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Abstract. In this paper, we introduce a general notion of functional proxy-re-encryption (F-PRE), where
a wide class of functional encryption (FE) is combined with proxy-re-encryption (PRE) mechanism. The
PRE encryption system should reveal minimal information to a proxy, in particular, hiding parameters of
re-encryption keys and of original ciphertexts which he manipulate is highly desirable. We first formulate
such a fully-anonymous security notion of F-PRE including usual payload-hiding properties. We then
propose the first fully-anonymous inner-product PRE (IP-PRE) scheme, whose security is proven under
the DLIN assumption and the existence of a strongly unforgeable one-time signature scheme in the
standard model. Also, we propose the first ciphertext-policy F-PRE scheme with the access structures of
Okamoto-Takashima (CRYPTO 2010), which also has an anonymity property for re-encryption keys as
well as payload-hiding for original and re-encrypted ciphertexts. The security is proven under the same
assumptions as the above IP-PRE scheme in the standard model. For these results, we develop novel
blind delegation and subspace insulation for re-enc key basis techniques on the dual system encryption
(DSE) paradigm and the dual pairing vector spaces (DPVS) approach. These techniques seem difficult
to be realized by a composite-order bilinear group DSE approach.
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1 Introduction

1.1 Background

The notions of inner-product encryption (IPE) and attribute-based encryption (ABE) introduced by
Katz, Sahai and Waters [13] and Sahai and Waters [31] constitute an advanced class of encryption,
functional encryption (FE), and provide more flexible and fine-grained functionalities in sharing and
distributing sensitive data than traditional symmetric and public-key encryption as well as identity-
based encryption (IBE). In FE, there is a relation R(v, x), that determines whether a secret key
associated with a parameter v can decrypt a ciphertext encrypted under another parameter x. The
parameters for IPE are expressed as vectors x⃗ (for encryption) and v⃗ (for a secret key), where R(v⃗, x⃗)
holds, i.e., a secret key with v⃗ can decrypt a ciphertext with x⃗, iff v⃗ · x⃗ = 0. (Here, v⃗ · x⃗ denotes the
standard inner-product.) In ABE systems, either one of the parameters for encryption and secret
key is a set of attributes, and the other is an access policy (structure) or (monotone) span program
over a universe of attributes, e.g., a secret key for a user is associated with an access policy and a
ciphertext is associated with a set of attributes, where a secret key can decrypt a ciphertext, iff the
attribute set satisfies the policy.

For some applications for FE, the parameters for encryption are required to be hidden from
ciphertexts. To capture the security requirement, Katz, Sahai and Waters [13] introduced attribute-
hiding (based on the same notion for hidden vector encryption (HVE) by Boneh and Waters [6]), a
security notion for FE that is stronger than the basic security requirement, payload-hiding. Roughly
speaking, attribute-hiding requires that a ciphertext conceal the associated parameter as well as the
plaintext, while payload-hiding only requires that a ciphertext conceal the plaintext. Informally, in
the (fully) attribute-hiding, the secrecy of challenge attribute x(0), x(1) is ensured against an adversary
having a secret key with v such that R(v, x(0)) = R(v, x(1)) holds (even if R(v, x(b)) = 1), i.e., the
adversary cannot guess bit b if the compatibility condition R(v, x(0)) = R(v, x(1)) for the challenge
holds. (It is a maximal requirement since if the challenge is incompatible for some key query, an
adversary easily guess the challenge bit.) Inner-products for IPE represent a fairly wide class of
relations including equality tests as the simplest case, disjunctions or conjunctions of equality tests,
and, more generally, CNF or DNF formulas. We note, however, that inner-product relations are less
expressive than a class of relations (on span programs) for ABE, while existing ABE schemes for
such a wider class of relations are not attribute-hiding but only payload-hiding. Among the existing
IPE schemes, only the OT12 IPE scheme [29] achieves the full (adaptive) security and fully attribute-
hiding simultaneously. As for ABE, Lewko et.al. and Okamoto-Takashima ABE schemes [14, 27] are
fully secure in the standard model.

