
ANOTHER LOOK AT SECURITY THEOREMS FOR 1-KEY NESTED

MACS

NEAL KOBLITZ AND ALFRED MENEZES

Abstract. We prove a security theorem without collision-resistance for a class of
1-key hash-function-based MAC schemes that includes HMAC and Envelope MAC.
The proof has some advantages over earlier proofs: it is in the uniform model, it
uses a weaker related-key assumption, and it covers a broad class of MACs in a
single theorem. However, we also explain why our theorem is of doubtful value in
assessing the real-world security of these MAC schemes. In addition, we prove a
theorem assuming collision-resistance. From these two theorems we conclude that
from a provable security standpoint there is little reason to prefer HMAC to Envelope
MAC or similar schemes.

1. Introduction

A common method of constructing a message authentication code (MAC) is the
“nested” construction (NMAC). One first applies a keyed iterated hash function h(K1,M)
(constructed from a compression function f) to the message M , and then one puts this

hash value into a second keyed function f̃(K2, h(K1,M)) (where f̃ is also a compression
function). For efficiency and ease of implementation one usually wants the MAC to de-
pend on a single key K, and so one sets K1 = K2 = K or, more generally, K1 = g1(K),
K2 = g2(K) for some functions g1, g2. Our main purpose is to prove a new security
theorem without collision-resistance that covers arbitrary constructions of this type.
The theorem says, roughly speaking, that the MAC is a pseudorandom function (prf)

provided that both f̃ and f are pseudorandom functions and the functions f, f̃ , g1, g2
satisfy a certain rather weak related-key assumption. This theorem is a generalized
1-key version of our Theorem 10.1 in [14].

The two most important examples of this type of MAC are the “Hash-based Message
Authenication Code” (HMAC) [2] (standardized in [3] and [16]) and Envelope MAC
(also called “Sandwich MAC,” see [23] for a recent version). In these cases there are
earlier security proofs without collision resistance in [1] and [23], but unfortunately
those proofs are not valid in the uniform model of complexity.1 In other words, they
use unconstructible adversaries and so have to assume that the cryptographic primitives
withstand attack even by unconstructible adversaries. For this reason, as we explained
in [14] (see also [5]), they do not give useful concrete bounds on the resources a prf-
adversary would need in order to defeat the MAC. In contrast, our theorem is proved
in the uniform model; this means that it needs much milder assumptions.

Date: May 1, 2013; revised on December 24, 2013.
1Fischlin [6] has a uniform proof of a security theorem for HMAC without collision-resistance, but

its usefulness is questionable because of the extremely large tightness gap in his result.

1

2 NEAL KOBLITZ AND ALFRED MENEZES

One of the five finalists in the NIST SHA-3 competition used Envelope MAC. The
designers of the “Grøstl” construction wrote (§6.1 of [7]):

We propose this envelope construction as a dedicated MAC mode using
Grøstl. This construction has been proved to be a secure MAC under
similar assumptions as HMAC.

Here the designers were referring to the proof in [23], but they were apparently unaware
that Yasuda’s proof is not valid in the uniform model and for that reason gives much
weaker guarantees than one would expect. As we commented in [15], one of the draw-
backs of results obtained in the non-uniform model is the possibility that they will be
used by other authors who are unaware of the extremely limited nature of such results
from a practice-oriented standpoint. In any case, in the present paper we remove this
gap in the security argument in [7] by supplying a uniform proof.

There is a second respect in which our theorem makes a milder assumption than
earlier theorems of this type: our related-key assumption is weaker than the one defined
in [1, 4]. This not only gives us a stronger theorem, but also enables us to unify HMAC
and Envelope MAC in a single theory.

Despite these advantages over earlier security theorems, the sad fact is that our main
theorem by itself provides very little assurance about the real-world security of these
MAC schemes. In §4 we recall some of the reasons for this.

In §5 we prove a second theorem, this time assuming collision-resistance, that carries
over the main result of [2] to 1-key nested MACs. Our two theorems together show that
from the standpoint of security reductions there is little difference between HMAC,
Envelope MAC, and other similar constructions. We conclude that security theorems
are not of much use in deciding which of the competing schemes — HMAC, Envelope
MAC, or some other variant — has better security in practice.

2. Statement of the Main Theorem

Let f : {0, 1}c × {0, 1}b −→ {0, 1}c and f̃ : {0, 1}c × {0, 1}c −→ {0, 1}c be two
compression functions. Here b ≥ 2c (typically b = 512 and c = 128 or 160), so that

f compresses by a factor of at least 3, whereas f̃ compresses by a factor of 2. Let
gi : {0, 1}c −→ {0, 1}c, i = 1, 2. We suppose that all of these functions are publicly and
efficiently computable.

By a (t, q)-adversary we mean an adversary that makes ≤ q queries and has running
time ≤ t. Recall that f is said to be an (ǫ, t, q)-secure pseudorandom function (prf) if no
(t, q)-adversary can distinguish between f with a hidden key and a random function with
advantage ≥ ǫ. We say that f is strongly (ǫ, t, q)-secure (see [14]) if such an adversary
before any query is permitted to “reset” the oracle, by which we mean that in response
to the adversary’s request the oracle chooses either a new random key (if it is f(K, .))
or a new random function (if it is a random function r′(.)).

We now define the “related-key assumption” that we shall use in our main theorem.

Definition 1. In the above setting, we say that (f, f̃) is (ǫ, t, q)-secure against (g1, g2)-
related-key attacks if no (t, q)-adversary has an advantage greater than or equal to ǫ in

the following interaction with the oracle Orka. First, the oracle chooses a random bit;

if it is 0, the oracle chooses two random keys K1,K2 ∈ {0, 1}c; if it is 1, the oracle

chooses one random key K ∈ {0, 1}c and sets K1 = g1(K), K2 = g2(K). Each query of

ANOTHER LOOK AT SECURITY THEOREMS FOR 1-KEY NESTED MACS 3

the adversary is a message M in either {0, 1}b or {0, 1}c, to which the oracle responds

with either f(K1,M) or f̃(K2,M), respectively. At the end the adversary guesses the

oracle’s random bit.

We recall that in this situation the advantage of the adversary is defined as

Prob(adversary guesses 1
∣∣ oracle chose 1)−Prob(adversary guesses 1

∣∣ oracle chose 0),

where Prob(A
∣∣B) denotes the conditional probability of event A given event B.

This setting is general enough to include two of the best-known MAC constructions
(see Figure 1):

(1) For HMAC, let IV be a fixed (and publicly known) initiation vector, and let
ipad and opad be two fixed elements of {0, 1}b (also publicly known). We let a
superscript 0 on a bitstring in {0, 1}c indicate that we are appending b− c zero

bits to it. We set f̃(K,M) = f(K,M0), g1(K) = f(IV,K0 ⊕ ipad), g2(K) =
f(IV,K0 ⊕ opad).

(2) For Envelope MAC, let IV be a fixed (and publicly known) initiation vector; let

f̃(K,M) = f(M,K0), g1(K) = f(IV,K0), and g2(K) = K.

