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Abstract

We put forth the concept of witness encryption. A witness encryption scheme is defined
for an NP language L (with corresponding witness relation R). In such a scheme, a user can
encrypt a message M to a particular problem instance x to produce a ciphertext. A recipient
of a ciphertext is able to decrypt the message if x is in the language and the recipient knows a
witness w where R(x,w) holds. However, if x is not in the language, then no polynomial-time
attacker can distinguish between encryptions of any two equal length messages. We emphasize
that the encrypter himself may have no idea whether x is actually in the language.

Our contributions in this paper are threefold. First, we introduce and formally define wit-
ness encryption. Second, we show how to build several cryptographic primitives from witness
encryption. Finally, we give a candidate construction based on the NP-complete Exact Cover
problem and Garg, Gentry, and Halevi’s recent construction of “approximate” multilinear maps.

Our method for witness encryption also yields the first candidate construction for an open
problem posed by Rudich in 1989: constructing computational secret sharing schemes for an
NP-complete access structure.

1 Introduction

When we encrypt a message using a public-key encryption scheme, we allow the receiver to learn
our message only if he knows a secret key corresponding to his public key. What if we don’t really
care if he knows a secret key, but we do care if he knows a solution to a crossword puzzle that we
saw in the Times? Or if he knows a short proof for the Goldbach conjecture? Or, in general, the
solution to some NP search problem? In this paper, we ask the question:
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Can we encrypt a message so that it can only be opened
by a recipient who knows a witness to an NP relation?

We introduce the concept of witness encryption for general NP languages. A witness encryption
scheme is defined for an NP language L (with corresponding witness relation R). In such a scheme,
a user can encrypt a message M to a particular problem instance x to produce a ciphertext. A
recipient of a ciphertext is able to decrypt the message if x is in the language and the recipient knows
a witness w where R(x,w) holds. However, if x is not in the language, then no polynomial-time
attacker can distinguish between encryptions of any two equal length messages1. We emphasize
that the encrypter himself may have no idea whether x is actually in the language.

In this paper we construct, and explore the applications of, witness encryption for NP-complete
problems. Targeting witness encryption for NP-complete problems is appealing. First, we can
create encryption puzzles of the type mentioned above. There are multiple real life examples where
a monetary award has been offered for the solution to a puzzle or problem including: the Clay
Institute Millennium Prize Problems [Ins] and the Eternity Puzzle [Web]. For these challenges
one could consider encoding the problem in terms of an NP-complete problem and encrypting the
password to a bank account containing the funds. Witness encryption is especially well-suited to
the situation where the encrypter may not be available (or even alive) at the time when a decrypter
uses a witness to decrypt the ciphertext. This distinguishes the goal of witness encryption from the
interactive setting, where general secure two-party computation protocols [Yao86, GMW87] may
be used for this purpose [AIR01].

Witness Encryption is closely related to the notion of computational secret sharing for NP-
complete access structures, first posed by Rudich in 1989 [Rud89] (see [Bei11]). For example,
consider the NP-complete 3-Exact Cover problem (Proposition 2.25, [Gol08]), where an instance
is defined by a set of subsets T1, . . . , T` of [n] such that each |Ti| = 3, and the problem is to find an
exact cover Ti1 , . . . , Tit such that each element of the universe [n] is contained in exactly one set
Tij . The corresponding secret sharing problem would identify each of the

(
n
3

)
subsets T of [n] of

size 3 with a different party PT . The secret sharing scheme would require a way to take a secret
x and construct potential shares λT for each party PT . The two guarantees needed would be: (1)
efficient recovery : if a set of parties PTi1 , . . . , PTit knew of an exact cover among their sets, then
these parties would be able to efficiently recover the secret x from their shares λTi1 , . . . , λTit . Note
that the monotonicity of recovery is maintained here – if a set of parties contains an exact cover,
so must any other superset of these parties. (2) privacy : if a set of parties PTi1 , . . . , PTit does not
contain an exact cover, then these parties should not be able to distinguish between secret sharings
of distinct secrets x and x′.

It is easy to see that such a Rudich-type secret sharing scheme would imply a Witness Encryption
scheme; the converse, however, is not clear. However, as we note below, our construction of
Witness Encryption extends to yield a Rudich-type secret sharing scheme, as well, under the same
computational assumption. This yields the first candidate construction for Rudich’s open problem
since its posing in 1989. Later in this introduction, we briefly compare Witness Encryption to other
similar concepts that have appeared in the literature.

1We note that this formalization does not capture the requirement that the decrypter must have knowledge of
the witness w. Formalizing knowledge requirements in cryptography is often quite problematic, especially in non-
interactive settings (see, e.g., [HT98]). Indeed, we see this clean formulation of witness encryption without explicit
discussion of knowledge as an important feature of our work. We defer exploring more complex knowledge-based
formulations of witness encryption to future work.
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Witness encryption is also a surprisingly useful tool for building cryptographic schemes. Indeed,
we show witness encryption gives intriguing new solutions with novel properties for cryptographic
primitives including public key encryption [DH76, GM84], Identity-Based Encryption [Sha84, BF03]
and Attribute-Based Encryption [SW05] for circuits. (Our work can be seen as extending and
refining the work of Rudich [Rud89, Bei11] who showed how Rudich-type secret sharing schemes
can be used for constructing novel OT protocols.)

Our contributions in this paper are threefold. First, we introduce and formally define witness
encryption. Second, we show how to build several cryptographic primitives from witness encryption.
Finally, we give a candidate construction based on the NP-complete Exact Cover problem [Kar72]
and Garg, Gentry, and Halevi’s [GGH12] recent construction of “approximate” multilinear maps

We now provide an overview of how to build several cryptographic primitives from witness
encryption, and then how to build the witness encryption scheme itself.

1.1 Building Cryptographic Primitives from Witness Encryption

We demonstrate the power of witness encryption as a flexible tool for building cryptographic prim-
itives. We consider a progression of cryptographic applications, starting with the basic case of
Public-Key Encryption, moving next to Identity-Based Encryption, and finally showing how to
realize Attribute-Based Encryption for general circuits. Each new step in the progression is more
challenging and requires new techniques.

We also point out interesting and unique features of each system that emerge from our use
of witness encryption. For instance, existing public-key encryption schemes, like RSA, all have
“heavy” key generation algorithms, that require non-trivial structured mathematical computations.
For instance, RSA key generation involves choosing large random prime numbers. In contrast,
our public-key encryption scheme based on witness encryption has a key generation algorithm
whose complexity is independent of the complexity of the underlying witness encryption scheme: it
requires only a single evaluation of a pseudo-random generator (PRG), a primitive whose existence
can be based on one-way functions [HILL99]. This also gives rise to an intriguing possibility: if
it were possible to build witness encryption from one-way functions, then this would yield public-
key encryption from one-way functions. We emphasize this possibility not because we think it
likely that witness encryption could be easily built from one-way functions, but because the use
of witness encryption to build public-key encryption is inherently non-black-box in the one-way
function. Thus, this route to achieving public-key encryption from one-way functions would not
contradict the famed black-box impossibility result of Impagliazzo and Rudich [IR89].

Similarly, in our IBE system, private keys can be constructed from any unique signature scheme
and are not tied to any specific algebraic structure or the complexity of the witness encryption
scheme. Indeed, the setup and key generation algorithm are oblivious to what underlying witness
encryption system is used. Suppose we built an IBE system of this nature with a particular witness
encryption system. Now suppose that later on the community discovered a witness encryption
system that was better in some way (e.g. had better performance or security assurances). This
new witness encryption system could be swapped in without requiring any changes to the public
parameters or private keys. Actually, the system is even more dynamic in that individual users can
choose which witness encryption system they want to use on a per-ciphertext basis. We contrast
this with contemporary IBE systems where the public parameters are intimately linked with either
a certain choice of pairing friendly elliptic curve [BF03], choice of Learning with Error (LWE)
parameters [CHKP10, ABB10], or RSA modulus [Coc01]. If, for example, a certain class of elliptic
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curves were later discovered to be vulnerable to attacks, any system using them would need to be
completely rekeyed starting with the authority. 2

Technical Overview of Applications. We now give an overview of the progression of ideas for
our constructions, with the details following in Section 4.

Public-Key Encryption. We begin by showing how witness encryption and pseudorandom generators
(PRGs) give rise to public-key encryption. We assume a length doubling PRG G : {0, 1}λ →
{0, 1}2·λ, however, any PRG that expands by a super-logarithmic number of bits will suffice. To
generate a key one simply chooses a random seed s as the secret key and lets the public key be
the output of G(s)→ t. Encryption is simply a witness encryption that t is in the output space of
the PRG. A user with the secret key s can prepare a witness and decrypt the message. We prove
security using a simple hybrid technique. We first switch generating t honestly to choosing t as a
uniformly random string in {0, 1}2·λ; with very high probability is will not be in the range of G.
By the security of the PRG, the attacker’s advantage should remain the same. At this point, the
NP statement is no longer be true and our witness encryption security definition directly applies.

Identity-Based Encryption. Moving on to Identity-Based Encryption, we must now be able to give
out several secret keys. Our approach is to turn Naor’s3 observation that IBEs give rise to signature
schemes on its head and derive IBE secret keys from essentially any signature scheme with unique
signatures. As a first attempt, one might try to let a secret key for identity I be a signature on I.
Then we can create a ciphertext by using witness encryption on an NP statement that there exists
a signature σ on I. While our correctness property states that one can decrypt, security is harder
to argue. The reason is that an attacker could know that the statement is true, that there exists a
signature on I, without having any clue what the signature actually is.