Proxy-re-encryption (PRE) is an interesting extension of traditional public key encryption (PKE).
In addition to the normal operations of PKE, with a dedicated re-encryption key (generated by an
original receiver A), a proxy can turn ciphertexts originally destined for user A (called original
ciphertexts) into those for user B. A remarkable property of PRE is that the proxy carrying out the
transform is totally ignorant of the plaintext. PRE was first formalized by Blaze et al. [4] and has
received much attention in recent years. There are many models as well as implementations; refer
to [4, 2, 8, 20, 33, 19, 9, 34, 35, 12, 23, 22, 11, 17] for some examples.

Extending FE with PRE, i.e., functional PRE (F-PRE), improves various aspects of existing FE.
For example, when Alice contacts a local government on tax and social security, she submits encrypted
information to a man to contact (say, Bob) since she has no knowledge on the inner structure of the
government, which is usually a confidential matter. Bob is given a re-encryption key from his manager,
and then re-encrypts the encrypted message on tax to an appropriate department X, and that on
social security to another department Y, while Bob learns nothing on the contents for the privacy of
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Table 1. Comparison of our schemes with existing Ciphertext-Policy (CP)-AB-PRE schemes [19, 22, 18], where q, d,
|U |, |Γ |, ℓ (resp. ℓ′) and n represent the number of key queries, the number of sub-universes of attributes, the maximum
size of a sub-universe, the number of attributes for the secret key, the number of rows in access matrix for the original
ciphertext (resp. re-enc key or re-enc ciphertext) and the dimension for attribute vectors, respectively. STdM, ROM,
CTDH, ADBDH, DBDH, BDHE, and sUF stand for standard model, random oracle model, complex triple Diffie-
Hellman problem, augment decisional bilinear Diffie-Hellman problem, the decisional bilinear Diffie-Hellman problem,
and the bilinear Diffie-Hellman exponent problem, strongly unforgeable, respectively. (PK, SK, RK, OCT and RCT
stand for public key, secret key, re-encryption key, original ciphertext, re-encrypted ciphertext, respectively.)

LCLS09 [19] LHC10 [22] LFWS13 [18] a Proposed

Primitive CP-AB-PRE CP-AB-PRE CP-AB-PRE IP-PRE b CP-AB-PRE

Security
model

selective
in STdM

selective
in STdM

selective
in ROM

adaptive
in STdM

adaptive
in STdM

Access
structures

non-monotonic
AND gates

non-monotonic
AND gates

(large-universe)

monotonic
span programs

inner-product
relations

(large-universe)

non-monotonic
span programs

Assumptuion CTDH &
ADBDH DBDH q-parallel BDHE DLIN &

sUF sig.
DLIN &
sUF sig.

Anonymity
against Proxy × × × ✓ ✓

PK/SK/

RK size c

O(d)/O(d)/

O(d)

O(d|U |)/O(d)/

O(d)

O(1)/O(|Γ |)/
O(|Γ |+ ℓ′)

O(n)/O(n)/

O(n2)

O(d)/O(|Γ |)/
O(d+ ℓ′)

OCT/RCT size c O(d)/O(d) O(1)/O(1) O(ℓ)/O(ℓ+ ℓ′) O(n)/O(n2) O(ℓ)/O(d+ ℓ+ ℓ′)

a The large-universe CP-AB-PRE obtained from small-universe one in [17] has similar features as that of [18].
b An efficient version of our fully-anonymous IP-PRE scheme in Section 4.2 by applying the sparse matrix
technique given in [28]

c The number of group elements is given with a common assumption in the ABE/IPE application that the
description of the attribute or policy is not considered a part of SK/RK/OCT/RCT.

Alice. (By using our fully anonymous F-PRE, Bob need not know even the destinations, X or Y.)
Such re-encryption by attributes also deals with personnel changes flexibly: When the department
X (or some of the members) is changed to Y, Bob re-encrypts an encrypted message originally for
X to that destined to Y. As the examples show, F-PRE realizes convenient private communication
even among organizations with unknown or changeable inner structures.

Previously, various combinations of PRE and special classes of FE exist, that is, ID-based PRE
(IB-PRE) [12, 23, 11], broadcast encryption based PRE [10, 38], attribute-based PRE (AB-PRE) [19,
24, 22, 17, 18]. While the notion of AB-PRE covers the existing F-PRE schemes above, the previous
AB-PRE schemes [19, 22, 17, 18] only achieve a weak security, that is, security in the selective model
(Table 1). Also, access structures which can be treated in the previous AB-PRE [19, 24, 22] are just
conjunctive (AND) formulas, not disjunction (OR) or negation (NOT). Thus, these previous F-PRE
schemes are insufficient from the view point of functionality or security, or both.