Remark 1. The above related-key assumption is weaker than the related-key assump-
tion in [1, 4]. In that assumption the oracle is required to simply give the adversary
the two keys K1,K2. In that case the adversary can of course compute any number
of desired values f(K1,M) or f̃(K2,M), limited only by the running time bound; in
other words, the rka-adversary in our assumption is less powerful (because it has less
information) than the rka-adversary in [1, 4]. Moreover, with the rka-assumption in
[1, 4] we wouldn’t have been able to include Envelope MAC in our theorem, because
when g2(K) = K the adversary, if given K1 and K2, can trivially determine whether or
not K1 = g1(K2).

In the above setting let h : {0, 1}c × ({0, 1}b)∗ −→ {0, 1}c denote the iterated hash
function that, given a key K ∈ {0, 1}c and a message M = (M1,M2, . . . ,Mm), Mi ∈
{0, 1}b, successively computes h1 = f(K,M1), hi+1 = f(hi,Mi+1), i = 1, 2, . . . ,m − 1
and sets h(K,M) = hm. We define the message authentication code MACf,f̃ ,g1,g2

as

follows:
MACf,f̃ ,g1,g2

(K,M) = f̃(g2(K), h(g1(K),M)).

Notice that when g1(K) = f(IV,K0 ⊕ ipad) and g2(K) = f(IV,K0 ⊕ opad) this
definition agrees with that of HMAC; and when g1(K) = f(IV,K0) and g2(K) = K it
agrees with that of Envelope MAC (see Figure 1).

By a (t, q, n)-adversary we mean an adversary that makes ≤ q queries of block-
length ≤ n and has running time ≤ t. We say that MACf,f̃ ,g1,g2

is an (ǫ, t, q, n)-secure

pseudorandom function if no (t, q, n)-adversary can distinguish between MACf,f̃ ,g1,g2
with hidden key and a random function with advantage ≥ ǫ.

Theorem 1. Suppose that f is a strongly (ǫ1, t, q)-secure pseudorandom function, f̃ is

an (ǫ2, t, q)-secure pseudorandom function, and (f, f̃) is (ǫ3, t, 2q)-secure against (g1, g2)-
related-key attacks. Then MACf,f̃,g1,g2

is a (2n(ǫ1 +
(
q
2

)
2−c) + ǫ2 + 2ǫ3, t − (qnT +

Cq log q), q, n)-secure pseudorandom function. Here C is an absolute constant and T

denotes the time for one evaluation of f or f̃ .

4 NEAL KOBLITZ AND ALFRED MENEZES

f f

M1 M2 Mm

f fIV

K0

f tag

K0

ENVELOPE MAC(K,M)

f

h0
m

f
IV tag

K0 ⊕ opad

f f

M1 M2 Mm

f f

K0 ⊕ ipad

IV hm

HMAC(K,M)

Figure 1. HMAC and Envelope MAC.

Remark 2. In the statement of the theorem the expression 2n(ǫ1 +
(q
2

)
2−c) + ǫ2 + 2ǫ3

can be replaced by 2nǫ1 + ǫ2 + 2ǫ3. The reason is that, as explained in Remark 10.2
of [14], the generic key-guessing attack on the strong pseudorandomness property has
advantage roughly (qt/T)2−c; since we need t > qnT for the theorem to have content,
it follows that ǫ1 ≫

(q
2

)
2−c.

Before proving Theorem 1, we give an informal summary of the argument. The
first step is to show that a prf-adversary AMAC of MACf,f̃ ,g1,g2

is also a prf-adversary

— with almost the same advantage — of the MAC obtained by replacing the (g1, g2)-
related keys by independent random keys. Here “almost” means that we can construct a
related-key-attack Arka on (f, f̃) whose advantage is equal to half the difference between
the advantage of AMAC when the keys are (g1(K), g2(K)) and its advantage when the
keys are independent. This step reduces the problem to the case when there are two
independent keys, at which point we can essentially follow the proof for NMAC in
[14]. Namely, we show that a prf-adversary for the MAC succeeds only when either the

prf-property of the outer shell f̃(K2, .) is attacked (we call its adversary Af̃) or else a

collision is produced in the iterated hash-function that’s inside this shell. In the latter
case we use the collision to construct a prf-adversary of f . Since there are two possible
types of collisions that can occur and up to n iterations of the hash function, this leads

ANOTHER LOOK AT SECURITY THEOREMS FOR 1-KEY NESTED MACS 5

to roughly 2n f -adversaries. This intuitively explains why 2nǫ1 + ǫ2 + 2ǫ3 appears in
the conclusion of the theorem. The term 2n

(
q
2

)
2−c arises because of the possibility of

random collisions between c-bit strings.
We shall give the actual proof in the next section. The above plausibility argument

shows that the basic ideas in the proof are simple. However, the organization is a little
intricate because of the need to proceed carefully with the reduction using all of the
adversaries. We see no way to come up with a more concise self-contained proof, and
we apologize to the reader for that.

3. Proof of the Main Theorem

Proof. We will prove the following equivalent statement: if f is a strongly ((ǫ−ǫ2−2ǫ3
2n −(

q
2

)
2−c), t + (qnT + Cq log q), q)-secure pseudorandom function, f̃ is an (ǫ2, t + (qnT +

Cq log q), q)-secure pseudorandom function, and (f, f̃) is (ǫ3, t + (qnT + Cq log q), 2q)-
secure against (g1, g2)-related-key attacks, then MACf,f̃ ,g1,g2

is an (ǫ, t, q, n)-secure pseu-

dorandom function. The proof starts by supposing that we have a (t, q, n)-adversary
AMAC that has advantage ≥ ǫ in the pseudorandomness test for MACf,f̃ ,g1,g2

, and then

it proceeds to construct a (t + (qnT + Cq log q), 2q)-adversary Arka of the related-key

property, a (t + (qnT + Cq log q), q)-adversary Af̃ of the pseudorandom property of f̃ ,

and a (t + (qnT + Cq log q), q)-adversary Af of the pseudorandom property of f such
that at least one of the following holds:

(i) Arka has advantage ≥ ǫ3 against the (g1, g2)-related key property of (f, f̃).

(ii) Af̃ has advantage ≥ ǫ2 in the pseudorandomness test for f̃ .

(iii) Af has advantange ≥ (ǫ−ǫ2−2ǫ3)/(2n)−
(q
2

)
2−c in the strong pseudorandomness

test for f .

Note that if any of these three conditions holds, we have a contradiction that proves
the theorem.

For the i-th message query M i we use the notation M i
ℓ to denote its ℓ-th block,

we let M i,[m] = (M i
1, . . . ,M

i
m) be the truncation after the m-th block, and we set

M i,(m) = (M i
m,M i

m+1, . . .), that is, M i,(m) is the message with the first m − 1 blocks
deleted. We say that a message is “non-empty” if its block length is at least 1.