As a next iteration on the idea, we will try to modify the construction by showing that from
any attacker that breaks our system, we can actually extract a forgery on the challenge identity I∗.
Our method is for the encrypter to choose randomness r and to create two witness encryptions: one
for the statement that there exists a signature σ in I where the Goldreich-Levin [GL89] hard-core
bit of σ, r is 0, and the other witness encryption for the statement where it is 1. A user with
a signature σ will choose the appropriate one. This idea, however, actually hits another snag in
that there could be several signatures which verify for any I. For this reason, we will use unique
signature schemes [GO92]4 where on honest setup there will be at most one verifying signature per
message. Therefore only one of the two witness encryption statements can be true. At this point
we can extract a forgery for any attacking user.

Attribute-Based Encryption for Circuits. We finally move to the most complex case of achieving
Attribute-Based Encryption for general circuits. Until very recently [GGH+13, GVW13], no solu-
tions to this problem were known. In this setting, a private key corresponds to a (bounded-size)
boolean circuit f that takes n bit inputs, and a ciphertext corresponds to an n bit input a. If
f(a) = 1 then the user should be able to decrypt.

If we were to follow in the steps of our IBE solution, we might give a private key for circuit f
as a unique signature on f , and for the proof try to extract a signature forgery from an attacker

2Obviously, our system cannot run away from this problem entirely in that if our underlying signature scheme
were broken this would require rekeying of the system. The main point is that there is a strong separation between
the security of our keys and the more complex witness encryption component.

3The observation was noted in [BF03].
4Goldwasser and Ostrovsky call this notion as invariant signatures.
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that decrypts the (selectively chosen) challenge input a∗. The problem with this approach is that
even if the underlying signature scheme is unique, there could exists many circuits that a∗ satisfies.
If an attacker “used” a different one each time it decrypted, we could not extract a single forgery
from the Goldreich-Levin bits.

For this next step in our progression, we will have to develop a new technique. Intuitively, we
will develop a new special type of signature scheme. In the real usage of our signature scheme
the holder of the signature key can sign any message (thought of as a circuit) f . However, there
is an alternative way to generate the public signature parameters that takes in an extra input
a∗. In this alternative generation there will not exist any valid signatures on a circuit f such that
f(a∗) = 1. Moreover, if no such signatures (signatures on f where f(a∗) = 1) are requested it is
computationally hard to distinguish a normal set of parameters from an alternative set with input
a∗.

With this special type of signature scheme, we can return to the approach of letting encryption
for input a be a witness encryption of the NP statement that there is a signature on f where
f(a) = 1. The proof of security will be a hybrid experiment where the first step is to change
from a normal set of parameters to an alternative set for a∗. Our special signatures are realized
from information theoretically sound Non-Interactive Witness Indistinguishable Proofs (NIWIs)
and commitments with perfect soundness.

Fully Secure IBE. Finally, we extend the ideas for building ABE for circuits to get adaptive se-
curity for IBE (without complexity leveraging). Intuitively, we execute a “partitioning” strategy
like [BF03, Wat05] where the reduction algorithm splits identities into two disjoint sets: those it
can generate private keys for and those it can use as a valid challenge ciphertext. Again, we will
use a version of a special signature scheme. In the real usage the holder can sign any message
(thought of as an identity). The alternative parameter generation will take as input a PRF key s
and a specified number of bits in the output range; the input of the PRF F ′ is a message. For this
alternative parameter generation one can sign M if and only if F ′K(M) 6= 0.

In the reduction we do a hybrid proof where the (hidden) range of the PRF is set to be
approximately the number of queries, q, made by the attacker. This means that approximately 1/q
fraction of the identities will be useful as a challenge ciphertext and the other 1−1/q the reduction
can make a private key for. Since are partitioning is tighter to the 1/q probability than [Wat05] we
avoid the artificial abort issue that proof faced.

1.2 Building Witness Encryption Schemes

Conceptually, in our particular witness encryption scheme, a ciphertext consists of components –
“puzzle pieces”, if you will – that the decrypter puts together to compute the message-masking key.
Our goal is to find the simplest manner to assemble such a “puzzle” for general NP relations using
the framework of multilinear maps5. To this end, we identify the Exact Cover problem, one
of Karp’s original NP-complete problems (under Karp/Levin reductions). An instance of Exact
Cover consists of a number n and a collection of subsets T1, . . . , T` ⊂ [n]. A witness is a set I ⊆ [`]
such that {Ti : i ∈ I} is a partition of [n]. When I is a witness, the puzzle pieces {Ti : i ∈ I} fit
together exactly to solve the puzzle [n]. There may be many witnesses, and therefore many sets of
pieces that lead to a solution.

5Indeed, we also have a direct construction (omitted here) for the standard NP-complete problem of Satisfiabil-
ity; however that construction is significantly more complex than the construction we provide here.
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This “puzzle pieces” approach is reminiscent of what one sees in many previous schemes that
use (cryptographic) bilinear maps, such as attribute-based encryption schemes [SW05]. However,
bilinearity allows the decrypter to not only add, but also subtract, components. For this reason, as
far as we know, attribute-based encryption schemes using bilinear maps can only enforce policies
that are approximately equal in power to linear span programs. To prevent the “subtraction of puz-
zle pieces”, we apparently need a stronger cryptographic tool. Accordingly, we use (cryptographic)
multilinear maps [BS03], which allow the “multiplication of puzzle pieces”, but not division of them,
which will work just as well.

Specifically, suppose we have a n-multilinear group family consisting of a sequence of groups
G1, . . . ,Gn of the same order p, together with generators g1, . . . , gn and a set of multilinear maps
ei,j : Gi ×Gj → Gi+j for i+ j ≤ n that satisfy ei,j(g

a
i , g

b
j) = gabi+j . For convenience, we collapse the

multilinear maps into a single polymorphic function e : Gi1×· · ·×Git → Gi1+···+it for i1+ · · ·+ it ≤
n given by e(ga1i1 , . . . , g

at
it

) = (gi1+···+it)
a1···at . The multilinear map allows multiplication (in the

exponent) up to degree n. There is no mechanism for division.
Now, given an Exact Cover instance (n, T1, . . . , T`) and a n-multilinear group family, our

witness encryption scheme is quite simple. To encrypt M ∈ Gn (we assume that the message can
be encoded as a group element), generate random scalars a1, . . . , an ∈ Zp, and send a ciphertext that

consists of C = M ·ga1···ann , and the “puzzle pieces” Ci = (g|Ti|)
∏

j∈Ti
aj for all i ∈ [`]. If the decrypter

knows a witness I = {i1, . . . , it} ⊆ [`] such that {Ti : i ∈ I} is a partition of [n], it can decrypt
in the obvious way using the multilinear map. In particular, it computes ga1···ann = e(Ci1 , . . . , Cit),
and divides this value from C to recover M .

Intuitively, the construction is secure since the only way to make ga1···ann is to find an exact
cover of [n]. Formally, we base security on the assumed hardness of the “Decision Multilinear
No-Exact-Cover Problem” – roughly, given an instance x of Exact Cover that has no solution,
it is hard to distinguish the distribution (C1, . . . , C`, g

a1···an
n ) from the distribution (C1, . . . , C`, g

r
n)

where r is random and independent.
Unfortunately, this security assumption is intimately tied to the encrypter’s particular NP rela-

tion instance. It would certainly be more satisfying to base security on a fixed, natural assumption
that works for all instances. However, we prove that it is impossible to base the security of a
restricted class of witness encryption scheme via an efficient black box reduction on a simple as-
sumption – i.e., on a non-interactive hardness assumption that is independent of the hardness of
deciding the specific NP problem instance being encrypted. The underlying assumption must ei-
ther change with the NP relation instance, or the complexity of breaking the assumption must
be greater than the complexity of deciding the relation. We leave open the problem of circum-
venting this impossibility result and constructing a witness encryption scheme based on a simple
assumption by using complexity leveraging. We also show for the sake of completeness that it is
impossible to construct a statistically-sound witness encryption scheme for NP unless the polyno-
mial hierarchy collapses (such a result follows from known results in the statistical zero knowledge
literature [IOS97, Rud89, Bei11]).

Of course, constructing the “pure” cryptographic multilinear map envisioned by Boneh and Sil-
verberg [BS03] remains a long-standing open problem. However, Garg, Gentry and Halevi [GGH12]
recently used ideal lattices to construct “approximate” or “noisy” cryptographic multilinear maps,
which they call graded encoding systems. We show that their graded encoded systems suffice to
construct our witness encryption scheme.
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1.3 Other Related Work

As mentioned above, witness encryption, both as a notion and in terms of the applications that
we envision, is interesting only as a non-interactive primitive. In the interactive setting, general
secure two-party computation protocols [Yao86, GMW87] suffice for an interactive analog of wit-
ness encryption, where the decrypter essentially “commits” to his witness before the encrypter
sends a message [AIR01]. From the completely different perspective of statistical zero-knowledge
protocols, a concept similar in spirit to witness encryption has been studied under the heading of
instance-dependent commitments (ID commitments, for short), starting as early as [TW87]. In an
ID commitment, a party commits to a value m with respect to an instance x. Depending on whether
x ∈ L or not, the commitment is required to be statistically binding or statistically hiding. Both in-
teractive [OV08, CCKV08] and non-interactive [TW87, IOS97, IS91, KMV07, CCKV08, GOVW12]
variants of ID commitment schemes have been studied in the literature, with recent work also con-
sidering the notion of efficient extractability [GOVW12]. However, non-interactive primitives have
been considered only in a setting where statistical hiding is desired. These works can be seen as es-
tablishing the existence of statistical witness encryption schemes for a few specific languages known
to be in SZK (more specifically, languages that possess certain kinds of hash proof systems [CS02]).
Indeed, it is impossible to construct such a statistical primitive for NP complete languages un-
less the polynomial hierarchy collapses [IOS97](for self-containment, we also provide a proof of this
here).It is intriguing that these works in the statistical zero knowledge literature considered a notion
related to ours, despite coming from a very different perspective. However, we stress that no prior
work considered the notion of witness encryption for general NP languages, which is the focus of
this work. Furthermore, no candidate constructions for NP-complete languages were contemplated
prior to our work, explicitly or implicitly.

