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Abstract

This paper mainly focuses on permutation polynomials over the residue class
ring ZN , where N > 3 is composite. We have proved that for the polynomial
f(x) = a1x

1 + · · · + akx
k with integral coefficients, f(x) mod N permutes

ZN if and only if f(x) mod N permutes Sµ for all µ | N , where Sµ = {0 <
t < N : gcd(N, t) = µ} and SN = S0 = {0}. Based on it, we give a lower
bound of the differential uniformities for such permutation polynomials, that
is, δ(f) ≥ N

#Sa
, where a is the biggest nontrivial divisor of N . Especially,

f(x) can not be APN permutations over the residue class ring ZN . It is also
proved that f(x) mod N and (f(x) + x) mod N can not permute ZN at the
same time when N is even.
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1. Introduction

Permutation functions with low differential uniformity are used in cryp-
tography, especially in the design of S-boxes. An important condition on
these function is that they can provide balance and high resistance to differ-
ential analysis. The functions with the lowest differential uniformity oppose
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an optimal resistance to differential attack. They are called almost perfect
nonlinear (APN).

Mainstream cryptographic algorithms are designed on the finite field F2n

for some even n, but it is rather difficult to find APN permutations on F2n

when n is even. Up to now, only on F26 has Dillon [6] found an APN per-
mutation. So, many cryptographic algorithms have to choose differential
4-uniform permutations as their S-boxes.

Considering the above situation, it is a natural generalization to study the
functions over the residue class rings. As a matter of fact, related results have
been employed in cryptography for a long time. For example, the SAFER
family of cryptosystem, proposed by Massey [13] used APN functions from
Z256 to itself. The block cipher RC6 [20] employed the permutation function
x(2x + 1) over Z232 , and quickly Rivest [19] gave a general rule to describe
the permutation properties over Z2n (n ≥ 1 is an integer). Drakakis [5] also
investigated APN permutations over Zn (n ≥ 4 is an integer). Therefore,
our main topic in this paper is to study the polynomial functions over the
residue class rings, and we give a necessary and sufficient condition to decide
when the polynomial functions are permutations. Some cryptography related
properties, such as differential uniformity and orthomorphic permutation are
also investigated.

In the following part of this section we shall give a short survey about
the history of polynomial functions over the residue class rings.

Kempner [11] provided an extensive and detailed account of that sub-
class of the mm functions on the ring Zm to itself whose members can be
expressed as polynomials. Mullen and Stevens [15] studied this subject and
gave a simpler and more explicit formula. Carlitz [1], Keller and Olson [10],
Singmaster [21] also discussed related questions. All the work focused on
polynomial functions from Zn to Zn. Chen [2] generalized the former results
and obtained the following theorem.

Theorem 1. Let f be a polynomial function from Zn to Zm. Then f can be
uniquely represented by a polynomial

F =

µ−1∑
k=0

akx
k with 0 ≤ ak <

m

gcd(m, k!)
,

where µ = min{n, λ(m)} and λ(m) = the least positive integer λ such that
m | λ! .
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In this paper, we only consider the situation when n = m. From Theorem
1 we can deduce that only a very small part of functions over Zn can be
denoted by polynomials.

Rivest [19] made a survey about the permutation polynomials modulo 2w

and obtained the following results.

Theorem 2. The polynomial P (x) = a0 + a1x + · · · + adx
d with integral

coefficients is a permutation polynomial modulo 2w(w ≥ 2) if and only if a1
is odd, (a2 + a4 + a6 + · · ·) is even, and (a3 + a5 + a7 + · · ·) is even.

We shall investigate a generalized case in this paper. It is organized
as follows. In Sec. 2, we will introduce some preliminaries needed in the
following. Let N > 3 be composite, and f(x) = a1x

1 + · · · + akx
k be an

polynomial with integral coefficients. In Sec. 3.1, we will give a necessary
and sufficient condition to decide when the function f(x) modulo N is a
permutation over ZN . This result is different from the known ones. In Sec.
3.2, the orthomorphic permutation will be studied, and it is proved that there
are no orthomorphic permutation polynomials over the residue class ring ZN
when N > 3 is even. In Sec. 3.3, the differential properties of the polynomial
functions over the residue class rings will be investigated, and the lower
bound is given in Theorem 6, which shows that an overwhelming majority
polynomial functions modulo N have very bad differential properties. In Sec.
4, we will introduce other forms of APN permutations over the residue class
rings. In addition, we also give an open problem in this section.

2. Preliminaries

In this section, we will introduce some basic concepts needed in this paper.
Define ZN = {0, 1, 2, · · · , N − 1}. Let’s recall the following definition related
to the resistance to differential cryptanalysis [17].