In recent applications, usually, the data is outsourced to an outside remote server. Then, since we
do not trust on the server manager, or proxy, any more, another important requirement for PRE is
anonymity for a re-encryption key: As well as an encrypted message, source and target parameters of
a re-encryption key, i.e., v and x′ of rkv,x′ , should be concealed from the proxy. The security property
ensures that we can securely outsource the re-encryption task to the proxy.

Surprisingly, many previous PRE schemes (even of traditional PKE-based) has no anonymity
for a re-encryption key. The first anonymous (PKE-based) PRE scheme was proposed by Ateniese
et al. [1], however, the security is only proven in a weak security model, where only a restricted
adversary is considered. While the weak point was removed in a subsequent work by Shao et al. [36],
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Table 2. Comparison of anonymity properties (“Anonimity” and “Unlinkability”) between our schemes and existing
several anonymous (F-)PRE schemes [1, 11, 36, 32, 21]. STdM, ROM, OCT, RCT, RK and AH-RK stand for standard
model, random oracle model, original ciphertext, re-encrypted ciphertext, re-encryption key and attribute-hiding for
re-encryption keys, respectively.

ABH09 [1] SLWL12 [36] EMO11 [11] Shao12 [32] Proposed

Primitive (PK-)PRE IB-PRE IP-PRE CP-AB-PRE

Security model in STdM in ROM in ROM in STdM

Anonimity for

OCT/RCT/RK ✓ab ✓a ✓ ✓ ✓
partial ✓

(only for AH-RK)

Unlinkability for

RCT/RK ✓
partial ✓

(only for RK) ✓
partial ✓

(only for RK) ✓ ✓

a An original ciphertext has an anonymity in the sense that it cannot be linked to the used public key.
b The anonymity for RK is only proven in a weak security model, where an adversary cannot query with the
same parameter twice to the re-encryption key oracle.

the security of their scheme is proven only in the random oracle model. Moreover, anonymous F-
PRE schemes were proposed in [11, 32], however, they are less expressive ID-based PRE and the
security is claimed just in the random oracle model. No such kinds of anonymous (including key-
private) expressive inner-product (IP-)PRE exists. Namely, existing anonymous F-PRE constructions
are quite insufficient. See Table 2 for the comparison on anonymous F-PRE.

An anonymous F-PRE scheme should have usual anonymous FE security requirements, that is,
payload-hiding and (fully-)attribute-hiding security for original and re-encrypted ciphertexts. And, as
mentioned, parameters (v, x′), which we call predicate and attribute, respectively, in a re-encryption
key rkv,x′ should be also concealed. The secrecy should be kept against a powerful adversary who can
access a combination of decryption key, re-encryption key, and re-encryption queries. For example,
even using the two types of keys, an original ciphertext should not reveal additional information
on message or attributes. We will give a reasonable security definition including the above basic
requirements (in Section 3) and call it fully-anonymity.

Our first target is an adaptively secure and fully anonymous IP-PRE scheme (Table 2). Among the
above requirements, (full) attribute-hiding property for an original ciphertext is the most challenging
since an adversary can apply queried decryption keys, re-encryption keys, and re-encryption oracle
to the target ciphertext. Even if we use the dual system encryption (DSE) by Waters [37] and its
extension in [29], the main difficulty resides in how to change a (normal) re-encryption key queried
with (v⃗, x⃗ ′) to a semi-functional re-encryption key, before seeing the challenge (x⃗(0), x⃗(1)), i.e., without
knowing whether R(v⃗, x⃗(0)) = R(v⃗, x⃗(1)) holds or not. We will explain it below: The previous fully
attribute-hiding IPE security game allows a non-matching key query, and it requires that a decryption
key query v⃗ is compatible with the challenge (x⃗(0), x⃗(1)), i.e., R(v⃗, x⃗(0)) = R(v⃗, x⃗(1)). (The case that
R(v⃗, x⃗(0)) = R(v⃗, x⃗(1)) = 0 is a non-matching one.) While this condition for the challenge and
decryption key queries is common for the previous FE systems, a (fully-anonymous) F-PRE scheme
must also deal with a more complicated condition, i.e.,

