage from the

master key. Also, we use the minimal sets to describe the monotone access structure in

our leakage-resilient ABE systems.

To prove the security of ABE constructions, a natural proof is to use the partition

technique, in which the possible key space is divided into two pieces: key space that

the simulator can answer and key space of any key capable of decrypting the challenge
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ciphertext falls in. Prior works rely on a weak model called selective security [SW05,

GJPS08, GPSW06], in which the adversary must provide the challenge in advance the

system public key is generated. Recently, Waters [Wat09] introduced a new technique,

named dual system encryption, to prove the adaptive security such that the simulator

can construct any key and any challenge ciphertext. In dual system encryption, there

are two kinds of keys and ciphertexts: normal and semi-functional. Decryption will

fail if both key and ciphertext are semi-functional. In the real construction, the key

and the ciphertext are normal, but they will be transformed into semi-functional in the

security proof. In the view of adversary, it has negligible advantage in distinguishing

these transformations. Finally, all keys and ciphertexts are semi-functional, and the

security is concluded by the incapable decryption between a semi-functional key and a

semi-functional challenge ciphertext.

In our proof, we extend the semi-functional key into two types: truly semi-functional

and nominally semi-functional. A truly semi-functional key can not gain non-negligible

in decrypting the challenge semi-functional ciphertext, and a nominally semi-functional

key can decrypt the challenge ciphertext with some probability. Eventually, by the

Theorem 2, we also prove that an adversary has no advantage in transforming a truly

semi-functional key into a nominally semi-functional form even the adversary can gain

some leakage on the key.

2 Preliminaries

In this paper, we denote the security parameter by κ. A function negl(·) is negligible if

for every polynomial p(·) there exists a value κ′ such that for all κ > κ′ it holds that

negl(κ) < 1
p(κ′) .

Definition 1 (Computational indistinguishability) Let X = {Xn(a)}n∈N,a∈{0,1}∗
and Y = {Yn(a)}n∈N,a∈{0,1}∗ be two distribution ensembles. We say that X and Y are

computationally indistinguishable, denoted X ≈c Y , if for every probabilistic polynomial-

time algorithm D , there exists a negligible function negl(·) such that for all a ∈ {0, 1}∗,

|Pr[D(Xn(a)) = 1]− Pr[D(Yn(a)) = 1]| < negl(n) (1)

Definition 2 (Statistical distance) Let Xn and Yn be random variables accepting

values taken from a finite domain Ω ⊆ {0, 1}n. The statistical distance between Xn and

Yn is

SD(Xn, Yn) =
1

2

∑
δ

|Pr[Xn = δ]− Pr[Yn = δ]| (2)

We say that Xn and Yn are ε-close if their statistical distance is at most SD(Xn, Yn) ≤
ε(n). We say that Xn and Yn are statistically close, denoted Xn ≈s Yn, if ε(n) is

negligible in n.
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2.1 Monotone Access structure and Minimal Set

Definition 3 (Access structure(AS)) Let P1, · · · , Pn be a set of parties. A collection

Γ ⊆ 2P1,··· ,Pn is monotonic if ∀B ∈ Γ and B ⊆ C, then C ∈ Γ. An access structure is a

collection Γ of non-empty subsets of {P1, · · · , Pn}, i.e., Γ ⊆ 2P1,··· ,Pn\{∅}. The member

in Γ is called authorized set, and the set not in Γ is called unauthorized set.

Remark 1 In an attribute-based encryption, the attributes will play the role of parties

in set {P1, · · · , Pn}. In the remainder of the paper, we use Σ = {a1, a2, · · · , an} to

describe a finite attribute set.

Definition 4 (Minimal set of a monotonic access structure) Let Γ be a mono-

tonic access structure over the set of attributes Σ = {a1, a2, · · · , an}. B ∈ Γ is a minimal

authorized set if ∀A ∈ Γ\{B}, we have A 6⊂ B. The set of all minimal sets in Γ is called

the basis of Γ.

Definition 5 (Dual of access structure) The dual access structure Γ⊥ of an access

structure Γ over Σ is defined as the collection of sets A ⊂ Σ such that Σ\A = Ac 6∈ Γ.

Definition 6 (Critical set of minimal sets) [NNP05] Let B = {X1, · · · , Xr} be the

set of minimal set of an access structure Γ, and H ⊂ B be a subset of minimal sets. H
is called a critical set of minimal sets for B, if every Xi ∈ H contains a set Bi ⊂ Xi,

|Bi| ≥ 2, and the following conditions hold:

1. The set Bi uniquely determines Xi in the set H. i.e., no other set in H contains

Bi;

2. ∀Y ⊂ Bi, set SY = ∪Xj∈H,Xj∩Y 6=∅(Xj\Y ) does not contain any element of B.

For example, assume that Σ = {a1, a2, a3, a4} is the set of attributes, and B =

{X1 = {a1, a2}, X2 = {a3, a4}} is the set of minimal sets for a monotone access struc-

ture Γ, then H(= B) is a critical set of minimal sets. Also, B⊥ = {{a1, a3},{a1, a4},
{a2, a3}, {a2, a4}}. We can find a critical set H⊥ for Γ⊥ to be {{a1, a3}, {a1, a4}}. As

instantiating as above, we have the following theorem that was proven in [NNP05].

Theorem 1 Let Γ be an access structure and Γ⊥ be its dual, and H and H⊥ be the

critical set of minimal sets for Γ and Γ⊥ respectively. The size of any monotone span

program computing Γ is bounded by |H|+ |H⊥| − 1.

Remark 2 There existence of an efficient LSSS for a specific monotonic access struc-

ture is equivalent to the existence of a smallest monotonic span program for the charac-

teristic function of the same access structure [BGP97].
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2.2 Random Subspaces for Leakage Resilience over Arbitrary Func-
tions

We provide an algebraic tool that is crucial to our leakage resilient constructions. More

specifically, we give an algebraic theorem and its claim that essentially say that random

subspaces are resilient to continual leakage.

Theorem 2 [BKKV10] Let m, l, d ∈ N, 2d ≤ l ≤ m and p be a large prime. Let

X1
$←− Zm×lp and X2

$←− Zm×dp , and T
$←− Rankd(Zl×dp ). For any function f : Zm×dp → ϕ,

there exists

Dist((X1, f(X1T )), (X1, f(X2))) ≤ negl(·)

|ϕ| ≤ 4(1− 1

p
) · pl−2d+1

2 · negl(·)2 (3)

We note that, if the leakage f(X1T ) reveals bounded informationX1, then (X1, f(X1T ))

and (X1, f(X2)) are statistically close. X2 is a random vector and the leakage function

f(X2) reveals nothing about the space X1. By setting d = 1 and l = m − 1, we have

the following claim.

