
CacheAudit: A Tool for the Static Analysis of Cache Side Channels

Goran Doychev1, Dominik Feld2, Boris Köpf1, Laurent Mauborgne1, and Jan Reineke2

1IMDEA Software Institute
2Saarland University

Abstract
We present CacheAudit, a versatile framework for the
automatic, static analysis of cache side channels. Cache-
Audit takes as input a program binary and a cache con-
figuration, and it derives formal, quantitative security
guarantees for a comprehensive set of side-channel ad-
versaries, namely those based on observing cache states,
traces of hits and misses, and execution times.

Our technical contributions include novel abstractions
to efficiently compute precise overapproximations of the
possible side-channel observations for each of these ad-
versaries. These approximations then yield upper bounds
on the information that is revealed. In case studies we ap-
ply CacheAudit to binary executables of algorithms for
symmetric encryption and sorting, obtaining the first for-
mal proofs of security for implementations with counter-
measures such as preloading and data-independent mem-
ory access patterns.

1 Introduction

Side-channel attacks recover secret inputs to programs
from non-functional characteristics of computations,
such as time [30], power [31], or memory consump-
tion [26]. Typical goals of side-channel attacks are the
recovery of cryptographic keys and private information
about users.

Processor caches are a particularly rich source of side-
channels because their behavior can be monitored in var-
ious ways, which is demonstrated by three documented
classes of side-channel attacks: (1) In time-based at-
tacks [30, 12] the adversary monitors the overall execu-
tion time of a victim, which is correlated with the number
of cache hits and misses during execution. Time-based
attacks are especially daunting because they can be car-
ried out remotely over the network [7]. (2) In access-
based attacks [39, 38, 23] the adversary probes the cache
state by timing its own accesses to memory. Access-
based attacks require that attacker and victim share the

same hardware platform, which is common in the cloud
and has already been exploited [40, 48]. (3) In trace-
based attacks [6] the adversary monitors the sequence
of cache hits and misses. This can be achieved, e.g., by
monitoring the CPU’s power consumption and is partic-
ularly relevant for embedded systems.

A number of proposals have been made for countering
cache-based side-channel attacks. Some proposals fo-
cus entirely on modifications of the hardware platform;
they either solve the problem for specific algorithms such
as AES [2] or require modifications to the platform [45]
that are so significant that their rapid adoption seems un-
likely. The bulk of proposals relies on controlling the in-
teractions between the software and the hardware layers,
either through the operating system [23, 47], the client
application [12, 38, 16], or both [28]. Reasoning about
these interactions can be tricky and error-prone because
it relies on the specifics of the binary code and the mi-
croarchitecture.

In this paper we present CacheAudit, a tool for the
static exploration of the interactions of a program with
the cache. CacheAudit takes as input a program bina-
ry and a cache configuration and delivers formal se-
curity guarantees that cover all possible executions of
the corresponding system. The security guarantees are
quantitative upper bounds on the amount of informa-
tion that is contained in the side-channel observations
of timing-, access-, and trace-based adversaries, respec-
tively. CacheAudit can be used to formally analyze the
effect on the leakage of software countermeasures and
cache configurations, such as preloading of tables or in-
creasing the cache’s line size. The design of CacheAudit
is modular and facilitates the extension with any cache
model for which efficient abstractions are in place. The
current implementation of CacheAudit supports caches
with LRU, FIFO, and PLRU replacement strategies.

We demonstrate the scope of CacheAudit in case stud-
ies where we analyze the side-channel leakage of repre-
sentative algorithms for symmetric encryption and sort-

1

ing. We highlight the following two results: (1) For the
reference implementation of the Salsa20 [11] stream ci-
pher (which was designed to be resilient to cache side-
channel attacks) CacheAudit can formally prove non-
leakage on the basis of the binary executable, for all
adversary models and replacement strategies. (2) For
a library implementation of AES 128 [3], CacheAudit
confirms that the preloading of tables significantly im-
proves the security of the executable: for most adversary
models and replacement strategies, we can in fact prove
non-leakage of the executable, whenever the tables fit en-
tirely into the cache. However, for access-based adver-
saries and LRU caches, CacheAudit reports small, non-
zero bounds. And indeed, with LRU (as opposed to, e.g.,
FIFO), the ordering of blocks within a cache set reveals
information about the victim’s final memory accesses.

On a technical level, we build on the fact that the
amount of leaked information corresponds to the num-
ber of possible side-channel observations, which can be
over-approximated by abstract interpretation and model
counting [33]. To realize CacheAudit based on this in-
sight, we propose three novel abstract domains that keep
track of the observations of access-based, time-based,
and trace-based adversaries, respectively. In particular:

1. We propose an abstract domain that tracks rela-
tional information about the memory blocks that may be
cached. Opposed to existing abstract domains used in
worst-case execution time analysis [21], our novel do-
main can retain analysis precision in the presence of ar-
ray accesses to unknown positions.

2. We propose an abstract domain that tracks the
traces of cache hits and misses that may occur during
execution. We use a technique based on prefix trees and
hash consing to compactly represent such sets of traces,
and to count their number.

3. We propose an abstract domain that tracks the pos-
sible execution times of a program. This domain captures
timing variations due to control flow and caches by asso-
ciating hits and misses with their respective latencies and
adding the execution time of the respective commands.
We formalize the connection of these domains in an ab-
stract interpretation [17] framework that captures the re-
lationship between microarchitectural state and program
code. We use this framework to formally prove the cor-
rectness of the derived upper bounds on the leakage to
the corresponding side-channel adversaries.

In summary, our main contributions are both theo-
retical and practical: On a theoretical level, we define
novel abstract domains that are suitable for the analy-
sis of cache side channels, for a comprehensive set of
adversaries. On a practical level, we build CacheAudit,
the first tool for the automatic, quantitative information-
flow analysis of cache side-channels, and we show how
it can be used to derive formal security guarantees from

binary executables of sorting algorithms and state-of-the-
art cryptosystems.

Outline The remainder of the paper is structured as fol-
lows. In Section 2, we illustrate the power of CacheAudit
on a simple example program. In Section 3 we define the
semantics and side channels of programs. We describe
the analysis framework, the design of CacheAudit, and
the novel abstract domains in Sections 4, 5 and 6, re-
spectively. We present experimental results in Section 7,
before we discuss prior work and conclude in Sections 8
and 9.

2 Illustrative Example

In this section, we illustrate on a simple example pro-
gram the kind of guarantees CacheAudit can derive.
Namely, we consider an implementation of BubbleSort
that receives its input in an array a of length n. We as-
sume that the contents of a are secret and we aim to de-
duce how much information a cache side-channel adver-
sary can learn about the relative ordering of the elements
of a.

1 void BubbleSort(int a[], int n)

2 {

3 int i, j, temp;

4 for (i = 0; i < (n - 1); ++i)

5 for (j = 0; j < n - 1 - i; ++j)

6 if (a[j] > a[j+1])

7 {

8 temp = a[j+1];

9 a[j+1] = a[j];

10 a[j] = temp;

11 }

12 }

To begin with, observe that the conditional swap in
lines 6–11 is executed exactly n(n−1)

2 times. A trace-
based adversary that can observe, for each instruction,
whether it corresponds to a cache hit or a miss is likely to
be able to distinguish between the two alternative paths
in the conditional swap, hence we expect this adversary

to be able to distinguish between 2
n(n−1)

2 execution traces.
A timing-based adversary who can observe the overall
execution time is likely to be able to distinguish between
n(n−1)

2 +1 possible execution times, corresponding to the
number of times the swap has been carried out. For an
access-based adversary who can probe the final cache
state upon termination, the situation is more subtle: eval-
uating the guard in line 6 requires accessing both a[j]

and a[j+1], which implies that both will be present in
the cache when the swap in lines 8–10 is carried out. As-
suming we begin with an empty cache, we expect that
there is only one possible final cache state.

2

CacheAudit enables us to perform such analyses (for a
particular n) formally and automatically, based on actual
x86 binary executables and different cache types. Cache-
Audit achieves this by tracking compact representations
of supersets of possible cache states and traces of hits and
misses, and by counting the corresponding number of el-
ements. For the above example, CacheAudit was able
to precisely confirm the intuitive bounds, for a random
selection of n in {2, . . . ,64}.

In terms of security, the number of possible observa-
tions corresponds to the factor by which the cache ob-
servation increases the probability of correctly guessing
the secret ordering of inputs. Hence, for n = 32 and a
uniform distribution on this order (i.e. an initial proba-
bility of 1

32! = 3.8 ·10−36), the bounds derived by Cache-
Audit imply that the probability of determining the cor-
rect input order from the side-channel observation is 1
for a trace-based adversary, 3.7 · 10−33 for a time-based
adversary, and remains unchanged for an access-based
adversary.

3 Caches, Programs, and Side Channels

3.1 A Primer on Caches
Caches are fast but small memories that store a subset of
the main memory’s contents to bridge the latency gap be-
tween the CPU and main memory. To profit from spatial
locality and to reduce management overhead, main mem-
ory is logically partitioned into a set of memory blocks B.
Blocks are cached as a whole in cache lines of the same
size.

When accessing a memory block, the cache logic has
to determine whether the block is stored in the cache
(“cache hit”) or not (“cache miss”). To enable an effi-
cient look-up, each block can only be stored in a small
number of cache lines. For this purpose, caches are parti-
tioned into equally-sized cache sets. The size of a cache
set is called the associativity k of the cache. There is
a function set that determines the cache set a memory
block maps to.

Since the cache is much smaller than main memory, a
replacement policy must decide which memory block to
replace upon a cache miss. Usually, replacement poli-
cies treat sets independently, so that accesses to one
set do not influence replacement decisions in other sets.
Well-known replacement policies in this class are least-
recently used (LRU), used in various Freescale proces-
sors such as the MPC603E and the TriCore17xx; pseudo-
LRU (PLRU), a cost-efficient variant of LRU, used in the
Freescale MPC750 family and multiple Intel microarchi-
tectures; first-in first-out (FIFO), also known as ROUND
ROBIN, used in several ARM and Freescale processors
such as the ARM922 and the Freescale MPC7450 family.

