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Abstract

In this paper we will prove a basic property of weil pairing which helps in evaluating its value. We will show that the weil pairing value as
computed from the definition is equivalent with the ratio formula based on the miller function. We prove a novel theorem (Theorem 2) and use it
to establish the equivalence. We further validate our claims with Sage codes.

I. INTRODUCTION AND PRELIMINARIES

We will use basic concepts and usual notations from [1].
In general case, the equation of the elliptic curve E, defined over a finite field K and given in the Weierstrass form, is y2 +a1xy +a3y =

x3 + a2x2 + a4x + a6 where ai ∈ K. We consider two points in it, S and T of order n, co-prime to char(K). The weil pairing en(S,T )
can be defined in the following manner. Let the function fOT ∈ K̄(E) has the divisor n(T ) − n(O) (K̄(E) is the function field associated
with E and O is the point at infinity). This is the usual miller function [2]. One can choose an arbitrary point X and define another similar
function fXT with divisor n(T +X) − n(X) (fXT = cfOT ○ τ−X where τ−X is the translation by −X map and c ∈K∗ is some constant).

It is possible to find another point T ′ in a suitable algebraic closure K̄ with the property that [n]T ′ = T , i.e., T ′ ∈ E(K̄)[n2]. It is clear
that once we find one such T ′, a total of n2 such points can be found. All the points T ′ +R where R ∈ E[n] gives T when multiplied by
n. Since we have E[n] ⊂ E(K̄), we are already at the embedding degree.

We can find another function g whose divisor is ∑((T ′ +R) −R) where R ∈ E[n]. The divisor is principal since [n2]T ′ = O. Next we
observe that gn and fOT ○ [n] have the same divisor where [n] is the multiplication by n map. So, they are equal (upto multiplication by a
constant from K∗). Then the weil pairing is defined as

en(S,T ) = g(X + S)
g(X) (1)

It is easy to check that en(S,T )n = 1.
Another way of calculating weil pairing is as follows. Choose any other arbitrary point Y and compute

en(S,T )′ =
fYT (X+S)

fY
T

(X)

fX
S

(Y +T )

fX
S

(Y )

(2)

We prove that en(S,T ) = en(S,T )′. During the course of proof we prove and use a novel property, Theorem 2 in section III.

II. RELATED WORK

There are different previous works([3], [1], [4], [5], [6]). In [1], chapter III, section 8, remark 8.5 and in exercise 3.16.(c), the equivalence
relationship is stated as

weil pairing(S,T ) = g(X + S)
g(X) =

fXS (Y +T )

fX
S

(Y )

fY
T

(X+S)

fY
T

(X)

This is not true as the correct relationship between (1) and (2) is the inverse of it. Both the examples in section IV serve as counterexamples.
Now, obviously, inverse of a weil pairing is also another valid weil pairing with all the properties. Therefore, from application point of
view, either one can be used. However, as a mathematical formula, if we use the definition of g and fOT as stated in [1] and restated in the
previous section, then the above equivalence relationship is incorrect. The right hand side of the formula needs to be inverted [7].

In [6], the equivalence relation is stated as

g(X + S)
g(X) = (−1)n

fXS (Y +T )

fX
S

(Y )

fY
T

(X+S)

fY
T

(X)

This is incorrect because then for odd n, ( g(X+S)

g(X)
)n = −1, which is incorrect.

The equivalence relationship stated between (1) and (2) is true for all n, whether n is even or odd.

III. THE PROOF

We start with the following lemma,

Lemma 1. en(S,T )′ value as computed in (2) is independent of the choice of X and Y .

Proof. We will show the independence w.r.t Y (independence w.r.t X holds in similar manner). Specifically we will show,

fYT (X+S)

fY
T

(X)

fX
S

(Y +T )

fX
S

(Y )

=
fOT (X+S)

fO
T

(X)

fX
S

(T )

fX
S

(O)

(3)
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Now, fYT has divisor n(Y +T )−n(Y ) = n(T )−n(O)+n((Y +T )−(Y )−(T )+(O)) = div(fOT )+n(div(h)), because (Y +T )−(Y )−
(T ) + (O) is principle, hence there exists a corresponding h ∈ K̄(E). So, fYT = cfOT hn.

