
Improvement and Efficient Implementation of a
Lattice-based Signature Scheme

Rachid El Bansarkhani and Johannes Buchmann

Technische Universität Darmstadt
Fachbereich Informatik

Kryptographie und Computeralgebra,
Hochschulstraße 10, 64289 Darmstadt, Germany

{elbansarkhani,buchmann}@cdc.informatik.tu-darmstadt.de

Abstract. Lattice-based signature schemes constitute an interesting al-
ternative to RSA and discrete logarithm based systems which may be-
come insecure in the future, for example due to the possibility of quantum
attacks. A particularly interesting scheme in this context is the GPV sig-
nature scheme [GPV08] combined with the trapdoor construction from
Micciancio and Peikert [MP12] as it admits strong security proofs and
is believed to be very efficient in practice. This paper confirms this be-
lief and shows how to improve the GPV scheme in terms of space and
running time and presents an implementation of the optimized scheme.
A ring variant of this scheme is also introduced which leads to a more
efficient construction. Experimental results show that GPV with the new
trapdoor construction is competitive to the signature schemes that are
currently used in practice.

Keywords: Lattice-Based Cryptography, Practicality, Implementations

1 Introduction

The security notion of most cryptographic applications changes in the presence
of quantum computers. In the breakthrough work [Sho97] in 1994, Shor pointed
out that cryptographic schemes with security based on the hardness of number
theoretic assumptions can efficiently be attacked by quantum computers. Since
then, many efforts have been spent on the search for alternatives in order to face
this challenge. Lattice-based cryptography is a promising candidate that has the
potential to meet the security needs of future cryptographic applications. This
is mainly due to Ajtai’s worst-case to average-case reductions [Ajt96], which
attracted a lot of researchers into the field of lattice-based cryptography. Specif-
ically, it states that attacking random instances of a cryptosystem is at least
as hard as solving all instances of the underlying lattice problem. As opposed
to the discrete log problem and factoring, lattice problems are conjectured to
withstand quantum attacks. In the last couples of years, a number of efficient
cryptosystems emerged that base the security on the hardness of well-studied
lattice problems. Unlike number theoretic constructions such as RSA, there ex-
ists no subexponential time attack on lattice problems up to date. All known

attacks have exponential time complexity and thus serve as a further supporting
argument for a replacement by lattice-based cryptosystems. Based on this ob-
servation, one realizes an inherent need to develop new cryptographic primitives
that can be based on worst-case lattice problems.

1.1 Our Contribution

In this paper we give the first software implementation of the GPV signature
[GPV08] scheme using the newest trapdoor construction from Micciancio and
Peikert [MP12]. Moreover, we present an efficient ring variant of the scheme
based on the ring-LWE problem. In addition, we propose improvements that
lower the memory claims for the perturbation matrix by a factor of about 240
compared to the proposal in [MP12]. When generating signatures the pertur-
bation matrix is required to sample integer vectors with a given covariance. In
both variants the matrix and ring variant we considerably improved the running
times of key and signature generation. For instance, the running times of key and
signature generation are lowered by a factor of 30-190 respectively 2-6 in the ring
variant. By providing running times, storage sizes and security levels for different
parameter sets we show that the ring variant has a 3-6 times faster signature
generation engine compared to the matrix variant. At the same time verification
is about 3-9 times faster. Thus, we show that the proposed constructions are
quite efficient and hence competitive regarding the performance.

1.2 Related Work

The construction of lattice based signature schemes appeared to be a big chal-
lenge up to the last couples of years. This is due to the absence of practical
constructions enjoying provable security. First constructions, however, such as
GGH [GGH97] and NTRU Sign [HHGP+03] were completely broken. This fun-
damentally changed in 2008 by introducing the GPV signature scheme by Gentry
et al. [GPV08] and the one time signature LM-OTS by Micciancio and Lyuba-
shevsky [LM08]. The latter one operates in ideal lattices which allows for faster
computations and smaller key sizes while providing provable security. When us-
ing Merkle Trees one can transform LM-OTS into a full signature scheme. The
subsequent works [Lyu08,Lyu09] build upon the one time signature scheme using
the Fiat-Shamir transform [FS87]. Recently, Lyubashevsky proposed an efficient
construction [Lyu12] that performs very well on hardware [GLP12].
The hash-and-sign approach in turn was reconsidered in [GPV08] leading to
constructions that admit security based on the hardness of the SIS Problem.
Specifically, they aim at building a uniform random matrix A ∈ Zn×m en-
dowed with a trapdoor S ∈ Zm×m in such a way that S has small entries and
A · S ≡ 0 mod q holds. By means of the secret matrix S a signer can produce
short preimages x for the hash value H(µ) of a message µ to be signed such
that Ax ≡ H(µ). The quality of the secret matrix immediately transfers to the
quality of the signatures and hence plays a major role for assessing the security.

2

Therefore, improving the algorithms for key generation is an ongoing research ob-
jective. Such constructions were considered for the first time in [Ajt99] and later
on improved by [AP09,Pei10], but unfortunately they are inefficient and thus
not suitable for practice. This is because the involved algorithms are complex
and expensive in terms of space and runtime. However, Micciancio and Peikert
recently proposed in [MP12] an elegant trapdoor construction which allows for
fast signature generation while providing an improved output quality.

1.3 Organization

This paper is structured as follows. In Section 3 we introduce the GPV signature
scheme together with the most recent trapdoor construction [MP12]. Further-
more, we provide a ring variant for this construction in Section 3.4. Section
4 contains a detailed description of our implementation and optimizations. In
Section 5 we present the experimental results and their analysis.

2 Preliminaries

2.1 Notation

We will use the polynomial rings R = Z[x]/〈f(x)〉 and Rq = Zq[x]/〈f(x)〉 such
that f(x) is a monic and irreducible polynomial over Z and q denotes the mod-
ulus. Throughout this paper we will mainly consider the case q = 2k, k > N.
For the ring-LWE problem we consider the cyclotomic polynomials, such as
f(x) = xn + 1 for n being a power of 2. The m-th cyclotomic polynomial with
integer coefficients is the polynomial of degree n = φ(m) whose roots are the
primitive m-th roots of unity.

We denote ring elements by boldface lower case letters e.g. p, whereas for
vectors of ring elements we use p̂. For a vector v ∈ Rn, a positive real s,
and a lattice Λ ⊂ Rn, let DΛ,v,s denote the n-dimensional discrete Gaussian
distribution over Λ, centered at v, with parameter s. For x ∈ Λ, the dis-
tribution DΛ,v,s assigns the probability DΛ,v,s(x) := ρv,s(x)/

∑
z∈Λ

ρv,s(z) with

ρv,s(x) = exp
(
−π ‖x− v‖2 /s2

)
. For brevity we write DΛ,s for DΛ,0,s and ρs

for ρ0,s. Micciancio and Regev introduced the smoothing parameter in [MR04]:

Definition 1. For any n-dimensional lattice Λ and positive real ε > 0, the
smoothing parameter ηε(Λ) is the smallest real s > 0 such that ρ1/s(Λ

∗\{0}) ≤ ε

The matrix B̃ stands for the Gram-Schmidt orthogonalized basis of the basis
matrix B. And ‖B‖ denotes the matrix norm of matrix B. By [A|B] we define
the matrix obtained by the concatenation of the matrices A and B.

