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Abstract. This paper introduces a leakage model in the frequency domain to
enhance the efficiency of Side Channel Attacks of CMOS circuits. While usual
techniques are focused on noise removal around clock harmonics, we show that
the actual leakage is not necessary located in those expected bandwidths as exper-
imentally observed by E. Mateos and C.H. Gebotys in 2010. We start by building
a theoretical modeling of power consumption and electromagnetic emanations
before deriving from it a criterion to guide standard attacks. This criterion is then
validated on real experiments, both on FPGA and ASIC, that show an impressive
increase of the yield of SCA.
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1 Introduction

Since the publication by P. Kocher, J. Jaffe and B. Jun of the [11], new analyses, or
techniques to enhance Side Channel Analyses (SCA), have been proposed in the liter-
ature. The first improvements consisted in the use of better statistical tools to compare
populations distributions. Hence Correlation Power Analysis (CPA) has been proposed
in 2004 [5] to replace the difference of means by the Pearson coefficient. Then the
Mutual Information Analysis [10] has been proposed in order to capture higher order
dependencies and enhanced in [27] [12].

A second category of improvements consisted in the proposal of several solutions
for increasing the quality of the measurements. Among the possible improvements of
SCA, any technique allowing to increase artificially the Signal to Noise Ratio (SNR) of
traces after their acquisition is obviously interesting. An approach lies of course in the
use of the average mode of oscilloscopes. However this is not always feasible because
of the timing jitter characterizing the circuits operations. Another solution lies in the
characterization of the noise usually considered Gaussian to limit its effects or remove
it from the signal using a pre-processing technique [6] [13].

More recently, attacks working in the frequency domain have been proposed as a
promising alternative to usual time domain attacks because of their potential robustness
to noise and to jitter of acquisitions [17]. First, it was suggested in [4], [20], [9] and
[17] to transpose well-known CPA and DPA in the frequency domain by using the
Fourier Transform (FT). All these works highlighted the efficiency of attacks in the
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frequency domain and [17] has experimentally observed that the distribution of the
leakage in the frequency domain was independent of the clock signal. Second, but still
by working in the frequency domain, it was proposed in [7] and [25] to exploit the shape
of traces rather than their amplitude solely. Simultaneously, authors of [2] and [3] have
attempted to enhance CPA or DPA by filtering traces around the clock signal frequency
or its harmonics. They also have presented a method for finding the frequency bands
containing more leakage. It aims at calculating frequency templates for each value of
the key assuming the adversary has the full control of an equivalent circuit. In the same
vein, adaptive filters were applied in [21] to identify, during the course of SCA, where
in the frequency domain, the leakage is the most important.

The getting of traces with little background noise, or the improvements post acqui-
sition of noisy traces, are important topics as evidenced by the state of the art. If most
existing solutions consist in the application of signal processing techniques or statistical
tools, no work has attempted to address this problem through the analytical modeling of
the leakage in the frequency domain; knowing that even a rough model may efficiently
drive statistical tools. This is the approach we propose to pursue in this paper.

More specifically, from the study of the operation of synchronous CMOS circuits,
we propose in Section 2, a model of their power consumption and of their Electro-
Magnetic (EM) emanations. From this first-order model, a model of the leakage in the
frequency domain is established in Section 3, before extricating from its implications a
simple and efficient method to identify, from few raw traces, the frequencies on which
the leakage is a priori greater. Then in Section 4, to validate the correctness of the model
in an indirect way, the method is applied to various sets (current or EM) of traces, char-
acterized by different levels of noise. Finally, a conclusion is drawn in Section 5.

2 Leakage Model in the Frequency Domain

This section is intended to establish, from the analysis of the operation of synchronous
circuits, a modeling of the leakage in the frequency domain.

2.1 Operation of CMOS circuits

Current cryptographic circuits are, with few exceptions, synchronous. Their electrical
activity, and their resulting EM emanations, are thus clocked by a global signal. This
clock signal is propagated across the whole circuit, through a network of logic gates
and interconnects, called clock tree, to reach the input of all registers (DFF) at the same
time.