Claim 1 Let ∆, ~µ
$←− Zmp and ~µ′ be selected uniformly randomly from the set of vector

in Zmp which are orthogonal to ∆ under the dot product modulo p. For any function

f : Zmp → {0, 1}`, where the function output is bounded by the length `, there exists

Dist((∆, f(~µ)), (∆, f(~µ′))) ≤ negl(·)
` ≤ 4pm−3(p− 1) · negl(·)2 (4)

2.3 Hardness Assumptions

Bilinear groups of composite order are groups with an efficient bilinear map where the

group order is a product of two or more distinct primes. Such groups are constructed

from pairing friendly curves over a finite field. The following hardness assumptions are

based on the static subgroup decisional problems that have been analyzed in [LW10,

LOS+10]

Definition 7 (1-SDP assumption) 1-class Subgroup Decision Problem (1-SDP) is

hard relative to Θ = (N = p1p2p3,G,GT , ê) ← £(κ) if for all PPT algorithm A , there

exists a negligible function negl such that

|Pr[A (Θ, g1, X3, T1) = 1]− Pr[A (Θ, g1, X3, T2) = 1]| ≤ negl(κ)

where the probabilities are taken over the choices of g1 ∈ Gp1, X3 ∈ Gp3, T1 ∈ Gp1p2

and T2 ∈ Gp1.

Definition 8 (2-SDP assumption) 2-class Subgroup Decision Problem (2-SDP) is

hard relative to Θ = (N = p1p2p3,G,GT , ê) ← £(κ) if for all PPT algorithm A , there

exists a negligible function negl such that

|Pr[A (Θ, g1, X1X2, X3, Y2Y3, T1) = 1]−Pr[A (Θ, g1, X1X2, X3, Y2Y3, T2) = 1]| ≤ negl(κ)
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where the probabilities are taken over the choices of g1 ∈ Gp1, X2, Y2 ∈ Gp2, X3, Y3 ∈
Gp3, T1 ∈ Gp1p2 and T2 ∈ G.

Definition 9 (BSDP assumption) [LW10,LOS+10] Bilinear Subgroup Decision Prob-

lem (BSDP) is hard relative to Θ = (N = p1p2p3,G,GT , ê) ← £(κ) if for all PPT

algorithm A , there exists a negligible function negl such that

|Pr[A (Θ, g1, g
α
1X2, X3, g

s
1Y2, Z2, T1) = 1]−Pr[A (Θ, g1, g

α
1X2, X3, g

s
1Y2, Z2, T2) = 1]| ≤ negl(κ)

where T1 = ê(gα1 , g
s
1) and the probabilities are taken over the choices of s, α ∈ ZN ,

g1 ∈ Gp1, X2, Y2, Z2 ∈ Gp2, X3 ∈ Gp3, and T2 ∈ GT .

3 Leakage-resilient Attribute-based Encryption

In this section, we give the model and security defintion of leakage-resilient ciphertext-

policy ABE (LR-CP-ABE), where the key is associated with an attribute set and the

ciphertext is associated with an access structure. In section 6.2, we will give the model

and concrete construction of leakage-resilient key-policy ABE (LR-KP-ABE).

3.1 Model of LR-CP-ABE

Definition 10 (LR-CP-ABE) A leakage-resilient ciphertext-policy attribute-based en-

cryption (LR-CP-ABE) for the general access structure Γ over the attribute universe Σ

is comprised of five probabilistic polynomial-time algorithms.

1. (MPK, MSK)←Setup(1κ,Σ, `) The system setup algorithm takes a security parame-

ter κ, a universe of attributes Σ and an allowable private-key leakage bound ` as

inputs, and outputs system public key MPK and master key MSK.

Note that the system public key can be seen by all participants in the system and

will be the input in all other algorithms.

2. SKS ←KeyGen(MSK, S) The key generation algorithm takes the master key MSK,

and a set of attributes S ⊆ Σ as inputs, and outputs a private key SKS.

3. SK′S ←KeyUpd(SKS, S) The key update algorithm takes a private key SKS as input

and outputs a updated and re-randomized key SK′S.

4. CTΓ ←Enc(M,Γ) The encryption algorithm takes a message M and an access

structure Γ as inputs, and outputs a ciphertext CTΓ.

5. M ←Dec(CTΓ, SKS) The decryption algorithm takes a ciphertext CTΓ and a key

SKS as inputs, and outputs M if and only if the set of attributes S satisfies the

access structure Γ, i.e., Γ(S) = 1.

Let Σ and M be the attribute space and the message space respectively, and F be

a polynomially computational function family that the output of a function is bounded

by parameter `. For all correctly generated MPK and MSK, and SKS is generated from any
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attribute set over Σ. The amount leakage of SKS is bounded by `, i.e.,
∑

i fi(SKS) ≤ `.

The consistency of LR-CP-ABE should be guaranteed as:

Pr


Dec(CTΓ, SK

′
S) 6= M

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀S ⊆ Σ, ∀M ∈M
Γ(S) = 1

∀i, fi, hi ∈ F
CTΓ ← Enc(M,Γ)

SKS ← KeyGen(MSK, S)

SK′S ← KeyUpd(SKS, S)∑
i fi(SKS) ≤ `∑
i hi(SK

′
S) ≤ `


≤ negl(κ) (5)

3.2 Security Properties in the Presence of Leakage

We follow the natural leakage-resilient security definition from [AGV09], which roughly

states that an encryption is `-leakage-resilient if it remains secure despite the fact that

an adversary can learn up to ` bits of arbitrary information on the private key of being

attacked.

An attribute-based encryption scheme is key-leakage resilient if it is semantically

secure when the adversary obtain partial information on the key. We model the key

leakage by providing the adversary a function that taking the private key as input and

obtaining the output of the key. In order to record the queried and leaked keys, we set

two initially empty lists: R = 〈hd,S〉, Q = 〈hd,S, SKS, lb〉 to store the records, where

all records are associated with a handle hd.

Definition 11 (Leakage-resilient experiment) The leakage-resilient experiment

GameR(1κ,Σ, `) works between a challenger C and an adversary A as follows.