Definition 1. Let F (x) be a polynomial with integral coefficients. For any
a, b ∈ ZN , we denote

∆F (a, b) = {x ∈ ZN : (F ((x+ a) mod N)− F (x)) mod N = b}.

δF (a, b) = #∆F (a, b),

where #E is the cardinality of the set E. Then, we have

δ(F ) = maxa6=0, b∈ZN
δF (a, b).
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We can say that F is differential δ(F )-uniform over ZN , and the function for
which δ(F ) = 2 is almost perfect nonlinear (APN) over ZN .

Remark 1. The main topic of this paper is to study the issue when F (x) is a
permutation polynomial over ZN . Suppose F (x) is a permutation polynomi-
al, then (F ((x+ a) mod N)− F (x)) mod N 6= 0 when a 6= 0, and thus there
must exist some b ∈ ZN such that (F ((x + a) mod N) − F (x)) mod N = b
has more than two solutions, which implies that δF (a, b) ≥ 2. It might be
δF = 1 when F (x) is neither a polynomial nor a permutation, but we don’t
consider it in this paper.

The following notations are also used in this paper.

Definition 2. (1) N is composite and N = pα1
1 p

α2
2 · · · pαn

n , where pi are dif-
ferent primes (Suppose p1 < p2 < · · · < pn) and αi ≥ 1 for all 1 ≤ i ≤ n. Let
M = α1 + α2 + · · ·+ αn.
(2) d | N means d is a divisor of N . d ‖ N means: 1© d | N and d < N ; 2©
if d | c and c | N , then c = d or N .
(3) Define L0 = {0}, L1 = {d1 : d1 ‖ N}, Li = {di : There exists some di−1 ∈
Li−1 such that di ‖ di−1} (1 < i ≤ M). Note that Li = {pα

′
1

1 p
α′
2

2 · · · p
α′
n
n :

α′1 + α′2 + · · ·α′n = M − i and α′j ≥ 0 for all 0 < j ≤ n}.
(4) Sµ = {0 < t < N : gcd(N, t) = µ}, especially, we define SN = S0 = {0}.
(5) We use fN(x) to denote f(x) mod N in the following.

Given the above notations, it is easy to get the following lemma.

Lemma 1. (1) ZN =
⋃
µ|N

Sµ. If µ 6= ν, then Sµ ∩ Sν = ∅, that is, the sets

Sµ(µ | N) partition ZN .
(2) The sets Lj (0 ≤ j ≤ M) partition the set of the divisors of N (We
identify 0 with N).
(3) LM = {1}.

Since the above results can be easily deduced, we omit the proof here.

3. Permutation Polynomials over ZN

For convenience and clarity, all the notations used in this section have
the same meanings as in Definition 2.
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3.1. Basic Properties

In this subsection, we will give a necessary and sufficient condition to
decide when the polynomial functions are permutations over the residue class
rings.

Theorem 3. Let f(x) = a1x
1 + · · · + akx

k be a polynomial with integral
coefficients, and N is composite. Then fN(x) permutes ZN if and only if
fN(x) permutes Sµ for all µ | N .

Proof. ⇐ According to Lemma 1, the sets Sµ (µ | N) partition ZN , so if
fN(x) permutes Sµ for all µ | N , it is easy to conclude that fN(x) permutes
ZN .
⇒ Suppose fN(x) permutes ZN , then we need to prove that fN(x) permutes
Sµ for all µ | N . Using inductive method, we divide the proving process into
three steps:

Step 1: When µ ∈ L0, we have f(µ) = f(0) = 0. Thus fN(x) permutes
Sµ = S0, that is, fN(x) permutes Sµ when µ ∈ L0. This step is the premise
of our inductive method.

Step 2: Suppose fN(x) permutes Sµ when µ ∈ Lj and 0 ≤ j < i (0 < i ≤
M).

Step 3: We continue to consider the case when µ ∈ Li. If we can prove
that fN(x) permutes Sµ when µ ∈ Li, then the whole theorem follows.

Choosing γ ∈ Sµ, that is, gcd(γ,N) = µ, together with the premise
f(0) = 0 we can get µ | gcd(f(γ), N), which implies µ | gcd(fN(γ), N).
Suppose gcd(fN(γ), N) = µt, i.e. fN(γ) ∈ Sµt. If t 6= 1, then there must
exist some 0 ≤ d < i such that µt ∈ Ld. According to Step 2, we can know
that fN(x) permutes Sµt. Then if fN(γ) ∈ Sµt, there must be some ν ∈ Sµt
such that fN(x) = ν has at least two different solutions, and this result is a
contradiction with the premise that fN(x) permutes ZN .

From the above discussion, we can conclude that t = 1, and thus fN(γ) ∈
Sµ, which implies that fN(x) permutes Sµ when µ ∈ Li. �

In the following, we will give an example to illustrate this theorem.