A more comprehensive overview can be found in [22].

3.2 Programs and Computations

A program P = (Σ, I,F,E ,T) consists of the following
components
• Σ - a set of states
• I ⊆ Σ - a set of initial states
• F ⊆ Σ - a set of final states
• E - a set of events
• T ⊆ Σ×E ×Σ - a transition relation
A computation of P is an alternating sequence of states

and events σ0e0σ1e1 . . .σn such that σ0 ∈ I and that for
all i ∈ {0, . . . ,n− 1}, (σi,ei,σi+1) ∈ T . The set of all
computations is the trace collecting semantics Col (P)⊆
Traces of a program, where Traces denotes the set of all
alternating sequences of states and events. When consid-
ering terminating programs, the trace collecting seman-
tics can be formally defined as the least fixpoint of the
next operator containing I:

Col (P) = lfp⊆I λS.S∪next(S) ,

where next describes the effect of one computation step:

next(S) = {t.σnenσn+1|
t.σn ∈ S∧ (σn,en,σn+1) ∈ T }

3.3 Cache Updates and Cache Effects

For reasoning about cache side channels, we consider a
semantics in which the cache is part of the program state.
Namely, the state will consist of logical memories (rep-
resenting values of memory locations and registers) in
M and a cache state in C, i.e., Σ =M×C.

The memory update updM is a function updM : M→
M that is determined solely by the instruction set seman-
tics. The memory update has effects on the cache that
are described by a function effM : M→EM. The mem-
ory effect is an argument to the cache update function
updC : C ×EM→C.

In the setting of this paper, effM determines which
block of main memory is accessed, which is required
to compute the cache update updC , i.e., EM = B∪{⊥},
where ⊥ denotes that no memory block is accessed.

We formally describe updC only for the LRU strategy.
For formalizations of other strategies, see [22]. Upon a
cache miss, LRU replaces the least-recently-used mem-
ory block. To this end, it tracks the ages of memory
blocks within each cache set, where the youngest block
has age 0 and the oldest cached block has age k− 1.
Thus, the state of the cache can be modeled as a func-
tion that assigns an age to each memory block, where

3

non-cached blocks are assigned age k:

C := {c ∈ B → A | ∀a,b ∈ B : a 6= b ⇒
((set(a) = set(b))⇒ (c(a) 6= c(b)∨ c(a) = c(b) = k))},

where A := {0, ...,k− 1,k} is the set of ages. The con-
straint encodes that no two blocks in the same cache set
can have the same age. For readability we omit the ad-
ditional constraint that blocks of non-zero age are pre-
ceded by other blocks, i.e. that cache sets do not contain
“holes”.

The cache update for LRU is then given by

updC(c,b) := λb′ ∈ B.
0 : b′ = b
c(b′) : set(b′) 6= set(b)
c(b′)+1 : set(b′) = set(b)∧ c(b′)< c(b)
c(b′) : set(b′) = set(b)∧ c(b′)≥ c(b)

In the setting of this paper, the events E consist of
cache hits and misses, which are described by the cache
effect eff C : C ×B → E :

eff C(c,m) :=

{
hit : c(m)< k
miss : else

Both updC and eff C are naturally extended to the case
where no memory access occurs. Then, the cache state
remains unchanged and the cache effect is ⊥. So E =
{hit,miss,⊥}.

With this, we can now connect the components and
obtain the global transition relation T ⊆ Σ×E ×Σ by

T = {((m1,c1), e ,(m2,c2)) | m2 = updM(m1)

∧ c2 = updC(c1,effM(m1))

∧ e = eff C(c1,effM(m1))} ,

which formally captures the asymmetric relationship be-
tween caches, logical memories, and events.

3.4 Side Channels
For a deterministic, terminating program P, the transition
relation is a function, and the program can be modeled as
a mapping P : I→ Traces.

We model an adversary’s view on the computations
of P as a function view : Traces → O mapping traces
to a finite set of observations O. The composition C =
view ◦P : I→ O defines a mapping from initial states to
observations, which we call a channel of P. Whenever
view is determined by the cache and event components
of traces, we call C a side channel of P.

We next define views corresponding to the obser-
vations of access-based, trace-based, and timing-based
side-channel adversaries.

The view of an access-based adversary that shares the
memory space with the victim is defined by

viewacc : (m0,c0)e0 . . .en−1(mn,cn) 7→ cn

and captures that the adversary can determine (by prob-
ing) which memory blocks are contained in the cache
upon termination of the victim. An adversary that does
not share the memory space with the victim can only ob-
serve how many blocks the victim has loaded (by probing
how many of its own blocks have been evicted), but not
which. We denote this view by viewaccd. The view of a
trace-based adversary is defined by

viewtr : σ0e0 . . .en−1σn 7→ e0 . . .en−1

and captures that the adversary can determine for each
instruction whether it results in a hit, miss, or does not
access memory. The view of a time-based adversary is
defined by

viewtime : σ0e0 . . .en−1σn 7→
thit · |{i | ei = hit}|+ tmiss · |{i | ei = miss}|+
t⊥ · |{i | ei =⊥}| ,

and captures that the adversary can determine the overall
execution time of the program. Here, thit, tmiss, and t⊥ are
the execution times (e.g. in clock cycles) of instructions
that imply cache hits, cache misses, or no memory ac-
cesses at all. While the view of the time-based adversary
as defined above is rather simplistic, e.g. disregarding ef-
fects of pipelining and out-of-order execution, notice that
our semantics and our tool can be extended to cater for
a more fine-grained, instruction- and context-dependent
modeling of execution times. We denote the side chan-
nels corresponding to the four views by Cacc, Caccd, Ctr,
and Ctime, respectively.

3.5 Quantification of Side Channels
We characterize the security of a channel C : I→O as the
difficulty of guessing the secret input from the channel
output.

Formally, we model the choice of a secret input by
a random variable X with ran(X) ⊆ I and the corre-
sponding observation by a random variable C(X) with
ran(C(X)) ⊆ O. We model the attacker as another ran-
dom variable X̂ . The goal of the attacker is to esti-
mate the value of X , i.e. it is successful if X̂ = X . We
make the assumption that the attacker does not have in-
formation about the value of X beyond what is contained
in C(X), which we formalize as the requirement that
X→C(X)→ X̂ form a Markov chain. The following the-
orem expresses a security guarantee in terms of an upper
bound on the attacker’s success probability.

4

Theorem 1. Let X → C(X) → X̂ be a Markov chain.
Then

P(X = X̂)≤max
σ∈I

P(X = σ) · |ran(C)|

For the interpretation of the statement observe that if
the adversary has no information about the value of X
(i.e., if X̂ and X are statistically independent), its suc-
cess probability is bounded by the probability of the most
likely value of X , i.e. P(X = X̂) ≤ maxσ∈I P(X = σ),
where equality can be achieved. Theorem 1 hence states
that the size of the active range of C is an upper bound on
the factor by which this probability is increased when the
attacker sees C(X) and is, in that sense, an upper bound
for the amount of information leaked by C. We will of-
ten give bounds on |ran(C)| on a log-scale, in which case
they represent upper bounds on the number of leaked
bits.

For a formal connection to traditional (entropy-based)
presentations of quantitative information-flow analy-
sis [42] and a proof of Theorem 1, see Appendix B.

3.6 Adversarially-chosen Cache States
We sometimes assume that initial states are pairs consist-
ing of high and low components, i.e. I = Ihi× Ilo, where
only the high component is meant to be kept secret and
the low component may be provided by the adversary,
a common setting in information-flow analysis [41]. In
this case, a program and a view define a family of chan-
nels Cσlo : Ihi→O, one for each low component σlo ∈ Ilo.

A particularly interesting instance is the decomposi-
tion into secret memory Ihi =M and adversarially cho-
sen cache Ilo = C. While bounds for the corresponding
channel can be derived by considering all possible ini-
tial cache states, corresponding analyses suffer from poor
precision. The following lemma enables us to derive
bounds for the general case, based on the empty cache
state. Notice that it only holds for access-driven adver-
saries.

Lemma 1. For any adv ∈ {acc,accd} and initial cache
state c ∈ C, in any of those two cases:
• The strategy is LRU
• or the strategy is PLRU or FIFO and no block in c

is accessed during program execution,
we have: ∣∣∣ran(Cadv

/0)
∣∣∣= ∣∣∣ran(Cadv

c)
∣∣∣ ,

where /0 is a shorthand for the empty cache state.

This lemma was proved in [32] for the LRU case with
initial cache state not containing any block of the vic-
tim, and since the proof is based on the fact that memory
blocks in the cache do not affect the position of memory

blocks that are accessed during computation when the
two sets of memory blocks are disjoint, the proof can be
straightforwardly extended to the FIFO and PLRU cases.
That means that results on the empty initial cache state
hold in all cases when the attacker cannot put memory
blocks from the victim process in the cache. For LRU,
we can remove the restriction on the initial cache state
because the position in the cache of any block accessed
during a given computation does not depend on its initial
position, and any other memory block can be considered
as in a disjoint memory space.

4 Automatic Quantification of Cache Side
Channels

Theorem 1 enables the quantification of cache side chan-
nels by determining their range. However, computing
this range exactly is practically infeasible in most cases.
Abstract interpretation [17] overcomes this fundamental
problem by resorting to an approximation of the state
space and the transition relation. In addition, abstract
interpretation allows us to design abstractions in a mod-
ular way, so that the soundness proofs can easily be split
into independent lemmas and the tool we built from the
framework described in this section is easily extensible
and parametric.

4.1 Sound Abstraction of Leakage

As we have a fixpoint characterization of the collecting
semantics, it is easy to frame a sound static analysis us-
ing abstract interpretation: we design an abstract domain
Traces] where the meaning of abstract elements is given
by a function γ : Traces]→P(Traces). If we have an
abstract transfer function next] : Traces]→Traces] such
that the following local soundness condition holds:

∀a ∈ Traces] : γ(next](a))⊇ next (γ(a)) , (1)

then any post-fixpoint of next] that is greater than an ab-
straction of the inputs I is a sound over-approximation of
the collecting semantics. We use Col (P)] to denote any
such post-fixpoint.