Setup. The challenger C runs setup algorithm to generate public key MPK and master

key MSK, and starts the interaction with A by providing the public key MPK.

Lunch query. In this stage, adversary A can perform the following queries:

- Key extraction query (ΩE): A provides an attribute set S to request a key SKS,

and C answers with SKS ← KeyGen(MSK, S), and adds (hd,S, SKS, 0) into queue

Q.Notice that in this query, the leaked bit of extracted key SKS is 0, which means

that a new created key has no leakage.

- Key leakage query (ΩL): A issues a key leakage query for SKS with a function

f : SK → {0, 1}∗. C at first seeks the record in Q, and responds with f(SKS) if

lb+ f(SKS) ≤ `, and updates lb with lb+ f(SKS); Outputs φ otherwise.

- Key update query (ΩU ): A issues a key update query for SKS. C finds the record in

Q. If not found, C returns the key with key extraction oracle ΩE and sets lb = 0.

Otherwise, C returns with SK′S ← KeyUpd(SKS,S) and updates the corresponding

lb with 0.
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Challenge. A outputs two messages (M (0),M (1)) and an access structure Γ such

that for all S ∈ R Γ(S) = 0. C at random picks a bit b ∈ {0, 1} and then returns the

challenge ciphertext CT(b) = Enc(M (b),Γ).

Supper query. A continues to issues the queries like in Lunch query.

Response. Finally, A outputs a bit b′ ∈ {0, 1} as the guess for the random coin

b in the challenge phase. Adversary A ’s advantage in experiment GameR(1κ,Σ, `) is

defined as AdvA (1κ,Σ, `) = |2Pr[(b = b′)]− 1|.

Definition 12 (Adaptively leakage-resilient security) Suppose that the leakage

bound is ` and a polynomial-time adversary has at most Q queries for keys. An attribute-

based encryption scheme is adaptively (Q, `, `
|SK|)-leakage-resilient secure if the advantage

of the adversary in winning GameR(κ,Σ, `) is less than negl(κ) in security parameter κ

and leakage bound `.

Definition 13 (Selectively leakage-resilient security) An attribute-based encryp-

tion scheme is selectively (Q, `, `
|SK|)-leakage-resilient secure, if in experiment GameR(κ,Σ, `)

the challenge pair had to provide before the system public key and master key build, and

the advantage of the adversary in the experiment is less than negl(κ) in security param-

eter κ and leakage bound `.

Definition 14 (Leakage rate) The leakage rate γ = `/|SK| is defined as the relative

leakage of a private key SK, where ` is an allowable leakage bound and |SK| is the number

of bits needed to efficiently store private key SK.

4 Construction of LR-CP-ABE

Let Σ be an attribute set, we denote the cardinality of set Σ by |Σ|. Let vectors ~ρ =

(ρ1, ρ2, · · · , ρn) and ~σ = (σ1, σ2, · · · , σn), we denote the inner product of vectors ~ρ and

~σ by 〈~ρ, ~σ〉 and the bilinear group inner product by ên(g~ρ, g~σ). i.e., 〈~ρ, ~σ〉 =
∑

i∈[n] ρiσi,

and ên(g~ρ, g~σ) =
∏
i∈[n] ê(g

ρi , gσi) = ê(g, g)〈~ρ,~σ〉.

LR-CP-ABE.Setup(1κ,Σ, `) On input a security parameter κ, an attribute set Σ

and a leakage bound `, this algorithm generates system public key MPK and master key

MSK as follows:

1. Run the bilinear group generator to produce Θ = (N = p1p2p3,G,GT , ê), where

p1, p2 and p3 are distinct primes;

2. Define negl = p−τ2 as the allowable maximum probability in succeeding in leakage

guess1, and compute ω = d1 + 2τ + `
log2 p2

e2;

3. Select random generators g1 ∈ Gp1 and g3 ∈ Gp3 ;

4. For each attribute i ∈ Σ, pick ti ∈ ZN and set Ti = gaiti1 ;

1We can denote this probability as the entropy loss when the private key leaks.
2As τ is a small positive constant, in practice we can eliminate this parameter in ω, i.e., ω ≈

d1 + `
log2 p2

e.
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5. At random choose α ∈ ZN and set Y = ê(g1, g1)α;

6. Select a, t, y2, y3 ∈ ZN , for i = 1, · · · , ω, select ρi, y1,i ∈ ZN , and for j = 1, · · · , |Σ|,
select y4,j ∈ ZN randomly;

7. Set the master key

MSK = 〈Σ, ~w1, w2, w3, ~w4〉

= 〈Σ, g~σ1 g
~y1
3 , g

α+at+〈~ρ,~σ〉
1 gy23 , g

t
1g
y3
3 , ∀i ∈ Σ T ti g

y4,i
3 〉 (6)

8. Publish the system public key

MPK = 〈Θ, g1, g3, g
a
1 , g

~ρ
1 , Y, (Ti)i∈Σ〉 (7)

The parameter ω, mainly decided by `, can be varied to achieve desired (master) key

leakage tolerance and size of keys and ciphertexts.

LR-CP-ABE.KeyGen(MSK, S) On input an attribute set S and the master key MSK =

〈Σ, ~w1, w2, w3, ~w4〉, this algorithm selects 4t,4y2, 4y3 ∈ ZN , and selects y1,i ∈ ZN for

i ∈ [ω], and picks y4,j ∈ ZN for j ∈ [|S|] randomly, and returns the key SKS as:

SKS = 〈S,~k1, k2, k3,~k4〉

=


S,
~w1 ∗ g4~σ1 ∗ g ~4y13 ,

w2 ∗ ga4t+〈~ρ,4~σ〉1 ∗ g4y23 ,

w3 ∗ g4t1 ∗ g
4y3
3 ,

∀i ∈ S w4,i ∗ T4ti ∗ g4y4,i3



>

=


S,
g~σ+4~σ

1 g~y1+4~y1
3 ,

g
α+a(t+4t)+〈~ρ,~σ+4~σ〉
1 gy2+4~y2

3 ,

gt+4t1 gy3+4y3
3 ,

∀i ∈ S T t+4ti g
y4,i+4y4,i
3



>

(8)

Note that the components of private key are ω + |S|+ 2 elements in subgroup Gp1p3 .