3

3 Trapdoor Signatures

The signature scheme due to Gentry, Peikert and Vaikuntanathan [GPV08]
consists mainly of sampling a preimage from a hash function featured with a
trapdoor. The security of this construction is based on the hardness of `2-SIS.
In [MP12] Micciancio and Peikert provide a new trapdoor notion that improved
all relevant bounds of the previous proposals [Ajt99,AP09].

3.1 Description of the matrix version [GPV08,MP12]

Similar to the constructions of [Ajt99,AP09], the authors of [MP12] start with a
uniform random matrix Ā ∈ Zn×m̄ and extend it to a matrix A = [Ā|G−ĀR] ∈
Zn×m via deterministic transformations. The main idea behind this proposal is
to use a primitive matrix G ∈ Zn×ω, which has the property of generating Znq
and for which one can easily sample preimages. Due to the nice structure of
this matrix one can find a basis S ∈ Zω×ω satisfying the congruence relation
G · S ≡ 0 mod q.

Below we provide the main algorithms of the GPV signature scheme in con-
juction with the trapdoor construction from [MP12]:

KeyGen(1n) → (A,R): Sample Ā
$← Zn×m̄q and R

$← D such that R ∈
Zm̄×dlog2(q)e·n and D (typically DZm̄×dlog2(q)e·n,αq) is a distribution which
depends on the instantiation [MP12]. Output the signing key R and the
verification key A = [Ā|G− ĀR] ∈ Zn×mq where G is a primitive matrix.

Sign(µ,R)→ x ∈ Zm: Compute the syndrome u = H(µ), sample p← DZm,
√

Σp

and determine the perturbed syndrome v = u − A · p. Then sample z ←
DΛ⊥v (G),r with r ≥ 2 ·

√
ln(2n(1 + 1

ε))/π. Compute x = p+
[
R
I

]
z and output

the signature x.
Verify(µ,x, (H,A)) → {0, 1}: Check whether A ·x ≡ H(µ) and ‖x‖2 ≤ s

√
m.

If so, output 1 (accept), otherwise 0 (reject).

Throughout this paper fix the modulus q to be 2k for some k ∈ N and use
the primitive matrix G as defined in [MP12]. To this end, we start defining the
primitive vector gT := (1, 2, 4, . . . , 2k−1) ∈ Zkq since G = In ⊗ gT . Due to its

simple structure one can find an associated basis Sk for the lattice Λ⊥q (gT) which
has the following shape

Sk =

 2 0
−1 2

. . .
. . .

0 −1 2

 ∈ Zk×kq .

By means of the vector gT and the associated basis Sk one can easily create
S ∈ Znk×nkq and the primitive matrix G ∈ Zn×nkq , respectively:

4

G =

gT 0

. . .

0 gT

 , S =

[
Sk 0

. . .

0 Sk

]
.

An optimal bound for the smoothing parameter of the lattice Λ⊥q (gT) is easily

obtained using the orthogonalized basis S̃k = 2 · Ik. Since ‖S̃‖ = ‖S̃k‖ = 2, we

have ηε(Λ
⊥
q (G)) ≤ r = 2 ·

√
ln
(
2n
(
1 + 1

ε

))
/π according to [GPV08, Theorem

3.1]. Using this parameter we can bound the preimage length. Due to [Ban93,
Lemma 1.5] the probability of the preimage to be greater or equal to r ·

√
n · k

is bounded by 2−n·k · 1+ε
1−ε .

Sampling Algorithms for Preimages and Perturbations In what follows
we describe the preimage sampling algorithm for a syndrome t ∈ Zq from the
coset Λ⊥t (g>) = {x | g> · x ≡ t mod q} using the randomized nearest plane
algorithm [MP12]. Due to the nice properties of the orthogonalized basis, the
algorithm reduces to a few steps with a0 = t :

for i = 0, . . . , k − 1 do:

1. vi ← D2Z+ai,r

2. ai+1 = (ai − vi)/2

Output: v = (v0, . . . , vk−1)T

The resulting vector is v ∈ Λ⊥t (g>) distributed as DΛ⊥t (g>),r. Of course, sim-

ilarly one can sample preimages from Λ⊥u (G) for a syndrome vector u ∈ Znq by
independently running n instances of the algorithm on each component of u.
The authors provide two different types of instantiations for the trapdoor gen-
eration algorithm, namely the statistical and computational instantiation. Re-
garding the GPV signature scheme we used the latter one in our implementation
because the dimension of A is much smaller. Therefore, we will always refer to the
computational instantiation in the rest of this work. Such a representation can
easily be achieved by generating a uniform random matrix Ã ∈ Zn×n and sam-

pling a trapdoor R =
[
R1

R2

]
from the discrete Gaussian distribution DZ2n×nk,αq

where α ∈ R>0 satisfies αq >
√
n. The resulting matrix [Ā|G − (ÃR2 + R1)]

with Ā = [In|Ã] is an instance of decision-LWEn,α,q and hence pseudorandom
when ignoring the identity submatrix.
Applying the framework of [GPV08] requires to sample a spherically distributed
preimage for a given syndrome u ∈ Znq using Gaussian sampling algorithms and
the trapdoor R. In fact, the spherical distribution is a common tool to make
the distribution of the signature independent from the secret key. The Gaus-
sian sampling algorithm mainly consists of two parts. The first part involves the
trapdoor R which is used to transform a sample x from the set Λ⊥u (G) with

parameter r ≥ ‖S̃‖ ·
√

ln(2n(1 + 1
ε))/π to a sample y =

[
R
I

]
·x of the set Λ⊥u (A).

5

Due to the fact that
[
R
I

]
is not a square matrix and the non-spherical covariance

COV = r2
[
R
I

]
[RT I] is not of full-rank, the distribution of y is skewed and

hence leaks information about the trapdoor. An attacker could collect samples
and reconstruct the covariance matrix. Therefore, we need the second part to
correct this flaw. This can be done by adding perturbations from a properly cho-
sen distribution. Using the convolution technique from [Pei10], we can choose
a parameter s in such a way that s2 is slightly larger than the largest absolute
eigenvalue of the covariance COV and generate Gaussian pertubations p ∈ Zm
having covariance Σp = s2I−COV. In order to obtain a vector b that is from a
spherical Gaussian distribution with parameter s, one samples a preimage y for
an adjusted syndrome v = u−Ap from Λ⊥v (A). The vector b = p + y provides
a spherical distributed sample satisfying Ab ≡ u mod q.