Fig. 1 gives a simple and generic representation of a synchronous circuit. It is made
of two sets of registers (D-type Flip Flop) to sample regularly the output of the logic
block (Glue Logic) which realizes some cryptographic calculi or not, and of a clock tree
whose activity is independent of data processed by the logic block. [14] show different
methods to extract the clock tree activity from traces. Given this description, the mod-
eling of the current consumed by a circuit, or the modeling of its EM emissions, leads
to define traces, T , as the sum of different contributions :
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Fig. 1. A simple CMOS circuit

T = TGlueLogic + TCK−Tree + ηenv + ηintra (1)

where TGlueLogic is the power consumed by the Glue Logic (or its EM emanations),
TCK−Tree the one of the clock tree, ηenv a noise, assumed Gaussian, produced by
the environment but also due to the quantification noise of the oscilloscope and ηintra
the noise produced by the other elements of the circuit called algorithmic noise [19].
Assuming CMOS gates (including DFF) are the only source of leakage because they
are the only elements involved in cryptographic computations, we analyzed owing to
electrical simulations [1], the power consumption of the Glue Logic of various circuits.
From this study, carried out by varying various design parameters, we defined a first
order model of the switching current consumed by a clocked logic block during one
clock cycle.

This time dependent model is represented in Fig. 2. It first gives the clock signal that
launches a new calculus at each rising edge and therefore produces a current inrush. The
simulated waveform of this current as well as its modeling is given Fig. 2b. This current
inrush is the source of EM emanations proportional to its amplitude. However, because
coils used to measure these emanations have a differentiator behavior, we adopted the
modeling of EM emanations represented in Fig. 2c. It should be noted that in Fig.
2, the timing slack is the design margin introduced by designers so that to achieve a
high manufacturing yield. It results from the worst case design approach followed by
designers to take process manufacturing variations into account but also voltage and
temperature variations experienced by Integrated Systems.

2.2 Leakage Model in the frequency domain

From these models, it seems possible to study the spreading in the frequency domain of
the leakage starting by the calculation of the Fourier Transforms of the power consump-
tion, POW (f), and of EM emanations, EM(f), of the Glue Logic. These calculations
lead to (see Appendix A) :
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Fig. 2. Models of the switching current consumed (b) by the Glue Logic and of its EM emanations
(c); Models of the current and EM leakages (e and f respectively)

POW (f) = −jA
2π2f2T {

1
α sin(απfT ) e

−jπfαT − 1
1−α sin

(
(1− α)πfT

)
e−jπf

(
(α+1)T

)
}

(2)
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EM(f) = A
πfT {

1
α sin(απfT ) e

−jπfαT − 1
1−α sin

(
(1− α)πfT

)
e−jπf

(
(α+1)T

)
}
(3)

where α is a parameter, related to the transition time of clock edges but also to the
clock skew [22]; it sets the rise time of the current. T is the effective duration of the
calculation which is independent of the clock signal period TCK . However, it depends
on the processed data but also on the Glue Logic structure as well as the supply voltage
and temperature values. A is the maximum amplitude of the current.

SCA, like DPA and CPA, consist in the comparison of statistical populations with
specific criteria [11] [5]. One of them is the adopted power consumption model. Hence
in CPA for instance, the attacker performs a correlation between a set of measurements
and a set of computed internal variables of the algorithm which is built according to
the way the underlying hardware is expected to consume power or generate an EM
field. In DPA, the two subsets of curves that will be compared are generated according
to the same hypothesis. So far, two models have been proven efficient: the Hamming
Weight model (HWM) and the Hamming Distance Model (HDM). According to the
first one, the consumption of Glue Logic is greater when the target bit is equal to ‘1’,
while according to the second model, the consumption is higher when the bit changes
state during the calculation. The CPA is based on the same principle, but works on the
linear trend of the power consumption at increasing or at decreasing according to the
values of several bits [16].