LR-CP-ABE.KeyUpd(SKS, S) Let a private key SKS = 〈S,~k1, k2, k3,~k4〉 = 〈S, g~σ1 g
~y1
3 ,

g
α+at+〈~ρ,~σ〉
1 gy23 , gt1g

y3
3 , (T

t
i g
y4,i
3 )i∈S〉. The key update algorithm at random selects4t,4y2,

4y3 ∈ ZN , and selects y1,i ∈ ZN for i ∈ [ω], and y4,j ∈ ZN for j ∈ [|S|], and outputs a

new key SK′S:

SK′S = 〈S,~k′1, k′2, k′3,~k′4〉

=


S,
~k1 ∗ g4~σ1 ∗ g ~4y13 ,

k2 ∗ ga4t+〈~ρ,4~σ〉1 ∗ g4y23 ,

k3 ∗ g4t1 ∗ g
4y3
3 ,

∀i ∈ S k4,i ∗ T4ti ∗ g4y4,i3



>

=


S,
g~σ
′

1 g
~y′1
3 ,

g
α+at′+〈~ρ,~σ′〉
1 g

y′2
3 ,

gt
′

1 g
y3
3 ,

(T t
′
i g

y4,i
3 )i∈S



>

(9)

where t′ = t +4t, ~σ′ = ~σ +4~σ, ~y′1 = y1 +4~y1, y′2 = y2 +4y2, y′3 = y3 +4y3, and

~y4 = ~y4 +4y4.

Remark 3 If S = Σ and SKΣ = MSK, then the update algorithm can refresh the master

key that generates a same distributed master key. Thus, we can consider the master key

MSK as a special private key for universal set Σ.

10



Remark 4 In our scheme, we allow many private keys per attribute set S and many

master keys for universal attribute set Σ.

LR-CP-ABE.Enc(M,Γ) At first, this algorithm converts the monotone access struc-

ture Γ to the set of minimal sets B = {B1, B2, · · · , Bm}, where Bi ⊂ Σ for i = 1, · · · ,m.

The algorithm also at random selects s, s1, · · · , sm ∈ ZN , and outputs the ciphertext

CTΓ:

CTΓ = 〈B, c0,~c1, c2,~c3,~c4〉

= 〈B,MY s, gs~ρ1 , g
−s
1 , gas1 (

∏
j∈Bi

Tj)
si
i∈[m], (g

si
1 )i∈[m]〉 (10)

LR-CP-ABE.Dec(CTΓ, SKS) If attributes set S satisfies the access structure Γ speci-

fied by B, then S must be a superset of a minimal set in B. Let Sk ⊂ S for some k ∈ [m].

This algorithm calculates:

M ← c0
êω(c1, k1)ê(c2, k2)ê(c3,k, k3)

ê(c4,k,
∏
i∈Bk

k4,i)
(11)

Remark 5 In our scheme, we are equipped with an update algorithm KeyUpd that takes

in a (master) private key and outputs a new and re-randomized key from the same dis-

tribution generated by a fresh call to KeyGen algorithm, then the security will yield

resilience to continual leakage “for free”. In particular, the many master keys for uni-

versal set Σ and the many private keys per attribute set S allow to leak can be interpreted

as refreshed versions of corresponding master/private keys.

Correctness. The correctness is described as follows:

(1) ê(c1, k1) = ê(gs~ρ1 , g
~σ
1 g

y1
3 ) = ê(gs~ρ1 , g

~σ
1 ) = ê(g1, g1)s〈~ρ,~σ〉 (12)

(2) ê(c2, k2) = ê(g−s1 , g
α+at+〈~ρ,~σ〉
1 gy23 ) = ê(g1, g1)−sα−ast−s〈~ρ,~σ〉 (13)

(3) ê(c3,k, k3) = ê(gas1 (
∏
j∈Bk

Tj)
sk , gt1g

y3
3 ) = ê(g1, g1)astê(

∏
j∈Bk

Tj , g1)skt (14)

(4) ê(c4,k,
∏
j∈Bk

k4,j) = ê(gsk1 ,
∏
j∈Bk

T tj g
y4,j
3 ) = ê(g1,

∏
j∈Bk

Tj)
skt (15)

Then, the blind factor is calculated by

ê(c1, k1)ê(c2, k2)ê(c3,k, k3)

ê(c4,k,
∏
j∈Bk

k4,j)
= ê(g1, g1)−sα = Y −s (16)

Remark 6 In the decryption, the algorithm only performs ω+3 pairing operations,

which is more efficient than the construction that uses LSSS to specify the access struc-

ture in [LRW11]. We will discuss and compare the decryption performance in section

6.2.
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5 Security

We will prove the adaptive security of LR-CP-ABE with the technique of dual system

encryption. Our analysis of leakage resilience of our system will rely on Theorem 2

in [BKKV10], which is proven using the techniques in [BFO08].

5.1 Key Refresh and Continual Leakage

As our schemes are equipped with a update algorithm that takes input a private key and

outputs a new re-randomized key from the same distribution, we can obtain continual

leakage tolerance. We can specify the leakage parameter ` as the entropy loss that

a private key can tolerate, and update the private key when the entropy loss of that

private key will draw near the threshold.

In the update algorithm, it explicitly updates the randomness in the key. That is,

the new randomness in the key are described as follows:

t′

~σ′

~y′1
y′2
y′3
~y′4


=



t

~σ

~y1

y2

y3

~y4


+



4t
4~σ
4~y1

4y2

4y3

4~y4


(17)

Here the randomness with 4 is randomly picked from ZN , and the new randomness

have the same distribution with the previous one.

We can tolerate leakage on the key generation and update procedures in the continual

leakage model. More detail, we can tolerate leakage which is logarithmic in the security

parameter κ by guessing a value for the leakage and observing whether the adversary’s

advantage distinctly decreases. In continual leakage models in [DKL09,BKKV10], there

are only one master key and one private key per user at any time, but in our scheme we

design to provide master key and private key from arbitrary number of keys. When a

master key or a private key is updated, the entropy of the key will sustain the maximum

entropy that the key provides in the presence of non-leakage model, and as a result a

new leakage session on the updated key is allowed. We can achieve the continual leakage

tolerance when we assume keys are periodically updated and no leakage is allowed during

the update process.