Parameters When applying the framework of [RS10] we get Table 1 which
contains different parameter sets with their corresponding estimated sub-lattice
attack dimension d and the more relevant estimated Hermite factor δ. The
SIS norm bound is denoted by ν. Columns marked with ? provide according
to [GPV08, Proposition 5.7] additional worst-case to average-case hardness sat-
isfying q ≥ ν · ω(

√
n log2(n)). The parameters of the scheme should be set in

such a way that δ ≈ 1.0064 in order to ensure about 100 bits of security [RS10].
In Table 4 (see Appendix A.1) we provide a guideline of how to select parameters
in the matrix and ring variant (Construction 1).

n 128 128? 256 256? 284 284? 384 384? 484 484? 512 512? 1024 1024

k 24 27 24 27 24 28 24 29 24 29 24 30 27 30
m 3328 3712 6656 7424 7384 8520 9984 11136 12584 15004 13312 16384 29696 32768
q 224 227 224 227 224 229 224 229 224 229 224 230 227 230

d 324 346 586 659 650 758 838 1013 1057 1221 1118 1336 2305 2561
ν 4.8e5 5.4e5 1.3e6 1.5e6 1.6e6 1.8e6 2.5e6 3.0e6 3.5e6 4.3e6 3.9e6 4.8e6 1.2e7 1.3e7

δ 1.0203 1.0183 1.0117 1.0106 1.0108 1.0095 1.0085 1.0072 1.0070 1.0060 1.0067 1.0055 1.0034 1.0031
λ bits < 75 < 75 75 78 78 82 86 94 95 103 97 108 148 158

Table 1. Parameter sets with the corresponding estimated sublattice
attack dimensions d and Hermite factors δ according to [RS10].

Different to [MR08] the approach taken in [RS10] requires to determine the
optimal sub-dimension d = {x ∈ Z | q2n/x ≤ ν} of the matrix A consisting of
m columns and n rows. The lattice Λ⊥q (A′) generated by A′ when leaving out
m− d columns from A has still determinant qn with very high probability. This
means that a solution v ∈ Λ⊥q (A′) with ‖v‖ ≤ ν can easily be tranformed to the
vector (v,0) such that A · (v,0) ≡ 0 mod q holds. For a given d we obtain the

Hermite factor δ = 2n·log2(q)/d2

implying that a sufficiently good HSVP solver
can find vectors v ∈ Λ⊥q (A′) bounded by q2n/d. From the Hermite factor one
can compute the effort T (δ) required to solve δ − HSVP according to [RS10,

6

Conjecture 3]. Subsequently, one maps the result to the corresponding security
levels (e.g. see [RS10, Table 2]).

3.2 The Ring Setting

In [MP12] the authors state that the construction can be adapted to the ring
setting in such a way that the elements of the primitive vector g> are considered
as ring elements of Rq = Zq[X]/φm(X) rather than Zq, where φm(X) is the m-th
cyclotomic polynomial. In the following section we present our construction of
this idea and show that a polynomial matrix Ĝ as in the matrix case is indeed
not needed. This results in a more efficient instantiation.

Construction 1 The public key is generated by drawing k samples (āi, āiri +
ei) from the ring-LWE distribution. By this, we obtain a public key that is
pseudorandom and enjoys the hardness of ring-LWE. Following [ACPS09] one
can use the error distribution in order to sample the trapdoor polynomials r̂ ∈ Rkq
and ê ∈ Rkq . This does not incur any security flaws. Indeed, this property is
essential for the signature scheme to work due to the need for smaller secret
keys. As in the matrix variant one can use only one uniformly distributed sample
ā1 rather than a set in A. By a standard hybrid argument the hardness of
distinguishing ā1ri + ei from uniformly distributed samples can be reduced to
decision ring-LWE [BPR12]. Thus, we obtain a public key of the following shape:

A = [1, ā1, g1 − (ā1r1 + e1), . . . , gk − (ā1rk + ek)]

Similar to the matrix version ĝ> = [1, · · · , 2k−1] defines the primitive vector
of polynomials where each component is considered as a constant polynomial.
Sampling from Λ⊥u (ĝ>) = {x̂ ∈ Rkq | g1x1 + · · · + gkxk = u } is performed as

in the matrix case with y> = [x
(0)
1 , . . . ,x

(0)
k , . . . ,x

(n)
1 , . . . ,x

(n)
k] satisfying

Gy ≡ u mod q, where x
(i)
j is the i-th coefficient of the j-th polynomial. The

resulting vector y is from a spherical Gaussian distribution having covariance
matrix r2I. Sampling a preimage for a syndrome u ∈ Rq requires to sample
polynomials x̂ = (x1, . . . ,xk) from Λ⊥u (ĝ>). These are then used to construct

the preimage ẑ = [
k∑
i=1

eixi,
k∑
i=1

rixi, x1, . . . , xk] ∈ Rk+2
q . It can easily be

verified, that Aẑ ≡ u holds. With the same arguments as in the matrix case
we need to add some perturbation to transform the skewed distribution into a
spherical one. Since we mainly operate on rings modulo xn + 1 with n a power
of two, multiplication of polynomials rixi corresponds to matrix multiplication
Rot(ri)xi. The matrix Rot(ri) consists of n columns [ri, rot(ri), · · · , rotn−1(ri)]
with rot(y) = [−yn−1, y0, . . . , yn−2] defining the rotation in anti-cyclic integer
lattices. Of course, other irreducible polynomials are also possible, but have the
drawback of larger expansion factors which imply increased preimage lengths.
The covariance matrix of the preimage has the following shape:

COV = r2

[
R1

R2

I

]
[R>1 R>2 I]

7

with R1 = [Rot(e1) | . . . | Rot(ek)] and R2 = [Rot(r1) | . . . | Rot(rk)]
respectively. One observes, that the computation of this matrix is very sim-
ple since matrix multiplication corresponds to polynomial multiplication with
β(x) = [x1,−xn,−xn−1, . . . ,−x2] which is the first row of Rot(x):

COV = r2

Rot(
k∑

i=1
eiβ(ei)) Rot(

k∑
i=1

eiβ(ri)) R1

Rot(
k∑

i=1
riβ(ei)) Rot(

k∑
i=1

riβ(ri)) R2

R>1 R>2 I

 .
Now one can use the techniques from the previous section in order to generate
perturbations. A perturbation vector p ∈ Zn(k+2) is then split into k+2 parts of
length n. Each part corresponds to a perturbation polynomial pi ∈ Rq. In order
to provide a preimage for a syndrome polynomial u one samples perturbations
p1, . . . ,pk+2 ∈ Rq as shown before. Then we create sample polynomials x̂ from
Λ⊥u−Ap(ĝ>). The resulting preimage ẑ is then spherically distributed:

ẑ =
[
p1 + ê · x̂, p2 + r̂ · x̂, p3 + x1, . . . , pk+2 + xk

]
.