HDM or HWM are time independent and thus do not allow the establishment of a
leakage model in the frequency domain. In order to establish a time dependent model,
or at least a model allowing estimating the leakage distribution in the frequency domain,
let us assume in accordance with the HD model (HW model), that if the value of the
target bit is switched during the calculus (is equal to ‘1’ at the end of the calculus), the
current waveform is altered (is different) both in amplitude and duration compared to
the case in which the bit remains stable (is equal to ‘0’ at the end of the calculus). This
is what shows Fig. 2. These assumptions are justified in that the switching (or not) of
a bit stored in a register forces the switching (or not) of a number of CMOS gates in
the logic block which depends in turn of the other bits of the register. The amplitude of
the current, and hence EM emanations, are therefore altered over a time interval longer
than the propagation delay of D-type Flip Flop.

At this point, it should be noticed that without knowing in detail the physical struc-
ture of the circuit (except if you are designing a secure product), it appears impossible
to finely predict how the current waveform is altered. This explains why in Fig. 2, we
drawn the waveform associated to ’HD / HW =‘0’ with a longer duration (and a higher
amplitude at the end of the calculus) than the one associated to ’HD / HW =‘1’. We
could have represented the opposite situation without being wrong. In fact, the only
characteristics of the waveforms of Fig. 2 that remain valid in all cases are:

– their shapes which are representative of current and EM waveforms respectively,
– higher amplitudes in absolute value at t = α1T1 than at t = α0T0 in accordance

with the HD or HW models.

Assuming this model is sufficiently realistic (HW and HD models are currently con-
sidered representative) to capture the overall behavior of the leakage, it seems possible
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to derive from it a modeling of the leakage in the frequency domain using the Fourier
transform. This leads (see Appendix A), respectively, for the current and the EM ema-
nations to:

LPOW (f) =
−jA1

2π2f2T1
{ 1
α1

sin(α1πfT1) e
−jπfα1T1 − 1

1−α1
sin

(
(1− α1)πfT1

)
e−jπf

(
(α1+1)T1

)
}

− −jA0

2π2f2T0
{ 1
α0

sin(α0πfT0) e
−jπfα0T0 − 1

1−α0
sin

(
(1− α0)πfT0

)
e−jπf

(
(α0+1)T0

)
}

(4)
LEM (f) =

A1

πfT1
{ 1
α1

sin(α1πfT1) e
−jπfα1T1 − 1

1−α1
sin

(
(1− α1)πfT1

)
e−jπf

(
(α1+1)T1

)
}

− A0

πfT0
{ 1
α0

sin(α0πfT0) e
−jπfα0T0 − 1

1−α0
sin

(
(1− α0)πfT0

)
e−jπf

(
(α0+1)T0

)
}
(5)

These equations show that the calculus of the leakage distribution in the frequency
domain requires the knowledge of some variables, such as :

– the timing slack to estimate at first order T/TCK , i.e. T , T1 and T0,
– the skew and the transition times of the clock signal for estimating α, i.e. to estimate

when the maximum current consumption occurs,
– and many other parameters (quality of the process, effective supply voltage, temper-

ature, ...) affecting the propagation delays and the current consumed by the CMOS
logic gates.

These parameters are not known a priori by the opponent, it is therefore difficult
for an attacker, with no collusion, to directly exploit this modeling. From the designer
standpoint, this is a powerful tool allowing to deeply characterize the security blocks
while providing him a competitive advantage over the attacker. Indeed, the designers
may now know which frequencies should be blurred by adding noise or reduced in
amplitude.

2.3 Model Implications

If it is difficult and even impossible except for the designer to predict with accuracy the
values of all terms involved in the two leakage models, the analysis of these equations
indicates that the frequency distribution of the leakage:

– extends in a domain ranging between 0 Hz and +∞, and more pragmatically up to
the cut-off frequency of the acquisition system, contrarily to what was observed in
[17],

– is independent of the clock frequency at which the circuit works as experimentally
observed by [17], although indirectly linked to the maximum frequency,FCKmax =
1/T , at which the circuit can operate,

– results from the difference of two sinc functions, and is therefore essentially dis-
tributed at low frequencies with an amplitude bounded above by the function 1

f (or
1
f2 ) for the EM leakage (for the current leakage respectively).
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These indications can be leveraged to enhance the efficiency of DPA and CPA anal-
yses. This is what is highlighted by the rest of the paper in order to support the validity
of this leakage modeling in the frequency domain. Indeed, the main implications of
these models indicate a way to increase the SNR of traces before application of a CPA
or a DPA analysis. Indeed, because the leakage is mainly located on the lower frequen-
cies (ie bounded by the function 1

f or 1
f2 ), it seems possible to improve the signal to

noise ratio of traces by pre-processing.
More specifically, two scenarii emerge. The first one is related to the analysis of

traces characterized by a small background noise such as traces obtained using the
average mode of oscilloscopes. In that case, the model suggests that it is better not to
filter the traces and even encourages the use of equipments with the highest bandwidth
possible.