So,
fYT (X+S)

fY
T

(X)

fX
S

(Y +T )

fX
S

(Y )

=
fOT (X+S)

fO
T

(X)

hn(X+S)

hn(X)

fX
S

(Y +T )

fX
S

(Y )

=
fOT (X+S)

fO
T

(X)

fXS (Y +T )fXS (O)

fX
S

(Y )fX
S

(T )

fX
S

(Y +T )

fX
S

(Y )

=
fOT (X+S)

fO
T

(X)

fX
S

(T )

fX
S

(O)

Here we have used weil-reciprocity in the following way: hn(X+S)

hn(X)
= h(div(fXS )) = fXS (div(h)) (weil reciprocity can be applied since

fXS and h have disjoint support set).

Essentially, we have set Y = O in (2). However, we cannot set X to O as well because g and fOT has a pole (of order 1 and n respectively)
at O hence both (1) and (2) cannot be evaluated. With Y = O, X can be set to any other value (except that X ∉ div(g) which contains n2

n − torsion points, including O, as poles of order 1) giving the same value for en(S,T )′.
Next, we re-arrange the divisor of g as follows:

div(g) = ∑
R∈E[n]

(T ′ +R) − (R) =
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
n2(T ′) − n2(O)+

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
∑

R∈E[n]/{O}

(T ′ +R) − (R) − (T ′) + (O)

Now, the divisor under the first brace is of fOT ′ . Each divisor under the second brace is of the form (T ′ +R) − (R) − (T ′) + (O). Each
one of them is principle.

If we denote a line passing through two points A and B as l(A,B), then it is clear that
l(−R,−T ′)

l(R,−R)l(T ′,−T ′)
has the divisor (T ′ +R) − (R) −

(T ′) + (O). This is because div(l(−R,−T ′)) = (−R) + (−T ′) + (T ′ +R) − 3(O) and div(l(R,−R)) = (R) + (−R) − 2(O).
Therefore,

g = cfOT ′ ∏
R∈E[n]/{O}

l(−R,−T ′)

l(R,−R)l(T ′,−T ′)
(4)

Next we re-arrange the divisor of fOT ′ as follows:

div(fOT ′) =
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
n(T ) − n(O)+n

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(n(T ′) − (T ) − (n − 1)(O))

The divisor under first brace is of fOT . The divisor under second brace is principle (since [n]T ′ = T ). Hence there exists a function w
whose divisor it corresponds.

Therefore,
fOT ′ = cfOT wn (5)

Now, we replace (5) in (4) and replace g in (1) to obtain:

g(X + S)
g(X) =

fOT (X + S)wn(X + S) ∏
R∈E[n]/{O}

l(−R,−T ′)(X + S)
l(R,−R)(X + S)l(T ′,−T ′)(X + S)

fOT (X)wn(X) ∏
R∈E[n]/{O}

l(−R,−T ′)(X)
l(R,−R)(X)l(T ′,−T ′)(X)

(6)

Now, w has divisor n(T ′) − (T ) − (n − 1)(O). Applying weil reciprocity (weil reciprocity can be applied since fXS and w have disjoint
support set),

wn(X + S)
wn(X) = w(div(fXS )) = fXS (div(w)) = (fXS (T ′))n

fXS (T )(fXS (O))n−1 (7)

Putting back (7) in (6) and comparing it with (3) we see that it is sufficient to prove,

∏
R∈E[n]/{O}

l(−R,−T ′)(X + S)
l(R,−R)(X + S)l(T ′,−T ′)(X + S)

∏
R∈E[n]/{O}

l(−R,−T ′)(X)
l(R,−R)(X)l(T ′,−T ′)(X)

= ( f
X
S (O)
fXS (T ′))

n

(8)

We further note that, for any two points A and B, l(A,B)l(−A,−B) = cl(A,−A)l(B,−B)l(A+B,−(A+B)), because divisors on the left and right
are same.

Using this fact, in place of (8), we prove the following,

∏
R∈E[n]/{O}

l(R,T ′)(X + S)
l(T ′+R,−(T ′+R))(X + S)

∏
R∈E[n]/{O}

l(R,T ′)(X)
l(T ′+R,−(T ′+R))(X)

= (f
X
S (T ′)
fXS (O) )

n

(9)

This is the main part of the proof and, we will prove it with the following stronger theorem,
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Theorem 2. For a point S ∈ E[n], S ≠ O, a fixed point X(∉ E[n]) and for any other point Z (except Z ∉X +E[n]),

∏
R∈E[n]/{O}

l(R,Z)(X + S)
l(R+Z,−(R+Z))(X + S)

∏
R∈E[n]/{O}

l(R,Z)(X)
l(R+Z,−(R+Z))(X)

= ( f
X
S (Z)
fXS (O))

n

Proof. First note that,
l(R,Z)

l(R+Z,−(R+Z))
has divisor (Z) + (R) − (Z +R) − (O).