2 Preliminaries

In this section, we provide background on cryptographic multilinear maps [BS03] and Garg et al.’s
lattice-based “approximate” multilinear maps (a.k.a. “graded encoding systems”) [GGH12].

2.1 Cryptographic Multilinear Maps: Dream Version

It remains a long-standing open problem to construct a multilinear group family (defined below)
over which natural problems, such as discrete log and higher-degree versions of Diffie-Hellman, are
intractable. Garg, Gentry and Halevi (GGH) [GGH12] recently constructed “approximate” multi-
linear maps from ideal lattices, which are limited to polynomial degree, after which the “noisiness”
of their encodings overwhelms the signal, somewhat like ciphertexts in somewhat homomorphic
encryption schemes. Their approximate multilinear maps suffice to construct witness encryption,
but, for clarity, we also describe our constructions using clean “exact” multilinear maps, described
here.

Let params← G(1λ, n) be a description of a multilinear group family G1, . . . ,Gn, each of prime
order p = p(λ) for security parameter λ, with canonical generators g1, g2, . . . , gn, and multilinear
map e. The multilinear map e is actually a set of bilinear maps {ei,j : Gi × Gj → Gi+j | i, j ≥
1; i+ j ≤ n}, where ei,j satisfies the following relation:

ei,j

(
gai , g

b
j

)
= gabi+j : ∀a, b ∈ Zp.
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We observe that one consequence of this is that ei,j(gi, gj) = gi+j for each valid i, j.
When the context is obvious, we will sometimes abuse notation drop the subscripts i, j. For

example, we may simply write:

e
(
gai , g

b
j

)
= gabi+j .

For i1, . . . , it ∈ [n] with i1 + . . .+ it ≤ n, we write:

e
(
g
ai1
i1
, . . . , g

bit
it

)
= (gi1+···+it)

ai1 ···ait ,

where the left side is computed iteratively by setting B1 = g
ai1
i1

, then for j = 2, . . . , t setting

Bj = e(Bj−1, g
aij
ij

), and finally outputting Bt.
Our witness encryption scheme will rely on the intractability of the following Decision Multi-

linear No-Exact-Cover Problem. (Recall that the Exact Cover problem is one of Karp’s original
NP-complete problems. The instance is a number n and a collection of subsets T1, . . . , T` ⊂ [n]. A
witness is a set I ⊆ [`] such that {Ti : i ∈ I} is a partition of [n].)

Definition 2.1 (Decision Multilinear No-Exact-Cover Problem). Let x = {Ti : Ti ⊂ [n], i ∈ [`]} be
an instance of Exact Cover that has no solution. Let params ← G(1λ+n, n) be a description of
a multilinear group family with order prime p = p(λ). Let a1, . . . , an, r be uniformly random in Zp.
For i ∈ [`], let hi = (g|Ti|)

∏
j∈Ti

aj . Distinguish between the two distributions:

(params, h1, . . . , h`, g
a1···an
n ) and (params, h1, . . . , h`, g

r
n).

(The search version is: given params, h1, . . . , h`, output ga1···ann . However, we will not need it here.)

Definition 2.2 (Decision Multilinear No-Exact-Cover Assumption). The Decision Multilinear No-
Exact-Cover Assumption is that for all adversaries A, there exists a fixed negligible function ν(·)
such that for all instances x with no solution, A’s distinguishing advantage against the Decision
Multilinear No-Exact-Cover Problem for x is at most ν(λ).

2.2 Graded Encoding Systems: Definition

Garg, Gentry and Halevi (GGH) [GGH12] defined an “approximate” version of a multilinear group
family, which they call a graded encoding system. As a starting point, they view gαi in a multilinear
group family as simply an encoding of α at “level-i”. This encoding permits basic functionalities,
such as equality testing (it is easy to check that two level-i encodings encode the same exponent),
additive homomorphism (via the group operation in Gi), and bounded multiplicative homomor-
phism (via the multilinear map e). They retain the notion of a somewhat homomorphic encoding
with equality testing, but they use probabilistic encodings, and replace the multilinear group family
with “less structured” sets of encodings related to lattices.

Abstractly, their n-graded encoding system for a ring R includes a system of sets S = {S(α)
i ⊂

{0, 1}∗ : i ∈ [0, n], α ∈ R} such that, for every fixed i ∈ [0, n], the sets {S(α)
i : α ∈ R} are disjoint

(and thus form a partition of Si
def
=
⋃
α S

(α)
i ). The set S

(α)
i consists of the “level-i encodings of α”.

Moreover, the system comes equipped with efficient procedures, as follows:6

6Since GGH’s realization of a graded encoding system uses “noisy” encodings over ideal lattices, the procedures
incorporate information about the magnitude of the noise.

8



Instance Generation. The randomized InstGen(1λ, 1n) takes as input the security parameter λ
and integer n. The procedure outputs (params,pzt), where params is a description of an
n-graded encoding system as above, and pzt is a level-n “zero-test parameter”.

Ring Sampler. The randomized samp(params) outputs a “level-zero encoding” a ∈ S0, such that

the induced distribution on α such that a ∈ S(α)
0 is statistically uniform.

Encoding. The (possibly randomized) enc(params, i, a) takes i ∈ [n] and a level-zero encoding

a ∈ S(α)
0 for some α ∈ R, and outputs a level-i encoding u ∈ S(α)

i for the same α.

Re-Randomization. The randomized reRand(params, i, u) re-randomizes encodings to the same
level, as long as the initial encoding is under a given noise bound. Specifically, for a level

i ∈ [n] and encoding u ∈ S(α)
i , it outputs another encoding u′ ∈ S(α)

i . Moreover for any two

encodings u1, u2 ∈ S
(α)
i whose noise bound is at most some b, the output distributions of

reRand(params, i, u1) and reRand(params, i, u2) are statistically the same.

Addition and negation. Given params and two encodings at the same level, u1 ∈ S
(α1)
i and

u2 ∈ S(α2)
i , we have add(params, u1, u2) ∈ S(α1+α2)

i , and neg(params, u1) ∈ S(−α1)
i , subject to

bounds on the noise.

Multiplication. For u1 ∈ S(α1)
i1

, u2 ∈ S(α2)
i2

, we have mult(params, u1, u2) ∈ S(α1·α2)
i1+i2

.

Zero-test. The procedure isZero(params,pzt, u) outputs 1 if u ∈ S(0)
n and 0 otherwise. Note that

in conjunction with the procedure for subtracting encodings, this gives us an equality test.

Extraction. This procedure extracts a “canonical” and “random” representation of ring elements
from their level-n encoding. Namely ext(params,pzt, u) outputs (say) K ∈ {0, 1}λ, such that:

(a) With overwhelming probability over the choice of α ∈ R, for any two u1, u2 ∈ S
(α)
n ,

ext(params,pzt, u1) = ext(params,pzt, u2),

(b) The distribution {ext(params,pzt, u) : α ∈ R, u ∈ S
(α)
n } is statistically uniform over

{0, 1}λ.

Remark 1. We can extend add and mult to handle more than two encodings as inputs, by applying
the binary versions of add and mult iteratively. Also, it is convenient to define a canonicalized
encoding algorithm enc†(params, i, a) = reRand(params, i, enc(params, i, a)) which outputs encodings
according to a “nice” distribution.

It is straightforward to adapt the Decision Multilinear No-Exact-Cover Problem to the setting
of graded encodings.

Definition 2.3 (Decision Graded Encoding No-Exact-Cover Problem). Let x = {Ti : Ti ⊂ [n], i ∈
[`]} be an instance of Exact Cover that has no solution. Let (params,pzt)← InstGen(1λ+n, 1n) be
a description of a n-graded encoding system with |R| prime, and a level-n zero-test parameter. Gen-
erate a1, . . . , an, r via samp(params). For i ∈ [`], let hi ← enc†(params, |Ti|,

∏
j∈Ti aj). Distinguish

between the two distributions:

(h1, . . . , h`, enc
†(params, n, a1 · · · an)) and(h1, . . . , h`, enc

†(params, n, r)).
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Definition 2.4 (Decision Graded Encoding No-Exact-Cover Assumption). The Decision Graded
Encoding No-Exact-Cover Assumption is that for all adversaries A, there exists a fixed negligible
function ν(·) such that for all instances x with no solution, A’s distinguishing advantage against
the Decision Graded Encoding No-Exact-Cover Problem for x is at most ν(λ).

2.3 Graded Encoding Systems: Realization

Concretely, GGH’s n-graded encoding system works as follows. (This is a whirlwind overview; see
[GGH12] for details.) The system uses three rings. First, it uses the ring of integers O of the m-th
cyclotomic field. This ring is typically represented as the ring of polynomials O = Z[x]/(Φm(x)),
where Φm(x) is the m-th cyclotomic polynomial, which has degree N = φ(m). Second, for some
suitable integer modulus q, it uses the quotient ring O/(q) = Zq[x]/(Φm(x)), similar to the NTRU
encryption scheme [HPS98]. The encodings live in O/(q). Finally, it uses the quotient ring R =
O/I, where I = 〈g〉 is a principal ideal of O that is generated by g and where |O/I| is a large
prime. This is the ring “R” referred to above; elements of R are what is encoded.