The second case, which is more realistic, is related to the analysis of noisy traces.
In that case, the model suggests to improve the signal to noise ratio by filtering or
removing high frequencies carrying only a small part of the leakage. We consider these
two cases in the next section.

2.4 Model exploitation

The choice of frequencies that must be kept or removed from traces prior to application
of a CPA or DPA analysis seems difficult. However considering the lessons provided by
the model the choice appears easier. Indeed, even if the opponent has only raw traces
given by Eq. 1, he can easily calculate the signal to noise ratio at each frequency, f , of
the raw signal spectrum and multiply the result by 1

f or 1
f2 as he manipulates EM or

current traces respectively; this latter multiplication being sufficient to take into account
the main lesson of the model according to which most of the leakage is in low frequency.
The signal to noise ratio definition used here corresponds to the mean divided by the
standard deviation. A definition widely used in image processing.[26] This results in the
definition of two criteria, expressed from the usual Signal to Noise Ratio (SNR(f)).
The first one is for power consumption (eq.4) and the second one is for EM emanations
(eq.5). Both are denoted by Leakage to Noise Ratio and allow identifying harmonics
where the leakage is a priori the most important.

LNRPOW (f) =
1

f2
< ARawSig(f) >

σARawSig
(f)

=
1

f2
SNR(f) (6)

LNREM (f) =
1

f

< ARawSig(f) >

σARawSig
(f)

=
1

f
SNR(f) (7)

whereARawSig(f) is the power spectral density at f of the mean signal and σRawSig(f)
its standard deviation, both computed with at least one hundred traces to be statistically
significant. It is to notice that these criteria are not perfect, they just give an order of
idea of the frequencies leaking the most.



8 S. Tiran, S. Ordas, Y. Teglia, M. Agoyan, P. Maurine

3 Indirect Validation of the leakage Model

To validate the leakage models in the frequency domain, we studied the frequency dis-
tribution of the leakage on several sets of traces and we also investigated the relevance
of the LNR criteria. Finally, other implications of the models were verified.

3.1 Traces with a little background noise

These experiments were first conducted on EM traces with a little background noise that
were collected above an unprotected AES hardware mapped onto a FPGA platform.
Only a RS232 unit and a finite state machine were jointly embedded in the FPGA with
the AES to limit the noise. The acquisition chain used to retrieve these 5000 traces of
10000 points consists of an EM probe with a 300µm diameter, a low noise amplifier
with a 40db gain and a Lecroy oscilloscope. The bandwidths of these equipments are
respectively: [30MHz, 3.5GHz], [100MHz, 1GHz] and [0Hz, 3.5GHz]. During the
acquisition, the sampling rate of the oscilloscope was set to 20GS/s and each collected
traces was the averaging of 20 trials to reduce the noise. These EM traces collected, CPA
and Absolute Sum DPA [8] have been carried out in the time domain without application
of any pre-processing to estimate the robustness level of this unprotected design. We
then re-applied the same analyses on the same traces but by keeping successively the
frequency bands [0;Flim] or [Flim;Fsample/2] with Flim a variable of experiment and
Fsample the sampling frequency used during acquisitions. The evolution of the Success
Rate [23] with Flim was then analyzed.