Now we give a short description of how to instantiate the ring-LWE problem
and how to sample the secret keys ri and ei for 1 ≤ i ≤ k according to [DD12].
The authors provide different from the work [LPR10] a relatively simple ring-
LWE setting avoiding the work in the dual ring R∨q or the H-Space [LPR10]
which turns out to be more convenient in certain applications. Following the
paper of [BLP+13] we can take q to be a power of two as in the matrix variant.
Such choices are more suitable for practice since the nice sampling algorithms
introduced in the previous section are applicable. A prime number would involve
costly sampling procedures which lead to a slower signature generation engine.
As stated in [ACPS09] it is possible to generate both the secret key ri and ei from
the same error distribution without affecting the security. Indeed, this property
is important in order to make the trapdoor construction work based on the ring-
LWE assumption. Specifically, we need small keys to provide short preimages. If
one operates in the ring Zq[X]/(Xn + 1) with n a power of two, the coefficients
of both ri and ei are chosen from the Gaussian distribution on the rationals and
then rounded to the nearest integers. In particular, the polynomials ri and ei
are distributed as dDQn,cc for c =

√
nαq(nl

2 log(nl/2))1/4 where l is the number of

samples and αq > ω(
√

log 2n). In practical applications one can omit the last
term [DD12] or set l = 1 due to the fact that a possible adversary can always
create own samples by using ā1. For other choice of cyclotomic polynomials Φm
it is possible to sample the trapdoor polynomials in extension rings according
to [DD12, Theorem 2]. But a better approach is to use the framework presented
in [LPR13] since it allows to work in arbitrary cyclotomic rings without incur-
ring any ring-dependent expansion factor. We will provide such a construction
in the full version of this paper.

8

Construction 2 We briefly explain another ring construction that is derived
from [Mic07]. Take k = dlog2 qe and m̄ = O(log2(n)). Then select m̄ uniformly

random polynomials â = [a1, . . . ,am̄] ∈ Rm̄q . Define by hâ(x̂) =
m̄∑
i=1

aixi a gen-

eralized compact knapsack. Furthermore choose k vectors r̂i for 1 ≤ i ≤ k, each
consisting of m̄ random polynomials ri1, . . . , rim̄ of degree n−1 with small co-
efficients. By [SSTX09, Lemma 6], which is an adapted variant of the regularity
lemma of [Mic07], the function values am̄+i = ha(r̂i) with 1 ≤ i ≤ k are essen-
tially uniformly distributed. Thus, we can create an almost uniformly random
vector of polynomials A endowed with the trapdoor r̂i ∈ Rm̄q where 1 ≤ i ≤ k:

A = [a1, . . . , am̄, g1 − am̄+1, . . . , gk − am̄+k] .

To generate a preimage of a given syndrome polynomial u ∈ Rq, one has to
sample a vector x̂ ∈ Λ⊥u (ĝ>) using the methods from above. As one can easily
verify, the vector ŷ = [r̂1x1, . . . , r̂kxk , x1, . . . ,xk] is a preimage of the
syndrome u for A. Using the techniques from the descriptions before, one can
produce spherically distributed samples.

4 Improvements and Implementation Details

In our implementation we have to face several challenges that affect the per-
formance of the signature scheme both in the matrix and ring variant. In the
following sections we give a detailed description of our improvements and imple-
mentation results.

4.1 Computation of the Covariance matrix

Firstly, we observed that the computation of the covariance matrix COV is too
expensive in terms of running time. Since the basis matrix COV is sparse, we
were able to significantly reduce the computational efforts. It can be split into
four parts as below. The only block to be computed is the symmetric matrix
RRT .

COV = r2

[
RRT R

RT I

]
In the ring variant the computation of the covariance matrix is much faster
because multiplication is performed in polynomial rings as explained in the de-
scription. Running these parts in parallel offers another source of optimization.

4.2 Estimating the parameter s

As in [MP12] one sets the parameter s large enough such that it is indepen-
dent from a specific trapdoor. In particular, s is chosen to be not smaller than√
s1(R)2 + 1 ·

√
6 · a, where s1(R) denotes the largest singular value of the

secret key R and a is selected as above. The perturbation covariance matrix

9

Σp = s2Im − COV is well-defined, if one selects s such that s > s1(
[
R
I

]
) · r

is satisfied. Since R is a subgaussian random variable, the matrix R satisfies
s1(R) ≤ C · (

√
2n+

√
n · k+ 4.7) ·αq except with probability ≈ 2−100 according

to [MP12, Lemma 2.9]. The universal constant C is very close to 1/
√

2π.

4.3 Generation of Perturbation Vectors

One of the main ingredients of the signature scheme is the idea of creating per-
turbations [MP12] in order to get spherically distributed preimages that do not
carry any information about the secret key. A perturbation vector is generated by
means of the distribution DZm,

√
Σp

which outputs random vectors from Zm with

covariance matrix Σp. By [Pei10] this can be achieved by sampling a vector p ac-
cording to d

√
Σp − a2I ·Dm

1 ca, where Dm
1 denotes the m-dimensional Gaussian

distribution. Each vector sampled from Dm
1 has entries coming from the standard

continuous Gaussian distribution with parameter 1. d·ca denotes the randomized

rounding operation from [Pei10] with parameter a = r/2 ≥
√

ln(2n(1 + 1
ε))/π,

which rounds each coordinate of the vector independently to a nearby integer
using the discrete Gaussian distribution. The generation of perturbation vectors
requires the square root computation

√
Σp − a2I. Below we discuss one method

for this purpose and provide improvements through a better analysis.

4.4 Square Root Computation

The Cholesky decomposition splits any positive definite matrix M into the prod-
uct of a lower triangular matrix and its conjugate transpose, i.e. M = L · LT ,
and runs in time O(m3) = O((k+2)3n3). If one selects k = 19, then the constant
factor grows by 9261, which is very high compared to n = 256. The Cholesky
decomposition is needed to generate perturbations that have covariance matrix
Σp, where

√
Σp is the Cholesky matrix. An algorithm for the Cholesky decom-

position is shown in the Appendix A.2 (Algorithm 1). When decomposing the
matrix Σp − a2I into its roots, one can improve the running time by our mod-
ified Cholesky decomposition taking into account the n2k2 − n · k zero entries,
meaning that one can skip line 8 in Algorithm 1 whenever lik or ljk is known
to be zero. Due to the sparsity of Σp − a2I this occurs very often. We call this
optimized algorithm variant 1.
Although this optimization in variant 1 noticeably improves the timings of key
generation, the algorithm is still inefficient and is the main source of slow key
generation. Moreover, the resulting perturbation matrix is dense and has no
structure, which leads to high memory claims in order to store the matrix of
floating entries and to worse signature generation running times. This is due
to the fact that each generation of a perturbation vector requires to multiply a
huge triangular matrix consisting of multi-precision floating point entries with a
floating point vector. To circumvent this problem we applied a pivoting strategy
followed by the Block Cholesky decomposition, meaning that we permute the
covariance matrix such that PΣpP> = Σ′p.