What does a GGH encoding look like? For a fixed random z ∈ O/(q), an element of S
(α)
i – that

is, a level-i encoding of α ∈ R – has the form e/zi ∈ O/(q), where e ∈ O is a “small” representative
of the coset α + I (it has coefficients that are very small compared to q). To add encodings

e1/z
i ∈ S(α1)

i and e2/z
i ∈ S(α2)

i , just add them in O/(q) to obtain (e1 + e2)/z
i, which is in S

(α1+α2)
i

if e1 + e2 is “small”. To mult encodings e1/z
i1 ∈ S(α1)

i1
and e2/z

i2 ∈ S(α2)
i2

, just multiply them in

O/(q) to obtain e1 ·e2/zi1+i2 , which is in S
(α1·α2)
i1+i2

if e1 ·e2 is “small”. This smallness condition limits
the GGH encoding system to degree polynomial in the security parameter. Intuitively, dividing
encodings does not “work”, since the resulting denominator has a nontrivial term that is not z.

The GGH params allow everyone to generate encodings of random (known) values. The params
include a level-1 encoding of 1 (from which one can generate encodings of 1 at other levels), and
(for each i ∈ [n]) a sufficient number of level-i encodings of 0 to enable re-randomization. To encode
(say at level-1), run samp(params) to sample a small element a from O, e.g. according to a discrete
Gaussian distribution. For a Gaussian with appropriate deviation, this will induce a statistically
uniform distribution over the cosets of I. Then, multiply a with the level-1 encoding of 1 to get
a level-1 encoding u of a ∈ R. Finally, run reRand(params, 1, u), which involves adding a random
Gaussian linear combination of the level-1 encodings of 0, whose noisiness (i.e., numerator size)
“drowns out” the initial encoding.

To permit testing of whether a level-n encoding u = e/zn ∈ Sn encodes 0, GGH publishes a
level-n zero-test parameter pzt = hzn/g, where h is “somewhat small”7 and g is the generator of I.
The procedure isZero(params,pzt, u) simply computes pzt · u and tests whether its coefficients are
small modulo q. If u encodes 0, then e ∈ I and equals g ·c for some (small) c, and thus pzt ·u = h ·c
has no denominator and is small modulo q. If u encodes something nonzero, pzt · u has g in the
denominator and is not small modulo q. The ext(params,pzt, u) procedure works by applying a

strong extractor to the most significant bits of pzt · u. For any two u1, u2 ∈ S(α)
n , we have (subject

to noise issues) u1 − u2 ∈ S(0)
n , which implies pzt(u1 − u2) is small, and hence pzt · u1 and pzt · u2

have the same most significant bits (for an overwhelming fraction of α’s).
Garg et al. provide an extensive cryptanalysis of the encoding system, which we will not

7Its coefficients are on the order of (say) q2/3, while other terms – such as a numerator e or the principal ideal
generator g – are much, much smaller.
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review here. We remark that the underlying assumptions are stronger, but related to, the hardness
assumption underlying the NTRU encryption scheme: that it is hard to distinguish a uniformly
random element from O/(q) from a ratio of “small” elements – i.e., an element u/v ∈ O/(q) where
u, v ∈ O/(q) both have coefficients that are on the order of (say) qε for small constant ε.

3 Witness Encryption

Definition 3.1. A witness encryption scheme for an NP language L (with corresponding witness
relation R) consists of the following two polynomial-time algorithms:

Encryption. The algorithm Encrypt(1λ, x,M) takes as input a security parameter 1λ, an
unbounded-length string x, and a message M ∈ {0, 1}, and outputs a ciphertext CT.

Decryption. The algorithm Decrypt(CT, w) takes as input a ciphertext CT and an unbounded-
length string w, and outputs a message M or the symbol ⊥.

These algorithms satisfy the following two conditions:

• Correctness. For any security parameter λ, for any M ∈ {0, 1}, and for any x ∈ L such
that R(x,w) holds, we have that

Pr
[
Decrypt

(
Encrypt(1λ, x,M), w

)
= M

]
= 1

• Soundness Security. For any PPT adversary A, there exists a negligible function neg(·)
such that for any x /∈ L, we have:∣∣∣Pr

[
A(Encrypt(1λ, x, 0)) = 1

]
− Pr

[
A(Encrypt(1λ, x, 1)) = 1

]∣∣∣ < neg(λ)

Remark 2. We stress that witness encryption does not require any setup algorithm.

The Security-Correctness Gap. We remark that the correctness stipulates that an algorithm
can decrypt if x ∈ L it knows a witness w for the relation R. Security states that if x /∈ L then
no polynomial-time algorithm can decrypt. However, our definition is (intentionally) silent on the
case when x ∈ L, but the algorithm does not know a witness for the relation R.

Remark 3. An earlier version of our paper presented a security definition where the negligible
function could depend upon the instance x. Bellare and Hoang [BH13] showed that there exists
witness encryption systems that meet this earlier formulation, but do not suffice for our applications
such as public key encryption. Bellare and Hoang [BH13] propose a game-based definition to address
this issue. In our revised definition above we use a different order of quantification.

4 Cryptographic Primitives from Witness Encryption

We turn to building cryptographic primitives from witness encryption. We show a progression
of primitives starting with the basic case of Public-Key Encryption, then moving on to Identity-
Based Encryption, and finally showing how to realize Attribute-Based Encryption for circuits. Each
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new step in the progression will be more challenging and require new techniques. We also give a
construction of a fully secure IBE scheme.

We now formally describe our encryption systems. For building them we will assume the
existence of a witness encryption scheme for an NP-Complete language L for which there exists
a Karp-Levin reduction. We focus on presenting the constructions in this section and defer the
proofs to Appendix A.

4.1 Public Key Encryption

We now describe our public key encryption system in terms of three algorithms.

SetupPKE(1λ)
The setup algorithm chooses a random PRG seed s ∈ {0, 1}λ. Next, it uses the PRG G : {0, 1}λ →
{0, 1}2·λ to compute G(s) → t ∈ {0, 1}2λ. The public key PK = (t, λ) is the output of the PRG
and the security parameter. The secret key SK = s is the seed.

EncryptPKE(PK = (t, λ),M)
To encrypt the algorithm prepares an instance x such that x ∈ L if and only if t is in the range of
G. It uses the Karp-Levin reduction to the NP-complete language L to do this. Next, it computes
EncryptWE(1λ, x,M)→ C to encrypt the message M for the instance x. The output ciphertext is
CT = (x,C).

DecryptPKE(SK = s,CT = (x,C))
The decryption algorithm is given an instance x and witness encryption ciphertext C. If the
ciphertext was formed properly, the algorithm can use its knowledge of s to obtain a witness w
that x ∈ L. Next, it calls DecryptWE(C,w) to recover the encrypted message M .

4.2 Identity-Based Encryption

We now describe the four algorithms comprising of our IBE system. We assume the existence of a
unique signature system, where on honest setup there will be exactly one signature that will verify.
We also use GL(σ, r) to denote the Goldreich-Levin [GL89] hardcore bit of σ using randomness r.
Recall, that the GL predicate is the bitwise inner product between σ and r.

SetupIBE(1λ)
The IBE setup algorithm runs Setup-Signature(1λ) for the unique signature system. It sets the
public parameters PP to be the signature verification key and the master secret key MSK to be
the signature signing key.

KeyGenIBE(MSK, I)
The key generation algorithm simply computes a signature on the identity by calling Sign(MSK, I)→
SK.
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EncryptIBE(PP, I,M)
The encryption algorithm will actually prepare two witness encryption ciphertexts. Suppose that
signatures in our underlying signature scheme are of length k. The algorithm chooses a random
r ∈ {0, 1}k.

It prepares an instance x0 such that x0 ∈ L if and only if there exists a signature σ where
GL(σ, r) = 0 and where Verify(PP, σ, I) = true. It computes EncryptWE(1λ, x0,M)→ C0. Next, it
creates a ciphertext for the opposite condition. It prepares x1 where x1 ∈ L if and only if there exists
a signature σ where GL(σ, r) = 1 and σ verifies on I. It computes EncryptWE(1λ, x1,M) → C1.
The output ciphertext is CT = (I, x0, x1, r, C0, C1).

Since we are using a unique signature scheme there will exist only one signature σ where
Verify(PP, σ,M) = true. Thus, either x0 ∈ L or x1 ∈ L, but not both. For non-unique signature
schemes, there might be multiple signatures that could verify and the above condition would not
necessarily hold.

DecryptIBE(SK = σ,CT = (I, x0, x1, r, C0, C1))
The decryption algorithm first computes the bit b = GL(σ, r). Then it uses its knowledge of σ to
obtain a witness w that xb ∈ L. Finally, it calls DecryptWE(Cb, w) to recover the encrypted message
M .

4.3 Attribute-Based Encryption for Circuits

We now describe a construction of (Key-Policy) Attribute-Based Encryption for circuits. In this
setting, a private key corresponds to a boolean circuit f that takes n bit inputs. A ciphertext
corresponds to an n bit value a. If f(a) = 1 then the user should be able to decrypt.

Let Com be a perfectly binding non-interactive commitment scheme8 and let (P, V ) be a non-
interactive zap (defined in Section B).