R(v⃗, x⃗(0)) ·R(v⃗ ′, x⃗ ′) = R(v⃗, x⃗(1)) ·R(v⃗ ′, x⃗ ′) (1)

for any re-encryption key query (v⃗, x⃗ ′) and decryption key query v⃗ ′. It reflects one attack strategy
of the adversary, where he (or she) tries to convert the challenge ciphertext to a re-encrypted one by
a queried re-encryption key rkv⃗,x⃗ ′ and then decrypt it by a queried decryption key skv⃗ ′ . We consider
some fixed re-encryption key query (v⃗, x⃗ ′) below. If R(v⃗ ′, x⃗ ′) = 1 for some decryption key query v⃗ ′,
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Eq. (1) is equivalent to R(v⃗, x⃗(0)) = R(v⃗, x⃗(1)). However, if R(v⃗ ′, x⃗ ′) = 0 for any decryption key query
v⃗ ′, Eq. (1) holds unconditionally even in the incompatible case, i.e., R(v⃗, x⃗(0)) ̸= R(v⃗, x⃗(1)). At a first
glance, it looks hard to treat with both the cases simultaneously, since the form of semi-functional
re-encryption key may be different depending on whether R(v⃗, x⃗(0)) = R(v⃗, x⃗(1)) or not, and the
simulator does not know the fact when the re-encryption key query occurs before the challenge.

Another technically challenging target in this paper is to prove the security under the decisional
linear (DLIN) assumption (on prime order pairing groups) in the standard model.

1.2 Our Results

1. This paper introduces a new notion of functional proxy-re-encryption (F-PRE). The system
should reveal minimal information to a proxy, in particular, hiding parameters in re-encryption
keys and in original ciphertexts which he manipulates is highly desirable. We first formulate such
a fully-anonymous notion of F-PRE, which includes usual payload-hiding properties. It can be
considered as a natural extension of fully-attribute-hiding FE. The notion consists of the following
security requirements, which are informally described, and more formally defined by the games
against an adversary with access to decryption, re-encrypted key, and re-encryption queries (see
Section 3 for the formal definitions). Here, parameters x, x′ and v are called attributes and a
predicate, respectively.
Attribute-Hiding Security for Original Ciphertexts: An original ciphertext for plaintext

m and attribute x releases no information regarding (m,x) against a user not in possession
of a matching decryption key skv with R(v, x) = 1, or a matching key pair of a re-encryption
key and a decryption key (rkv,x′ , skv′) with R(v, x) = 1 and R(v′, x′) = 1. It also releases no
information regarding x against a user in possession of a matching decryption key skv except
that R(v, x) = 1 or a matching key pair (rkv,x′ , skv′) except that R(v, x) = 1 and R(v′, x′) = 1.

Predicate- and Attribute-Hiding Security for Re-encrypted Ciphertexts: A re-encrypted
ciphertext for plaintextm (and original attribute x) and re-encryption key rkv,x′ with attribute
x′ releases no information regarding (m,x, v;x′) against a user not in possession of a matching
decryption key skv′ for x

′, and no information regarding x′ against a user in possession of a
matching decryption key skv′ except that R(v

′, x′) = 1.
Predicate- and Attribute-Hiding Security for Re-encryption Keys: A re-encryption key

for predicate and attribute (v, x′) releases no information regarding (v, x′) against a user not
in possession of a matching key for x′, and no information regarding x′ against a user in
possession of a matching decryption key skv′ except that R(v

′, x′) = 1.
Unlinkability of Re-encryption Keys: A re-encryption key generated from a decryption key

cannot be linked to the decryption key by any means (unconditional unlinkability).
Unlinkability of Re-encrypted Ciphertexts: A re-encrypted ciphertext generated from a

re-encryption key and an original ciphertext cannot be linked to the re-encryption key or the
original ciphertext by any efficient adversary (computational unlinkability).

Full Anonymity: We say that an F-PRE scheme is fully-anonymous if it satisfies the above
three hiding requirements given in three adaptive security games, and two unlinkability re-
quirements.