5.2 Leakage-resilient Semantic Security

Our security employs the dual system encryption mechanism of [Wat09, LW10]. Let

Q be the number of key queries that the adversary makes, then our proof considers a

sequence of 2Q + 4 games between an adversary A and a challenger C . By means of

dual system encryption, we at first give the semi-functional ciphertext/key generation

algorithms and convert the challenge ciphertext and queried keys into semi-functional

form. We also define two types of semi-functional key. The semi-functional key and

ciphertext algorithms are presented as follows:

12



- KeyGenSF. Let SKS = 〈S,~k1, k2, k3,~k4〉 be a normal key, a semi-functional key is

constructed as:

1. Type 1: SKS = 〈S,~k1 ∗ g
~d1
2 , k2 ∗ gd22 , k3 ∗ gd32 ,

~k4 ∗ g
~d4
2 〉, where g2 is a random

generator of Gp2 and di(i = 1, . . . , 4) is randomly picked from ZN .

2. Type 2: SKS = 〈S,~k1, k2 ∗ gd22 , k3,~k4〉.

- EncSF. Let CTΓ = 〈B, c0,~c1, c2, ~c3,~c4〉 be a normal ciphertext, a semi-functional

ciphertext is converted as: CTΓ = 〈B, c0,~c1∗g~e12 , c2∗ge22 ,~c3∗g~e32 ,~c4〉, where ~e1, e2, ~e3

are random elements in ZN .

Obviously, if we use a type-1 semi-functional key to decrypt a semi-functional ciphertext,

we will obtain extra term ê(g2, g2)〈
~d1,~e1〉+d2e2+d3e3,k . If 〈~d1, ~e1〉 + d2e2 + d3e3,k = 0, we

call the semi-functional key is a nominally semi-functional key w.r.t the ciphertext,

otherwise we call the semi-functional key is truly semi-functional.

Our security proof has two steps: At first we use a series of indistinguishable games

to prove that the scheme is adaptively secure in non-match key/ciphertext situation,

which is derived from the idea of dual system encryption [Wat09,LW10,LW12]. We do so

by proving that, in the view of the adversary, the valid private keys are indistinguishable

from keys that are random in the subgroup in which the message is embedded. Secondly,

we prove that, even the adversary has at most ` bits leakage on each match key, he also

has only negligible advantage to decrypt the challenge ciphertext. We give the following

theorem:

Theorem 3 If a dual system∏
D

= (Setup,KeyGen,KeyUpd,Enc,Dec,KeyGenSF,EncSF)

has semi-functional ciphertext invariance, semi-functional key invariance, and semi-

functional security under the leakage bound `, then the LR-CP-ABE scheme
∏

=

(Setup,KeyGen,KeyUpd,Enc,Dec) is an (Q, `, `
|SK|)-leakage secure attribute-based encryp-

tion scheme.

Proof. We prove this theorem by a series of claims listed in Tab.1. The key and

the ciphertext in real construction in Section 4 are normal forms. At first we show

that the update procedure can be considered as a special key extraction procedure,

and then we only consider key extraction oracle instead of update oracle. Next we

convert the challenge ciphertext into semi-functional form, and then convert the keys

into semi-functional forms one by one. By these conversions, all ciphertexts and keys

are semi-functional. We also give a Claim 5 to demonstrate that an adversary has no

advantage in changing a truly semi-functional key (can not decrypt a semi-functional

ciphertext) to a nominally semi-functional key (can decrypt a semi-functional ciphertex-

t). Finally, we also show that the message is indistinguishable from a random message

in the challenge ciphertext, which means that the challenge message is fully hidden in

the ciphertext. We provide the security by Claim 1 – Claim 6 and hybrid argument over
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Table 1: Lemmas from indistinguishable games
Lemma Result Functionality

Lem 1 ΩU can be answered by ΩE Update invariance

Lem 2 AdvGameRA − AdvGame1A ≤ ε1
Lem 3 AdvGame2A − AdvGame1A ≤ ε2 Semi-functional ciphertext invariance

Lem 4 Adv
Game3,k+1

A − Adv
Game3,k
A ≤ ε3,k Semi-functional key invariance

Lem 5 Adv
GameL3,k
A − Adv

Game3,k
A ≤ εL3,k Truly/nominally semi-functional inconvertibility

Lem 6 AdvGame4A − Adv
Game3,Q
A ≤ ε4 Message hiding

the sequence of games to demonstrate the real security game GameR is computationally

indistinguishable from Game4, in which the challenge message M (b) is masked with a

random element in GT . We leave the detail proof in the full version. �

Lemma 1 Update invariance. All queries on ΩU oracle can be answered by ΩE

oracle.

Proof. In remark 3, we show that ΩU is a special kind of key extraction ΩE . Any query

to ΩU can be answered by ΩE by setting the input MSK as SKS. �

Lemma 2 The key space defined in Gp1p3 is indistinguishable to the definition in Gp1p2p3

(i.e.,G).

Proof. If the query is a leakage oracle ΩL, the simulator C simply uses the master key

to answer the query. If the query is key extraction query ΩE or a key update query ΩU ,

C answers as follows:

1. If Si = S∗i and p2 - (Si − S∗i ), C answers by using MSK;

2. If Si 6= S∗i and p2|(Si − S∗i ), then C can obtain a non-trivial factor of N as

a = gcd(Si − S∗i , N . We denote b = N/a, as N = p1p2p3 and pis are distinct

primes, then

(a) Case a = p1p2 and b = p3: given (g,X1X2, X3, Y2Y3, T ) from 2-SDP assump-

tion, C check whether a = p1p2 by testing (X1X2)a = 1. If the equation

holds, concludes T ∈ p1p3 if ê(Y2Y3, T )b = 1 and T ∈ G otherwise.

(b) Case a = p2p3 and b = p1: Similar to above case, C checks a = p2p3 by

testing (Y2Y3)a = 1 and concludes T ∈ Gp1p3 if ê(X1X2, T )b = 1 and T ∈ G
otherwise.

(c) Case a = p2 and b = p1p3: C determines that this case occurs when above

two cases fail. Given (g,X1X2, X3, Y2Y3, T ), C concludes T ∈ Gp1p3 if T b = 1

and T ∈ G otherwise.

�
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Lemma 3 Semi-functional ciphertext invariance. A semi-functional ciphertext

CTΓ is indistinguishable from a normal ciphertext CTΓ.

Proof. Suppose that an adversary can distinguish between a semi-functional ciphertext

ĈTΓ and a normal ciphertext CTΓ, we can construct an algorithm to solve the hardness

assumption 1-SDP.