Theorem 2 (Local soundness implies global soundness,
from [17]).

(1)⇒Col (P)⊆ γ

(
Col (P)]

)
.

An immediate consequence of Theorem 2 is the fol-
lowing statement that shows how a sound abstract anal-
ysis can be used to derive upper bounds for the leaked
information (see Theorem 1).

5

Theorem 3 (Upper bounds on leakage). For adv ∈
{tr, time,acc}, we have∣∣∣viewadv

(
γ

(
Col (P)]

))∣∣∣≥ ∣∣∣ran(Cadv)
∣∣∣ .

4.2 Abstraction Using a Control Flow
Graph

In order to simplify the problem and to come up with
tractable and modular abstractions, we design indepen-
dent abstractions for cache states, memory, and se-
quences of events.
• M] abstracts memory and γM :M]→P(M) for-

malizes its meaning.
• C] abstracts cache configurations and γC : C]→P(C)

formalizes its meaning.
• E] abstracts sequences of events and γE : E] →
P(E∗) formalizes its meaning.

But, since cache updates and events depend on mem-
ory state, independent analyses would be too imprecise.
Consequently, in order to maintain some of the relations,
we link the three abstract domains for memory state,
caches, and events through a finite set of labels L so that
our abstract domain is

Traces] = L→M]×C]×E].

We will write aM(l), aC(l) and aE(l) for the first, sec-
ond and third components of an abstract element a(l).

Labels roughly correspond to nodes in a control flow
graph in classical data flow analyses. One could sim-
ply use program locations as labels. But with our set-
ting, we can use more general labels, allowing a more
fine-grained analysis where we can distinguish values of
flags or results of previous tests, in the spirit of [35]. To
capture that, we associate a meaning with these labels
via a function γL : L→P(Traces). If the labels are pro-
gram locations, then γL(l) is the set of traces ending in a
state in location l. The analogy with control flow graphs
can be extended to edges of that graph: using the next
function, we define the successors and predecessors of
a location l as: succ(l) = {k |next(γL(l))∩ γL(k) 6= /0},
and pred(l) = {k |next(γL(k))∩ γL(l) 6= /0}.

Then we can describe our trace abstract domain as a
reduced cardinal power [18] of L and the reduced cardi-
nal product ofM], C] and E], with the meaning function:

γ(a) = {σ0e0σ1 . . .σn ∈ Traces | ∀i≤ n, ∀l ∈ L :
σ0e0σ1 . . .σi ∈ γL(l)⇒

σ
M
i ∈ γM(aM(l))∧σ

C
i ∈ γC(aC(l))

∧e0 . . .ei−1 ∈ γE(aE(l))
} (2)

and as usual for these reduced products, the abstract
transfer function next] will be decomposed into:

next](a) = λ l.(nextM](a, l),nextC](a, l),nextE](a, l)) .
(3)

Each next function on abstract memory, cache and events
implements partial reductions [19] using effects abstract-
ing the concrete effects defined in the previous section.

4.3 Local Soundness
Since we have a reduced composition of abstract do-
mains, we can use the soundness theorems of [18]: it is
sufficient to show soundness of each individual abstract
domain to show the soundness of the entire analysis. The
abstract next] operation is implemented using local up-
date functions describing the change from one label to
the next when applying the next function. For each label
k ∈ L, and for each l ∈ succ(k):
• Abstract update function updM],(k,l) :M]→M],

and
• abstract memory effect effM],(k,l) :M]→P(EM).

For the cache domain we do not need separate functions
for each pair (k, l), as the cache update only depends
on the accessed block which is delivered by the abstract
memory effect. Similarly, the update of the event do-
main only depends on the effect computed by the abstract
cache effect. Thus, we have:
• Abstract cache update updC] : C]×P(EM)→C],
• abstract cache effect eff C] : C]×P(EM)→P(EC),
• and, for the events, an abstract update function

updE] : E]×P(EC)→E].
Once we have these functions, we can approximate the

effect of the next function on each label l, using the ab-
stract values associated with the labels that can lead to l,
pred(l). This yields the following abstract transfer func-
tions, where

⊔M]
,
⊔C]

,
⊔E]

refer to the join functions of
the respective domains:
• For the memory domain:

nextM](a, l) =
M]⊔

k∈pred(l)

updM],(k,l)
(
aM(k)

)
• For the cache domain:

nextC](a, l) =
C]⊔

k∈pred(l)

updC]

(
aC(k),effM],(k,l)(a

M(k))
)

• For the events:

nextE](a, l) =

E]⊔
k∈pred(l)

updE]

(
a(k)E ,eff C]

(
aC(k),effM],(k,l)(a

M(k))
))

6

Now from Equations 1, 2, and 3, we can derive local
conditions in each domain that are sufficient to guarantee
local soundness for the whole analysis:

Definition 1 (Local soundness of abstract domains). The
abstract domains are locally sound if the abstract joins
are over-approximations of unions, and if for any func-
tion f] ∈ {updM],(k,l),effM],(k,l),updC] ,eff C] ,updE]}
approximating concrete function f ∈
{updM,effM,updC ,eff C ,next} and corresponding
meaning function γ f , we have for any abstract value x:

γ f

(
f](x)

)
⊇ f

(
γ f (x)

)
.

For example, for the cache abstract domain, we have
the following local soundness conditions:

∀c] ∈ C],M ∈ P(EM) :

γC(updC](c],M))⊇ updC(γC(c
]),M),

eff C](c],M)⊇ eff C(γC(c
]),M),

∀G] ⊆ C] : γC

C]⊔
G]
⊇ ⋃

G]∈G]

γC

(
G]
)
.

Lemma 2 (Local Soundness Conditions). If local sound-
ness on the abstract memory, cache, and events domains
are satisfied, then the corresponding next] function sat-
isfies local soundness.

Due to the above lemma, abstract domains for the
three aspects memory, cache, and events can be sepa-
rately developed and proved correct. We exploit this fact
in this paper, and we plan to develop further abstractions
in the future, targeting different classes of adversaries or
improving precision.

4.4 Soundness of Delivered Bounds
We implemented the framework described above in a
tool named CacheAudit. Thanks to the previous results,
CacheAudit provides the following guarantees.

Theorem 4. The bounds derived by CacheAudit soundly
over-approximate

∣∣ran(Cadv)
∣∣, for adv ∈ {tr,acc, time},

and hence correspond to upper bounds on the maximal
amount of leaked information.

The statement is an immediate consequence of com-
bining Lemma 2 with Theorems 2 and 3, under the as-
sumption that all involved abstract domains satisfy local
soundness conditions, and that the corresponding count-
ing procedures are correct. We formally prove the va-
lidity of these assumptions only for our novel relational
and trace domains, see Section 6. For the other domains,
corresponding proofs are either standard (e.g. the value
domain) or out of scope of this submission.

5 Tool Design and Implementation

In this section we describe the architecture and imple-
mentation of CacheAudit.

We take advantage of the compositionality of the
framework described in Section 4 and use a generic it-
erator module to compute fixpoints, where we rely on
independent modules for the abstract domains that corre-
spond to the components of the next] operation. Figure 1
depicts the overall architecture of CacheAudit, with the
individual modules described below. CacheAudit is im-
plemented in currently about 7.5 KLOC of OCaml [5],
which we plan to make publicly available.

Figure 1: The architecture of CacheAudit. The solid
boxes represent modules. Black-headed arrows mean
that the module at the head is an argument of the module
at the tail. White-headed arrows represent is-a relation-
ships.

5.1 Control Flow Reconstruction
The first stage of the analysis is similar to a compiler
front end. The main challenge is that we directly ana-
lyze x86 executables with no explicit control flow graph,
which we need for guiding the fixpoint computation.

For the parsing phase, we rely on Chlipala’s parser for
x86 executables [14], which we extended to a set of in-
structions that is sufficient for our case studies (but not
yet complete). For the control-flow reconstruction, we
consider only programs without dynamically computed
jump and call targets, which is why it suffices to iden-
tify the basic blocks and link them according to the cor-
responding branching conditions and (static) branch tar-
gets. We plan to integrate more sophisticated techniques
for control-flow reconstruction [29] in the future.

7

5.2 Iterator
The iterator module is responsible for the computation
of the next] operator and of the approximation of its fix-
point using adequate iteration strategies [18]. Our analy-
sis uses an iterative strategy, i.e., it stabilizes components
of the abstract control flow graph according to a weak
topological ordering, which we compute using Bourdon-
cle’s algorithm [13].

The iterator also implements parts of the reduced car-
dinal power, based on the labels computed according to
the control-flow graph: Each label is associated with an
initial abstract state. The analysis computes the effect of
the commands executed from that label to its successors
on the initial abstract state, and propagates the resulting
final states using the abstract domains described below.
In order to increase precision, we expand locations us-
ing loop unfolding, so that we have a number of differ-
ent initial and final abstract states for each label inside
loops, depending on a parameter describing the number
of loop unfoldings we want to perform. Most of our
examples (such as the cryptographic algorithms) require
only a small, constant number of loop iterations, so that
we can choose unfolding parameters that avoid joining
states stemming from different iterations.

5.3 Abstract Domains
As described in Section 4, we decompose the abstract
domain used by the iterator into mostly independent ab-
stract domains describing different aspects of the con-
crete semantics.

Value Abstract Domains A value abstract domain
represents sets of mapping from variables to (integer)
values. Value abstract domains are used by the cache
abstract domain to represent ages of blocks in the cache,
and by the flag abstract domain to represent values stored
at the addresses used in the program. We implemented
different value abstract domains, such as the interval do-
main, an exact finite sets domain (where the sets become
intervals when they are growing too large) and a rela-
tional set domain (as described in Section 6.1).