At this point, it should be noticed that no filtering tool has been used. Indeed, instead
of filtering these harmonics, they were replaced in each trace by the corresponding
harmonics of the mean signal calculated by averaging 150 raw traces. The adopted
procedure consists therefore in applying a FT to the whole trace, in replacing undesired
harmonics by the corresponding harmonics of the mean signal, and finally in applying
the inverse FT to get back in the time domain. It is also possible to replace the undesired
harmonics by zeros in the results of the FT, but this does not preserve the original shape
of the signal, this explains our choice mainly motivated by the visual comfort! Whatever
is the chosen solution, these approaches, compared to the use of filters, allow replacing
unwanted varying harmonics by constants that allow ensuring a complete removal of
noise on these harmonics and not only its reduction.

Tables 1 gives the number of traces for reaching a Success Rate equal to 20% or
80% with respect to the frequency bands retained during the analyses. The results are
consistent with the predictions of the EM leakage model. Indeed, as shown in Table 1,
removing low frequencies leads to a rapid increase in the number of curves and even-
tually a failure to achieve the targeted SR values. In addition, the model also predicts
that the suppressing of high frequencies does not significantly modifies the efficiency of
CPA and DPA analyses because most of the leakage energy is spread on low frequen-
cies. This is what can be effectively observed in Table 1, removing harmonics between
70MHz and 10GHz (i.e. 4966 harmonics over a set of 5001) does not modify signif-
icantly the results provided by CPA and DPA. It should be noted that we conducted
the same experiments on traces from the DPA contest v1 and v2 [24] and got similar
results.
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All above results confirm the main prediction of the leakage model according to
which the leakage is spread over all frequencies but with the majority of its energy in a
narrow band of low frequencies. In addition, and as expected, removing high frequen-
cies within traces with little noise, can only offer a slight improvement of the attacks.
What happens in case of really noisy curves?

Table 1. Number of EM traces processed to reach a Success Rate of 20% or 80% with CPA and
DPA with respect to the considered frequency bandwidth

CPA AbsSum DPA
XXXXXX
Freq SR 20% 80% 20% 80%

0 Hz-10 GHz 530 980 1260 2540
100 MHz -10 GHz 1940 4070 2430 3600
200 MHz -10 GHz 4310 Fail 3610 4560
500 MHz -10 GHz Fail Fail Fail Fail

1 GHz -10 GHz Fail Fail Fail Fail
2 GHz -10 GHz Fail Fail Fail Fail
3 GHz -10 GHz Fail Fail Fail Fail
4 GHz -10 GHz Fail Fail Fail Fail
5 GHz -10 GHz Fail Fail Fail Fail
7 GHz -10 GHz Fail Fail Fail Fail
8 GHz -10 GHz Fail Fail Fail Fail

CPA AbsSum DPA
XXXXXX
Freq SR 20% 80% 20% 80%

0-70MHz 520 820 840 1200
0-100MHz 500 1060 1010 1810
0-200MHz 480 850 1650 2610
0-300MHz 500 860 1310 2450
0-400MHz 520 870 1290 2460
0-500MHz 540 860 1390 2590
0-800MHz 510 910 1320 2610

0-1GHz 510 940 1320 2610
0-2GHz 510 970 1310 2610
0-5GHz 540 970 1320 2630

0-10GHz 530 970 1360 2610

3.2 Noisy traces

EM emissions, of an AES hardware embedded within a cortex M3 processor designed
with a 90nm technology, were collected with exactly the same equipment as before
without removing the package protecting the circuit. The EM probe was placed on
top of the AES to not collect too much EM emanations from other operating block.
Despite this precaution and the use of average mode of the oscilloscope (10 trials for
one trace), the collected traces remained noisy because of the impulsive noises of other
operational blocks (pump charge, counters, ...) embedded in the micro-controller and
working simultaneously (and not necessarily synchronously) with the AES. As a result,
a CPA applied on a set of 54000 traces (540000 measurements) did not succeed in
disclosing the full key.