Receiving the instance (Ω = (N = p1p2p3, g1, X3, G,GT , ê), T ) of 1-SDP, C con-

structs the system public key MPK = 〈g1, g3 = X3, g
a
1 , g

~ρ
1 , Y = ê(g1, g1)α, ∀i ∈ Σ Ti = gti1 〉

where a, α, ti ← ZN . Knowing the master key, C can answer all key extraction queries

and leakage queries.

In the challenge stage, C receives the challenger pair (M (0), M (1), Γ∗) provided

by adversary A , and then generates the challenger ciphertext as follows: convert the

access structure Γ∗ into the set of minimal set B∗ = {B1, B2, · · · , Bm} where Bi ⊆ Σ;

at random pick b← {0, 1} and output the ciphertext CT∗Γ = 〈B∗,M (b)ê(gα1 , T ), T ~ρ, T−1,

T a(
∏
j∈Bi

Tj)
si
i∈[m], (g

si
1 )i∈[m]〉.

If T = gc11 g
c2
2 ∈ Gp1p2 for some c1, c2 ∈ ZN , then we implicitly set the semi-functional

factor of challenge ciphertext as 〈c2~ρ,−c2, 0, ac2〉. In this case, CT∗Γ is a properly dis-

tributed semi-functional ciphertext and successfully simulates a semi-functional game.

If T ∈ Gp1 , C can successfully simulate a normal ciphertext game as there is no Gp2

part in the created challenge ciphertext CT∗Γ.

If the adversary A can distinguish between a semi-functional ciphertext CTΓ and a

normal ciphertext CTΓ with a non-negligible advantage, then we can use the output of

A to break 1-SDP assumption with the same advantage. Thus we conclude the proof

of the lemma. �

Lemma 4 Semi-functional key invariance. Let Q be the number of queries that

the adversary issues and the challenge ciphertext is a semi-functional form CTΓ. For

k = 1, . . . , Q − 1, the first k − 1 keys are semi-functional of type 2, the k-th key is

semi-functional of type 1, and rest keys are normal, then ε = Adv
Gamek+1

A − AdvGamekA

is negligible.

Proof. We establish a PPT algorithm C that takes a (g,X1X2, X3, Y2Y3, T ) of 2-SDP

assumption instance as input and decides T ∈ Gp1p3 or T ∈ G.

At first, C constructs the system public key MPK as: take input (κ, `) and output

group description Θ and set ω = 1+ `
log p2

; at random select α, a, t, ~y1, y2, y3, ~y4, ~ρ, ~σ ∈ ZN
and set MPK = 〈g1, g3, g

a
1 , g

~ρ
1 , Y, (Ti)i∈Σ〉 and MSK = 〈g~σ1 g

~y1
3 , g

α+at+〈~ρ,~σ〉
1 gy23 , g

t
1g
y3
3 ,∀i ∈

Σ T ti g
y4,i
3 〉, where Ti = gti1 and Y = ê(g1, g1)α.

To respond the first k − 1 key query, C answers the query as a semi-functional key

of type 2: SKS = 〈S,~k1 = g~σ1 g
~y1
3 , k2 = gα+at

1 (Y2Y3)hgy23 , k3 = gt1g
y3
3 ,∀i ∈ S T ti g

y4,i
3 〉. It is

easy to see that these keys are semi-functional of type 2.

To respond a k-th key query, C considers two cases: type 1 and type 2. C uses the

term T in 2-SDP instance to answer the query as:
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SKΓ =

{
〈S,~k1 = g~σ1 g

~y1
3 , k2 = gα1 T

agy23 , k3 = Tgy33 ,∀i ∈ S T tigy4,i3 〉 (i)

〈S,~k1 = g~σ1 g
~y1
3 , k2 = gα1 T

agy23 (Y2Y3)d, k3 = Tgy33 ,∀i ∈ S T tigy4,i3 〉 (ii)

(18)

For the rest key queries, C answers a normal key. We now further discuss the k-th

key in Eq.18.

Case (i), if T ∈ G = gt1g
r
2g
s
3, SKS is a semi-functional key of type 1 for the k-th key.

However, if T ∈ Gp1p3 , SKS is a normal key since it has not Gp2 part.

Case (ii), the Gp2 part of component k2 is randomized by (Y2Y3)d. It is easy to

demonstrate that the k-th key is type 1 semi-functional if T ∈ G, and is type 2 semi-

functional if T ∈ Gp1p3 .

In the challenge phase, C at first converts the challenge access structure Γ to B =

{B1, . . . , Bm} where each Bi ⊆ Σ. C returns the challenge ciphertext CTΓ = 〈Γ, c0 =

M (b)ê(gα1 , X1X2),~c1 = (X1X2)~ρ, c2 = X1X2, (c3,i = (X1X2)a(
∏
j∈Bi

Tj)
si)i∈[m], (c4,i =

gsi1 )i∈[m]〉. If T ∈ G then C simulates Gamek+1, and if T ∈ Gp1p3 C simulates Gamek.

When the k-th key is created in case (i), we indicate that the adversary can not dis-

tinguish a type 1 semi-functional key and a normal key. When the k-th key is created

in case (ii), we indicate the adversary can not distinguish a type 2 semi-functional

key and a type 1 semi-functional key. If an adversary has the negligible advantage

ε = Adv
Gamek+1

A −AdvGamekA , then we can use algorithm C in breaking 2-SDP assump-

tion. �

Lemma 5 Truly/norminal semi-functional inconvertibility. Let the allowable

leakage bit of a key be bounded by parameter ` = 2 + (ω − 1 − 2τ) log p2, where p2 is

the order of Gp2 and τ is a constant s.t. p−τ2 is negligible in security parameter κ.

For Game3,k+1, if the k + 1 query is a leakage oracle or update oracle for Γ(S) = 1,

any adversary A can distinguish the reply of that query is calculated from nominally

semi-functional keys or truly semi-functional keys is p−τ2 .

Proof. We use this lemma to show that, even the adversary A can obtain at most `

bits key leakage about set S that satisfies the challenge access structure Γ∗ and then

A has p−τ2 probability to decrypt the challenge ciphertext CT∗Γ. If p−τ2 is negligible,

then A has only negligible advantage to successfully perform the decryption, that is, A

can not convert a truly semi-functional key (has no ability in decrypting the challenge

ciphertext) to a nominally semi-functional key (can decrypt the challenge ciphertext).