Let h be the corresponding iterated function, and let f̃h be the MAC that for a key
(K1,K2) ∈ {0, 1}c × {0, 1}c is defined as follows: f̃h(K1,K2,M) = f̃(K2, h(K1,M)),
whereM = (M1, . . . ,Mm) is anm-block message, m ≤ n. Note that MACf,f̃ ,g1,g2

(K,M) =

f̃h(g1(K), g2(K),M). Let r(M) denote a random function of messages, and let r′(M1)
denote a random function of 1-block messages. In response to an input of suitable
length, r′ or r outputs a random c-bit string, subject only to the condition that if the
same input is given a second time (in the same run of the algorithm) the output will be
the same. In the test for pseudorandomness the oracle is either a random function or
the function being tested, as determined by a random bit (coin toss).

Now suppose that we have a (t, q, n)-adversary AMAC that, interacting with its or-
acle OMAC, has advantage ≥ ǫ against the prf-test for MACf,f̃ ,g1,g2

. We use AMAC to

construct four adversaries Af̃h, Arka, Af̃ , and Af . The last three are the adversaries in

the above conditions (i)–(iii); the (t, q, n)-adversary Af̃h attacks the pseudorandomness

6 NEAL KOBLITZ AND ALFRED MENEZES

property of f̃h. Each adversary makes at most the same number of queries as AMAC

(except that the related-key adversary can make up to 2q queries) and has a comparable
running time. More precisely, the bound t+(qnT +Cq log q) on the running time of the
adversaries Arka, Af̃ , and Af comes from the time required to run AMAC, make at most

q computations of h-values, and store at most q values (coming from oracle responses
and h-computations) in lexicographical order and sort them looking for collisions. (An
adversary does not in all cases perform all of these steps; rather, this is an upper bound.)

The related-key adversary Arka runs AMAC and interacts with the related-key oracle
Orka, which chooses a random bit u. Recall that Arka, after querying the oracle Orka

with at most 2q b-bit or c-bit messages, must guess whether the keys K1 and K2 that
Orka is using are independent (i.e., u = 0) or are related by Ki = gi(K), i = 1, 2, for
some K (i.e., u = 1).

The adversary Arka randomly chooses a bit ℓ, and as AMAC runs, Arka responds to each
query M i as follows. If ℓ = 0, its response to each query is a random c-bit string (except
in the case when a query is repeated, in which case the response is also repeated). If

ℓ = 1, then it first queries Orka with M i
1 and computes H = h(Orka(M

i
1),M

i,(2)), where
Orka(M

i
1) denotes the oracle’s response. (If M i is just a 1-block message, then H is set

equal to Orka(M
i
1).) Now Arka makes a second query to Orka — this time the c-bit query

H — and responds to AMAC’s query with Orka(H).2 At the end Arka guesses that the
random bit u chosen by Orka is 1 if AMAC guesses that the random bit ℓ chosen by Arka

(which is simulating an oracle) is 1; otherwise, it guesses that u = 0. (Note that Arka

guesses 0 if AMAC stops or reaches time t without producing a guess; this could happen
if Arka is not properly simulating OMAC, which would imply that u = 0.) Let δ denote
the advantage of Arka.

We also construct an adversary Af̃h that interacts with its oracle Of̃h and runs AMAC.

When AMAC makes a query M i, the adversary Af̃h queries Of̃h and sends AMAC the

response Of̃h(M
i). If AMAC guesses that the oracle simulated by Af̃h is a random

function, then Af̃h guesses that its oracle Of̃h is a random function; otherwise Af̃h

guesses that its oracle is f̃h with hidden keys. In particular, note that if AMAC stops or
fails to produce a guess in time t — as may happen when Af̃h is not property simulating

OMAC — then Af̃h guesses that its oracle is f̃h with hidden keys. (This makes sense,

since if Of̃h were a random function, then the simulation of OMAC would be correct.)

Let γ denote the advantage of Af̃h.

Returning to the description of Arka, we see that there are two cases, depending on
whether the random bit u of the oracle Orka was (a) 1 (that is, its keys are related) or
(b) 0 (that is, its keys are independent). In case (a) the interaction of Arka with AMAC

precisely simulates OMAC, and in case (b) it precisely simulates Of̃h. (As we noted, in

case (b) our original adversary AMAC may stop or run for time t without producing a

2The theorem’s query bound for the related-key property is 2q because Arka makes two queries for
each query of AMAC.

ANOTHER LOOK AT SECURITY THEOREMS FOR 1-KEY NESTED MACS 7

guess; in this case Arka makes the guess 0.) Let

p1 = Prob(AMAC guesses 1
∣∣ ℓ = 1 and u = 1);

p2 = Prob(AMAC guesses 1
∣∣ ℓ = 1 and u = 0);

p3 = Prob(AMAC guesses 1
∣∣ ℓ = 0).

Note that when ℓ = 0 there is no interaction with Orka, and so the guess that AMAC

makes is independent of whether u = 0 or u = 1.
By assumption, AMAC has advantage ≥ ǫ in a prf-test for MACf,f̃ ,g1,g2

; in other

words, p1 − p3 ≥ ǫ. We also have p2 − p3 = γ. Subtracting gives p1 − p2 ≥ ǫ− γ. Next,
the advantage δ of the related-key adversary Arka is given by

Prob(Arka guesses 1
∣∣ u = 1)− Prob(Arka guesses 1

∣∣ u = 0)

= Prob(AMAC guesses 1
∣∣ u = 1)− Prob(AMAC guesses 1

∣∣ u = 0)

= Prob(AMAC guesses 1
∣∣ u = 1 and ℓ = 0) · Prob(ℓ = 0)

+ Prob(AMAC guesses 1
∣∣ u = 1 and ℓ = 1) · Prob(ℓ = 1)

− Prob(AMAC guesses 1
∣∣ u = 0 and ℓ = 0) · Prob(ℓ = 0)

− Prob(AMAC guesses 1
∣∣ u = 0 and ℓ = 1) · Prob(ℓ = 1)

=
1

2
(p3 + p1 − p3 − p2) =

1

2
(p1 − p2) ≥ (ǫ− γ)/2.

If condition (i) in the first paragraph of the proof does not hold, then δ < ǫ3, in which
case γ > ǫ− 2ǫ3. For the remainder of the proof we assume that the advantage of Af̃h

satsifies this inequality, since otherwise (i) holds and we’re done.
The rest of the proof closely follows the proof of Theorem 10.1 of [14]. We shall give

the details rather than simply citing [14] because the present setting is slightly more

general (with two pseudorandom compression functions f and f̃ rather than just one)
and because there is some benefit in having a self-contained proof in one place.