SetupABE(1λ)
The ABE setup algorithm generates commitments c1 = Com(0; r) and c2 = Com(0n; s). It sets the
public parameters PP to be (c1, c2) and the master secret key MSK to be r.

KeyGenABE(MSK, f)
The key generation algorithm simply outputs (f, πf ) where πf = P (xf , r). Here, r is the randomness
used in generation of c1 and xf is the following NP-statement:

∃(w1, a, w2) such that c1 = Com(0;w1) ∨ (c2 = Com(a;w2) ∧ f(a) = 0) (1)

Note that f is the circuit for which the secret key is being issued. Also note that the proof πf
will have size specified by fixed polynomial in λ, n, |f | denoted by µ(λ, n, |f |).

EncryptABE(PP, a,M)
The encryption algorithm prepares an instance x′ such that x′ ∈ L if and only if there exists a
circuit g such that |g| ≤ `max and a proof πg (of size µ(λ, n, |g|)) such that V (xg, πg) = 1∧ g(a) = 1
where xg is the NP-statement as defined in Equation 1.

Next, it computes EncryptWE(1λ, x′,M)→ C. The output ciphertext is CT = (a, x′, C, `max).

8Such a commitment scheme can be constructed using any one-to-one one way function.
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DecryptABE((f, πf ),CT = (a, x′, C, `max))
If f(a) = 1 and |f | ≤ `max, the decryption algorithm uses πf to obtain a witness w to the fact that
x′ ∈ L. Finally, it calls DecryptWE(C,w) to recover the encrypted message M .

Remark 4. Note that in our scheme each secret key corresponds to a circuit. These circuits
could be as large as desired (still polynomial sized though). However at the time of encryption the
encrypter specifies an upper bound (`max above) on the size of the circuits corresponding to which
the secret keys can be used. This parameter could be a global system parameter fixed once and for
all or could be a parameter that the encrypter fixes on a per encryption basis.

4.4 Fully Secure Identity-Based Encryption

Now, we describe a fully secure IBE scheme for identities of length n. Let Com be a perfectly binding
non-interactive commitment scheme and let (P, V ) be a non-interactive zap (defined in Section B).
Let F be a PRF family from n bits to λ bits with seed length λ. Further let Fs(y) denote the PRF
output on input y with s. For any t ∈ [λ], let F ′s,t(y) denote the t least significant bits from Fs(y).

SetupIBE(1λ)
The IBE setup algorithm generates commitments c1 = Com(0; r), c2 = Com(0λ;R) and c3 =
Com(0log(λ);R′). It sets the public parameters PP to be (c1, c2, c3) and the master secret key MSK
to be r.

KeyGenIBE(MSK, I)
The key generation algorithm simply outputs (I, πI) where πI = P (xI , r). Here, r is the random-
ness used in generation of c1 and xI is the following NP-statement:

∃(w1, s, t, w2, w3) such that c1 = Com(0;w1)∨(c2 = Com(s;w2)∧c3 = Com(t;w3)∧Fs,t(I) 6= 0) (2)

Note that I is the identity for which the secret key is being issued. Also note that the size of the
proof πI will be some fixed polynomial in λ, |I|.

EncryptIBE(PP, I,M)
It prepares an instance x′ such that x′ ∈ L if and only if there exists a proof πI (of appropriate
size) such that V (xI , πI) = 1 where xI is the NP-statement as defined in Equation 2.

Next, it computes EncryptWE(1λ, x′,M)→ C. The output ciphertext is CT = (I, x′, C).

DecryptIBE((I, πI),CT = (I ′, x′, C))
If I = I ′ then it uses its knowledge of πI to obtain a witness w to the fact that x′ ∈ L. Finally, it
calls DecryptWE(C,w) to recover the encrypted message M .

Security Proof. The key idea in proving the security of the above scheme is to be able to execute
a partitioning strategy for the secret keys of the adaptive IBE. This is very similar to [Wat05] except
that we do not have to deal with the issue of artificial aborts. Next we will give the complete proof.
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5 Our Construction

Our witness encryption scheme is surprisingly simple. We use the Exact Cover problem, one
of Karp’s original NP-complete problems. The instance is a number n and a collection of subsets
T1, . . . , T` ⊂ [n]. A witness is a set I ⊆ [`] such that {Ti : i ∈ I} is a partition of [n]. For clarity,
we first present our construction using the “dream-version” of multilinear maps. Next, we present
an instantiation of the scheme using the GGH graded encoding system.

5.1 Witness Encryption Using a Multilinear Group Family

Encrypt(1λ, x,M)
The algorithm takes as input an Exact Cover instance x and a message M . It generates params←
G(1λ+n, n), which include a multilinear group family G1, . . . ,Gn of prime order p = p(λ) with
canonical generators g1, g2, . . . , gn and multilinear map e. It chooses random a1, . . . , an ∈ Zp. For
M ∈ Gn (we assume that the message can be encoded as a group element), the ciphertext CT
consists of:

C = M · ga1···ann and ∀i ∈ [`] Ci = (g|Ti|)
∏

j∈Ti
aj

as well as params and a description of the exact cover instance x.

Decrypt(CT, w = I)
The algorithm takes as input a ciphertext and a witness set I = {j1, j2, . . . , j|I|} ⊆ [`] associated to
a partition of [n]. The algorithm outputs

M = C/e(Cj1 , . . . , Cj|I|).

Correctness. Since I is associated to a partition of [n], e(Cj1 , . . . , Cj|I|) is precisely ga1···ann .

Security. Intuitively, the construction is secure since the only way to make ga1···ann is to find
an exact cover of [n]. Formally, we base security on the Decision Multilinear No-Exact-Cover
Assumption.

Theorem 5.1. The scheme above is a sound witness encryption scheme under the Decision Mul-
tilinear No-Exact-Cover Assumption.

Proof. Immediate.

5.2 Witness Encryption Using a Graded Encoding System

The GGH graded encoding system is probabilistic and does not offer a bijection between encodings
and a message space. Therefore, we present our witness encryption scheme as a key encapsulation
mechanism (KEM). In a KEM, one encrypts a random key rather than a message. Then, the
random key is used to encrypt the message – e.g., using a symmetric encryption scheme. In a
sound witness encryption KEM, for any x /∈ L, a PPT adversary should not be able to distinguish
between the actual KEM key and a random string of the same length.
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Encrypt(1λ, x,M)
The algorithm takes as input an Exact Cover instance x. The algorithm runs the InstGen
algorithm to generate (params,pzt) ← InstGen(1λ+n, 1n), where params is a description of a n-
graded encoding system and pzt is a level-n zero-test parameter. The algorithm samples level-zero
encodings ai ← samp(params) for i ∈ [n]. The ciphertext CT consists of:

∀i ∈ [`] Ci ← enc†(params, |Ti|,
∏
j∈Ti

aj)

as well as params, pzt, and a description of the exact cover instance x. The KEM key K is:

K ← ext(params,pzt, enc(params, n, a1 · · · an)).

Decrypt(CT, w = I)
The algorithm takes as input a ciphertext and a witness set I = {j1, j2, . . . , j|I|} ⊆ [`] associated to
a partition of [n]. The algorithm sets

B ← mult(params, Cj1 , . . . , Cj|I|).

The algorithm uses the extraction routine to derive the KEM key, K ← ext(params,pzt, B).

Correctness. Assuming an appropriate choice of parameters, we note that since I is associated to
a partition of [n], mult(params, Cj1 , . . . , Cj|I|) is a level-n encoding of a1 · · · an’s coset inR. Moreover,
the extraction algorithm is designed so that, with overwhelming probability over the choice of α ∈ R,
for any two valid level-n encodings B1, B2 of α, ext(params,pzt, B1) = ext(params,pzt, B2).

Regarding parameters, GGH show that one can achieve correctness and 2λ security against
known attacks while using the ring of integers for the m-th cyclotomic field for m = Õ(nλ2). As
long as there is no circular dependence between the witness encryption scheme itself (its underlying
ring of integers, etc.) and the encrypter’s NP relation, the encrypter can choose m after n and λ
to satisfy this requirement. See [GGH12] for additional guidance about setting parameters.

Remark 5. Note that the construction of Witness Encryption described above can be easily adapted
to the realize the stronger notion of computational secret sharing for an NP-complete access struc-
ture, first posed by Rudich in 1989 [Rud89] (see [Bei11]). More specifically, in the setting of the
3-Exact Cover problem (it is NP-complete, see Proposition 2.25 in [Gol08]) consider we could iden-
tify each of the

(
n
3

)
subsets T of [n] such that |T | = 3 with a different party PT . The secret sharing

scheme would require a way to take a secret x and construct potential shares λT for each party PT .
The two guarantees needed would be: (1) efficient recovery: if a set of parties PTi1 , . . . , PTit knew
of an exact cover among their sets, then these parties would be able to efficiently recover the secret
x from their shares λTi1 , . . . , λTit . Note that the monotonicity of recovery is maintained here – if a
set of parties contains an exact cover, so must any other superset of these parties. (2) privacy: if
a set of parties PTi1 , . . . , PTit does not contain an exact cover, then these parties should not be able
to distinguish between secret sharing of distinct secrets x and x′.

Our construction of Witness Encryption extends to yield a Rudich-type secret sharing scheme,
as well, under the same computational assumption. This can be done by setting the secret share λT
provided to party PT as enc†(params, |T |,

∏
j∈T aj). Parties having access to the right shares will

be able to reconstruct the shared secret using the decryption procedure of the scheme. On the other
hand privacy can be argued just like the soundness of the witness encryption scheme.
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5.3 Security for Witness Encryption Using a Graded Encoding System

Intuitively, the construction is secure since the only way to obtain K is to apply the extraction
algorithm to a level-n encoding of a1 · · · an, and the only way to obtain the latter is to find an
exact cover of [n]. Formally, we base security on the Decision Graded Encoding No-Exact-Cover
Assumption.