We use Theorem 2 and its claim 1 to prove this lemma. If there exists an algorithm

in converting a truly semi-functional key into a nominally semi-functional one, we can

construct an algorithm C that uses A as a subroute to distinguish two distributions

in claim 1. In this simulation, we consider the match key SKS such that S satisfies the

challenge access structure Γ∗ (all non-match keys had been considered in Lemma 4).

Actually, in non-leakage model, any adversary is unable to query any information about

the match key. In our model, we allow the adversary obtain at most ` bits information

about the match key.
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Receiving an instance (∆, f(λ)) in claim 1 where λ is either distributed as ~µ or ~µ′,

C will use f(λ) to answer A ’s leakage query: at first create a normal key SKS by calling

KeyGen algorithm; at random choose r, d3 ∈ ZN , and create a semi-functional key SKS
by setting the Gp2 part of SKS to be gλ

′
2 where ~λ′ = 〈λ1, · · · , λω, λω+1 +r, d3〉. Obviously,

~λ′ is the semi-functional factor of key SKS. For any leakage query launched by a function

f , C returns f(SKS) if lb ≤ ` and updates lb with lb+ |f(SK)|.
In the challenge phase, the adversary provides two challenge messages (M (0),M (1))

and an access structure Γ∗. C answers the challenge as follows: (1) at first create a

normal ciphertext by calling Enc(M (b),Γ∗) algorithm; (2) select e3 ∈ ZN s.t. λω+1 +

r+ d3e3 = 0 mod p2 where r and d3 are the values in key extraction query; (3) create a

semi-functional ciphertext CT∗Γ by setting 〈1, · · · , 1︸ ︷︷ ︸
ω

, 1, e3〉 as semi-functional factor; (4)

send the semi-functional ciphertext CT
∗
Γ to A .

Obviously, if λ is not orthogonal to ∆, then the key is truly semi-functional. Oth-

erwise, if λ is orthogonal to ∆, then the key is nominally semi-functional. Thus we

successfully simulate two distributions in claim 1. That is, if there exists an adver-

sary can change a truly semi-functional key into nominally semi-functional form, then

we can distinguish the distributions between (∆, f(~µ)) and (∆, f(~µ′)) with the same

probability. We can conclude the lemma since this lemma holds for k = 0, . . . , Q− 1. �

Lemma 6 Message hiding. Suppose that in Game4, all keys are semi-functional of

type 2 and ciphertexts are semi-functional, and the message is masked with a random

element in GT . If an adversary can distinguish Game4 from GameL3,Q with advantage

ε, then we can construct an algorithm with advantage ε in breaking BSDP assumption.

Proof. After receiving an instance of BSDP assumption (Θ, g1, g
α
1X2, X3, g

s
1Y2, Z2, T ),

C sets g3 = X3, g2 = Z2, Y = e(g1, g
α
1X2) = ê(g1, g1)α.

In the key extraction phase, C can answer all queries: SKS = 〈S,~k1 = gt1g
~y1
3 , k2 =

(gα1X2)g
at〈~ρ,~σ〉
1 gy23 , k3 = gt1g

y3
3 ,∀i ∈ S k4,i = T ti g

y4,i
3 〉.

C receives two challenge messages (M (0),M (1)) and a challenge access structure

Γ in the challenge phase, and then at random selects M (b) ∈ {M (0),M (1)}. Then, C

converts the access structure Γ into the set of minimal set B∗ = {B1, B2, · · · , Bm}, where

Bi ⊂ Σ for i = 1, · · · ,m, and returns the challenge ciphertext CT∗Γ = 〈B∗,M (b)T, (gs1Y2)~ρ,

(gs1Y2)−1, (gs1Y2)a(
∏
j∈Bi

Tj)
si
i∈[m], (gsi1 )i∈[m]〉, where gs1Y2 is derived from the instance of

BSDP assumption, T is the assumption term and si (1 ≤ i ≤ m) is chosen from ZN
randomly.

Intuitively, if T = ê(g1, g1)sα, CT∗Γ is a semi-functional ciphertext and in this case C

can simulate GameL3,Q. Otherwise, if T is a random element from GT then C can simu-

late Game4. If the adversary can distinguish Game4 and GameL3,Q with non-negligible

advantage ε, then we can break the BSDP assumption with the same advantage. �
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6 Performance and Discussion

6.1 Master Key Leakage Tolerance

In our construction, we design the same key structure of master key MSK and user private

key SKS. Actually, the master key MSK can be considered as a special key of universal

attribute set Σ. Implicitly, we can call KeyUpd algorithm to update and refresh the

master key that takes the master key MSK and attribute set Σ as inputs. As we only re-

randomize the randomness in the master key, the refreshed master key does not impact

on the previous user key generated by it.

6.2 Leakage-resilient Key-policy ABE

In this section, we give the construction of key-policy attribute-based encryption with

leakage resilience (LR-KP-ABE), which uses the same technique in section 4, i.e., using

the set of minimal sets to describe the monotone access structure. In key-policy ABE,

a key is associated with access structure and a ciphertext is associated with a set of

attributes. The construction has the similar security proof method with LR-CP-ABE.

LR-KP-ABE.Setup(1κ,Σ, `) Like in section 4, this algorithm generates the descrip-

tion of composite-order bilinear group Θ, and selects randomness and then sets the

master key and the master public key as:

MPK = 〈Θ, g1, g3, g
a
1 , g

~ρ
1 , Y, (Ti)i∈Σ〉 (19)

MSK = 〈~w1, w2, ~w3, ~w4〉

= 〈gσ1 g
~y1
3 , g

−t
1 gy23 , (g

α+at+〈~ρ,~σ〉
1 (

∏
j=[|Σ|]

Tj)
tig

y3,i
3 )i∈[|Σ|], (g

ti
1 g

y4,i
3 )i∈[|Σ|]〉 (20)

LR-KP-ABE.KeyGen(MSK,Γ) Let MSK = 〈~w1, w2, ~w3, ~w4〉. This algorithm first con-

verts the monotone access structure Γ to the set of minimal sets B = {B1, B2, · · · , Bm},
where Bi ⊂ Σ for i = 1, · · · ,m, and then generates the private key SKΓ as