Example 1. Let N = 2232 (See Fig. 1), then M = 2 + 2 = 4, L0 =
{0}, L1 = {2α′

13α
′
2 : α′1 + α′2 = M − 1 = 3} = {2231, 2132} = {12, 18}, L2 =

{22, 2131, 32} = {4, 6, 9}, L3 = {2, 3}, L4 = {1}. S0 = {0}, S12 = {0 < t <
36 : gcd(36, t) = 12} = {12, 24}, S18 = {0 < t < 36 : gcd(36, t) = 18} =
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Figure 1: When N = 36

{18}, similarly we can define S4, S6, S9, S2, S3, and S1, omitting them here.
Let f(x) = a1x

1 + · · ·+ akx
k be an polynomial with integral coefficients. We

want to prove that f36(x) permutes Z36 if and only if f36(x) permutes Sµ for
all µ | 36. Since the sufficient condition is trivial, we only show how to prove
the necessary condition here. Suppose f36(x) permutes Z36. Firstly, f(0) = 0,
which implies that f36(x) permutes Sµ when µ ∈ L0, and we continue to
consider the case when µ ∈ L1. Without loss of generality, let µ = 12.
Choosing γ ∈ S12, then 12 | f(γ), which implies that 12 | gcd(f36(γ), 36),
then we can conclude that f36(γ) ∈ S12 ∪ S0. But f36(γ) can not be in S0,
otherwise it will contradict with the fact that f36(x) permutes Z36, so we have
f36(γ) ∈ S12, which implies that f36(x) permutes S12. Similarly we can prove
that f36(x) permutes S18. From the above discussion, we conclude that f36(x)
permutes Sµ when µ ∈ S1. Using inductive method we can prove the whole
theorem.

Theorem 3 seems to be a very strict restriction on permutation polyno-
mials over the residue class rings, but when we notice Theorem 1 we can
deduce that there are only precious few functions over the residue class rings
can be denoted by polynomials. Together with the former results we can
have a more clear understanding about the polynomial functions over the
residue class rings.

There are other results about the permutation polynomials over the residue
class rings.
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Theorem 4. [22] For any N =
∏m

i=1 p
ni
i , where pi are distinct prime num-

bers, P (x) is a permutation polynomial modulo N if and only if P (x) is also
a permutation polynomial modulo pni

i for all 1 ≤ i ≤ m.

As for the case N = pn, there exists the following results.

Theorem 5. [22] P (x) is a permutation polynomial over the residue class
ring Zpn(n > 1) if and only if P (x) is a permutation polynomial over Zp and
P ′(x) mod p 6= 0 for all integers x ∈ Zpn.

This result can be concluded from Theorem 123 in [8]. Using this con-
clusion, Rivest’s Theorem [19] can be easily deduced.

3.2. Orthomorphic Permutations

Theorem 3 reveals some new properties of permutation polynomials over
the residue class rings. In addition, from this theorem we can deduce some
other useful results.

In some cryptosystems, the orthomorphic permutation is a necessary part,
such as SMS4 [3] and LOISS [7]. The function f(x) defined on the finite field
F2n is called an orthomorphic permutation if both f(x) and f(x) + x are
permutations on F2n . Orthomorphic permutation was proposed by lv [12]
and Mittenthal [14] independently in their research work. It is a subclass of
complete mapping [18], and useful in cryptography. So when we consider the
functions over residue class rings, it is worth studying similar properties.

Corollary 1. Let f(x) and g(x) be permutation polynomials over ZN . N >
3 is an even integer. Then (f(x) + g(x)) can not permute ZN . Especially,
f(x) will never be an orthomorphic permutation over ZN .

Proof. According to Theorem 3, we know that if both f(x) and g(x) per-
mute ZN , then we can conclude that both f(x) and g(x) permute S1 = {0 <
t < N : gcd(N, t) = 1}, and then 2 | (f(x) + g(x)). So (f(x) + g(x)) will not
permute S1, thus it can not permutes ZN . The last statement is oblivious if
g(x) = x. �

Remark 2. In Corollary 1, “a+ b” means “(a+ b) mod N”.
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3.3. Differential Properties

Differential cryptanalysis [4] is a powerful tool to attack the cryptosys-
tems, while low differential uniform functions can provide good resistance
against it. Especially, APN functions can provide the optimal resistance a-
gainst differential cryptanalysis in the finite field of characteristic 2. But it
is rather difficult to find APN permutations in practice. Hou [9] proved that
there are no APN permutations on F24 , while Dillon [6] found an APN per-
mutation on F26 , but it is still an open problem whether APN permutations
exist on F2n with n even and greater than 6. Therefore, it is a potential
choice to study the case over the residue class rings, and it maybe be better
to design the cryptosystems over them. As a matter of fact, there seems to be
many APN permutation functions over the residue class rings [5], but when
the functions can be represented by polynomials, their differential properties
will become even worse.