We now construct an f̃ -adversary Af̃ and consider its advantage. As before, for

any oracle O we let O(M) denote the response of O to the query M . The adversary
Af̃ is given an oracle Of̃ and, using Af̃h as a subroutine, has to decide whether Of̃

is f̃(K2, .) or a random function r′(.) of 1-block messages. She chooses a random K1

and presents the adversary Af̃h with an oracle that is either f̃(K2, h(K1, .)) or else a

random function r(.); that is, she simulates Of̃h (see below). In time ≤ t with ≤ q

queries Af̃h is able with advantage γ > ǫ− 2ǫ3 to guess whether Of̃h is f̃h with hidden

keys or a random function r. Here is how Af̃ simulates Of̃h: in response to a query M i

from Af̃h, she computes h(K1,M
i), which she queries to Of̃ , and then gives Af̃h the

value Of̃ (h(K1,M
i)). Eventually (unless the simulation is imperfect, see below) Af̃h

states whether it believes that its oracle Of̃h is f̃h or r, at which point Af̃ states the

same thing for the oracle Of̃ – that is, if Af̃h said f̃h, then she says that Of̃ must have

been f̃ , whereas if Af̃h said that Of̃h is r, then she says that Of̃ is r′. Notice that if

the oracle Of̃ is f̃(K2, .), then the oracle Of̃h that Af̃ simulates for Af̃h is f̃h (with

random key K = (K1,K2)); if the oracle Of̃ is r′(.), then the oracle that Af̃ simulates

8 NEAL KOBLITZ AND ALFRED MENEZES

for Af̃h acts as r with the important difference that if h(K1,M
i) coincides with an

earlier h(K1,M
j) the oracle outputs the same value (even though M i 6= M j) rather

than a second random value.3 If the latter happens with negligible probability, then
this algorithm Af̃ is as successful in distinguishing f̃ from a random function as Af̃h is

in distinguishing f̃h from a random function. Otherwise, two sequences of f -adversaries

A
(m)
f and B

(m)
f come into the picture, as described below.

The general idea of these adversaries is that they each use the oracle Of in the
pseudorandomness test for f to look for collisions between h-values of two different
messages M i,M j queried by Af̃h. More precisely, the m-th adversary in a sequence

works not with all of a queried message, but rather with the message with its first m−1
blocks deleted. If a collision is produced, then with a certain probability Of must be
f(K2, .); however, one must also account for the possibility that Of is r′(.), and in the

case of A
(m)
f this brings in the next adversary in the sequence A

(m+1)
f .

First we make a remark about probabilities, which are taken over all possible coin
tosses of the adversary, all possible keys, the oracle’s “choice bit” (which determines
whether it is the function being tested or a random function), and the coin tosses of the
oracle in the case when it outputs a random function.4 If the adversary’s oracle is f or
f̃h with hidden keys, then the adversary’s queries in general depend on the keys (upon
which the oracle’s responses depend) as well as the adversary’s coin tosses. However, if
the adversary’s oracle is a random function – which is the situation when Af̃ fails and the

sequences of adversaries A
(m)
f and B

(m)
f are needed – then the oracle responses can be

regarded simply as additional coin tosses, and the adversary’s queries then depend only
on the coin tosses and are independent of the keys. This is an important observation
for understanding the success probabilities of the adversaries.

We define α0 to be the probability, taken over all coin tosses of Af̃h (including those

coming from random oracle responses) and all keys K1, that the sequence of Af̃h-queries

M i satisfies the following property:

there exist i and j, j < i, such that h(K1,M
i) = h(K1,M

j).

For m ≥ 1 we define αm to be the probability, taken over all coin tosses of Af̃h and

all q-tuples of keys (K1,K2, . . . ,Kq), that the sequence of Af̃h-queries M
i satisfies the

following property:

(1m) there exist i and j, j < i, such that M i,(m+1) 6= ∅, M j,(m+1) 6= ∅,

h(Kℓi ,M
i,(m+1)) = h(Kℓj ,M

j,(m+1)),

where for any index i for which M i,(m+1) 6= ∅ we let ℓi denote the smallest index for
which M ℓi,(m+1) 6= ∅ and M i,[m] = M ℓi,[m].

3If Af̃h fails to produce a guess about the oracle Of̃h in time t, as can happen if the simulation is
imperfect, then Af̃ guesses that Of̃ is a random function. Note that the simulation is perfect if Of̃ is

f̃ with hidden key.
4The term “over all possible coin tosses” means over all possible runs of the algorithm with each

weighted by 2−s, where s is the number of random bits in a given run.

ANOTHER LOOK AT SECURITY THEOREMS FOR 1-KEY NESTED MACS 9

Finally, for m ≥ 1 we define βm to be the probability, taken over all coin tosses of Af̃h

and all q-tuples of keys (K1,K2, . . . ,Kq), that the sequence of Af̃h-queries M
i satisfies

the following property:

(2m) there exist i and j such that M i,(m+1) = ∅, M j,(m+1) 6= ∅,

M i,[m] = M j,[m], and h(Ki,M
j,(m+1)) = Ki.

We now return to the situation where with non-negligible probability α0 the queries
made by Af̃h lead to at least one collision h(K1,M

i) = h(K1,M
j). Note that the

advantage of the adversary Af̃ is at least ǫ− 2ǫ3 − α0. If condition (ii) fails, i.e., if this

advantage is < ǫ2, it follows that α0 > ǫ − ǫ2 − 2ǫ3. In the remainder of the proof, we
shall assume that this is the case, since otherwise (ii) holds and we’re done.

The first adversary in the sequence A
(m)
f is A′

f , which is given the oracle Of that

is either f(K1, .) with a hidden random key K1 or else r′(.). As A′

f runs Af̃h, giving

random responses to its queries, she queries Of with the first block M i
1 of each Af̃h-

query M i. If M i,(2) is non-empty, she then computes yi = h(Of (M
i
1),M

i,(2)); if M i,(2) is
empty, she just takes yi = Of (M

i
1). If Of is f(K1, .), then yi will be h(K1,M

i), whereas

if Of is r′(.), then yi will be h(Li,M
i,(2)) for a random key Li = Of (M

i
1) if M i,(2) is

non-empty and will be a random value Li if M
i,(2) is empty. As the adversary A′

f gets
these values, she looks for a collision with the yj-values obtained from earlier queries
M j . If a collision occurs, she guesses that Of is f with hidden key; if not, she guesses
that Of is r′(.).

It is, of course, conceivable that even whenOf is r′(.) there is a collision h(Li,M
i,(2)) =

h(Lj ,M
j,(2)) with M i,(2) and M j,(2) non-empty. Note that Li = Lj if M i

1 = M j
1 , but

Li and Lj are independent random values if M i
1 6= M j

1 . In other words, we have (11).
Recall that the probability that this occurs is α1.

It is also possible that even when Of is r′(.) there is a collision involving one or both

of the random values Li or Lj that is produced when M i,(2) or M j,(2) is empty. If both

are empty, then the probability that Li = Lj is 2−c. If, say, M j,(2) is non-empty, then

in the case M i
1 6= M j

1 we again have probability 2−c that Li = h(Lj ,M
j,(2)), whereas in

the case M i
1 = M j

1 we have (21) with Ki = Li.
Bringing these considerations together, we see that the advantage of A′

f is ≥ α0 −

α1 − β1 −
(q
2

)
2−c.