We therefore applied the LNREM (f) on this set of traces in order to identify
the frequencies likely to carry more leakage than noise but also in order to suppress
(with our previously described ’filtering’ procedure) harmonics carrying more noise
than leakage. To do this, the Fourier transform of the mean signal as well as the stan-
dard deviations of each harmonic, were calculated with 150 traces. Fig. 3 gives the
evolutions of the LNREM (f) and of the SNR(f) for a frequency band ranging be-
tween 0Hz and 450MHz. The LNREM (f) criterion clearly points the frequency band
BW1 = [4, 48]MHz as the main source of leakage while SNR(f) points the band
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BW3 = [83, 160]MHz. The SNR(f) is here misled by the algorithmic noise identi-
fied as particularly important around the harmonics of the clock signal (in our case the
AES operates at 120 MHz) in [18]. Finally, we also observe that LNREM (f) is almost
zero between 160MHz and 450MHz while the SNR(f) has oscillations reaching the
value 0.3 in this frequency range.

f108  

LNREM(f) 

SNR(f) 

BW1 
BW2 BW3 

BW4 

Fig. 3. Normalized evolutions of LNREM (f) and SNR(f)

Table 2 shows that a CPA done while keeping all harmonics or only the harmonics
in the frequency range [1, 200]MHz does not succeed in identifying the 16 sub-keys.
However, keeping one of the two lobes seen in Fig. 3, allows CPA to recover the 16
sub-keys. Indeed, 28 900 curves are sufficient to find the key with a CPA conducted on
BW1, while 49 900 (resp. 22 100) are necessary while keeping frequency band BW3
(resp. BW1 ∪ BW3), i.e. by keeping only 78 (resp. 123) harmonics among 10001 in
the last case.

All these experimental results clearly demonstrate the effectiveness of the criterion
LNREM (f) and demonstrate indirectly the validity of the leakage model in the fre-
quency domain.

3.3 Current vs EM leakages

The above results were obtained on EM traces. If they, indirectly validate the leakage
model in the frequency domain, they do not highlight the difference between the current
and EM leakages, and particularly the 1

f2 dependency of the current leakage while the
EM leakage is related to 1

f .
In order to highlight this behavioral difference, EM and current traces of an AES

mapped into a FPGA were simultaneously collected with the same acquisition chain.
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Table 2. Results of CPA attacks on EM
traces collected during the course of an
AES

f-band # traces # subkeys # harmonics
Full band Fail 11 10001

1-200 MHz Fail 12 200
4-160 MHz 27700 16 157

BW1 28900 16 45
BW3 49900 16 78
BW2 Fail 3 36
BW4 Fail 0 9841

BW1 ∪ BW3 22100 16 123

Table 3. Results of CPA attacks on 10k
current and EM traces collected during the
course of an AES

Current / EM # traces # subkeys
Full band 2400 / 640 16 / 16

20MHz-10GHz 3910 / 600 16 / 16
50MHz-10GHz Fail / 1080 13 / 16
70MHz-10GHz Fail / 2120 10 / 16

100MHz-10GHz Fail / 4100 7 / 16
130MHz-10GHz Fail / 5450 5 / 16
160MHz-10GHz Fail / Fail 7 / 15
200MHz-10GHz Fail / Fail 3 / 13
400MHz-10GHz Fail / Fail 1 / 4
800MHz-10GHz Fail / Fail 0 / 1

1GHz-10GHz Fail / Fail 0 / 0

The low noise amplifier used to collect EM traces was used to measure the supply volt-
age variations thanks to a SMA-T connector interconnecting the IC core, the voltage
generator and the amplifier input. Then, following the same approach than before, the
evolutions of the leakages with f were analysed by evaluating the number of traces that
have to be processed by an adversary (using CPA) in order to get the key, results are
shown in Table 3. As predicted by the model, the frequency range on which extends
the current leakage is narrower than the one of the EM leakage. These bands are re-
spectively for the current and EM leakages: [0, 40]MHz and [0, 130]MHz. It should
be noted that the frequency range on which extends the current leakage is far below
the cut-off frequency of the supply pads. In addition, this comparison confirms that
EM traces contain more information than current traces; wealth due to the derivative
behavior of EM probes commonly used and of course to the locality of the measure.