Let
ψ = c ∏

R∈E[n]/{O}

l(R,Z)

l(R+Z,−(R+Z))

(10)

Then div(ψ) = ∑
R∈E[n]/{O}

(Z) + (R) − (Z +R) − (O).

The divisor of ψ can be partitioned as follows:

div(ψ) = div(φ) − div(φ ○ τ−Z)

, where function φ has the divisor

div(φ) = ∑
(R,−R)∈E[n]/{O}

(R) + (−R) − 2(O) = ∑
(R,−R)∈E[n]/{O}

(R) + ([n − 1]R) − 2(O) (11)

if n is odd. If n is even,
div(φ) = ∑

(R,−R)∈E[n]/{O},R≠−R

(R) + ([n − 1]R) − 2(O) + ∑
[2]Ai=O

(Ai) − (O) (12)

This is because, if n is even, E[n] will contain three 2 − torsion points, denoted as Ai in (12).
E[n] has n2 − 1 non-trivial n − torsion points and hence if n is odd, div(φ) has n2

−1
2

number of terms in (11). In terms of straight
lines, φ is just the product of vertical lines passing through a point and its inverse in E[n]/{O}, i.e,

φ = ∏
(R,−R)∈E[n]/{O}

(x −R[0]) (13)

, where R[0] is the x-coordinate of both R and −R.
If n is even, div(φ) has n2

−4
2

+ 3 number of terms in (12). Because div(φ) will contain three 2 − torsion points. Summing over these
three points will give a divisor of the form (A1) + (A2) + (A3) − 3(O) which is the divisor of the line 2y + a1x+ a3, where a1 and a3 are
coefficients of xy and y in the equation of E. φ is then product of vertical lines passing through a point and its inverse in E[n]/{O} and
2y + a1x + a3, i.e,

φ = (2y + a1x + a3) ∏
(R,−R)∈E[n]/{O},R≠−R

(x −R[0]) (14)

Therefore, from (10), we have,

ψ(X + S)
ψ(X) =

∏
R∈E[n]/{O}

l(R,Z)(X + S)
l(R+Z,−(R+Z))(X + S)

∏
R∈E[n]/{O}

l(R,Z)(X)
l(R+Z,−(R+Z))(X)

=
φ(X+S)

φ○τ−Z(X+S)

φ(X)

φ○τ−Z(X)

=
φ(X+S)

φ(X)

φ○τ−Z(X+S)

φ○τ−Z(X)

(15)

We will focus on the numerator of (15).
Next, we know that the structure of E[n] is a free module of rank 2. Lets denote its two basis as B1 and B2. The whole E[n] can be

generated by [i]B1 +[j]B2, where i, j ∈ [0, . . . , n−1]. We are interested in all the points in E[n] except O, because R ≠ O in (10). Hence
i and j are not both 0. Let S = [r1]B1 + [r2]B2 for some r1, r2 ∈ [0, . . . , n − 1]. Obviously, −S = [n − 1]S = [n − r1]B1 + [n − r2]B2.

Next, we consider the divisor of the function η = φ○τS
φ

.
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The divisor is,

div(η) =
i=n−1

∑
i=0

j=n−1

∑
j=0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
i+j≠0

([i − r1]B1 + [j − r2]B2)

−
i=n−1

∑
i=0

j=n−1

∑
j=0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
i+j≠0

([n − r1]B1 + [n − r2]B2)

−
i=n−1

∑
i=0

j=n−1

∑
j=0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
i+j≠0

([i]B1 + [j]B2)

+
i=n−1

∑
i=0

j=n−1

∑
j=0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
i+j≠0

(O) (16)

or

div(η) =
i=n−1

∑
i=0

j=n−1

∑
j=0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
i+j≠0

([i − r1]B1 + [j − r2]B2) −
i=n−1

∑
i=0

j=n−1

∑
j=0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
i+j≠0

([i]B1 + [j]B2)

+(n2 − 1)(O) − (n2 − 1)([n − r1]B1 + [n − r2]B2) (17)

It can be further simplified. The terms in the first two summations cancel each other except two. When i = r1 and j = r2, the first
summation gives a zero at O which does not get canceled by the second summation. Likewise, the second summation gives a pole at
[n − r1]B1 + [n − r2]B2 for i = n − r1 and j = n − r2 which does not get canceled by the first summation. Adding these two with the rest,
the divisor takes the final form,

div(η) = n2(O) − n2([n − r1]B1 + [n − r2]B2) = n2(O) − n2([n − 1]S) (18)

However, this is the divisor of function ( 1

fO[n−1]S
)n.