We next describe the sequence of adversaries A
(m)
f , m ≥ 2. Let Of again denote

the prf-test oracle for f that A
(m)
f can query. Like A′

f , he runs Af̃h once and gives

random responses to its queries. As Af̃h makes queries, he sorts their prefixes (where

we are using the word “prefix” to denote the first m − 1 blocks of a query that has
block-length at least m). If the i-th query has block-length at least m and if its prefix
coincides with that of an earlier query, he records the index ℓi of the first query that
has the same prefix; if it has a different prefix from earlier queries he sets ℓi = i. After
running Af̃h, he goes back to the first query M j1 that has block-length at least m and

for all i for which ℓi = j1 (that is, for all queries that have the same prefix as M j1) he

queries M i
m to Of and computes yi = h(Of (M

i
m),M i,(m+1)) if M i,(m+1) is non-empty

10 NEAL KOBLITZ AND ALFRED MENEZES

and otherwise takes yi = Of (M
i
m). Then he resets Of and goes to the first j2 such that

M j2 has block-length at least m and a different prefix from M j1 . For all i for which
ℓi = j2 he queries M i

m to Of and computes yi = h(Of (M
i
m),M i,(m+1)) if M i,(m+1) is

non-empty and otherwise takes yi = Of (M
i
m). He continues in this way until he’s gone

through all the queries. He then looks for two indices j < i such that yj = yi. If he
finds a collision, he guesses that Of is f with hidden key; otherwise, he guesses that it
is a random function.

The adversary A
(m)
f takes advantage of the αm−1 probability of a collision of the

form (1m−1), and if such a collision occurs he guesses that Of is f with hidden key. The
possibility that Of is really r′(.) is due to two conceivable circumstances – a collision
of the form (1m) or a collision among random values (either a collision between two

random values Li and Lj or between Li and h(Lj ,M
j,(m+1)), or else a collision of the

form (2m) with Ki = Li — here the probability of such a collision is bounded by
(
q
2

)
2−c

and by βm, respectively).

Finally, the sequence of adversaries B
(m)
f , m ≥ 1, is defined as follows. As usual,

Of denotes the prf-test oracle for f that B
(m)
f can query. She runs Af̃h once and gives

random responses to its queries. As Af̃h makes queries, she sorts their prefixes (where

this time we are using the word “prefix” to denote the first m blocks of a query that
has block-length at least m). She makes up a list of pairs (i, S(i)), where the i-th query
has block-length exactly m and coincides with the prefix of at least one other query; in
that case S(i) denotes the set of indices j 6= i such that M j,[m] = M i. After running

Af̃h, she chooses a message-block Y that is different from all the blocks M j
m+1 of all

queries M j . She goes through all indices i with non-empty S(i). For each such i she

queries Y to Of and for each j ∈ S(i) she also queries M j
m+1 to Of and computes

yj = h(Of (M
j
m+1),M

j,(m+2), Y). She looks for a collision between Of (Y) and yj for
j ∈ S(i). Before going to the next i she resets Of . If she finds a collision for any
of the i, she guesses that Of is f with hidden key; otherwise, she guesses that it is a
random function. The advantage of this adversary is at least βm − q2−c, because if Of

is f(Ki, .) and h(Ki,M
j,(m+1)) = Ki, then h(Of (M

j
m+1),M

j,(m+2), Y) = f(Ki, Y) =

Of (Y), whereas if Of is a random function, then Of (Y) has probability only 2−c of
coinciding with this h-value.

We thus have the following lower bounds for the advantages of the adversaries:
A′

f : α0 − α1 − β1 −
(q
2

)
2−c;

A
(m)
f , m ≥ 2: αm−1 − αm − βm −

(q
2

)
2−c;

B
(m)
f , m ≥ 1: βm − q2−c.

Trivially we have αn = βn = 0, and so the adversaries go no farther than A
(n)
f and

B
(n−1)
f . The sum of all the advantages of the 2n − 1 adversaries telescopes and is at

least α0 − (2n − 1)
(
q
2

)
2−c.

Since we have no way of knowing which of these adversaries has the greatest advan-
tage, we make a random selection. That is, the adversary Af we use to attack the
pseudorandomness of f consists of randomly choosing one of the 2n− 1 adversaries A′

f ,

ANOTHER LOOK AT SECURITY THEOREMS FOR 1-KEY NESTED MACS 11

A
(m)
f (2 ≤ m ≤ n), B

(m)
f (1 ≤ m ≤ n− 1) and running it. The advantage of the adver-

sary Af is the expectation obtained by summing the advantages of the 2n−1 adversaries
with each one weighted by the probability 1/(2n− 1) that we choose the corresponding
adversary. This advantage is at least 1

2n−1(α0 − (2n− 1)
(q
2

)
2−c)) > (ǫ−ǫ2−2ǫ3

2n −
(q
2

)
2−c).

Thus, returning to the first paragraph of the proof, we have shown that if conditions (i)
and (ii) do not hold, then condition (iii) holds. �

4. Interpretation

How useful is our theorem as a guarantee of real-world security? As in the case of
Theorem 10.1 of [14], there are several reasons for skepticism concerning the practical
assurance provided by Theorem 1:

(1) In order to conclude that our MAC is an (ǫ, t, q, n)-secure pseudorandom func-
tion, we need the inner compression function f to be a strongly (ǫ/(2n), t, q)-
secure pseudorandom function. In other words, we have a tightness gap of about
2n, which is large if, for example, we allow a block-length bound of 220 or 230.5

(2) Theorem 1 is in the single-user setting, and its security assurances could fail in
the more realistic multi-user setting.

(3) The three hypotheses in Theorem 1 — pseudorandomness of the outer compres-
sion function, strong pseudorandomness of the inner compression function,6 and
the related-key property — are in general extremely difficult to evaluate. When
the assumptions in a theorem cannot be evaluated in any convincing manner, we
should not be surprised if practitioners view the theorem as having little value.

5. Security Theorem with Collision-Resistance

There are two types of security theorems that have been proved about nested MACs.
Starting with Bellare’s paper [1] (see also [6, 14, 19]), some authors have proved theorems
without assuming collision-resistance of the iterated hash function. The idea is that
confidence in security of a MAC scheme should not depend upon the rather strong
assumption that an adversary cannot find hash collisions. Our Theorem 1 continues
this line of work.

On the other hand, if one is using a hash function that one strongly believes to be
collision-resistant and one wants to know that an adversary cannot forge message tags,
then one can go back to the much earlier and more easily proved security theorem in
[2]. The purpose of this section is to carry over the main result of [2] to our class of
1-key nested MACs.

5The tightness gap in our theorem, bad as it is, is not nearly as extreme as the one in Fischlin’s
theorem [6], which establishes the secure-MAC property for NMAC and HMAC based on assumptions
that are slightly weaker than the prf property. The gap in success probabilities in that theorem is
roughly qn2. In [6] this gap is compared to the q2n gap in Bellare’s Theorem 3.3 in [1]. However, any
comparison based solely on success probabilities is misleading, since the factor q2n in Bellare’s theorem
is multiplied by the advantage of a very low-resource adversary A2 with running time ≤ nT , much less
than that of Fischlin’s adversary. One must always include running time comparisons when evaluating
tightness gaps, and this is not done in [6].

6Note that the inner compression function needs to be strongly (ǫ1, t, q)-secure for a quite small value
of ǫ1, since the theorem loses content if ǫ1 > 1/(2n).