Flag Abstract Domain In x86 binaries, there are no
high level guards: instead, most operations modify flags
which are then queried in conditional branches. In order
to deal precisely with such branches, we need to record
relational informations between the values of variables
and the values of these flags. To that purpose, for each
operation that modifies the flags, we compute an over-
approximation of the values of the arguments that may
lead to a particular flag combination. The flag abstract
domain represents an abstract state as a mapping from

values of flags to an element of the value abstract do-
main. When the analysis reaches a conditional branch,
it can identify which combination of flag values corre-
sponds to the branch and select the appropriate abstract
values.

Memory Abstract Domain The memory abstract do-
main associates memory addresses and registers with
variables and translates machine instructions into the cor-
responding operations on those variables, which are rep-
resented using flag abstract domains as described above.
One important aspect for efficiency is that variables cor-
responding to addresses are created dynamically during
the analysis whenever they are needed. The memory ab-
stract domain further records all accesses to main mem-
ory using a cache abstract domain, as described below.

Stack Abstract Domain Operations on the stack are
handled by a dedicated stack abstract domain. In this
way the memory abstract domain does not have to deal
with stack operations such as procedure calls, for which
special techniques can be implemented to achieve precise
interprocedural analysis.

Cache Abstract Domain Cache abstract domains only
keep information about the cache, using a representation
of sets of mappings from blocks to ages in the cache.
This is implemented using an instance of value abstract
domains. Effects from the memory domain are passed to
the cache abstract domain at the memory abstract domain
level, so that the cache domain knows which addresses
are touched during computation. The cache abstract do-
main passes information about the presence or absence of
cache hits and misses to the trace abstract domain, which
we present in Section 6.2. The timings are then obtained
as an abstraction from the traces.

6 Abstract Domains for Cache Adversaries

6.1 Cache State Domains
Abstractions of cache states are at the heart of analyses
for all three cache adversaries considered in this paper.
Thus, precise abstraction of cache states is crucial to de-
termine tight leakage bounds.

Intuition behind Relational Sets The current state-
of-the-art abstraction for LRU replacement by Ferdi-
nand et al. [21] maintains an upper and a lower bound
on the age of every memory block. This abstraction was
developed with the sole goal of classifying memory ac-
cesses as cache hits or cache misses. In contrast, our
goal is to develop abstractions whose concretizations are

8

small, as these will yield better bounds on the maximal
leakage of a channel. To this end, we propose a new do-
main called relational sets that improves previous work
along two dimensions:

1. Instead of intervals of ages of memory blocks, we
maintain sets of ages or memory blocks.

2. Instead of maintaining independent information
about the age of each memory blocks, we record the
relation between ages of different memory blocks.

In addition to increasing precision, moving from in-
tervals to sets allows us to analyze caches with FIFO and
PLRU replacement. Interval-based analysis of FIFO and
PLRU has been shown to be rather imprecise in the con-
text of worst-case execution time analysis.

Motivating Example Consider the following method,
which performs a table lookup based on a secret input, as
it may occur in e.g. an AES implementation:

unsigned int A[size];

int getElement(int secret) {

if (secret < size)

return A[secret];

}

Assume we want to determine the possible cache
states after one invocation of getElement. As the value
of secret is unknown to the analysis, every memory lo-
cation of the array might be accessed.

Assuming the array was not cached before the invoca-
tion of getElement, the interval-based domain by Fer-
dinand et al. [21] determines a lower bound of 0 and an
upper bound of k on the age of each array element.

By tracking sets instead of intervals of ages for each
memory block, we would get 0 and k as possible ages of
each array element.

Both non-relational domains, however, are not power-
ful enough to infer or even express the fact, that only one
of the array’s memory blocks has been accessed, and can
thus be cached. Therefore, the number of possible cache
states represented by non-relational abstractions grows
exponentially in the size of the array, while the actual
number of possible cache states only grows linearly.

A relational domain, tracking the possible ages of,
e.g., pairs of memory blocks, would indeed yield a linear
growth in the number of possible cache states. For each
pair of array elements, it would be able to infer that only
one of the two blocks may be cached. From this, it fol-
lows, that only one of all of the array elements may be
cached.

Figure 2 shows experimental results for the example
program with three domains: the interval domain (IV),

size 8 16 32 64 128 256
LRU/IV 1 2 4 8 16 32
LRU/Set 1 2 4 8 16 32
LRU/Rel 1 1.58 2.32 3.17 4.01 5.04

Figure 2: Bounds on the number of leaked bits about
the parameter secret for varying array sizes. The cache
parameters are fixed, with a block size of 32 bytes, asso-
ciativity 4 and cache size 4 KB.

and two instances of the relational sets domain, tracking
sets of ages of individual blocks (Set) and sets of ages of
pairs of blocks (Rel), respectively.

We do not see an improvement of sets over intervals
in this particular example, as the information that a block
has either age 0 or age k can be inferred from the intervals
in the counting procedure. This is because the considered
arrays are small and thus no two array elements map to
the same cache set. We will see in the case studies, how-
ever, that sets alone often improve over intervals.

Formalization of Relational Sets Precision and anal-
ysis cost of the relational sets domain can be controlled
by a parameter N . The parameter N is a set of sets of
memory block: N ⊆P(B).

The idea is to precisely track the possible combina-
tions of ages of memory blocks for each set of blocks
contained in N . For example, if we want to track infor-
mation for individual blocks and for pairs of blocks, we
would choose N to be

Nrel = {N ⊆ B | 1≤ |N| ≤ 2} .

On the other hand, for a more efficient, yet still more
precise analysis than intervals, we may opt for a non-
relational analysis, tracking the sets of ages of individual
blocks:

Nsets = {N ⊆ B | |N|= 1} .

Each choice of N induces a different domain C]N of ab-
stract cache states. In fact, the two domains Set and Rel
from Figure 2 in the motivating example are instances of
the relational sets domain withN =Nsets andN =Nrel ,
respectively.

For each set of memory blocks N in N , an abstract
cache state collects the possible “partial” cache states
when limiting attention to the ages of the blocks in N.
Such a partial cache state can be represented by a func-
tion f : N→ A, similarly to concrete cache states, as de-
fined in Section 3.1. Thus, in an abstract cache state C],
for each N ∈ N , C](N) contains a set of such functions.
Formally, the domain of abstract cache states C]N is de-

9

fined as follows:

C]N :=
{

C] :N →P(B⇀ A)
∣∣∣

∀N ∈N : C](N) ∈ P(N→ A)
}
.

By B⇀ A we denote the set of partial functions from B
to A. In the following, we assume a fixed setN , and thus
omit the subscript N , unless we need to explicitly refer
to a different set.

The meaning of abstract cache states is formalized by
a concretization function γC : C]→P(C). To define γC ,
we first need helper functions γC,N : P(N → A)→P(C)
that formalize the meaning of the set of partial cache
states c] stored for a particular set of blocks N:

γC,N(c]) :=
{

c ∈ C
∣∣∣ c|N ∈ c]

}
,

where c|N denotes the restriction of the function c to the
domain N, which is a subset of the original domain B of
c. Then, the concretization function γC is

γC(C]) :=
⋂

N∈N
γC,N(C](N)).

Thus, a concrete state is represented by an abstract state
if its restriction to each of the sets in N is contained in
the respective sets of the abstract state.

We can also define an abstraction function αC :
P(C)→C], assigning to each set of concrete states its
unique best abstract representation:

αC(C) := λN ∈N .{c|N | c ∈C} .

We need a join function
⊔C]

: P(C])→C] on abstract
states to combine analysis information from e.g. differ-
ent program paths. This simply amounts to a pointwise
union:

C]⊔
D := λN ∈N .

⋃
C]∈D

C](N).

Note that the join function induces a partial order vC]

on abstract states, as a vC]
b :⇔ b = a tC]

b. It is
fairly easy to see that both the abstraction and the con-
cretization function are monotone functions. In fact,
(P(C),⊆) −−−→←−−−

αC

γC
(C],vC]

) forms a Galois connection.
Thus, we can compose abstraction, concretization, and
cache update function to obtain the best abstract trans-
former updC] : C]×P(EM)→C]:

updC](C],M) := αC(updC(γC(C
]),M)),

where updC is lifted to sets of concrete states and sets
of memory blocks in the expected way. Due to the

monotony of αC and the lifted version of updC , we also
have that

updC](C],M) =
C]⊔

b∈M

αC(updC(γC(C
]),b)).

Similarly, we can define the best abstract effects:

eff C] : C]×P(EM)→P(EC),
eff C](C],M) := eff C(γC(C

]),M),

where eff C is lifted to sets of concrete states and sets of
memory blocks.

Lemma 3 (Local soundness of best abstract trans-
former). By construction [17], the best abstract trans-
former and the best abstract effects satisfy the local
soundness condition stated in Definition 1.

Implementation of the Best Abstract Transformer
for Relational Sets The definition of the best abstract
transformer as described above suggests an implementa-
tion that explicitly computes the concretization, applies
the concrete cache update function, and abstracts the re-
sulting set of concrete cache states. While the concretiza-
tion of any abstract cache state is finite in our case, it may
be extremely large. Thus, such a naive approach will not
work in practice.

In an efficient implementation of the abstract trans-
former, we would like to separately update the infor-
mation C](N) associated with each set N in N without
constructing complete concrete cache states. Examining
the concrete cache update function updC , defined in Sec-
tion 3.1, notice that it is possible to do this, if the ac-
cessed block b belongs to N. In that case, even the third
and fourth condition can be precisely evaluated using the
information available “locally” in C](N). If the accessed
block b maps to the same cache set as other blocks con-
tained in N, but b itself is not part of N, then the third
and fourth condition in the concrete cache update func-
tion cannot be evaluated. The idea is thus to partially
concretize abstract states, by adding the accessed block b
to each set N in N . To this end, we define the following
set: Nb = {N∪{b} | N ∈N} .

The partial concretization function γNb translates
states from C]N into the slightly more concrete domain
C]Nb

:

γNb(C
]) := λN ∈Nb.