Theorem 5.2. Our graded-encoding-system witness encryption construction is a sound KEM under
the Decision Graded Encoding No-Exact-Cover Assumption.

Proof. Suppose that a PPT adversary A can distinguish K (as output by Encrypt) from a uniformly
random string with non-negligible advantage when the exact cover instance x has no witness.
Then, there is an algorithm B, with complexity polynomially related to A, that solves the Decision
Graded Encoding No-Exact-Cover Problem with non-negligible advantage (a contradiction).

Specifically, given an instance (h1, . . . , h`, B) of the Decision Graded Encoding No-Exact-Cover
Problem where B = enc†(params, n, s) where s is either a1 · · · an or r (random), B constructs
a ciphertext CT that includes Ci = hi for i ∈ [`], params, pzt, and a description of the exact
cover instance x. It sets K∗ ← ext(params,pzt, B). It sends (CT,K∗) to A. Note that if B =
enc†(params, n, a1 · · · an), then K∗ has (statistically) the same distribution as a proper key, whereas
if B = enc†(params, n, r), then K∗ is (statistically) random and independent by the randomness
property of the sampling procedure and the properties of ext. Therefore, by assumption, A can
distinguish whether K is well-formed or random with non-negligible advantage, and B can use
A’s output to solve the Decision Graded Encoding No-Exact-Cover Problem with non-negligible
advantage.

6 Impossibilities

In this section, we argue that it is unlikely that the hardness assumptions underlying the security of
witness encryption schemes can be simplified significantly. In particular, we give two impossibility
results.

First we show that existence of a statistically secure variant of a witness encryption scheme
(Section 3) implies the collapse of the polynomial hierarchy. This result appeared in [IOS97, Rud89,
Bei11] and we present it here for the sake of completeness. Next we turn back to the computational
variant of witness encryption (defined in Section 3) and show that a witness encryption scheme
with some specific restrictions in the following scenario is impossible.

• The security of scheme is proved based on a fixed assumption, that does not depend on the
specific instance of the language used in encryption.

• The security of our witness encryption scheme is lower than the hardness of deciding the
instance x.

6.1 Impossibility of statistically sound witness encryption scheme

We start by defining the notion of statistical soundness. Next we recall some of the preliminary
notation and background needed for proving our claim. Finally we will give our impossibility result.

A witness encryption scheme is said to be statistically sound if it has the following property:
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• Statistical Soundness Security. For any x /∈ L, for any (even unbounded) adversary A
and messages M0,M1 ∈M, there exists a negligible function neg(·), such that:∣∣∣Pr

[
A(Encrypt(1λ, x,M0)) = 1

]
− Pr

[
A(Encrypt(1λ, x,M1)) = 1

]∣∣∣ < neg(λ)

Notation. A promise problem Π consists of two disjoint sets ΠY and ΠN , where ΠY is the set
of YES instances and ΠN is the set of NO instances. A promise problem Π is associated with the
following computational problem: Given an input which is “promised” to lie in ΠY ∪ ΠN , decide
whether it comes from ΠY or ΠN . Note that languages are a special case of promise problems.
We say that a promise problem Π reduces to promise problem Γ if there is a polynomial-time
computable function f such that:

x ∈ ΠY ⇒ f(x) ∈ ΓY

x ∈ ΠN ⇒ f(x) ∈ ΓN

If C is a circuit mapping m-bit strings to n-bit strings, then choosing an input u uniformly at
random from {0, 1}m defines a probability distribution on {0, 1}n given by C(u). For notational
convenience, we will denote this probability distribution by C.

For probability distributions X and Y on a discrete set D, the statistical difference between X
and Y is defined to be

||X − Y || = max
S⊂D
|Pr[X ∈ S]− Pr[Y ∈ S]|.

The complexity class SZK consists of promise problems which have an interactive proof system
with soundness error less that a small constant and the view of any malicious verifier can be
simulated up to neg(λ) statistical error. Sahai and Vadhan [SV03] demonstrated that SZK consists
exactly of the problems that involve deciding whether two efficiently samplable distributions are
either far apart or close together. More formally the following promise problem Statistical

Difference:

SDY =

{
(C0, C1) : ||C0 − C1|| >

2

3

}
SDN =

{
(C0, C1) : ||C0 − C1|| <

1

3

}
is SZK complete. In the above description C0 and C1 are circuits and define probability distributions
as pointed out earlier.

Impossibility. Now we give our impossibility result. We will argue that any NP language for
which we can construct a statistically sound witness encryption scheme has to be in SZK. Hence a
witness encryption scheme for an NP-complete language implies that NP ⊆ SZK which then implies
the collapse of the polynomial hierarchy.

Lemma 6.1. Let L be any NP language and further let (Encrypt,Decrypt) be a statistically sound
witness encryption scheme for the language L. Then we have that L ∈ SZK.

Proof. We will give the proof by giving a reduction. Given a string x ∈ {0, 1}∗ we will construct
circuits C0 and C1 such that ||C0−C1|| > 2

3 if x ∈ L and ||C0−C1|| < 1
3 if x 6∈ L. The construction

of the circuits is very simple. The circuit Cb for both b = 0 and b = 1 corresponds to the distribution
Encrypt(1λ, x, b). Now, by the correctness of the witness encryption scheme, given the witness for
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x ∈ L, one can almost always (i.e., except with negligible probability) tell whether the encrypted
value is 0 or 1. In other words, the distributions C0 and C1 are almost disjoint.

On the other hand, in the case when x 6∈ L, by statistical soundness we have that the distribu-
tions C0 and C1 are statistically close. This concludes the proof.

6.2 Impossibility of restricted witness encryption scheme under simple assump-
tions

Consider an NP-complete language L and a corresponding witness encryption scheme (Encrypt,Decrypt)
for the language L. We will restrict ourselves to witness encryption schemes with the following
properties:

- A ciphertext c is said to be a valid for statement x if ∃M, r such that c = Encrypt(1λ, x,M ; r).
For the purposes of the impossibility result presented in this section we will restrict ourselves
to witness encryption schemes for which validity of a ciphertext can be checked in polynomial
time.

- Secondly, we will restrict ourselves to witness encryption schemes that come equipped with
an extraction function, denoted as Ext. This extraction function given a ciphertext c, runs in
time T (λ) (an appropriate exponential function, say 2λ) and extracts the encrypted message
M , without knowledge of the witness or the fact that x is in L or not. Note that this is a
significant restriction as |x| can be significantly larger than λ and hence T (λ)� 2x.

Next we will argue that no such restricted witness encryption scheme whose security can be
reduced to a simple assumption exists. Our impossibility result for such restricted witness encryp-
tion scheme, only provides a partial argument against the impossibility of a witness encryption
scheme under a simple assumption because the two restrictions are artificial and in fact aren’t even
satisfied by our own positive construction. However we still find value in this partial impossibility
result as it highlights some of the technical challenges that need to be solved in order to construct
a witness encryption scheme from a simple assumption. In particular this impossibility highlights
that some form of complexity leveraging might be essential for realizing witness encryption under
simple assumptions.

Definition 6.2 (Non-Interactive assumption). A non-interactive assumption Ass = (V,W, c) is
defined by efficient random systems V and W , modeling the challenger, and a constant c ∈ [0, 1).
On security parameter λ, the challenger generates a problem instance P ← V (1λ) and provides it
to the attacker A(1λ,P), which outputs the value out. The challenger then executes W (out) which
outputs a bit b. The advantage of the attacker A is defined as

AdvAAss(λ) = Pr[ W (A(1λ, V (1λ))) = 1 ]− c.

The assumption Ass is said to be secure if for all PPT attackers A, the advantage AdvAAss(λ) is
negligible. An adversary A is said to break the assumption Ass if AdvAAss(λ) is a non-negligible
function of λ.

Lemma 6.3. Let (Encrypt,Decrypt) be a restricted (as explained above) witness encryption scheme
for some NP-complete language L with the corresponding T -time extraction function Ext. Further
let Ass = (V,W, c) be a non-interactive assumption. In such a scenario assuming q ·T+poly(λ)-hard
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one-way functions exist (one way functions secure against adversaries running in time q·T+poly(λ))
we claim that there does not exist any PPT reduction RA(x,·)(x,P) that on input an instance x of
the language L, an instance P ← V (1λ) and q black-box queries to an adversary A (that breaks
soundness of the witness encryption scheme for ciphertexts generated corresponding to the instance
x) breaks the assumption Ass.

Proof. Let us start by assuming that there exists such a reduction R that uses (in a black-box man-
ner) an adversary A (breaking the soundness of the encryption scheme) and breaks the underlying
non-interactive assumption Ass. Now for our proof we will construct a meta-reductionM that uses
this reduction R, simulates A for it and breaks the assumption on its own. We will prove this by
a sequence of hybrids.

First we will specify some notation. Let f : {0, 1}n → {0, 1}3n be any q ·T + poly(λ)-hard PRG
(can be constructed using q · T + poly(λ)-hard OWF) where n is an appropriate polynomial in λ.
Let L′ be the language such that y ∈ L′ if ∃w such that f(w) = y. Further let g be an NP-reduction
such that g(y) ∈ L if and only if y ∈ L′.