12 NEAL KOBLITZ AND ALFRED MENEZES

An iterated hash function h is said to be (ǫ, t, q, n)-weakly-collision-resistant if no
(t, q, n)-adversary that queries h(K, .) has success probability ≥ ǫ of producing a collision
h(K,M ′) = h(K,M), whereM andM ′ are distinct messages of block-length ≤ n. (Here
h(K, .) is regarded as an oracle, i.e., a black box, and K is a hidden key.) A MAC is said
to be (ǫ, t, q, n)-secure against forgery if no (t, q, n)-adversary has success probability ≥ ǫ
of producing a tag for an unqueried message of block-length ≤ n.

Theorem 2. Suppose that the iterated hash function h coming from the compression

function f is (ǫ1, t, q, n)-weakly-collision-resistant, the compression function f̃ is an

(ǫ2, t, q, 1)-secure MAC, and (f, f̃) is (ǫ3, t, 2q + 2)-secure against (g1, g2)-related key

attacks. Then MACf̃ ,f,g1,g2
is an (ǫ1 + ǫ2 + ǫ3, t− (q+1)nT, q, n)-secure MAC, where T

is the time required for one evaluation of f or f̃ .

Proof. The proof is quite simple. Suppose that we are given a (t− (q + 1)nT, q, n)-
adversary AMAC that has probability ≥ ǫ1 + ǫ2 + ǫ3 of forging a MACf̃ ,f,g1,g2

-tag. Then

we construct three adversaries — a (t, q)-adversary Af̃ , a (t, q, n)-adversary Awcr and a

(t, 2q + 2)-adversary Arka — such that at least one of the following is true:

(i) Af̃ has probability ≥ ǫ2 of forging a f̃ -tag.

(ii) Awcr has probability ≥ ǫ1 of producing an h-collision.

(iii) Arka has advantage ≥ ǫ3 against the (g1, g2)-related key property of (f, f̃).

(It does not matter which of (i), (ii), (iii) is true, since any one of the three would
contradict the assumptions of the theorem.)

We first use AMAC to construct both an adversary Arka of the related-key property
and an adversary Af̃h that can forge an f̃h-tag. (Recall that f̃h denotes the MAC

f̃(K2, h(K1,M)) with independent keys.) The adversary Arka runs AMAC and interacts
with the oracle Orka, which chooses a random bit u. After querying the oracle Orka

with at most 2q + 2 b-bit or c-bit messages, Arka must guess whether Orka is using
random keys (i.e., u = 0) or related keys (i.e., u = 1). As AMAC runs, for each of
its queries M i the adversary Arka queries the first block M i

1 to Orka, then computes

H = h(Orka(M
i
1),M

i,(2)), and finally queries H to Orka; it gives the value Orka(H) to
AMAC as the tag of the queried message. If in time ≤ t − (q + 1)nT the adversary
AMAC forges a tag of an unqueried message,7 then Arka guesses that u = 1; otherwise,
it guesses that u = 0. Let α denote the advantage of Arka, where, by definition

(1) α = Prob
(
Arka guesses 1

∣∣ u = 1
)
− Prob

(
Arka guesses 1

∣∣ u = 0
)
.

The time Arka needs to perform these steps — that is, computing the values H, waiting
for AMAC, and verifying the forgery produced by AMAC — is bounded by qnT + (t −
(q + 1)nT) + nT = t.

We construct Af̃h as follows. It has an f̃h-oracle Of̃h that has hidden keys K1,K2.

The adversary Af̃h runs AMAC, responding to each of its queries M i by querying Of̃h

and giving AMAC the response Of̃h(M
i). If AMAC forges the f̃h-tag of an unqueried

7Note that Arka can verify that AMAC has a valid forgery using the same procedure that was used to
respond to its queries. This means that Arka needs to be allowed two more queries of Orka, and for this
reason the query bound for Arka is 2q+2 rather than 2q and the time bounds have the term (q+ 1)nT
rather than qnT .

ANOTHER LOOK AT SECURITY THEOREMS FOR 1-KEY NESTED MACS 13

message M̃ (which Af̃h can verify with one further query to its oracle), then Af̃h has

succeeded in forging the f̃h-tag of M̃ . Let β denote the success probability of this
adversary Af̃h.

Note that the interaction of Af̃h with AMAC is exactly the same as that of Arka with

AMAC in the case u = 0. Thus, the second term on the right in the expression (1) for
α is equal to β, whereas the first term is the success probability of AMAC, which by
assumption is at least ǫ1 + ǫ2 + ǫ3. We hence have α+ β ≥ ǫ1 + ǫ2 + ǫ3, and this means
that either α ≥ ǫ3 (which is the alternative (iii) above) or else β ≥ ǫ1 + ǫ2.

We now use Af̃h to construct an f̃ -tag-forging adversary Af̃ and an h-collision-finding

adversary Awcr. The former is constructed as follows. After choosing a random key K1,
Af̃ runs Af̃h. In response to each query M i from Af̃h, Af̃ computes H = h(K1,M

i),

queries this H-value to its oracle Of̃ = f̃(K2, .), and gives the value f̃(K2,H) to Af̃h.

With probability β in time ≤ t− (q + 1)nT the adversary Af̃h finds a tag T̃ = f̃h(M̃),

where M̃ is different from all of the queried messages. The bound on the time Af̃ needs

to perform these steps — that is, computing the values h(K1,M
i) and waiting for Af̃h —

is qnT +(t−(q+1)nT) = t−nT . Then Af̃ takes time ≤ nT to compute H̃ = h(K1, M̃),

hoping that it is different from all H-values that were queried to Of̃ , in which case it

has succeeded in forging an f̃ -tag. Meanwhile, the adversary Awcr, which has an oracle
Owcr that responds to queries with h(K1, .) where K1 is a hidden key, is constructed
as follows. It chooses a random key K2 and runs Af̃h, responding to its queries M i

with f̃(K2, Owcr(M
i)). Awcr looks for a collision between some Owcr(M

i) = h(K1,M
i)

and Owcr(M̃) = h(K1, M̃), where (M̃, T̃) is the forgery produced by Af̃h in the event

that the latter adversary succeeds in its task. Note that the success probability β of
Af̃h is the sum of the success probability of Af̃ and that of Awcr. Since β ≥ ǫ1 + ǫ2
if alternative (iii) does not hold, it follows that at least one of the above alternatives
(i)–(iii) must hold.

This concludes the proof. �

This theorem, like Theorem 1, provides only a very limited type of security assurance.
Two of the three “reasons for skepticism” listed in §4.2 also apply to Theorem 2: it
assumes the (unrealistic) single-user setting, and one of its hypotheses — the secure-
MAC property for the compression function — is very difficult to evaluate in practice.
On the positive side, at least Theorem 2 is tight, unlike Theorem 1. It’s reasonable to
regard Theorem 2 as providing a type of assurance that the “domain-extender” feature
of the MAC scheme is not likely to be a source of security breaches, provided that h is
weakly collision-resistant.