Therefore, we have,

η(X)(fO[n−1]S(X))n = φ(X + S)
φ(X) (fO[n−1]S(X))n = c, ∀X ∉ div(φ) (19)

Returning back to (15), we have ,

ψ(X + S)
ψ(X) =

∏
R∈E[n]/{O}

l(R,Z)(X + S)
l(R+Z,−(R+Z))(X + S)

∏
R∈E[n]/{O}

l(R,Z)(X)
l(R+Z,−(R+Z))(X)

=
φ(X+S)

φ○τ−Z (X+S)
φ(X)

φ○τ−Z (X)

=
φ(X+S)
φ(X)

φ○τ−Z (X+S)
φ○τ−Z (X)

=
φ(X+S)
φ(X)

φ(X−Z+S)
φ(X−Z)

= (
fO[n−1]S(X−Z)

fO[n−1]S(X)
)
n

(20)

Next, we prove,

(
fO
[n−1]S(X −Z)
fO
[n−1]S

(X) ) = fXS (Z)
fXS (O)

We consider the divisor of function κ = fO
[n−1]S ○ τX ○ [−1].

The divisor is
n([−1]([n − 1]S −X)) − n([−1](O −X)) = n(X + S) − n(X)

However, fXS has the same divisor. So, we have

κ(Z)
fXS (Z) =

fO
[n−1]S(X −Z)
fXS (Z) = c, ∀Z ≠X,X + S (21)

The only thing left is to find the value of this constant. In general, in other equations like (19), finding the exact value of the constant is
difficult, but for (21) it is straightforward. Putting Z = O in (21) (Z can be in E[n] because restrictions are X ∉ E[n] and Z ∉X +E[n])
we have,

c =
fO
[n−1]S(X)
fXS (O)
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Therefore, we have,
fO
[n−1]S(X −Z)
fO
[n−1]S

(X) = fXS (Z)
fXS (O) (22)

IV. IMPLEMENTATION AND VALIDATION

We have used Sage [8] to validate claims made during the proof. We have used two elliptic curves to check our assertions on n− torsion
points, for even and odd n.

A. Weil Pairing on 10 − torsion points

We use a finite field of F143474 with irreducible polynomial x4 + 3x2 + 12043x+ 3 and multiplicative generator denoted by a. We use the
Elliptic Curve E ∶ y2 = x3 + x + 39.

We compute weil pairing e10(S,T ) between S = E(1110a3 + 10656a2 + 5309a + 1572,13867a3 + 584a2 + 8409a + 12362) and T =
E(13658a3 + 9495a2 + 6829a + 2596,6535a3 + 2890a2 + 13646a + 2944).

Both S and T are of exact order 10. Moreover, S ≠ [i]T i ∈ (1,9), [5]S ≠ [5]T, [2]S ≠ [2i]T i ∈ (1,4) and T ≠ [i]S i ∈ (1,9), [2]T ≠
[2i]S i ∈ (1,4). This means, S and T can be used as basis for E[10].
T ′ corresponding to T is T ′ = E(8545a3+11397a2+5701a+12822,11533a3+1070a2+4865a+6859). T ′ has order 100 and [10]T ′ = T .

We compute the whole E[10] taking S and T as basis.
1) Results: The weil pairing value as computed in equation (1), from definition is: 4742a3 + 8112a2 + 772a+ 13716, a primitive 10− th

root of unity.
The same value can be obtained by equation (2) which calculates the pairing value using ratio of miller’s functions. Also, as claimed in

(3), Y can be eliminated from (2) without changing the pairing value.
Next we check assertions made in equation (19) and (22).
To check (19), we evaluate η at an arbitrary point X . As we noted η is the ratio of φ(X + S) and φ(X). We calculate φ as the product

2y ∏
R,−R∈E[n]/{O},R≠−R

(x − R[0]), since a1 and a3 are 0 in this case. As claimed in (19), the product (φ(X+S)

φ(X)
)(fO

[9]S(X))10 is the

constant 4753a3 + 3499a2 + 11277a + 6205.
Next we validate (22) with X = E(10779a3+10994a2+6005a+8239,12553a3+203a2+13682a+7415) and Z = E(5080a3+3076a2+

3943a+ 7238,12713a3 + 5248a2 + 8673a+ 259). The value of fXS (O) is the constant used for initialization before starting the iteration in
the miller’s algorithm. This constant is set to 1.