{
c|N
∣∣∣ c ∈ γC(C])

}
.

This can be implemented rather efficiently, by enumer-
ating all extensions of the functions found in C](N) and
checking whether or not they agree with the constraints
for all other N′ in N . There is a corresponding partial

10

abstraction function αNb that simply drops information
about block b if it is not contained in N.

With partial concretization and partial abstraction in
place, we can realize the best abstract transformer as fol-
lows:

updC](C],M) =
C]⊔

b∈M

αNb(updC],Nb
(γNb(C

]),b)),

where updC],Nb
: C]Nb

→C]Nb
applies updN

C , defined below,
to each c] ∈C](N):

updC],Nb
(C],b) := λN ∈Nb.

{
updN

C (c
],b) | c] ∈C](N)

}
.

updN
C closely resembles its concrete counterpart, as all of

the conditions required to update the age of a block can
be precisely evaluated in c]:

updN
C (c

],b) := λb′ ∈ N.
0 : b′ = b
c](b′) : set(b′) 6= set(b)
c](b′)+1 : set(b′) = set(b)∧ c](b′)< c](b)
c](b′) : set(b′) = set(b)∧ c](b′)≥ c](b)

In fact, the concrete update function updC is a special
case of updN

C for N = B. For FIFO and PLRU, we can
construct update functions on partially concretized states
in a similar fashion.

Theorem 5 (Local soundness using partial concretiza-
tion). The abstract transformer based on partial con-
cretization is equal to the best abstract transformer, i.e.

∀C] ∈ C],M ∈ P(EM) :

C]⊔
b∈M

αNb(updC],Nb
(γNb(C

]),b))=
C]⊔

b∈M

αC(updC(γC(C
]),b)).

By Lemma 3 this implies the local soundness of the ab-
stract transformer based on partial concretization.

Lazy Representation of Relational Sets In an abstract
state C], there are usually some sets N ∈ N for which
C](N) is redundant w.r.t. the subsets of N. In such cases,
the concretization of C](N) is equal to the intersection of
the concretizations of its subsets:

γC,N(C](N)) =
⋂

N′(N
N′∈N

γC,N′(C
](N′)).

Our implementation detects such cases and omits the ex-
plicit representation of analysis information for redun-
dant sets. As a consequence, the space and time com-
plexity of the implementation is roughly related to the
amount of non-redundant relational information.

Counting for Relational Sets In order to bound the
maximal leakage of the cache side channel, we need
to determine the number of concrete cache states repre-
sented by an abstract cache state. A naive approach is to
explicitly compute an abstract cache state’s concretiza-
tion. This is feasible only if the leakage is very small.

Our approach is to divide the counting problem into
several independent counting problems for distinct sub-
sets of memory blocks. One could separately count the
number of states of each cache set, and multiply the re-
sults. However, this may lead to imprecise results if
states of different cache sets depend on each other. We
call two memory blocks a and b dependent, if they map
to the same cache set, or if there is a non-redundant set
N ∈ N containing a and b. We compute the finest par-
tition of the set of memory blocks such that dependent
memory blocks belong to the same part of the partition.
As memory blocks in different partitions are “indepen-
dent”, we can separately determine the number of partial
cache states for each part without losing any precision
when we multiply the results.

6.2 A Trace Domain
We devise an abstract domain for keeping track of the
sets of event traces that may occur during the execution
of a program. Following the way events are computed
in the concrete, namely as a function from cache states
and memory effects (see Section 3.3), the abstract cache
domain provides abstract cache effects.

In our current implementation of CacheAudit, we use
an exact representation for sets of event traces: we can
represent any finite set of event traces, and assuming an
incoming set of traces S and a set of cache effects E, we
compute the resulting event set precisely as follows:

updE](S,E) = {σ .e |σ ∈ S ∧ e ∈ E }

Then soundness is obvious, since the abstract opera-
tion is the same as its concrete counterpart. Due to loop
unfolding, we do not require widenings, even though
the domain contains infinite ascending chains (see Sec-
tion 5.2).

Lemma 4. The trace domain is locally sound.

Representation for Sets of Event Traces We repre-
sent sets of finite event traces corresponding to a par-
ticular program location by an acyclic graph with ver-
tices V , a dedicated root r ∈ V , and a node labeling
` : V → P(E)∪ {t}. In this graph, every node v ∈ V
represents a set of traces γ(v) ∈ P(E∗) in the following
way:

1. For the root r, γ(r) = {ε}

11

2. For v with L(v) = t and predecessors u1, . . . ,un,
γ(v) =

⋃n
i=1 γ(ui).

3. For v with L(v) 6= t and predecessors u1, . . . ,un,
γ(v) = {t.u | u ∈ L(v)∧ t ∈

⋃n
i=1 γ(ui)}

Intuitively, every v ∈ V represents a set of event traces,
namely the sequences of labels of paths from r to v.

In the context of CacheAudit, we need to implement
two operations on this data structure, namely (1) the join
tE]

of two sets of traces and the (2) addition updE](S,E)
of a cache event to a particular set of traces.

For the join of two sets of traces represented by v and
w, we add a new vertex u with label t and add edges
from v and w to u.

For the extension of a set of traces represented by
a vertex v by a set of cache events E, we first check
whether v already has a child w labeled with E. If so, we
use w as a representation of the extended set of traces. If
not, we add a new vertex u with label E and add an edge
(u,v). In this way we make maximal use of sharing and
obtain a prefix DAG.

The correctness of the representation follows by con-
struction. In our CacheAudit, we use hash consing for
efficiently building the prefix dag.

Counting Sets of Traces The following algorithm
counttr overapproximates the number of traces that are
represented by a given graph.

1. For the root r, counttr(r) = 1

2. For v with L(v) = t and predecessors u1, . . . ,un,
counttr(v) = ∑

n
i=1 countτ(ui)

3. For v with L(v) 6= t and predecessors u1, . . . ,un,
counttr(v) = |L(v)| ·∑n

i=1 counttr(ui)

The soundness of this counting, i.e. the fact that |γ(v)| ≤
counttr(v), follows by construction. Notice that this
counting procedure is precise if the labels represent sin-
gleton events, because then every trace is uniquely rep-
resented in the graph. However, the precision dramat-
ically decreases with larger sets of labels. In our case,
labels contain at most two events and the counting is suf-
ficiently precise.

Counting Timing Variations We currently model ex-
ecution time as a simple abstraction of traces, see Sec-
tion 3. In particular, timing is computed from a traces
over E = {hit,miss,⊥} by multiplying the number of
occurrences of each event by the time they consume:
thit, tmiss, and t⊥, respectively. The following algorithm
counttime over-approximates the set of timing behaviors
that are represented by a given graph.

1. For the root r, counttime(r) = {0}

2. For v with L(v) = t and predecessors u1, . . . ,un,
counttime(v) =

⋃n
i=1 counttime(ui)

3. For v with L(v) 6= t and predecessors u1 . . . ,un,

counttime(v) ={
tx + t

∣∣∣∣∣ x ∈ L(v)∧ t ∈
n⋃

i=1

counttime(ui)

}

The soundness of counttime, i.e. the fact that it delivers
a superset of the number of possible timing behaviors
follows by construction.

7 Case Studies

In this section we demonstrate the capabilities of Cache-
Audit in case studies where we use it to analyze the cache
side channels of algorithms for sorting and symmetric
encryption. All results are based on the automatic anal-
ysis of corresponding 32-bit x86 Linux executables that
we compiled using gcc with disabled stack canaries and
without any compiler optimizations.

7.1 AES 128

We analyze the AES implementation from the PolarSSL
library [3] with keys of 128 bits, where we consider the
implementation with and without preloading of tables,
for all attacker models, different replacement strategies,
associativities, and line sizes. All results are presented as
upper bounds of the leakage in bits; for their interpreta-
tion see Theorem 1. In some cases, CacheAudit reports
upper bounds that exceed the key size (128 bits), which
corresponds to an imprecision of the static analysis. We
opted against truncating to 128 bits to illustrate the de-
gree of imprecision. The full data of our analysis are
given in Appendix C. Here, we highlight some of our
findings.
• Preloading almost consistently leads to better secu-

rity guarantees in all scenarios, see e.g. Figure 3. How-
ever, the effect becomes clearly more apparent for cache
sizes beyond 8KB, which is explained by the PolarSSL
AES tables exceeding the size of the 4KB cache by 256B.
For cache sizes that are larger than the preloaded ta-
bles, we can prove noninterference for Cacc and FIFO,
Caccd and LRU, and for Ctr and Ctime on LRU, FIFO, and
PLRU. For Cacc with shared memory spaces and LRU,
this result does not hold because the adversary can ob-
tain information about the order of memory blocks in the
cache.

12

Figure 3: Effect of attacker model and preloading (PL)
on the security guarantee, for the LRU replacement strat-
egy. The horizontal axis gives the cache size, and the
vertical axis gives the leakage in bits.

Figure 4: Effect of cache line size on the security guar-
antee, for Cacc and Caccd, and LRU replacement strategy
without preloading. Different curves correspond to dif-
ferent cache line sizes The horizontal axis gives the cache
size, and the vertical axis gives the leakage bits.

• A larger line size consistently leads to better secu-
rity guarantees for access-based adversaries, see e.g. Fig-
ure 4. This follows because more array indices map to a
line which decreases the resolution of the attacker’s ob-
servations.
• In terms of replacement strategies, we consistently

derive the lowest bounds for LRU, followed by PLRU
and FIFO (see, e.g. Figures 9 and 10), where the only ex-
ception is the case of Cacc and preloading (see Figure 5).
In this case FIFO is more secure because with LRU the
adversary can obtain information about the ordering of
memory blocks in the cache.
• In terms of cache size, we consistently derive bet-

ter bounds for larger caches, with the exception of Caccd.
For this adversary model the bounds increase because
larger caches correspond to distributing the table to more
sets, which increases its possibilities to observe varia-
tions. The guarantees we obtain for Caccd and Cacc con-
verge for caches of 4 ways and sizes beyond 16KB, see
e.g. Figure 4. This is due to the fact that each cache
set can contain at most one unique block of the 4KB ta-
ble. In that way, the ability of Cacc to observe ordering
of blocks within a set does not give it power.
• In terms of precision, set-based analyses consis-

tently match or improve over the bounds delivered by

Figure 5: Effect of replacement stategy on the security
guarantee, for Cacc and Caccd, with and without preload-
ing (PL). The horizontal axis gives the cache size, and
the vertical axis gives the leakage in bits.

interval-based analyses, see Figure 7 in the appendix.
Notice that the improvement is given in bits, i.e. on a
logarithmic scale.
The analysis time for the examples was typically below
60s and peaked at 365s for AES without preloading and
4KB cache.