The proof of Theorem 2 is short, straightforward, and in some sense tautological.
Some people would even say that it is “trivial,” although we would prefer not to use
such a pejorative word in connection with the proof of Theorem 2. But in any case, it
seems to us that proofs of this sort merely confirm what is more or less intuitively obvious
from the beginning. Such proofs cannot serve as a meaningful source of confidence in
a protocol, and they certainly cannot be a substitute for extensive testing and concrete
cryptanalysis.

14 NEAL KOBLITZ AND ALFRED MENEZES

6. HMAC vs. Envelope MAC comparison

As discussed in [10], it often happens that a type of cryptography enjoys nearly
universal acceptance more for reasons of historical happenstance than because of its
intrinsic advantages over the alternatives. At present HMAC is widely deployed, whereas
Envelope MAC languishes in relative obscurity. But the reasons for this seem to lie in
the peculiarities of the history of Envelope MAC, and one can argue that, despite this
history, it deserves serious consideration as a secure and practical MAC scheme.

An envelope MAC scheme was first presented by Tsudik in [22]. His scheme used
two independent c-bit keys, and he argued informally that this would give it 2c bits of
security. However, Preneel and van Oorschot [20] showed that the keys can be recovered

in 2c+1 steps if one knows approximately 2c/2 message-tag pairs. That is, Tsudik was
wrong, and two independent keys do not give significantly more security than one key.

Soon after, Kaliski and Robshaw [8] and Piermont and Simpson [18] presented a
1-key variant of Envelope MAC, but it had a flaw. To explain this, for concreteness
we’ll use MD5 as the underlying hash function with c = 128, b = 512. Let p denote a
384-bit padding, used to extend a key to fill a 512-bit block. Given a 128-bit key K and
a message M of arbitrary length, the tag is h(K‖p‖M‖K0) (where the 0 superscript
indicates that 0’s are appended to fill out the last message-block). Note that the second
K may spill over into two blocks since the bitlength of M is not required to be a multiple
of b. Preneel and van Oorschot [21] exploited this overlap to design a key-recovery attack
that needs approximately 264 message-tag pairs and has running time 264. Because a
MAC based on MD5 would be expected to require exhaustive search — that is, roughly
2128 steps — for key recovery, this attack exposed a serious defect in the variant of
Envelope MAC in [8, 18]. The Preneel-van Oorschot attack gave Envelope MAC a bad
name. However, the attack was possible only because of poor formatting of the second
key block.

This flaw can be removed simply by ensuring that each key lies in its own block. This
was done by Yasuda [23]. Yasuda also gave a security proof, along the lines of Bellare’s
HMAC security proof in [1]; in fact, he made crucial use of Bellare’s Lemma 3.1. Like
Bellare’s proof, Yasuda’s security theorem requires unconstructible adversaries and so
is not valid in the uniform model of complexity. Our Theorem 1 gives a uniform proof
for the version of 1-key Envelope MAC described by Yasuda.

As pointed out in [23], Envelope MAC has a minor efficiency advantage over HMAC
because the iterated hash function needs to be applied just once. Generally, the accepted
procedure when applying an iterated hash function is to append a block at the end of
the message that gives the block-length of the message. (With this modification one
can give a simple proof that collision-resistance of f implies collision-resistance of h.)
In Envelope MAC this is done just once, whereas in HMAC it needs to be done twice.
Envelope MAC also has the advantage of simplicity — no need for ipad and opad.

In order to argue that HMAC is preferable, one thus has to make a persuasive case
that it has better security. Our two theorems give the same security results in both
cases, and the same building block (a compression function f) can be used in both.
From this standpoint the only grounds for preferring HMAC would be if one of the
following holds:

ANOTHER LOOK AT SECURITY THEOREMS FOR 1-KEY NESTED MACS 15

(1) The prf-assumption on f̃ in Theorem 1 is more credible for HMAC than for Enve-
lope MAC. In the former case the assumption is weaker than the prf-assumption
on f and in fact follows from it. In the latter case the assumption also seems to
be weaker than the prf-assumption on f in practice but not in the formal sense;
in Envelope MAC the prf-assumption on f̃ is an additional condition that is not
a consequence of the prf-assumption on f .8 One could claim that the need for a
separate f̃ -condition in Envelope MAC means that it is less secure than HMAC.

(2) The secure-MAC assumption on f̃ in Theorem 2 is more credible for HMAC
than for Envelope MAC. One would be claiming that it’s harder to forge a tag
if the key occurs in the first c bits than if it occurs in the next c bits.

(3) The different choices of the pair of functions g1, g2 lead to a real difference in
strength of the related-key assumptions. There would be a strong reason to
prefer HMAC if one could argue that the choice g2(K) = K in Envelope MAC
makes the related-key assumption less plausible.

However, we know of no evidence for any of the above three claims. To the best of
our knowledge, no provable security theorem justifies preferring one of these two MACs
over the other. Nor does any such theorem preclude the possibility that one would want
to choose some other MAC with entirely different functions f̃ , g1, g2.

Remark 3. Both HMAC and Envelope MAC offer the convenience of using only an
off-the-shelf hash function with built-in IV. However, one can argue that for the outer
compression function — which maps only from {0, 1}c × {0, 1}c rather than from the
much larger set {0, 1}c × {0, 1}b — it might be more efficient to use a specially chosen

f̃ . One can even argue that the inner compression function f needs to have better
security than f̃ because it is iterated. That is why Theorem 1 has a 2n tightness gap
with respect to the advantage bound ǫ1 of an f -adversary but not with respect to the
advantage bound ǫ2 of an f̃ -adversary. If one believes that security proofs should guide
protocol design and that efficiency should not be sacrificed for security unless a provable
security theorem gives grounds for doing so (in [9] Katz and Lindell argue forcefully for

this viewpoint), then it is natural to conclude that f̃ should be less secure than f .
Elsewhere (see [13]) we have raised doubts about this way of thinking, so our personal

preference would be not to use a weaker f̃ . But to someone who needs only short-term
security this might be an acceptable risk in order to gain a slight edge in efficiency.

7. Conclusions

7.1. The importance of the “right” definitions. In their highly-regarded textbook
[9] on the foundations of cryptography, Katz and Lindell write that the “formulation of
exact definitions” is Principle 1 in their list of “basic principles of modern cryptography”
and that getting the definitions right is the “essential prerequisite for the...study of any
cryptographic primitive or protocol.” We agree with this statement, and in [13] we
analyzed some of the difficulties and challenges that researchers in both symmetric and

8In the prf-test for f the adversary gets the values f(K,M) (with K a c-bit hidden key and M a b-bit

queried message); in the test for f̃ in HMAC he gets the values f(K,M‖p) (with M a c-bit message

and p a fixed (b− c)-bit padding); and in the test for f̃ in Envelope MAC he gets the values f(M,K‖p).
Thus, the only difference is whether the key occurs in the first c bits or in the next c bits.

16 NEAL KOBLITZ AND ALFRED MENEZES

asymmetric cryptography have faced in trying to search for a consensus on what the
“right” definitions are.