10

This corresponds to left multiplication of the permutation matrix P =
[

0 Ink

I2n 0

]
to the public key A. It is obvious that this transformation does not cause any
security flaws because it is a simple reordering. The advantage of using P is a
perturbation covariance matrix Σ′p with a nice structure which enables us to
work with Schur complements [Zha10] in a very efficient way:

Σ′p = s2Im − r2
[
Ink R>

R RR>

]
=
[

0 Ink

I2n 0

]
Σp

[
0 Ink

I2n 0

]>
.

Therefore we get an algorithm which outperforms the optimized cholesky de-
composition applied on the non-permuted matrix by a factor of 30-190. Further-
more, we obtain a signature generation engine which yields a factor improvement
of 2-6 in the ring variant. This is due to the sparse matrix and its nice structure.
In both the key and signature generation steps the factor grows as n increases.
In general the Schur complement is defined as follows:

Lemma 1. Let the matrix Si =
[
bi h>i
hi Ci

]
∈ Rm−i×m−i be symmetric posi-

tive definite with bi > 0. Then the Schur complement Si+1 := Ci − 1
bi

hih
>
i ∈

Rm−i−1×m−i−1 is well-defined and also symmetric positive definite.

This decomposition is successively applied on the submatrices Si ∈ Rm−i×m−i.
Doing this, one obtains an efficient method to construct the columns of the ma-

trix
√

Σ′p − a2I. The first nk colums 1√
b
·
[
b · I
R

]
∈ Rm×nk for b = s2 − r2 − a2 =

s2−5a2 involve only a simple scaling operation. Therefore, we need no additional
memory in order to store these columns. Due to the sparse columns multipli-

cation involves only the non-zero columns (R)i of the matrix R =
[
R1

R2

]
. Thus,

transformations are focused only on the (2n× 2n) matrix:

Snk = (s2−a2)I−r2RR>−1

b

nk∑
i=1

(R)i(R)>i = (s2−a2)I−(r2+
1

b
)RR> ∈ R2n×2n .

The last sum of vector products reduces to the simple scaling operation 1
bRR>.

Thus, one can save the costly vector product computations. When continuing
the decomposition on the remaining matrix Snk one obtains the Cholesky de-
composition. One can easily verify that

XX> = Σ′p − a2I, X =
[√

bInk 0
R√
b

L

]
holds. Consequently one needs only to store n(2n+1) floating point entries of the
last part L = Decomp(Snk) instead of m(m+1)/2 in the case without permuta-
tion. For instance, this induces an improvement factor of m(m+1)/2n(2n+1) ≈
240 for n = 512 and k = 29. A nice sideeffect of this transformation is a much
faster algorithm for generating perturbations since the number of operations
drastically decreases as the factor grows. In the matrix version, one makes use of
the sparse decomposition matrix. In particular

√
Σp − a2I·Dm

1 is reduced to the

11

simple scaling operation of
√
b ·Dnk

1 and the computation
[

1√
b
R L

]
·Dm

1 . Espe-

cially in the ring version we preserve the nice properties of polynomial multipli-
cation and therefore use only the scaled set of trapdoor polynomials 1√

b
ei,

1√
b
ri

and the lower triangular matrix L =

[
L1

L2

]
in order to generate perturbations.

Specifically, one obtains the perturbation vector p = [p1|p2|p3] ∈ Q(k+2)n with

p1 =
√
b · Dnk

1 , p2 = 1√
b

k∑
i=1

riD
n
1 + L1 · Dn

1 and p3 = 1√
b

k∑
i=1

riD
n
1 + L2 · Dn

1 .

Thus, we get a fast signature generation algorithm which is about three times
faster than its matrix analogue. It is also worth to mention that these operations
can also be executed in parallel.

4.5 Sampling

For sampling discrete Gaussian distributed integers in the key generation step we
used the inversion transform method rather than rejection sampling because the
number of stored entries is small and can be deleted afterwards. This improves
the running times of the sampling step significantly. In particular, suppose the
underlying parameter is denoted by s. We precompute a table of cumulative
probabilties pt from the discrete Gaussian distribution with t ∈ Z in the range
[−ω(

√
log n) ·s, ω(

√
log n) ·s]. We then choose a uniformly random x ∈ [0, 1) and

find t such that x ∈ [pt−1, pt]. This can be done using binary search. The same
method is applied when sampling preimages from the set Λ⊥u (G) with parameter
r. This parameter is always fixed and relatively small. Storing this table takes
about 150 Bytes of memory. In this case signature generation is much faster
than with simple rejection sampling. But, unfortunately, this does not apply
in the randomized rounding step because the center always changes and thus
involves a costly recomputation of tables after each sample. Therefore we used
rejection sampling from [GPV08] instead. As for sampling continuous Gaussians
with parameter t = 1, we used the Ziggurat algorithm [MT84] which is one of
the fastest algorithms to produce continuous Gaussians. It belongs to the class
of rejection sampling algorithms and uses precomputed tables. When operating
with multiprecision vectors such as sampling continuous random vectors one
should use at least λ bits of precision for a cryptographic scheme ensuring λ bits
of security (e.g. 16 bytes floating points for λ = 100).

4.6 Random Oracle Instantiation

For the GPV signature scheme a random oracle H(·) is required which on an in-
put message x outputs a uniformly random response H(x) from its image space.
In most practical applications this is achieved by a cryptographic hash func-
tion together with a pseudorandom generator which provides additional random
strings in order to extend the output length. In our implementation we used
SHA256 together with the GMSS-PRNG [BDK+07] because strings of arbitrary

12

size are mapped to vectors from Znq . Each component of the vector has at most
blog qc bits.

Rand← H(Seedin), Seedout ← (1 + Seedin +Rand) mod 2n. (1)

The first Seedin is the input message, and the function is repeated until enough
random output Rand is generated.

We implemented the GPV signature scheme, the trapdoor generation and
sampling algorithms in C using the Fast Library for Number Theory (FLINT
2.3) and the GNU Scientific Library (GSL 1.15). FLINT comprises different data
types for matrices and vectors operating in residue classes such as Zq and Zq[X]
wheras the GSL library provides a huge variety of mathematical tools from linear
algebra, that can be applied on different primitive data types. We also included
the Automatically Tuned Linear Algebra Software Library (ATLAS) which is an
empirical tuning system that creates an individual BLAS (Basic Linear Algebra
Subprograms) library on the target platform on which the library is installed on.
Specifically, this library provides optimized BLAS routines which have a signif-
icant impact on the running times of the used mathematical operations in the
key and signature generation steps. So it is always recommended to include this
library whenever one has to work with GSL. For the representation of matrices
in Zn×mq FLINT provides the data structure nmod mat t which comes into use in
our implementation of the matrix version. Regarding the ring version, working
with polynomials is performed by using the data structure nmod poly t. FLINT
makes use of a highly optimised Fast Fourier Transform routine for polynomial
multiplication and some integer multiplication operations.