Value of fO
[9]S(X − Z) is 499a3 + 7310a2 + 6418a + 7484. Value of fO

[9]S(X) is 7729a3 + 5487a2 + 2724a + 5255. Their ratio is

4957a3 + 9897a2 + 11176a + 5290, same as the value of fXS (Z)

fX
S

(O)
.

B. Weil Pairing on 17 − torsion points

We use a finite field of F143476 with irreducible polynomial x6+4988x5+10289x4+12288x3+8098x2+11627x+2657 and indeterminate
denoted by a. We use the Elliptic Curve E ∶ y2 = x3 + 3x + 192. E has a point of order 17 in F14347 and 143476mod17 = 1.

Now, note that the embedding degree w.r.t 17− torsion points is not 6, but it is 2, because 143472mod17 = 1. However, we must go to
a higher algebraic closure to find T ′ whose order is 289 and which gives T when multiplied by 17.

We compute weil pairing e17(S,T ) between S = E(4502a5 + 3474a4 + 2478a3 + 4954a2 + 3412a+ 313,13914a5 + 11132a4 + 7990a3 +
8829a2 + 4656a + 12436) and T = E(11758,1749a5 + 11694a4 + 8713a3 + 9267a2 + 2664a + 6792).

Both S and T are of order 17. T ′ corresponding to T is T ′ = E(13385a5+6906a4+4034a3+12326a2+9781a+8754,5965a5+9466a4+
9676a3 + 4314a2 + 2392a + 9507). T ′ has order 289 and [17]T ′ = T . We compute the whole E[17] taking S and another 17 − torsion
point B = E(11653,3018) as basis (we could have taken T in place of B as well).

1) Results: The weil pairing value as computed in equation (1), from definition is: 4725a5 +14341a4 +6017a3 +2395a2 +2472a+3604,
a 17 − th root of unity.

The same value can be obtained by equation (2) which calculates the pairing value using ratio of miller’s functions. Also, as claimed in
(3), Y can be eliminated from (2) without changing the pairing value.

Next we check assertions made in equation (19) and (22).
To check (19), we evaluate η at an arbitrary point X . As we noted η is the ratio of φ(X + S) and φ(X). We calculate φ as the product
∏

R,−R∈E[n]/{O}

(x −R[0]), where R[0] is the x-coordinate of both R and −R. As claimed in (19), the product (φ(X+S)

φ(X)
)(fO

[16]S(X))17 is

the constant 6787a5 + 2879a4 + 13328a3 + 10515a2 + 4653a + 11540.
Next we check (22) with X = E(8824a5+8715a4+9456a3+7907a2+9332a+6386,6590a5+10000a4+2161a3+6617a2+6456a+42)

and Z = E(13084a5 + 11849a4 + 10647a3 + 6290a2 + 4913a + 8692,1142a5 + 12161a4 + 5317a3 + 2010a2 + 2851a + 5636).
Value of fO

[16]S(X −Z) is 5303a5 +12451a4 +13526a3 +13903a2 +13361a+6973. Value of fO
[16]S(X) is 646a5 +12955a4 +7680a3 +

8279a2 + 13854a + 8563. Their ratio is 571a5 + 4974a4 + 1934a3 + 11933a2 + 3839a + 2060, same as the value of fXS (Z)

fX
S

(O)
.

V. CONCLUSION

In this paper we have contributed a novel proof of a fundamental property of weil pairing. The property says that the weil pairing value as
computed from the definition is identical with the ratio of miller’s functions evaluated at certain points. We state and prove a novel theorem
(Theorem 2 in section III) related with the function field associated with the curve. Then we use this theorem to prove the equivalence. We
have further verified claims made during the proof with the Sage codes (available at :
https://sites.google.com/site/weilpairingcode/software/weil pairing.zip?attredirects=0&d=1).
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