In our study of 1-key nested MACs, we have encountered two instances where the
standard accepted definitions are not, in our opinion, the natural and useful ones. First,
as we explained in §9 of [14], in the context of iterated hash functions the usual definition
of pseudorandomness needs to be replaced by a stronger definition in which the adversary
is given the power to “reset” the oracle. In the second place, when analyzing the step
from NMAC to 1-key versions such as HMAC and Envelope MAC, we believe that our
definition of resistance to related-key attack is preferable to the one used by earlier
authors.

We have given arguments justifying our use of these new definitions. Nevertheless, it
would be arrogant in the extreme for us to claim that we have resolved the question or
that our viewpoint is definitive. Cryptography is as much an art as a science, and to
some extent decisions about which are the “right” definitions are matters of personal
taste.

7.2. The role of mathematical proofs. The NIST documents concerning the SHA-3
competition illustrate the limited role that provable security plays in evaluating real-
world cryptosystems. The report [17] that explains the rationale for the selection of
the winner devotes about 5% of the section on security to security proofs. The report
highlights the role of proofs in showing a hash function’s “security against generic attacks
— attacks that only exploit the domain extender and not the internals of the underlying
building blocks” (p. 11). It notes that all five finalists have this sort of security proof. In
other words, the security proofs are useful as a minimal type of assurance that basically
says that concrete cryptanalysis should focus on the underlying building blocks rather
than on the extension procedure. But the final decision about what to use must be based
on extensive testing and concrete cryptanalysis. NIST makes it clear that provable
security, although a necessary component in the security analysis, played no part in
ranking the five finalists.9

In choosing a MAC scheme, provable security (which, as we argued in [11], is a
misnomer) should play no greater role than it did in choosing SHA-3. All methods of
the form in Theorem 1 for constructing MACs from compression functions are good
domain extenders if they satisfy the hypothesis of that theorem — of course, “good”
only in the limited sense guaranteed by the conclusion of the theorem. As in the case of
the SHA-3 competition, the final choice has to be made through ad hoc testing rather
than mathematical theorems. In particular, the relative merits of HMAC and Envelope
MAC cannot be determined from provable security considerations. The choice between
the two (or a decision to go with a totally different f̃ , g1, g2) is a judgment call.

References

[1] M. Bellare, New proofs for NMAC and HMAC: Security without collision-resistance, Advances

in Cryptology – Crypto 2006, LNCS 4117, Springer-Verlag, 2006, pp. 602-619; extended version
available at http://cseweb.ucsd.edu/mihir/papers/hmac-new.pdf.

9How can something be a necessary component, but play no role in the selection? By analogy, when
one looks for an apartment, a functioning toilet is a requirement; however, one doesn’t normally choose
which apartment to rent based on which has the nicest toilet.

ANOTHER LOOK AT SECURITY THEOREMS FOR 1-KEY NESTED MACS 17

[2] M. Bellare, R. Canetti, and H. Krawczyk, Keying hash functions for message authentication, Ad-
vances in Cryptology – Crypto ’96, LNCS 1109, Springer-Verlag, 1996, pp. 1-15; extended version
available at http://cseweb.ucsd.edu/mihir/papers/kmd5.pdf.

[3] M. Bellare, R. Canetti, and H. Krawczyk, HMAC: Keyed-hashing for message authentication,
Internet RFC 2104, 1997.

[4] M. Bellare and T. Kohno, A theoretical treatment of related-key attacks: RKA-PRPs, RKA-
PRFs, and applications, Advances in Cryptology – Eurocrypt 2003, LNCS 2656, Springer-Verlag,
2003, pp. 491-506.

[5] D. Bernstein and T. Lange, Non-uniform cracks in the concrete: the power of free precomputation,
Advances in Cryptology – Asiacrypt 2013, LNCS 8270, Springer-Verlag, 2013, pp. 321-340.

[6] M. Fischlin, Security of NMAC and HMAC based on non-malleability, Topics in Cryptology –

CT-RSA 2008, LNCS 4064, Springer-Verlag, 2008, pp. 138-154.
[7] P. Gauravaram, L. Knudsen, K. Matusiewicz, F. Mendel, C. Rechberger, M. Schläffer, and S. Thom-

sen, Grøstl – a SHA-3 candidate, available at http://www.groestl.info/Groestl.pdf.
[8] B. Kaliski and M. Robshaw, Message authentication with MD5, CryptoBytes, 1 (1995), No. 1,

pp. 5-8.
[9] J. Katz and Y. Lindell, Introduction to Modern Cryptography, Chapman and Hall/ CRC, 2007,

[10] A. H. Koblitz, N. Koblitz, and A. Menezes, Elliptic curve cryptography: The serpentine course of
a paradigm shift, J. Number Theory, 131 (2011), pp. 781-814.

[11] N. Koblitz and A. Menezes, Another look at “provable security,” J. Cryptology 20, 2007, pp. 3-37.
[12] N. Koblitz and A. Menezes, Another look at “provable security.” II, Progress in Cryptology –

Indocrypt 2006, LNCS 4329, Springer-Verlag, 2006, pp. 148-175.
[13] N. Koblitz and A. Menezes, Another look at security definitions, Advances in Mathematics of

Communications, 7 (2013), pp. 1-38.
[14] N. Koblitz and A. Menezes, Another look at HMAC, J. Mathematical Cryptology, 7 (2013), pp. 225-

251.
[15] N. Koblitz and A. Menezes, Another look at non-uniformity, Groups – Complexity – Cryptology, 5

(2013), pp. 117-139.
[16] National Institute of Standards and Technology, The keyed-hash message authentication code

(HMAC), FIPS Publication 198, 2002.
[17] National Institute of Standards and Technology, Third-round report of the SHA-3 cryptographic

hash algorithm competition, Interagency Report 7896, November 2012.
[18] P. Piermont and W. Simpson, IP authentication using keyed MD5, IETF RFC 1828, August 1995.
[19] K. Pietrzak, A closer look at HMAC, available at http://eprint.iacr.org/2013/212.
[20] B. Preneel and P. van Oorschot, MDx-MAC and building fast MACs from hash functions, Advances

in Cryptology – Crypto ’95, LNCS 963, Springer-Verlag, 1995, pp. 1-14.
[21] B. Preneel and P. van Oorschot, On the security of iterated message authentication codes, IEEE

Transactions on Information Theory, 45 (1999), pp. 188-199.
[22] G. Tsudik, Message authentication with one-way hash functions, ACM SIGCOMM Computer Com-

munication Review, 22 (1992), No. 5, pp. 29-38.
[23] K. Yasuda, “Sandwich” is indeed secure: How to authenticate a message with just one hashing,

Information Security and Privacy – ACISP 2007, LNCS 4586, Springer-Verlag, 2007, pp. 355-369.

Department of Mathematics, Box 354350, University of Washington, Seattle, WA 98195

U.S.A.

E-mail address: koblitz@uw.edu

Department of Combinatorics & Optimization, University of Waterloo, Waterloo, On-

tario N2L 3G1 Canada

E-mail address: ajmeneze@uwaterloo.ca