5 Experimental Results

In this section we present our experimental results and compare the matrix
version with the ring variant. Regarding the GPV signature scheme we used
Construction 1 operating with a smaller number of polynomials compared to
Construction 2. Hence, we obtain faster signature generation algorithms with
a view to polynomial multiplication, generation of perturbations and sampling
algorithms. We provide running times and file sizes of keys and signatures. The
experiments were performed on a Sun XFire 4400 server with 16 Quad-Core
AMD Opteron(tm) Processor 8356 CPUs running at 2.3GHz, having 64GB of
memory and running 64bit Debian 6.0.6. We used only one core in our exper-
iments. In most works private keys and signature sizes are estimated based on
the underlying distributions ignoring the norm bound of the sampled vectors
and thus lead to overestimations of signature sizes. By Lemma 2 we show that
we can ignore the underlying distributions and focus solely on the norm bound.
This allows us to give tighter bounds compared to previous proposals. For in-
stance, in [Lyu12] signatures y ∈ Zm are distributed as discrete Gaussians with
standard deviation σ. The estimated signature size is m · dlog2(12 · σ)e bits
(ignoring the norm bound). In our case signatures are distributed as discrete

13

Gaussians with parameter s such that ‖y‖2 < s ·
√
m. Using Lemma 2 the bit

size needed to represent y is bounded by m · (1 + dlog2(s)e) bits. The private
key R ∈ Z2n×n·k from Section 3.1 can be viewed as a vector r with 2n2k entries
such that ‖r‖2 < αq ·

√
2n2k by [Ban93, Lemma 1.5].

Lemma 2. Let v ∈ Zn be a vector with ‖v‖2 < b ·
√
n. Then, the maximum

number of bits required to store this vector is bounded by n · (1 + dlog2(b)e).

The proof of Lemma 2 is in the Appendix (see A.3). Below we provide two
tables comparing the ring variant with the matrix variant. They contain the file-
sizes of the private key, public key, perturbation matrix and the signature (Table
2 bottom) as well as the running times of key generation, signature generation
and verification (Table 2 top). The last line of the table reflects the improve-
ment induced by the modification of the public key A and hence the covariance
matrix. The improvement factor is related to the optimized Cholesky decomposi-
tion (variant 1) which makes use of the sparsity of Σp. Indeed, the improvement
factor is much higher when comparing to the original Cholesky decomposition.
The impact of the discrete Gaussian samplers and the ATLAS library used in
our implementation are notably but not addressed in this work.

Running times [ms]

Keygen Signing Verification

n k Ring Mat M/R Ring Mat M/R Ring Mat M/R

128 24 277 984 3.6 5 9 1.8 0.6 1.4 2.3
128 27 317 1,108 3.5 6 11 1.8 0.7 1.7 2.4
256 24 1,070 5,148 4.3 12 30 2.5 1.5 5 3.3
256 27 1,144 5,728 4.1 14 36 2.5 1.7 6 3.5
512 24 4,562 28,449 5.0 27 103 3.8 3 18 6
512 27 5,354 30,458 5.1 31 125 4.0 4 21 5.3
512 29 5,732 34,607 5.4 35 136 3.8 5 22 4.4
1024 27 28,074 172,570 6.0 74 478 6.4 10 97 9.7
1024 29 30,881 198,620 6.3 81 518 6.4 11 102 9.3

Improvement
30-190 ↑ 10 -40 ↑ - 2-6 ↑ 1.4 - 2 ↑ - - - -

factor

Sizes [kB]

Public Key Secret Key Pert. Matrix Signature

n k Ring Mat M/R Ring Mat M/R R and M Ring Mat M/R

128 24 9.4 1200 128 4.4 528 163 257 5.8 5.3 0.9
128 27 11.8 1512 128 5.0 594 163 257 6.5 5.9 0.9
256 24 18.8 4800 256 9.8 2304 236 1026 12.5 11.4 0.9
256 27 23.6 6048 256 11.0 2592 236 1026 14.1 12.8 0.9
512 24 37.5 19,200 512 21.3 9984 469 4100 26.8 24.5 0.9
512 27 47.3 24,192 512 23.9 11232 470 4100 30.1 27.4 0.9
512 29 54.4 27,840 512 25.7 12064 470 4100 32.2 29.4 0.9
1024 27 94.5 96,768 1024 51.7 48384 936 16392 63.8 58.5 0.9
1024 29 108.8 111,360 1024 55.5 51968 936 16392 68.4 62.7 0.9

Improvement
- - - - 170 - 260 - - -

factor

Table 2. Experimental results for the matrix and ring variant. By ↑ we mean that the
factor grows as n increases.

By the modification we obtain a key generation engine that is about 30-190
times faster in the ring variant. For n = 512 and n = 1024 signature generation
is about 3 and respectively 6 times faster. It is also worth to mention that the

14

authors of [MP12] explain the possibility of splitting the signing algorithm into
an offline and online phase. The task of generating pertubations is independent
from the message to be signed, hence it is possible to generate them in advance
or create many samples and store them. This obviously requires to periodically
create the perturbation matrix or storing it. From a practical point of view we
do not consider such a breakdown in our implementations. But indeed, gener-
ating perturbations amounts after the optimizations to more than 60 percent
(see Figure 1) of the running time in the ring variant and 13-30 percent in the
matrix variant. In Figure 1 we present a breakdown of the signing running time
into four major parts which are the most time consuming. In particular, we dif-
ferentiate the generation of perturbations p̂, sampling of x̂, computation of the
syndrome polynomial v = Ap̂, polynomial multiplications ê · x̂ and r̂ · x̂. By
our experiments for different parameter sets we obtain Figure 1 illustrating the
average measurements.

Fig. 1. Breakdown of signing running time into the major parts

In Table 3 we compare our implementation with classical signature schemes
such as ECDSA, DSA and RSA for the same machine (AMD Opteron at 2.3GHz).
The experiments were performed based on openssl implementations of the cor-
responding schemes. In addition, we provide implementation results of current
post quantum schemes, such as the code-based signature schemes [V97,Ste94]
using the Fiat-Shamir transform [FS87,ADV+12]. As one observes, all classical
schemes have faster signing algorithms compared to our implementation except
for RSA 4096. However, our implementation has a faster signature verification
engine than ECDSA and outperforms the code-based Véron und Stern signature
schemes as well as the software implementations [WHCB13] of the lattice-based
signature scheme [Lyu12]. Newer variants and implementations [GOPS13] are
highly optimized and testify the superiority of lattice-based signature schemes
over number theoretic ones.