- H0: Execute R with inputs x,P where x,P are sampled as follows. Sample a string y
uniformly in {0, 1}3n and set x = g(y). With overwhelming probability y with not be pseudo-
random and hence x 6∈ L. P is an instance of the assumption Ass sampled using V (1λ). R’s
calls to the adversary are simulated as follows. If the queried ciphertext is valid then output
the output of the extractor function Ext on input that ciphertext, outputting ⊥ otherwise.
Finally feed the output of R, to W as input. Output the output of W as the output of the
experiment.

By soundness of the witness encryption scheme we have that R breaks the assumption Ass.
Therefore, based on the assumption on reduction R we have that the probability that the
above experiment outputs 1 is non-negligibly greater than c. The running time of this hybrid
is q · T + poly(λ).

- H1: This hybrid is same as the previous hybrid except that y is sampled to be a pseudorandom
string. Now we will have x ∈ L where x = g(y).

The indistinguishability of H0 and H1 follows from the q · T + poly(λ)-hardness of the PRG.

- H2: This is the same as the previous hybrid except that instead of simulating the adversary
using the function Ext (that runs in T -time) we extract the encrypted message using the
Decrypt procedure using the witness corresponding to the NP-statement x. This hybrid runs
in time poly(λ).

Indistinguishability between H1 and H2 follows based on the perfect correctness of the witness
encryption scheme and the fact that response is given only when the queried ciphertext is
valid.

Note that in the hybrid H2 the simulation of the adversary is done locally in polynomial time.
Hence the reduction R can be used to break the assumption on its own. This is a contradiction.
This concludes the proof.
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A Proofs for Section 4

Now we give security proofs for the constructions described in Section 4.

A.1 Public Key Encryption

Recall that the scheme presented in Section 4 relied on a PRG G : {0, 1}λ → {0, 1}2·λ and our
witness encryption scheme (EncryptWE,DecryptWE).

Lemma A.1. Assuming that G is a PRG and (EncryptWE,DecryptWE) is a witness encryption
scheme we have that (SetupPKE,EncryptPKE,DecryptPKE) is a semantically secure public-key en-
cryption scheme.
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Proof. Let us start by assuming that the encryption scheme is not semantically secure. In other
words there exists an adversary A such that its advantage in the semantic security game (defined
in Section C) is non-negligible. We will reach a contradiction by considering the following sequence
of hybrids.

- H0: This hybrid corresponds to the actual semantic security game as defined in Section C.

- H1: Recall the public key generation process proceeds by sampling a random PRG seed
s ∈ {0, 1}λ. Next, it uses the PRG G : {0, 1}λ → {0, 1}2·λ to compute G(s) → t ∈ {0, 1}2λ.
The public key PK = (t, λ) is the output of the PRF and the security parameter. The hybrid
H1 is same as hybrid H0 except that instead of sampling t according to the above process, we
just generate a sample a random string in {0, 1}2λ and use that to generate the public key.

The indistinguishability of H0 and H1 follows from the security of the PRG.

Now note that in hybrid H1 we use the witness encryption algorithm to encrypt to an instance
x such that x ∈ L if and only if t is in the range of G. Further note that since t is a randomly
chosen string we can claim that t is not in the range of G except with negligible probability. This
implies that x /∈ L except with negligible probability. Hence the advantage of A in hybrid H1

can be directly reduced to soundness security of the underlying witness encryption scheme. This
concludes the proof.

A.2 Identity-Based Encryption

Recall that the IBE scheme presented in Section 4 relied on the Goldreich-Levin [GL89] hardcore
bit GL(σ, r) of σ using randomness r, a unique signature scheme (Setup-Signature,Sign,Verify) and
our witness encryption scheme (EncryptWE,DecryptWE).

Lemma A.2. Assuming that (Setup-Signature,Sign,Verify) is a unique signature scheme existen-
tially unforgeable under chosen message attack and (EncryptWE,DecryptWE) is a witness encryption
scheme we have that (SetupIBE, EncryptIBE,DecryptIBE) is a selectively secure IBE scheme.

Proof. Let us start by assuming that the IBE scheme is not selectively secure. In other words there
exists an adversary A such that its advantage in the selective security game (defined in Section C)
is non-negligible. We will reach a contradiction by considering the following sequence of hybrids.

- H0: This hybrid corresponds to the actual selective security game as defined in Section C.

- H1: Recall that the ciphertext generation process in the scheme proceeds as follows. The
encrypter generates instance x0 (resp., x1) such that x0 ∈ L (resp., x1 ∈ L) if and only if there
exists a signature σ where GL(σ, r) = 0 (resp., GL(σ, r) = 1) and where Verify(PP, σ, I∗) =
true. Then, it computes EncryptWE(1λ, x0,Mβ) → C0 and EncryptWE(1λ, x1,Mβ) → C1.
Note that since the signature scheme used has unique signatures we can conclude that exactly
only one of the instances x0 and x1 will be in L. Recall that M0 and M1 are the messages
generated by the adversary, β is the random bit chosen by the challenger and I∗ is the selective
identity that the attacker is trying to attack.

Now we describe hybrid H1. Hybrid H1 is same as the hybrid H0 except that we change
either C0 if x0 /∈ L or C1 if x1 /∈ L. Whether x0 /∈ L or x1 /∈ L can be easily found by
generating the signature σ and checking if GL(σ, r) is 0 or 1. We will describe the case in
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which x0 /∈ L. The other case in analogous. Unlike hybrid H0 where C0 was generated as
EncryptWE(1λ, x0,Mβ), in hybrid H1 we generate C0 as EncryptWE(1λ, x0,M1−β).

Indistinguishability between H0 and H1 follows from the soundness security of the witness
encryption scheme.

Now note that the adversary’s ability to guess the encrypted bit in H1 can be used to to directly
guess the hardcore bit GL(σI∗ , r) of σI∗ using randomness r. This is because the encrypted bit
changes depending on the hardcore bit. Hence we can use this adversary to extract the unique
signature on the identity I∗. This leads to a contradiction as the signature scheme is assumed to
be existentially unforgeable. Note that the adversary in addition to the challenge ciphertext also
expects to receive secret keys for identities of its choice (except the challenge identity). In the
reduction these can be provided by relying on the signing oracle. This concludes the proof.

A.3 Attribute-Based Encryption for Circuits

Recall that the (Key-Policy) Attribute-Based Encryption scheme for circuits presented in Section 4
relied on Com a perfectly binding non-interactive commitment scheme, (P, V ) a non-interactive zap
(defined in Section B) and our witness encryption scheme (EncryptWE,DecryptWE).

Lemma A.3. Assuming that Com is perfectly binding and computationally hiding commitment
scheme, (P, V ) is a non-interactive zap and (EncryptWE,DecryptWE) is a witness encryption scheme,
we have that (SetupABE,EncryptABE,DecryptABE) is a selectively secure attribute based encryption
scheme.

Proof. Let us start by assuming that the ABE scheme is not selectively secure. In other words there
exists an adversary A such that its advantage in the selective security game (defined in Section C)
is non-negligible. We will reach a contradiction by considering the following sequence of hybrids.

- H0: This hybrid corresponds to the actual selective security game as defined in Section C.

- H1: This hybrid is same as the hybrid H0 except that instead of committing to a zero string
in c2 we start by committing to the challenge value a∗ that the attacker specifies.

Indistinguishability follows based on the computational hiding property of the commitment
scheme Com.

- H2: This hybrid is same as the hybrid H1 except that instead of generating the zap proof using
the randomness used in the generation of the commitment c1 we now use the randomness
used in generation of the commitment c2. Note that since the adversary is only allowed to
query for secret keys corresponding to functions f such that f(a∗) = 0 we will always be able
to answer the adversary’s secret key queries.

Indistinguishability follows based on the computational witness indistinguishability property
of the zap.

- H3: Same as the previous hybrid except that instead of generating c1 as a commitment of 0
we generate it as a commitment to 1.

Indistinguishability follows based on the computational hiding property of the commitment
scheme Com.
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Finally, note that in hybrid H3 we used the witness encryption algorithm to encrypt to an instance
x′ such that x′ ∈ L if and only if there exists a circuit g such that |g| ≤ `max and a proof πg (of
size µ(λ, n, |g|)) such that V (xg, πg) = 1 ∧ g(a) = 1 where xg is the NP-statement:

∃(w1, a, w2) such that c1 = Com(0;w1) ∨ (c2 = Com(a;w2) ∧ g(a) = 0)

Note that c1 is a commitment to 1 and c2 is a commitment to a∗. Therefore, for every function
h such that h(a∗) = 1 we will have xh is unsatisfiable. Hence from the perfect soundness of zaps
we can conclude that x′ is unsatisfiable. Hence the ability of the adversary to correctly guess the
value encrypted in H3 can be directly reduced to the soundness security of the underlying witness
encryption scheme. This concludes the proof.

A.4 Fully Secure Identity-Based Encryption

Recall that the Fully Secure Identity-Based Encryption presented in Section 4 relied on Com a
perfectly binding non-interactive commitment scheme, (P, V ) a non-interactive zap (defined in Sec-
tion B) and our witness encryption scheme (EncryptWE,DecryptWE).

Lemma A.4. Assuming that Com is perfectly binding and computationally hiding commitment
scheme, (P, V ) is a non-interactive zap, F is a pseudorandom function family and (EncryptWE,DecryptWE)
is a witness encryption scheme, we have that (SetupIBE,EncryptIBE,DecryptIBE) is a fully secure
IBE scheme.