Comparison to [32]: The PolarSSL AES implemen-
tation has already been analyzed in [32] with respect to
access-based adversaries and LRU replacement. The re-
sults obtained by CacheAudit go beyond that analysis in
that we derive bounds w.r.t. access-based, trace-based,
and time-based adversaries, for LRU, FIFO, and PLRU
strategies. For access-based adversaries and LRU, the
bounds we derive are lower than those in [32]; in partic-
ular, for Caccd we derive bounds of zero for implementa-
tions with preloading for all caches sizes that are larger
than the AES tables—which is obtained in [32] only for
caches of 128KB. While these results are obtained for
different platforms (x86 vs ARM) and are hence not di-
rectly comparable, they do suggest a significant increase
in precision. In contrast to [32], this is achieved without
any code instrumentation.

7.2 Salsa20

Salsa20 is a stream cipher by Bernstein [11]. Inter-
nally, the cipher uses XOR, 32-bit addition mod 232, and
constant-distance rotation operation on an internal state
of 16 32-bit words. The lack of key-dependent mem-
ory lookups intends to avoid cache side channels in soft-
ware implementations of the cipher. With CacheAudit
we could formally confirm this intuition by automated
analysis of the reference implementation of the Salsa20
encryption, which includes a function call to a hash func-
tion. Specifically, we analyze the leakage of the encryp-
tion operation on an arbitrary 512-byte message for Cacc,
Ctr, and Ctime, FIFO and LRU strategies, on 4KB caches
with line size of 32B, where we consistently obtain up-

13

per bounds of 0 for the leakage. The time required for
analyzing each of the cases was below 11s.

7.3 Sorting Algorithms
In this section we use CacheAudit to establish bounds on
the cache side channels of different sorting algorithms.
This case study is inspired by an early investigation of se-
cure sorting algorithms [9]. While the authors of [9] con-
sider only time-based adversaries and noninterference as
a security property, CacheAudit allows us to give quanti-
tative answers for a comprehensive set of side-channel
adversaries, based on the binary executables and con-
crete cache models.

As examples, we use the implementations of Bubble-
Sort, InsertionSort, and SelectionSort from [4], which
are given in Section 2 and Appendix A, respectively,
where we use integer arrays of lengths from 8 to 64.

The results of our analysis are summarized in Figure 6.
In the following we highlight some of our findings.
• We obtain the same bounds for BubbleSort and Se-

lectionSort, which is explained by the similar structure
of their control flow. A detailed explanation of those
bounds is given in Section 2. InsertionSort has a dif-
ferent control flow structure, which is reflected by our
data. In particular InsertionSort has only n! possible exe-
cution traces due to premature abortion of the inner loop,
which leads to better bounds w.r.t. trace-based adver-
saries. However, InsertionSort leaks more information
to timing-based adversaries, because the number of iter-
ations in the inner loop varies and thus fewer executions
have the same timing.
• For access-based adversaries we obtain zero bounds

for all algorithms. For trace-based adversaries, the de-
rived bounds do not imply meaningful security guaran-
tees: the bounds reported for InsertionSort are in the or-
der of log2(n!), which corresponds to the maximum in-
formation contained in the ordering of the elements; the
bounds reported for the other sorting algorithm exceed
this maximum, which is caused by the imprecision of the
static analysis.
• We performed an analysis of the sorting algorithms

for smaller (256B) and larger (64KB) cache sizes and
obtained the exact same bounds as in Figure 6, with the
exception of the case of arrays of 64 entries and 256B
caches: there the leakage increases because the arrays do
not fit entirely into the cache due to their misalignment
with the memory blocks.

7.4 Discussion and Outlook
A number of comments are in order when interpreting
the bounds delivered by CacheAudit. First, we obtained
all of the bounds for an empty initial cache. As described

in Section 3.6, for access-based adversaries they immedi-
ately extend to bounds for arbitrary initial cache states, as
long as the victim does not access any block that is con-
tained in it. This is relevant, e.g. for an adversary who
can fill the initial cache state only with lines from its own
disjoint memory space. For LRU, our bounds extend to
arbitrary initial cache states without further restriction.

Second, while CacheAudit relies on more accurate
models of cache and timing than any information-flow
analysis we are aware of, there are several timing-
relevant features of hardware it does not capture (and
make assertions about) at this point yet, including
pipelines, TLBs, and multiple levels of caches.

Third, for the case of AES and Salsa20, the derived
bounds hold for the leakage about the key in one execu-
tion, with respect to any payload. For the case of zero
leakage (i.e., noninterference), the bounds trivially ex-
tend to bounds for multiple executions and imply strong
security guarantees. For the case of non-zero leakage,
the bounds can add up when repeatedly running the vic-
tim process with a fixed key and varying payload, leading
to a decrease in security guarantees. One of our prime
targets for future work is to derive security guarantees
that hold for multiple executions of the victim process.
One possibility is to employ leakage-resilient cryptosys-
tems [20, 46], where our work can be used to bound the
range of the leakage functions.

8 Related Work

The work most closely related to ours is [32]. There,
the authors quantify cache side channels by connecting a
commercial, closed-source tool for the static analysis of
worst-case execution times [1] to an algorithm for count-
ing concretizations of abstract cache states. The appli-
cation of the tool to side-channel analysis is limited to
access-based adversaries and requires heavy code instru-
mentation. In contrast, CacheAudit provides tailored ab-
stract domains for all kinds of cache side-channel ad-
versaries, different replacement strategies, and is mod-
ular and open for further extensions. Furthermore, the
bounds delivered by CacheAudit are significantly tighter
than those reported in [32], see Section 7.

Zhang et al. [47] propose an approach for mitigating
timing side channels that is based on contracts betweens
software and hardware. The contract is enforced on the
software side using a type system, and on the hardware
side, e.g., by using dedicated hardware such as parti-
tioned caches. The analysis ensures that an adversary
cannot obtain any information by observing public parts
of the memory; any confidential information the adver-
sary obtains must be via timing, which is controlled using
dedicated mitigate commands. Tiwari et al. [44] sketch a
novel microarchitecture that faciliates information-flow

14

array length 8 16 32 64
Ctr Ctime Cacc Ctr Ctime Cacc Ctr Ctime Cacc Ctr Ctime Cacc

BubbleSort 28 4.86 0 120 6.92 0 496 8.96 0 2016 11 0
InsertionSort 15.23 6.91 0 44.3 10.15 0 117.7 13.3 0 296 15.8 0
SelectionSort 28 4.86 0 120 6.92 0 496 8.96 0 2016 11 0

Figure 6: The table illustrates the security guarantees derived by CacheAudit for the implementations of BubbleSort, SelectionSort,
and InsertionSort, for trace-based, timing-based, and access-based adversaries, for LRU caches of 4KB and line sizes of 32B.

tracking by design, where they use noninterference as
a baseline confidentiality property. Other mitigation
techniques include coding guidelines [16] for thwarting
cache attacks on x86 CPUs, or novel cache architectures
that are resistant to cache side-channel attacks [45]. The
goal of our approach is orthogonal to those approaches
in that we focus on the analysis of microarchitectural
side channels rather than on their mitigation. Our ap-
proach does not rely on a specific platform; rather it can
be applied to any language and hardware architecture, for
which abstractions are in place.

Kim et al. put forward StealthMem [28], a system-
level defense against cache-timing attacks in virtualized
environments. The core of StealthMem is a software-
based mechanism that locks pages of a virtual machine
into the cache and avoids that they are evicted by other
VMs. StealthMem can be seen as a lightweight vari-
ant of flushing/preloading countermeasures. As future
work, we plan to use our tool to derive formal, quantita-
tive guarantees for programs using StealthMem.

For the case of AES, there are efficient software im-
plementations that avoid the use of data caches by bit-
slicing [27]. Furthermore, a model for statistical estima-
tion of the effectiveness of AES cache attacks based on
sizes of cache lines and lookup tables has been presented
in [43]. In contrast, our analysis technique applies to ar-
bitrary programs.

Technically, our work builds on methods from quan-
titative information-flow analysis (QIF) [15], where the
automation by reduction to counting problems appears
in [10, 37, 25, 36], and the connection to abstract in-
terpretation in [33]. Finally, our work goes beyond
language-based approaches that consider caching [8, 24]
in that we rely on more realistic models of caches and
aim for more permissive, quantitative guarantees.

9 Conclusions

We presented CacheAudit, the first automatic tool for the
static derivation of formal, quantitative security guaran-
tees against cache side-channel attacks. We demonstrate
the usefulness of CacheAudit by establishing the first
formal proofs of security of software-based countermea-
sures for a comprehensive set of adversaries and based
on executable code.

The open architecture of CacheAudit makes it an ideal
platform for future research on microarchitectural side
channels. In particular, we are currently investigating
the derivation of security guarantees for concurrent ad-
versaries. Progress along those lines will provide a han-
dle for extending our security guarantees to the operating
system level. We will further investigate abstractions for
hardware features such as pipelines, out-of-order execu-
tion, and leakage-resilient cache designs, with the goal
of providing broad tool support for reasoning about side-
channels arising at the hardware/software interface.

Acknowledgments We thank Ignacio Echeverrı́a for
helping with the implementation.

References

[1] AbsInt aiT Worst-Case Execution Time Analyzers.
http://www.absint.com/a3/.