Theorem 6. Let f(x) be the same as in Theorem 3. N > 3 is composite.
a ∈ ZN is the biggest nontrivial divisor of N , then
(1) δ(f) ≥ N

#Sa+1
. Especially, f(x) can never be APN functions over ZN

when N > 4.
(2) If we add the premise that fN(x) permutes ZN , then δ(f) ≥ N

#Sa
. Espe-

cially, f(x) can never be APN permutations over ZN .

Proof. (1) Consider the function D(x) = f(x + a) − f(x), then it is easy
to see that a | D(x), so there must be a | gcd(D(x), N), which implies that
a | gcd(DN(x), N) (Note that DN(x) = D(x) mod N). In addition, we have
a ∈ L1, so we can deduce that DN(x) ∈ (Sa ∪ S0). When x varies over ZN ,
the function DN(x) will produce N values. Based on Pigeonhole Principle,
there must exist some b ∈ (Sa ∪ S0) such that DN(x) = b has at less N

#Sa+1

solutions, which means that δ(f) ≥ N
#Sa+1

. Easy to check that N
#Sa+1

> 2

when N > 4. When N = 4, f(x) = x2 mod 4 is an APN function, so the
lowerbound is tight.
(2) The proof is similar as in (1), the only difference is that when fN(x)
permutes ZN , DN(x) 6= 0, which implies that DN(x) /∈ S0, and then DN(x) ∈
Sa. Thus we can get δ(f) ≥ N

#Sa
. Since N is composite, easy to check that

N
#Sa

> 2. �

Corollary 2. Let f(x) be the same as in Theorem 3. N > 3 is an even
integer, then δ(f) ≥ N

2
. If fN(x) permutes ZN , then δ(f) = N .
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Proof. Note 2 | N , then the biggest nontrivial divisor of N is N
2

. Easy to
see that #SN

2
= #{N

2
} = 1. Thus, according to Theorem 6 we can conclude

that δ(f) ≥ N
#SN

2
+1

= N
2

. If fN(x) permutes ZN , then δ(f) ≥ N
#SN

2

= N . �

In block cipher RC6 [20], the designers use a polynomial function f(x) =
x(2x + 1) defined over Z232 . Based on Rivest’s theorem [19], it is easy to
conclude that f(x) is a permutation polynomial over Z232 . However, from
Corollary 2 we can see that δ(f) = 232, and there are no better choices
since all permutation polynomials defined over Z232 have the same differential
uniformity 232. So f(x) performs badly against differential attacks, and the
designers have to use other method to provide differential safety.

4. Beyond Polynomial Forms

According to what we have got above, it is easy to see that the polynomial
functions defined over the residue class rings have very good mathematical
structures, especially when they are permutations. Therefore, an overwhelm-
ing majority polynomial functions can not provide direct differential safety
for a crptosystem. If these functions are used in some cryptographic algo-
rithms, the designers must use other method to guarantee safety, but this
does not mean that all functions over the residue class rings have bad differ-
ential properties. As a matter of fact, if we do not restrict the functions to
be polynomial forms, many APN permutations can be found over the residue
class rings. Drakakis [5] studied APN permutations over them and got the
following results.

Theorem 7. Suppose Fp is a finite field with p elements, p > 2 is a prime
number, g is a primitive element over Fp, define a function f : Zp−1 → Zp−1,
that is, f(i) = (gi mod p) − 1, then f(x) is an APN permutation over the
ring Zp−1.

By this means, many APN permutations have been builded in practice.
The Russian standard GOST has used Z16 already. The SAFER family of
cryptosystems, proposed by Massey [13], uses APN functions from Z256 to
itself. This is a special case for Drakakis’s construction when p = 257.

In addition, Drakakis made a computer search about the APN permu-
tations over Zn for some integer n, and we list some of his results in Table
1.

9



Table 1: APN permutations over Zn

n 3 4 5 6 7 8 9
APNs 0 16 100 252 588 2816 1458
n 10 11 12 13 14 15 16
APNs 47800 136730 380736 1614288 4083072 13305600 54771712

In Table 1, row “n” denotes the value of n, and row “APNs” denotes the
number of APN permutations over the corresponding residue class ring Zn.

Based on the above results, it is observed that although the polynomial
functions over the residue class rings do not have good differential properties,
there are still other choices, but how to find them? We give an open problem
here.

Problem 1. Find more APN permutations over Zn for the general integer
n? Give proper forms to denote the APN permutations over Zn?
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