2. This paper proposes the first fully-anonymous inner-product proxy-re-encryption (IP-PRE) scheme,
whose security is proven under the DLIN assumption and the existence of a strongly unforgeable
one-time signature scheme in the standard model (Tables 1 and 2, Theorem 1). The IP-PRE
scheme uses an underlying fully attribute-hiding IPE scheme, which was proposed in [29]. It
shows a new significant application of fully attribute-hiding property except for searchable en-
cryption. For achieving the security properties, we use two key techniques, blind delegation and
hidden subspace insulation for (extended) dual system encryption.
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re-enc key generation

( encryption by       

with      )

blind delegation &

re-randomization

(re-)encryption by        with 

CHK transformed

re-randomized

Fig. 1. Basic Conversions among secret key skv, re-encryption key rkv,x′ , original ciphertext octx and re-encrypted
ciphertext rctx′ in a high-level description

3. We also propose the first ciphertext-policy (CP-)F-PRE scheme with the access structure class
given by Okamoto-Takashima [27], which includes non-monotone span program access structures.
The construction is based on our IP-PRE schemes. The scheme is proven to be payload-hiding of
original and re-encrypted ciphertexts, attribute-hiding of re-encryption keys, and unlinkable under
the same assumptions as those of our IP-PRE schemes (Tables 1 and 2). Here, hiding attributes of
re-encryption keys is an important requirement for anonymous re-encryption outsourcing. Refer
to Appendix E.

1.3 Key Techniques

As we mentioned in Section 1.1, in our fully-anonymous F-PRE, while a decryption key query v should
satisfy a simple compatibility condition (R(v, x(0)) = R(v, x(1))) with the challenge, a re-encryption
key query (v, x′) need satisfy a complicated condition in Eq. (1), which includes an incompatible
case (R(v, x(0)) ̸= R(v, x(1))). All the previous DSE proofs (including the fully-attribute-hiding one
[29]) use the compatibility condition as an essential logical ingredient. Hence, we need to develop
an extended DSE technique which allows the incompatible case for achieving adaptively secure and
fully-anonymous F-PRE.

CHK Transform and Blind Delegation: As a first attempt, to conceal skv (including v) from a
malicious proxy, we encrypt it as (EncW1(skv),FEncx′(W1)) in a re-encryption key rkv,x′ , where Enc
is an ordinary (symmetric) encryption scheme with secret W1, and FEnc is a functional encryption
scheme with parameter x′. Then, if an adversary has no matching key for x′, he has no information
of skv nor v.

If these components are also embedded into a re-encrypted ciphertext rctx′ without modification,
a user with a matching key for x′ obtains the original skv. It is not desirable for (F-)PRE, therefore,
modified forms of EncW1(skv) (and FEncx′(W1))) should be embedded into a re-encrypted ciphertext
rctx′ . For achieving an appropriate modification, we use two ingredients, the Canetti-Halevi-Katz
(CHK) transformation [7] and blind delegation (see Figure 1). The CHK transformation converts a
ciphertext ctx to ctx∧ verk, where verk is a verification key of a one-time signature scheme, and x ∧ verk
is the conjunction of x (for relation R) and verk (for identity matching). An original ciphertext in
our F-PRE schemes consists of octx := (ctx∧ verk, verk, S) with S is a signature of ctx∧ verk by a
corresponding signature generation key. Then, a decryptor of octx first verifies if S is valid under
verk, and if so, correctly decrypts ctx∧ verk with a decryption key. By this mechanism, an adversary
cannot modify the challenge ciphertext meaningfully. Using verk in input, a re-encryptor modifies
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(or delegates) skv to skv ∧ verk, which is specialized to ctx∧ verk in the input original ciphertext. Since
ctx∧ verk cannot be modified to another meaningful one, modified skv ∧ verk is only effective to ctx∧ verk.

Here, we have a technical challenge: The re-encryptor should modify EncW1(skv) to EncW1(skv ∧ verk)
without decrypting EncW1(skv), i.e., in an encrypted form. For achieving it, in our schemes, we will

include EncW1(p̃k) in a re-encryption key rkv,x′ , where p̃k is a part of the public key. Namely, rkv,x′

essentially consists of (EncW1(skv),FEncx′(W1),EncW1(p̃k)), and in re-encryption, a re-encryptor del-

egates EncW1(skv) to EncW1(skv ∧ verk) using EncW1(p̃k) in a blind manner. Hence, we call such a new
technique blind delegation. We develop it based on the dual pairing vector spaces (DPVS) framework
[26, 27, 29]. (See REnc algorithms in Sections 4.1 and 4.2.)