[2] Intel Advanced Encryption Standard (AES) In-
structions Set. http://software.intel.com/

file/24917.

[3] PolarSSL. http://polarssl.org/.

[4] Sorting algorithms. http://www.codebeach.

com/2008/09/sorting-algorithms-in-c.

html.

[5] The Caml Language. http://caml.inria.fr/.

[6] O. Aciiçmez and Ç. K. Koç. Trace-Driven Cache
Attacks on AES. In ICICS, volume 4307 of LNCS,
pages 112–121. Springer, 2006.

[7] O. Aciiçmez, W. Schindler, and Ç. K. Koç. Cache
based remote timing attack on the AES. In CT-RSA,
volume 4377 of LNCS, pages 271–286. Springer,
2007.

[8] J. Agat. Transforming out Timing Leaks. In POPL
2000, pages 40–53. ACM, 2000.

[9] J. Agat and D. Sands. On confidentiality and algo-
rithms. In IEEE Symposium on Security and Pri-
vacy (SSP), pages 64–77. IEEE Computer Society,
2001.

15

http://www.absint.com/a3/
http://software.intel.com/file/24917
http://software.intel.com/file/24917
http://polarssl.org/
http://www.codebeach.com/2008/09/sorting-algorithms-in-c.html
http://www.codebeach.com/2008/09/sorting-algorithms-in-c.html
http://www.codebeach.com/2008/09/sorting-algorithms-in-c.html
http://caml.inria.fr/

[10] M. Backes, B. Köpf, and A. Rybalchenko. Auto-
matic Discovery and Quantification of Information
Leaks. In SSP, pages 141–153. IEEE, 2009.

[11] D. Bernstein. Salsa20. http://cr.yp.to/

snuffle.html.

[12] D. J. Bernstein. Cache-timing attacks on AES.
Technical report, 2005.

[13] F. Bourdoncle. Efficient chaotic iteration strategies
with widenings. In Proc. International Conference
on Formal Methods in Programming and their Ap-
plications (FMPA ’93), pages 128–141. Springer,
1993.

[14] A. Chlipala. Modular development of certified pro-
gram verifiers with a proof assistant. In ICFP,
pages 160–171. ACM, 2006.

[15] D. Clark, S. Hunt, and P. Malacaria. A static anal-
ysis for quantifying information flow in a simple
imperative language. JCS, 15(3):321–371, 2007.

[16] B. Coppens, I. Verbauwhede, K. D. Bosschere, and
B. D. Sutter. Practical mitigations for timing-based
side-channel attacks on modern x86 processors. In
SSP, pages 45–60. IEEE, 2009.

[17] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs
by construction of approximation of fixpoints. In
Proc. of the 4th ACM Symposium of Principles
of Programming Languages (POPL 1977), pages
238–252, 1977.

[18] P. Cousot and R. Cousot. Systematic design of
program analysis frameworks. In Proc. of the 6th
ACM Symposium of Principles of Programming
Languages (POPL 1979), pages 269–282, 1979.

[19] P. Cousot, R. Cousot, and L. Mauborgne. Theo-
ries, solvers and static analysis by abstract interpre-
tation. Journal of the ACM, 59(6):31, 2012.

[20] S. Dziembowski and K. Pietrzak. Leakage-
Resilient Cryptography. In FOCS, pages 293–302.
IEEE, 2008.

[21] C. Ferdinand, F. Martin, R. Wilhelm, and M. Alt.
Cache behavior prediction by abstract interpreta-
tion. Science of Computer Programming, 35(2):163
– 189, 1999.

[22] D. Grund. Static Cache Analysis for Real-Time Sys-
tems – LRU, FIFO, PLRU. PhD thesis, Saarland
University, 2012.

[23] D. Gullasch, E. Bangerter, and S. Krenn. Cache
Games - Bringing Access-Based Cache Attacks on
AES to Practice. In SSP, pages 490–505. IEEE,
2011.

[24] D. Hedin and D. Sands. Timing Aware Informa-
tion Flow Security for a JavaCard-like Bytecode.
ENTCS, 141(1):163–182, 2005.

[25] J. Heusser and P. Malacaria. Quantifying informa-
tion leaks in software. In ACSAC, pages 261–269.
ACM, 2010.

[26] S. Jana and V. Shmatikov. Memento: Learning
secrets from process footprints. In IEEE Sympo-
sium on Security and Privacy (SSP), pages 143–
157. IEEE Computer Society, 2012.

[27] E. Käsper and P. Schwabe. Faster and timing-attack
resistant AES-GCM. In CHES, volume 5747 of
LNCS, pages 1–17, 2009.

[28] T. Kim, M. Peinado, and G. Mainar-Ruiz. Stealth-
mem: System-level protection against cache-based
side channel attacks in the cloud. In 19th USENIX
Security Symposium. USENIX Association, 2012.

[29] J. Kinder, F. Zuleger, and H. Veith. An abstract
interpretation-based framework for control flow re-
construction from binaries. In VMCAI, pages 214–
228. Springer, 2009.

[30] P. Kocher. Timing Attacks on Implementations of
Diffie-Hellman, RSA, DSS, and Other Systems. In
CRYPTO, volume 1109 of LNCS, pages 104–113.
Springer, 1996.

[31] P. Kocher, J. Jaffe, and B. Jun. Differential
Power Analysis. In Proc. Advances in Cryptol-
ogy (CRYPTO 1999), volume 1666 of LNCS, pages
388–397. Springer, 1999.

[32] B. Köpf, L. Mauborgne, and M. Ochoa. Automatic
Quantification of Cache Side-Channels. In Proc.
24th International Conference on Computer Aided
Verification (CAV), pages 564–580. Springer, 2012.

[33] B. Köpf and A. Rybalchenko. Approximation and
Randomization for Quantitative Information-Flow
Analysis. In CSF, pages 3–14. IEEE, 2010.

[34] B. Köpf and G. Smith. Vulnerability Bounds and
Leakage Resilience of Blinded Cryptography under
Timing Attacks. In CSF, pages 44–56. IEEE, 2010.

[35] L. Mauborgne and X. Rival. Trace partition-
ing in abstract interpretation based static analyz-
ers. In ESOP, volume 3444 of LNCS, pages 5–20.
Springer, 2005.

16

http://cr.yp.to/snuffle.html
http://cr.yp.to/snuffle.html

[36] Z. Meng and G. Smith. Calculating bounds on in-
formation leakage using two-bit patterns. In PLAS.
ACM, 2011.

[37] J. Newsome, S. McCamant, and D. Song. Measur-
ing channel capacity to distinguish undue influence.
In PLAS, pages 73–85. ACM, 2009.

[38] D. A. Osvik, A. Shamir, and E. Tromer. Cache
Attacks and Countermeasures: the Case of AES.
In CT-RSA, volume 3860 of LNCS, pages 1–20.
Springer, 2006.

[39] C. Percival. Cache missing for fun and profit. In
BSDCan, 2005.

[40] T. Ristenpart, E. Tromer, H. Shacham, and S. Sav-
age. Hey, you, get off of my cloud: exploring in-
formation leakage in third-party compute clouds.
In ACM Conference on Computer and Communi-
cations Security, pages 199–212. ACM, 2009.

[41] A. Sabelfeld and A. C. Myers. Language-based
Information-Flow Security. IEEE Journal on Se-
lected Areas in Communications, 21(1):5–19, 2003.

[42] G. Smith. On the Foundations of Quantitative Infor-
mation Flow. In FoSSaCS, volume 5504 of LNCS,
pages 288–302. Springer, 2009.

[43] K. Tiri, O. Aciiçmez, M. Neve, and F. Andersen.
An Analytical Model for Time-Driven Cache At-
tacks. In FSE, volume 4593 of LNCS, pages 399–
413. Springer, 2007.

[44] M. Tiwari, J. Oberg, X. Li, J. Valamehr, T. E. Levin,
B. Hardekopf, R. Kastner, F. T. Chong, and T. Sher-
wood. Crafting a usable microkernel, processor,
and I/O system with strict and provable informa-
tion flow security. In ISCA, pages 189–200. ACM,
2011.

[45] Z. Wang and R. B. Lee. New cache designs for
thwarting software cache-based side channel at-
tacks. In ISCA, pages 494–505. ACM, 2007.

[46] Y. Yu, F.-X. Standaert, O. Pereira, and M. Yung.
Practical leakage-resilient pseudorandom genera-
tors. In ACM Conference on Computer and Com-
munications Security (CCS), pages 141–151. ACM,
2010.

[47] D. Zhang, A. Askarov, and A. C. Myers. Language-
based control and mitigation of timing channels. In
PLDI, pages 99–110. ACM, 2012.

[48] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart.
Cross-VM Side Channels and Their Use to Extract
Private Keys. In CCS, to appear. ACM, 2012.

A Example Code

Selection Sort

void SelectionSort(int a[], int array_size)

{

int i;

for (i = 0; i < array_size - 1; ++i)

{

int j, min, temp;

min = i;

for (j = i+1; j < array_size; ++j)

{

if (a[j] < a[min])

min = j;

}

temp = a[i];

a[i] = a[min];

a[min] = temp;

}

}

Insertion Sort

void InsertionSort(int a[], int array_size)

{

int i, j, index;

for (i = 1; i < array_size; ++i)

{

index = a[i];

for (j = i; j > 0 && a[j-1] > index; j--)

a[j] = a[j-1];

a[j] = index;

}

}

B Proofs

Proof of Theorem 1. Let X→Y → X̂ be a Markov chain.
We show that

P(X = X̂)≤ 1
2H(X |Y) ,

where

H(X |Y) =− log2 ∑
y

P(Y = y)max
x

P(X = x|Y = y)

17

is the standard definition of conditional min-
entropy [42]:

P(X = X̂) = ∑
y,x

P(X = X̂ = x∧Y = y)

= ∑
y

P(Y = y)∑
x

P(X = X̂ = x | Y = y)

(∗)
= ∑

y
P(Y = y)∑

x
P(X = x|Y = y)P(X̂ = x|Y = y)

≤∑
y

P(Y = y)max
x

P(X = x|Y = y)

= 2−H(X |Y) ,

where (*) follows from the Markov property.
From [34] it is known that the reduction in min-

entropy (defined by H(X) =− log2 maxx P(X = x)) of X
when Y is known is bounded by the size of the range of
Y , i.e. H(X)−H(X |Y)≤ log2 |ran(Y)| , from which we
conclude

P(X = X̂)≤max
x

P(X = x) |ran(Y)| .