3.4 Leakage vs Clock frequency

The models in section 3 indicate that the leakage distribution in the frequency domain
does not depend on the clock frequency at which the circuit works but is linked to the
maximum frequency at which it can operate. To assess whether this indication of the
model is correct, measurements on a AES hardware embedded within a cortex M3 pro-
cessor were performed for three different operating frequencies: 60, 90 and 120 MHz
keeping the EM probe at the same position. Then, using a narrow sliding window of
frequencies, we launched many CPA to observe the evolutions of the mean guessing en-
tropies. It was expected to observe the same evolutions for all sets of traces if the clock
frequency does not affect the leakage distribution in the frequency domain. This is what
can be observed Fig. 4 that has been obtained after the processing of 60000 traces. As
predicted by the model, the leakage distribution in the frequency domain does not rely
on the operating frequency. However, it depends on the maximum operating frequency
FCKmax for which the circuit has been designed (that fixes the propagation delay of
critical paths and therefore T), a design objective that can be kept secret !
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To conclude, the Leakage model and the reported results herein confirm the experimen-
tal observation of [17] under which the leakage is independent of the clock and occupies
a really reduced number of frequency harmonics.
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Fig. 4. Evolutions of the Mean Guessing Entropy on the frequency range: [0; 210MHz] after the
processing of 60000 traces. The target design has been successively clocked at 60 MHz, 90 MHz
and 120 MHz.

4 Conclusion

Starting from a first order modeling of CMOS circuits behavior, we derived leakage
models of the current and of EM emanations in the frequency domain. These models
highlight the impossibility of predicting the frequency distribution of the leakage with-
out collusion with the designers of targeted circuit. However, these models highlight a
specific behavior of the leakage in the frequency domain; behavior that can be exploited
to improve the efficiency of DPA and CPA. So, beyond a new way of attacking devices,
this model can also be seen as a tool for security teams to assess the resistance of their
devices in a worst case situation through of internal evaluations targeting the harmonics
leaking the most; the knowledge of all design parameters and thus of these frequencies
providing a competitive advantage over an attacker.

To do this, two criteria called leakage to noise ratios (LNR) have been derived from
the model, one for power consumption and one for EM emanations. They allow iden-
tifying harmonics of the spectrum likely to contain leakage. Compared to the SNR
criterion, and with respect of noise, they quantify the importance of the leakage instead
of the signal amplitude. With such criteria, one can easily select the frequency to be
kept, or rejected, during DPA or CPA analyses using the direct and inverse Fast Fourier
Transforms.

Despite the proposal of this efficient pre-processing technique allowing increasing
the Leakage to Noise Ratio (and not only the Signal to Noise Ratio) of traces during
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SCA; the proposed models encourage to use an amplifier with a low noise figure and
with a frequency range from the lowest possible frequency to high frequencies instead
of a wide band pass amplifier with a lesser noise figure and a greater low cut-off fre-
quency. Indeed, low frequencies must be favored !
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A Fourier Transform

For a square signal with an amplitude A such as :

rectT (t) =

{
A if t ∈ [−T/2, T/2]
else 0

(8)

its Fourier transform is equal to

FT {rectT (t)} (f) = AT sinc(fT ) = AT
sin(πfT )

πfT
(9)

Moreover, the Fourier transform of a delay t0 is

FT {x(t)} (f) = X(f)
FT {x(t− t0)} (f) = X(f)e−j2πft0

(10)
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X(f) being the Fourier transform of x(t). From Figure 2.c we can see that the EM
signal is equal to the sum of two squares, one of amplitude A

αT with a delay αT
2 and

a period αT and one of amplitude −A
(1−α)T with a delay αT + (1−α)T

2 and a period
(1− α)T . Thus, from Equations 9 and 10 we can deduce that the Fourier transform of
the EM model is equal to Equation 3 :

EM(f) = A
πfT {

1
α sin(απfT ) e

−jπfαT − 1
1−α sin

(
(1− α)πfT

)
e−jπf

(
(α+1)T

)
}

For a function g and its derivative d
dtg we have

TF {g} (f) =
TF

{
d
dtg

}
(f)

j2πf
(11)

Knowing that the EM signal is the derivative of the current signal we can deduce Equa-
tion 2 :

POW (f) = −jA
2π2f2T {

1
α sin(απfT ) e

−jπfαT − 1
1−α sin

(
(1− α)πfT

)
e−jπf

(
(α+1)T

)
}