Table 5 in the Appendix A.4 depicts the sizes of signatures, secret and public
keys of the most recent lattice-based signature schemes at a glance. A look to this
table reveals that the storage sizes of the GPV signature scheme are still large
compared to [Lyu12,GLP12].When comparing our scheme with the ring equiva-

15

Scheme Security level
Sizes [kB] Running times [ms]

Public Key Secret Key Signature Signing Verification

GPV Ring ≈ 90 37.5 21.3 26.8 27 3
(n=512, k=24)

GPV Ring ≈ 100 47.3 23.9 30.1 31 4
(n=512, k=27)

TSS [WHCB13,Lyu12] 80 12.8 12.9 8.1 40.7 5.6
(n=512)

LyuSig[GOPS13] 100 1.5 0.3 1.2 0.3 0.02
(n=512)

Stern Sign.[Ste94,ADV+12] 80 36 0.05 25 32 23
(rounds=140)

Veron Sign.[V97,ADV+12] 80 36 0.05 25 31 24
(rounds=140)

RSA 2048 112 0.3 2 0.3 5.0 0.05

RSA 4096 ≥ 128 0.5 4 0.5 27.5 0.14

DSA 2048 112 0.3 0.02 0.04 0.7 0.8

ECDSA 233 112 0.06 0.09 0.06 7 3.5

ECDSA 283 128 0.07 0.11 0.07 11.5 6.5

Table 3. Comparison of different signature schemes.

lent of l2-SIS, one observes that the public key and signature sizes are about 30%
higher. The secret key sizes of our implementation are even higher if one stores
the perturbation matrix and does not create it for each signature (see Table 2).
The optimizations due to [GLP12] furtherly improve the sizes of [Lyu12] by using
more aggressive parameters. In [DDLL13] Ducas et al. present a novel signature
scheme that benefits from a highly efficient bimodal discrete Gaussian sampler
and a modified scheme instantiation compared to [Lyu12,GLP12]. Furthermore,
they provide a scheme variant that allows key generation to be performed in a
NTRU-like manner. The corresponding sizes of keys and signatures for BLISS
providing 128 bits of security are also depicted in Table 5.

Acknowledgements

We would like to thank Chris Peikert and Özgür Dagdalen for the fruitful dis-
cussions as well as the reviewers of SAC.

References

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryp-
tographic primitives and circular-secure encryption based on hard learning
problems. In CRYPTO, pages 595–618, 2009.

[ADV+12] Sidi Mohamed El Yousfi Alaoui, Özgür Dagdelen, Pascal Véron, David
Galindo, and Pierre-Louis Cayrel. Extended security arguments for signa-
ture schemes. In Progress in Cryptology - AFRICACRYPT 2012, volume
7374 of LNCS, pages 19–34. Springer, 2012.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended
abstract). In 28th Annual ACM Symposium on Theory of Computing,
pages 99–108. ACM Press, May 1996.

[Ajt99] Miklós Ajtai. Generating hard instances of the short basis problem. In
ICALP, LNCS, pages 1–9. Springer, 1999.

16

[AP09] Joël Alwen and Chris Peikert. Generating shorter bases for hard random
lattices. In STACS, volume 3 of LIPIcs, pages 75–86. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Germany, 2009.

[Ban93] W. Banaszczyk. New bounds in some transference theorems in the geom-
etry of numbers. Mathematische Annalen, 296(4):625–635, 1993.

[BDK+07] Johannes Buchmann, Erik Dahmen, Elena Klintsevich, Katsuyuki Okeya,
and Camille Vuillaume. Merkle signatures with virtually unlimited signa-
ture capacity. In ACNS 2007, LNCS, pages 31–45. Springer, 2007.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien
Stehlé. Classical hardness of learning with errors. In STOC, 2013.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom func-
tions and lattices. In David Pointcheval and Thomas Johansson, editors,
Advances in Cryptology – EUROCRYPT 2012, volume 7237 of Lecture
Notes in Computer Science, pages 719–737. Springer, April 2012.

[DD12] Léo Ducas and Alain Durmus. Ring-Lwe in polynomial rings. PKC’12,
pages 34–51. Springer, 2012.

[DDLL13] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky.
Lattice signatures and bimodal gaussians. Cryptology ePrint Archive,
Report 2013/383, 2013. http://eprint.iacr.org/2013/383.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
Advances in Cryptology – CRYPTO’86, volume 263 of Lecture Notes in
Computer Science, pages 186–194. Springer, August 1987.

[GGH97] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosys-
tems from lattice reduction problems. In Burton S. Kaliski Jr., editor,
Advances in Cryptology – CRYPTO’97, volume 1294 of Lecture Notes in
Computer Science, pages 112–131. Springer, August 1997.

[GLP12] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical
lattice-based cryptography: A signature scheme for embedded systems. In
CHES, volume 7428 of LNCS. Springer, 2012.

[GOPS13] Tim Güneysu, Tobias Oder, Thomas Pöppelmann, and Peter Schwabe.
Software speed records for lattice-based signatures. In PQCrypto, 2013.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for
hard lattices and new cryptographic constructions. In Richard E. Ladner
and Cynthia Dwork, editors, 40th Annual ACM Symposium on Theory of
Computing, pages 197–206. ACM Press, May 2008.

[HHGP+03] Jeffrey Hoffstein, Nick Howgrave-Graham, Jill Pipher, JosephH. Silver-
man, and William Whyte. Ntrusign: Digital signatures using the ntru
lattice. In Topics in Cryptology CT-RSA 2003, volume 2612 of LNCS,
pages 122–140. SPRINGER, 2003.

[Lar12] Ron Larson. Brief Calculus: An Applied Approach, volume 9. 2012.
[LM08] Vadim Lyubashevsky and Daniele Micciancio. Asymptotically efficient

lattice-based digital signatures. In Ran Canetti, editor, TCC 2008: 5th
Theory of Cryptography Conference, volume 4948 of Lecture Notes in Com-
puter Science, pages 37–54. Springer, March 2008.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In Henri Gilbert, editor, Advances
in Cryptology – EUROCRYPT 2010, volume 6110 of Lecture Notes in
Computer Science, pages 1–23. Springer, May 2010.

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-
lwe cryptography. In EUROCRYPT, pages 35–54, 2013.

17

[Lyu08] Vadim Lyubashevsky. Towards practical lattice-based cryptography, 2008.
[Lyu09] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and

factoring-based signatures. In Mitsuru Matsui, editor, Advances in Cryp-
tology – ASIACRYPT 2009, volume 5912 of Lecture Notes in Computer
Science, pages 598–616. Springer, December 2009.

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In David
Pointcheval and Thomas Johansson, editors, Advances in Cryptology –
EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science,
pages 738–755. Springer, April 2012.

[Mic07] Daniele Micciancio. Generalized compact knapsacks, cyclic lattices, and ef-
ficient one-way functions. Computational Complexity, 16(4):365–411, 2007.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler,
tighter, faster, smaller. In David Pointcheval and Thomas Johansson,
editors, Advances in Cryptology – EUROCRYPT 2012, volume 7237 of
Lecture Notes in Computer Science, pages 700–718. Springer, April 2012.