18

C Comprehensive results of case studies

Cacc 4KB 8KB 16KB 32KB ≥ 64KB
LRU/Set 100.8 81.7 70.7 70.7 68.0
LRU/IV 102.9 84.4 72.0 70.7 68.0

FIFO/Set 108.0 86.3 73.0 73.0 68.0
FIFO/IV 109.9 89.0 74.3 73.0 68.0

(a) AES without preloading

4KB 8KB 16KB 32KB ≥ 64KB
96.4 42.4 8.0 3.0 0.0
99.3 44.7 8.0 3.0 0.0
66.3 0.0 0.0 0.0 0.0
68.2 0.0 0.0 0.0 0.0

(b) AES with preloading

Figure 7: The table illustrates the effect of the replacement strategy on the security guarantees we derive for access-
based adversaries (Cacc), for different cache size. The rows correspond to replacement strategies/abstract domains: Set
corresponds to our novel set-based domain, and IV corresponds to the interval-based domain of [21]. The entries in
the table denote the security guarantee in bits, with a 64-byte cache line size.

Caccd 4KB 8KB 16KB 32KB ≥ 64KB
LRU 35.9 53.3 67.6 69.2 68.0
FIFO 35.9 53.3 67.6 69.2 68.0

(a) AES without preloading

4KB 8KB 16KB 32KB ≥ 64KB
24.3 0.0 0.0 0.0 0.0
22.3 0.0 0.0 0.0 0.0

(b) AES with preloading

Figure 8: Effect of the replacement strategy the security guarantee for the Caccd-adversary, for different cache sizes.

Ctr 4KB 8KB 16KB 32KB ≥ 64KB
LRU 193.0 160.0 160.0 160.0 155.0
FIFO 354.0 273.0 226.0 226.0 155.0

PLRU 212.0 160.0 160.0 160.0 155.0
(a) AES without preloading

4KB 8KB 16KB 32KB ≥ 64KB
202.0 0.0 0.0 0.0 0.0
362.0 0.0 0.0 0.0 0.0
219.0 0.0 0.0 0.0 0.0

(b) AES with preloading

Figure 9: Effect of the replacement strategy the security guarantee for the Ctr-adversary, for different cache sizes.

19

Ctime 4KB 8KB 16KB 32KB ≥ 64KB
LRU 7.6 7.4 7.4 7.4 7.3
FIFO 8.5 8.1 7.9 7.9 7.3

PLRU 7.8 7.4 7.4 7.4 7.3
(a) AES without preloading

4KB 8KB 16KB 32KB ≥ 64KB
7.7 0.0 0.0 0.0 0.0
8.6 0.0 0.0 0.0 0.0
7.8 0.0 0.0 0.0 0.0

(b) AES with preloading

Figure 10: Effect of the replacement strategy the security guarantee for the Ctime-adversary, for different cache sizes.

Cacc 4KB 8KB 16KB 32KB ≥ 64KB
32B 204.6 165.0 142.3 142.3 136.0
64B 100.8 81.7 70.7 70.7 68.0

128B 52.5 42.6 36.7 36.4 35.0
(a) AES without preloading

4KB 8KB 16KB 32KB ≥ 64KB
185.3 81.6 14.0 6.0 0.0
96.4 42.4 8.0 3.0 0.0
48.5 21.2 4.0 1.0 0.0

(b) AES with preloading

Figure 11: Effect of the cache line size the security guarantee for the Cacc-adversary, for different cache sizes. The
results were obtained for the LRU replacement strategy.

Caccd 4KB 8KB 16KB 32KB ≥ 64KB
32B 72.7 106.9 135.7 139.0 136.0
64B 35.9 53.3 67.6 69.2 68.0

128B 18.0 27.1 34.4 35.6 35.0
(a) AES without preloading

4KB 8KB 16KB 32KB ≥ 64KB
40.2 0.0 0.0 0.0 0.0
24.3 0.0 0.0 0.0 0.0
13.0 0.0 0.0 0.0 0.0

(b) AES with preloading

Figure 12: Effect of the cache line size the security guarantee for the Caccd-adversary, for different cache sizes. The
results were obtained for the LRU replacement strategy.

Ctr 4KB 8KB 16KB 32KB ≥ 64KB
32B 216.0 160.0 160.0 160.0 155.0
64B 193.0 160.0 160.0 160.0 155.0

128B 198.0 164.0 163.0 163.0 159.0
(a) AES without preloading

4KB 8KB 16KB 32KB ≥ 64KB
224.0 0.0 0.0 0.0 0.0
202.0 0.0 0.0 0.0 0.0
203.0 0.0 0.0 0.0 0.0

(b) AES with preloading

Figure 13: Effect of the cache line size the security guarantee for the Ctr-adversary, for different cache sizes. The
results were obtained for the LRU replacement strategy.

Ctime 4KB 8KB 16KB 32KB ≥ 64KB
32B 7.8 7.4 7.4 7.4 7.3
64B 7.6 7.4 7.4 7.4 7.3

128B 7.7 7.4 7.4 7.4 7.4
(a) AES without preloading

4KB 8KB 16KB 32KB ≥ 64KB
7.9 0.0 0.0 0.0 0.0
7.7 0.0 0.0 0.0 0.0
7.7 0.0 0.0 0.0 0.0

(b) AES with preloading

Figure 14: Effect of the cache line size the security guarantee for the Ctime-adversary, for different cache sizes. The
results were obtained for the LRU replacement strategy.

Cacc 4KB 8KB 16KB 32KB 64KB ≥ 128KB
1-way 72.0 70.7 68.0 68.0 68.0 68.0
2-way 82.8 70.7 70.7 68.0 68.0 68.0
4-way 100.8 81.7 70.7 70.7 68.0 68.0
8-way 79.83 100.4 81.7 70.0 70.0 68.0

(a) AES without preloading

4KB 8KB 16KB 32KB ≥ 64KB
11.0 0.0 0.0 0.0 0.0
59.7 8.0 3.0 0.0 0.0
96.4 42.4 8.0 3.0 0.0
83.0 n/a 42.4 8.0 3.0

(b) AES with preloading

Figure 15: Effect of the cache associativity on information leakage (in bits) for the Cacc-adversary, for different cache
sizes. The results were obtained for the LRU replacement strategy.

20

Caccd 4KB 8KB 16KB 32KB 64KB ≥ 128KB
1-way 67.6 69.2 68.0 68.0 68.0 68.0
2-way 53.3 67.6 69.2 68.0 68.0 68.0
4-way 35.9 53.3 67.6 69.2 68.0 68.0
8-way 17.0 35.6 53.3 67.0 68.6 68.0

(a) AES without preloading

4KB 8KB 16KB 32KB ≥ 64KB
16.7 8.8 0.0 0.0 0.0
22.4 0.0 0.0 0.0 0.0
24.3 0.0 0.0 0.0 0.0
17.3 n/a 0.0 0.0 0.0

(b) AES with preloading

Figure 16: Effect of the cache associativity on information leakage (in bits) for the Caccd-adversary, for different cache
sizes. The results were obtained for the LRU replacement strategy.

Ctr 4KB 8KB 16KB 32KB 64KB ≥ 128KB
1-way 241.0 241.0 155.0 155.0 155.0 155.0
2-way 201.0 160.0 160.0 155.0 155.0 155.0
4-way 193.0 160.0 160.0 160.0 155.0 155.0
8-way 160.0 160.0 160.0 156.0 156.0 155.0

(a) AES without preloading

4KB 8KB 16KB 32KB ≥ 64KB
182.0 130.0 0.0 0.0 0.0
210.0 0.0 0.0 0.0 0.0
202.0 0.0 0.0 0.0 0.0
164.0 0.0 0.0 0.0 0.0

(b) AES with preloading

Figure 17: Effect of the cache associativity on information leakage (in bits) for the Ctr-adversary, for different cache
sizes. The results were obtained for the LRU replacement strategy, with a 64-byte cache line size.

Ctime 4KB 8KB 16KB 32KB ≥ 64KB
1-way 8.0 8.0 7.3 7.3 7.3
2-way 7.7 7.4 7.4 7.3 7.3
4-way 7.6 7.4 7.4 7.4 7.3
8-way 7.4 7.4 7.4 7.3 7.3

(a) AES without preloading

4KB 8KB 16KB 32KB ≥ 64KB
7.6 7.1 0.0 0.0 0.0
7.8 0.0 0.0 0.0 0.0
7.7 0.0 0.0 0.0 0.0
7.4 0.0 0.0 0.0 0.0

(b) AES with preloading

Figure 18: Effect of the cache associativity on information leakage (in bits) for the Ctime-adversary, for different cache
sizes. The results were obtained for the LRU replacement strategy, with a 64-byte cache line size.

21

	Introduction
	Illustrative Example
	Caches, Programs, and Side Channels
	A Primer on Caches
	Programs and Computations
	Cache Updates and Cache Effects
	Side Channels
	Quantification of Side Channels
	Adversarially-chosen Cache States

	Automatic Quantification of Cache Side Channels
	Sound Abstraction of Leakage
	Abstraction Using a Control Flow Graph
	Local Soundness
	Soundness of Delivered Bounds

	Tool Design and Implementation
	Control Flow Reconstruction
	Iterator
	Abstract Domains

	Abstract Domains for Cache Adversaries
	Cache State Domains
	A Trace Domain

	Case Studies
	AES 128
	Salsa20
	Sorting Algorithms
	Discussion and Outlook

	Related Work
	Conclusions
	Example Code
	Proofs
	Comprehensive results of case studies