Proof. Let us start by assuming that the IBE scheme is not fully secure. In other words there
exists an adversary A such that its advantage in the full security game (defined in Section C) is
non-negligible. We will reach a contradiction by considering the following sequence of hybrids.
Without loss of generality, let us assume that the number of secret key queries that the adversary
makes (denoted as q) is a power of 2. (One can always pad the number of secret key queries to a
power of 2 in case the number is not an exact power of 2.)

- H0: This hybrid corresponds to the actual full security game as defined in Section C.

- H1: This hybrid is same as the hybrid H0 except that instead of always completing the game
we will sometimes abort the game and make a random guess on behalf of the attacker. We
will argue that if the adversary’s advantage in hybrid H0 was non-negligible then it continues
to be so in hybrid H1.

More specifically, the challenger runs the real game, but in parallel samples a random function9

G : {0, 1}λ → {0, 1}t where t = log q. At the end of the game we check (we refer to this
condition as Bad) to see if: (

∃i ∈ [q] G(Ii) = 0t
)
∨
(
G(I∗) 6= 0t

)
where I∗ is the challenge identity. If Bad is true then we abort the game and generate a
random guess on behalf of the adversary. Otherwise if the Bad is false then the adversary
wins if he guesses the correct bit β (where the challenger encrypted Mβ).

Observe that the advantage of the adversary in hybrid H1 will be O(1q ) times the advantage
of the adversary in hybrid H0.

9Since we will evaluate the function G only on polynomially many inputs. We can sample the function on those
inputs on the fly.
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- H2: This hybrid is same as the previous hybrid except that instead of using the random
function G we use the PRF F . More specifically, at the start of the execution we sample a
random seed s← {0, 1}λ and use the function F ′s,t(·) instead of G.

Indistinguishability between hybrids H2 and H1 follows from the pseudorandomness property
of the PRF F .

- H3: This hybrid is same as the previous hybrid except that instead of postponing to check Bad
to the very end. We check the Bad condition every time a secret key query is made and when
the challenge identity is specified. If the Bad condition is ever true then we immediately abort
the interaction with the adversary and output a random guess on behalf of the adversary.

The advantage of the adversary in H3 is identical to the advantage of the adversary in H2.

- H4: This hybrid is same as the previous hybrid except that we generate c2 = Com(s;R) and
c3 = Com(t, R′).

Indistinguishability between hybrids H4 and H3 follows based on the computational hiding
property of the commitment scheme Com.

- H5: This hybrid is same as the hybrid H4 except that instead of generating the zap proof using
the randomness used in the generation of the commitment c1 we now use the randomness
used in the generation of the commitments c2 and c3. Note that since the adversary at this
point only makes secret key queries such that Bad is false we will have that for every i ∈ [q],
Fs,t(Ii) 6= 0 and hence we will always be able to answer the adversary’s secret key queries.

Indistinguishability between hybrids H5 and H4 follows based on the computational witness
indistinguishability property of the zap.

- H6: Same as the previous hybrid except that instead of generating c1 as a commitment of 0
we generate it as a commitment to 1.

Indistinguishability between hybrids H6 and H5 follows based on the computational hiding
property of the commitment scheme Com.

Finally, note that in hybridH6 we used the witness encryption algorithm to encrypt to an instance x′

such that x′ ∈ L if and only if there exists a proof πI∗ (of appropriate size) such that V (xI∗ , πI∗) = 1
where xI∗ is the NP-statement:

∃(w1, s, t, w2, w3) such that c1 = Com(0;w1) ∨ (c2 = Com(s;w2) ∧ c3 = Com(t;w3) ∧ Fs,t(I∗) 6= 0)

However, since Com is perfectly binding and Bad is false we have that Fs,t(I∗) = 0 and so xI∗

is unsatisfiable. Next from the perfect soundness of zaps we can conclude that x′ is unsatisfiable.
Hence the ability of the adversary to correctly guess the value encrypted in H6 can be directly
reduced to the soundness security of the underlying witness encryption scheme. This concludes the
proof.

B Non-interactive Zaps

In 2000, Dwork and Naor [DN00] proved that there exist “zaps”, two-round witness-indistinguishable
(WI) proofs in the plain model without a common reference string, where the verifier asks a single
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question and the prover sends back a single answer. Furthermore, [DN00] showed that their con-
structions allowed for the first message (from verifier to prover) to be reused – so that between a
particular pair of prover and verifier, only one message from verifier to prover is required even if
many statements are to be proven.

Barak, Ong, and Vadhan [BOV03] constructed the first non-interactive zaps for any NP relation
by applying derandomization techniques to the construction of Dwork and Naor, based on trapdoor
permutations and the assumption that (very good) Hitting Set Generators (HSG) against co-
nondeterministic circuits exist. It is known that such HSG’s can be built if there is a function in
E that requires exponential-size nondeterministic circuits – i.e. the assumption states that some
uniform exponential deterministic computations can (only) be sped up by at most a constant power
(Time 2cn becomes 2εn), when given the added power of nondeterminism and advice specific to the
length of the input. Subsequently, Groth, Ostrovsky and Sahai [GOS06] gave a much more efficient
construction for non-interactive zaps based on bilinear-maps.

Let R be an efficiently computable binary relation. For pairs (x,w) ∈ R we call x the statement
and w the witness. Let L be the language consisting of statements in R.

A non-interactive zap for a relation R consists of a prover P and a verifier V . We require that
they all be probabilistic polynomial time algorithms, i.e., we are looking at efficient prover proofs.
The prover takes as input (x,w) and produces a proof π. The verifier takes as input (x, π) and
outputs 1 if the proof is acceptable and 0 if rejecting the proof. We call (P, V ) a non-interactive
zap for R if it has the completeness, soundness and witness indistinguishable properties described
below.

Perfect completeness. A proof system is complete if an honest prover with a valid witness can
convince an honest verifier. For all adversaries A we have

Pr
[
(x,w)← A;π ← P (x,w) : V (x, π) = 1 if (x,w) ∈ R

]
= 1.

Perfect soundness. A proof system is sound if it is infeasible to convince an honest verifier
when the statement is false. For all x /∈ L and all adversaries A we have

Pr
[
π ← A(x) : V (x, π) = 1

]
= 0.

Witness-indistinguishability. Witness-indistinguishability means that proof does not reveal
which witness the prover used. For all non-uniform polynomial time interactive adversaries A we
have

Pr
[
(x,w0, w1)← A(1k);π ← P (1k, x, w0) : A(π) = 1 and (x,w0), (x,w1) ∈ R

]
≈ Pr

[
(x,w0, w1)← A(1k);π ← P (1k, x, w1) : A(π) = 1 and (x,w0), (x,w1) ∈ R

]
.

A hybrid argument shows that this definition of witness-indistinguishability is equivalent to a
definition where we give the adversary access to multiple proofs using either witness w0 or witness
w1.

C Security Definitions

We will recall the definition of semantic security for a public key encryption scheme and the defi-
nitions of selective and full security for IBE and ABE schemes.
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Semantic Security. Semantic security is described by a security game between a challenger and
an attacker. The game proceeds as follows.

- Setup: The challenger runs the Setup algorithm and gives the public key PK to the attacker.

- Challenge: The attacker declares two equal-length messages M0 and M1 to the challenger.
The challenger flips a random coin β ∈ {0, 1}, and encrypts Mβ, producing ciphertext CT ∗

which it gives to the adversary. We call this ciphertext the challenge ciphertext.

- Guess: The attacker outputs a guess β′ for β.

The advantage of an attacker in this game is defined to be Pr[β = β′]− 1
2 .

Selective Security. Selective security is described by a security game between a challenger and
an attacker. We will describe the definition in the context of IBE. It can be adapted for the setting
of ABE in a natural way. The game proceeds as follows.

- Challenge Identity: The attacker starts by declaring the challenge identity I∗ that it wants
to attack.

- Setup: The challenger runs the Setup algorithm and gives the public parameters PP to the
attacker.

- Query Phase 1: The attacker queries the challenger for private keys corresponding to
identities I1, . . . , Iq1 . (For all i ∈ [q1] we require that Ii 6= I∗)

- Challenge: The attacker declares two equal-length messages M0 and M1. The challenger
flips a random coin β ∈ {0, 1}, and encrypts Mβ under the identity I∗, producing ciphertext
CT ∗ which it gives to the adversary.

- Phase 2: The attacker queries the challenger for private keys corresponding to the identities
Iq1+1, . . . , Iq. (For all i ∈ [q]\[q1] we require that Ii 6= I∗)

- Guess: The attacker outputs a guess β′ for β.

The advantage of an attacker in this game is defined to be Pr[β = β′]− 1
2 .

Full Security. Again we will describe the definition for the context of IBE. It can be adapted
for the setting of ABE in a natural way. The game proceeds as follows.

- Setup: The challenger runs the Setup algorithm and gives the public parameters PP to the
attacker.

- Query Phase 1: The attacker queries the challenger for private keys corresponding to
identities I1, . . . , Iq1 .

- Challenge: The attacker declares two equal-length messages M0 and M1 and a challenge
identity I∗. We require that I∗ 6= Ii for all i ∈ [q1]. The challenger flips a random coin
β ∈ {0, 1}, and encrypts Mβ for the identity I∗, producing ciphertext CT ∗ which it gives to
the adversary.
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- Phase 2: The attacker queries the challenger for private keys corresponding to the identities
Iq1+1, . . . , Iq. (For all i ∈ [q]\[q1] we require that Ii 6= I∗)

- Guess: The attacker outputs a guess β′ for β.

The advantage of an attacker in this game is defined to be Pr[β = β′]− 1
2 .

30