[MR04] Daniele Micciancio and Oded Regev. Worst-case to average-case reduc-
tions based on Gaussian measures. In 45th Annual Symposium on Founda-
tions of Computer Science, pages 372–381. IEEE Computer Society Press,
October 2004.

[MR08] Daniele Micciancio and Oded Regev. Lattice-based cryptography. In
DanielJ. Bernstein, Johannes Buchmann, and Erik Dahmen, editors, Post-
Quantum Cryptography, pages 147–191. Springer, 2008.

[MT84] G. Marsaglia and W. Tsang. A fast, easily implemented method for sam-
pling from decreasing or symmetric unimodal density functions. SIAM
Journal on Scientific and Statistical Computing, 5(2):349–359, 1984.

[Pei10] Chris Peikert. An efficient and parallel gaussian sampler for lattices. In Tal
Rabin, editor, Advances in Cryptology – CRYPTO 2010, volume 6223 of
Lecture Notes in Computer Science, pages 80–97. Springer, August 2010.

[RS10] Markus Rückert and Michael Schneider. Estimating the security of lattice-
based cryptosystems. 2010. http://eprint.iacr.org/2010/137.

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM Journal on Computing,
26(5):1484–1509, 1997.

[SSTX09] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Ef-
ficient public key encryption based on ideal lattices. In Mitsuru Matsui,
editor, Advances in Cryptology – ASIACRYPT 2009, volume 5912 of Lec-
ture Notes in Computer Science, pages 617–635. Springer, December 2009.

[Ste94] Jacques Stern. A new identification scheme based on syndrome decoding.
In Advances in Cryptology CRYPTO 93, volume 773 of LNCS, pages
13–21. Springer, 1994.

[V97] Pascal Vron. Improved identification schemes based on error-correcting
codes. Applicable Algebra in Engineering, Communication and Computing,
8:57–69, 1997.

[WHCB13] Patrick Weiden, Andreas Hülsing, Daniel Cabarcas, and Johannes Buch-
mann. Instantiating treeless signature schemes. IACR Cryptology ePrint
Archive, 2013.

[Zha10] Fuzhen Zhang. The Schur Complement and Its Applications, volume 4.
Springer, 2010.

18

A Appendix

A.1 Parameter Choices for the matrix and ring variant

Matrix Ring

n e.g. n ≥ 384 (cf. Table 1) n = 2l, n ≥ 512

q e.g. power of 2 with q ≥ 219

k dlog2(q)e
m n(2 + k)

c c = αq >
√
n c >

√
nω(

√
log(2n))

r r ≥ 2 ·
√

ln(2n(1 + 1
ε
))/π

a a ≥
√

ln(2(1 + 1
ε
))/π, e.g. a=r/2

s ≈ C · (
√
n · k +

√
2n) · c · r

A.2 Cholesky decomposition

Algorithm 1: Cholesky decomposition

Data: Matrix L ∈ Zm×m
Result: Lower triangular part of L

1 for k = 1→ m do
2 lkk =

√
lkk;

3 for i = k + 1→ m do
4 lik = lik/lkk;
5 end
6 for j = k + 1→ m do
7 for i = j → m do
8 lij = lij − likljk;
9 end

10 end

11 end

A.3 Proof of Lemma 2

Proof. We determine the maximum number of bits needed to store a vector v
bounded by ‖v‖2 < b ·

√
n by means of Lagrange multipliers [Lar12]. The gen-

eral form of Lagrange multipliers is defined by L(v1, . . . , vn) = f(v1, . . . , vn) +
λ · g(v1, . . . , vn), where g(·) takes into account the constraints and f(·) is the
function to be maximized. Obviously, the maximum number of bits grows with
increasing norm bound. Therefore, let v ∈ Nn (ignoring the signs) be a vector

such that ‖v‖22 =
n∑
i=1

v2
i = nb2. Now, consider the log entries of the vector v,

which are needed to determine the bit size of any vector. Applying simple loga-

rithm rules we have
n∑
i=1

log2(vi) = log2(
n∏
i=1

vi). Since log is monotone increasing,

maximizing of log is equivalent to maximizing the product. The function giving

the constraint is g(v1, . . . , vn) = nb2 −
n∑
i=1

v2
i . We then maximize the function

19

L(v1, . . . , vn, λ) = f(v1, . . . , vn) + λ · g(v1, . . . , vn), where f(v1, . . . , vn) =
n∏
i=1

vi.

Taking the partial derivatives we get n+ 1 equations:

∆L

∆vi
=
∆f

∆vi
+
λ ·∆g
∆vi

=

n∏
j=1,j 6=i

vj − 2λvi = 0, ∀1 ≤ i ≤ n

∆L

∆λ
= nb2 −

n∑
i=1

v2
i = 0 .

By reordering the first n equations, we get λ = v1·...·vi−1·vi+1·...·vn
2vi

, ∀1 ≤ i ≤
n. It is easy to see that the only solution is vi = b, ∀1 ≤ i ≤ n that satis-
fies all equations, because from any two out of the first n equations it follows
vi = vj , i 6= j. By the last equation we then obtain vi = b. The only ex-
tremum we obtain is v = (v1, . . . , vn) = (b, . . . , b) with f(v) = bn. Since we have
0 = f(v′) < bn for the boundary points v′i = b ·

√
n with v′j = 0 and j 6= i, the

extremum v is a maximum. Therefore the maximum possible bit size required
to store such a vector is bounded by n · dlog2(b)e. We need an additional bit for
the sign of each entry. This concludes the proof. The proof can be extended to
any p-norm 1 ≤ p <∞. ut

A.4 Sizes

This scheme has the following efficiency measures.

Public Key (bits) Private Key (bits) Signature (bits)

Trapdoor
nmk 2n2k(1 + dlog2(c)e) m · (1 + dlog2(s)e)

[GPV08,MP12]

Table 4. GPV-Trapdoor storage requirements.

Scheme (n,q)
Sizes [kB]

Public Key Secret Key Signature

GPV Ring (512,224) 37.5 21.3 26.8

GPV Ring (512,227) 47.3 23.9 30.1

TSS12 [Lyu12, Table 2]
(512, 226) 4.9 0.8 2.4

(based on decisional ring-LWE, m=2)

TSS12 [Lyu12, Table 2]
(512, 227) 30.4 2.1 19.9

(ring equivalent of l2-SIS, m=17)

LyubSig [GLP12] (512, 223) 1.4 0.2 1.1
(based on decisional ring-LWE, m=2)

BLISS I [DDLL13] (512, 214) 0.9 0.3 0.7

BLISS II [DDLL13] (512, 214) 0.9 0.3 0.6

Table 5. Comparison of our implementation with other lattice-based
schemes with regard to storage sizes (in kilobytes).

20