SKΓ = 〈B,~k1, k2,~k3,~k4〉

= 〈B, ~w1 ∗ g4σ1 ∗ g4~y13 ,

w2 ∗ g−4t1 ∗ g4y23 ,

(w3,i ∗ ga4t+〈~ρ,4~σ〉1 (
∏
j∈Bi

Tj)
4ti ∗ g4y3,i3 )i∈[m],

(w4,i ∗ g4ti1 ∗ g4y4,i3 )i∈[m]〉

=


B, gσ+4σ

1 g~y1+4~y1
3 ,

g−t−4t1 ∗ gy2+4y2
3 ,

(g
α+a(t+4t)+〈~ρ,~σ+4~σ〉
1 (

∏
j∈Bi

Tj)
ti+4ti ∗ gy3,i+4y3,i3 )

i∈[m]

(gti+4ti1 g
y4,i+4t4,i
3 )i∈[m]


>

(21)

where 4t,4~σ,4ti,4~y1, · · · ,4~y4 are picked from ZN randomly.
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Table 2: Performance
schemes lrw11 [LRW11] lr-cp-abe lr-kp-abe

Encrypt 2(ω + 2n1)Mu (ω + 2m)Mu (ω + |S|+ 2)Mu

Decrypt (ω + 2n1 + 1)Pr + 1Ex (ω + 3)Pr (ω + 3)Pr

KeyUpdate 2(ω + |S|+ 2)Mu 2(ω + |S|+ 2)Mu 2(ω + 2m+ 1)Mu

# of MSK (ω + |Σ|+ 2)|G| (ω + |Σ|+ 2)|G| (ω + 2|Σ|+ 1)|G|
# of SKS (ω + |S|+ 2)|G| (ω + |S|+ 2)|G| (ω + 2m+ 1)|G|
# of CTΓ (ω + 2n1 + 1)|G|+ |GT | (ω + 2m+ 1)|G|+ |GT | (ω + |S|+ 2)|G|+ |GT |

Master key leakage
√ √ √

User key leakage
√ √ √

Continual leakage
√ √ √

Multi-show attr X
√ √

Leakage bound ` 2 + (ω − 1− 2τ) log p2 2 + (ω − 1− 2τ) log p2 2 + (ω − 1− 2τ) log p2

Allowable probability p−τ2 p−τ2 p−τ2

Leakage rate γ ω−1−2τ
(1+β1+β3)(ω+2+|S|)

ω−1−2τ
(1+β1+β3)(ω+2+|S|)

ω−1−2τ
(1+β1+β3)(ω+2m+1)

ω: leakage parameter; τ : allowable leakage probability parameter; `: leakage bound of

a key; γ: leakage rate, i.e., γ = `/|SK|; Pr: computation cost of pairing; Ex: exponent

cost in GT ; Mu: point multiplication; |G|: size of an element in G; |GT |: size of an

element in GT ; Σ: universal attribute set; S: attribute set; I: minimum #rows labeled

by user’s attributes to compute target vector in LSSS matrix with n1 rows and n2

columns; β1, β3: value of |Gp1 |/|G| and |Gp3/|G|;

LR-KP-ABE.KeyUpd(SKΓ,Γ) This algorithm at random selects 4~σ,4t,4y1,4y2,

4y3,4y4 from ZN , and performs the refresh procedure like in LR-KP-ABE.KeyGen(MSK,Γ).

LR-KP-ABE.Enc(M,S) Output the ciphertext for attribute set S as

CTS = 〈S, c0,~c1, c2, c3,~c4〉 = 〈S, MY s, gs~ρ1 , g
as
1 , g

s
1, ∀i ∈ S T si 〉 (22)

where s is picked from ZN randomly.

LR-KP-ABE.Dec(CTS, SKΓ) If S satisfies Γ specified by B, then S must be a superset

of a minimal set in B. Find Sk ⊂ S for some k ∈ [m], and calculate:

M ← c0

êω(c1, k1)ê(c4,k,
∏
i∈Bk

k4,i)

ê(c2, k2)ê(c3,k, k3)
(23)

6.3 Leakage Performance

In this section, we give the performance analysis and comparison between [LRW11] and

ours schemes, which are listed in Tab. 2.

[LRW11] and our LR-CP-ABE are all ciphertext-policy attribute-based encryp-

tion schemes in the presence of key leakage model. [LRW11] uses LSSS to denote the

access structure, but it does not support attribute multi-show functionality [LW12].

Our schemes use the minimal set to denote the access structure and support attribute

multi-show ability.
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We evaluate the computation cost in decryption since it mainly depends on the

bilinear pairing operation in this algorithm but the pairing operation is very time-

consuming compared to the other operations such as point multiplication, exponent

and so on. To express an access structure, row number n1 in LSSS has the approximate

size with the number of set m in minimal set method. However, as far as the decryption

in our two schemes, they need constant ω+ 3 pairing operation which is independent to

the scale of access structure Γ and are more efficient than [LRW11] that describes the

access structure as LSSS.

On the side of leakage resilience, all schemes support master key leakage, user private

key leakage and continual leakage. Also, the schemes have the same leakage bound

` = 2 + (ω− 1− 2τ) log p2 and allowable probability p = p−τ2 . Thus, the leakage rate of

our LR-CP-ABE and [LRW11] are

γ =
ω − 1− 2τ

(1 + β1 + β3)(ω + 2 + |S|)
(24)

The leakage rate of LR-KP-ABE is

ω − 1− 2τ

(1 + β1 + β3)(ω + 2m+ 1)
(25)

Obviously, higher values of ω give a better leakage rate, but leads to larger public

parameters, private keys, and ciphertexts. Smaller values of β1 and β3 provide a better

leakage rate, but also give fewer bits of security in subgroup Gp1 and Gp3 . We must

choose the security parameter κ so that β1κ and β3κ are sufficiently large.

In the setup algorithm, we set

ω = d1 + 2τ +
`

log p2
e (26)

In particular, if ω = 1 then ` = 0 and τ = 0. In this case, the scheme is simplified

to be a fully secure non-leakage attribute-based encryption like in [LW12], which is

straightforward to see that allowable leakage is zero.

7 Conclusions

We proposed two leakage-resilient attribute-based encryptions that can tolerate leakage

on the master key, as well as leakage on several keys for each attribute set. We explicitly

employ a update algorithm to periodically update the master/private key so that it

tolerates continual (master) key leakage. In our schemes, the access structures are

converted as the minimal set, which can provide fast decryption ability. We can give our

construction in prime order groups by using the transformation mechanism from [Lew12]

and [Fre10].
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