Moreover, in order not to allow a matching key holder for x to decrypt a re-encrypted ciphertext
rctx′ (with x

′ ̸= x), ctx∧ verk in an input original ciphertext is encrypted with another secretW2 in re-
encryption. Hence, the re-encrypted ciphertext rctx′ essentially consists of (EncW2(ctx∧ verk),FEncx′(
W2),EncW1(skv ∧ verk),FEncx′(W1)), where FEncx′(W1) is re-randomized for an unlinkability require-
ment (Figure 1). A decryptor with a matching key for x′ first obtains W1 and W2 and calculates
Dec(skv ∧ verk, ctx∧ verk) by using usual decryption.

Information-Theoretical Insulation of a Subspace for Re-Enc Key Basis: For formal
security proof, we use a novel technique (subspace insulation for re-enc key basis) for realizing DSE
with allowing an incompatible re-encryption key query. In an original DSE security game [37, 27],
each queried decryption key is changed to semi-functional, one by one. In our F-PRE, we also change
each queried re-encryption key to semi-functional, one by one. Since a simulator (challenger) does not
know whether the query is compatible or incompatible to the challenge before seeing the challenge
query, the semi-functional form should not depend on the compatibility type. Namely, we need to
give two (or more) different and consistent simulations for the same semi-functional re-encryption
key for (v, x′) with the following requirements:

– If some matching decryption key for x′ is queried, the adversary obtains the secret W1 for the
re-encryption key. The challenger must simulate a semi-functional form of a decryption key skv,
which can be decrypted from EncW1(skv) by using W1.

– If no matching decryption keys for x′ are queried, the adversary has no W1 for the re-encryption
key. The challenger must simulate EncW1(skv) which is consistent with the above semi-functional
form of skv. For the simulation, we use an insulated subspace sinceW1 is hidden for the adversary.

To achieve the above simulations, we realize a nice trick based on the DPVS framework. That is, we
can create a (hidden) subspace of a re-enc key basis D∗

1 := B∗ ·W1, which is information-theoretically
insulated from the master key bases (B,B∗). We elaborately combine this trick for the second type of
re-encryption key queries, and a similar game change as in the original (and extended) DSE in [27,
29] for the first type key queries based on a pairwise independent argument. For the details of the
technique, refer to Appendix D.1 and Figure 2.

DPVS Framework: Both techniques, i.e., blind delegation and subspace insulation for re-enc key
basis, are built on the DPVS framework, where a ciphertext cx and a secret key k∗

v are encoded on a
random basis B := (bi) and its dual B∗ := (b∗i ), respectively. For blind delegation, a random matrix

W1 in FN×N
q transforms k∗

v and b∗i (∈ p̃k) to k∗rk
v := k∗

vW1 and d∗
i := b∗iW1(∈ EncW1(p̃k)) in a re-

encryption key, then, REnc delegates k∗rk
v to k∗rk

v ∧ verk by using d∗
i instead of b∗i . For the delegation, not

all basis vectors d∗
i (in D∗) are included in the re-encryption key, hence, an insulated hidden subspace

from a subbasis of D∗ := (d∗
i ) is used for proving adaptive security against an adversary, and the

basis changing technique is crucial for our constructions. In composite-order DSE schemes, a hidden
subspace (subgroup) is given by the order-q subgroup in order-pqr subgroup (with p, q, r primes),
for example. Therefore, while the DPVS approach is suitable for the above subspace insulation, the
composite-order bilinear group approach seems to be difficult to realize them.
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1.4 Notations

When A is a random variable or distribution, y
R← A denotes that y is randomly selected from A

according to its distribution. When A is a set, y
U← A denotes that y is uniformly selected from

A. We denote the finite field of order q by Fq, and Fq \ {0} by F×
q . A vector symbol denotes a

vector representation over Fq, e.g., x⃗ denotes (x1, . . . , xn) ∈ Fnq . For two vectors x⃗ = (x1, . . . , xn) and

v⃗ = (v1, . . . , vn), x⃗·v⃗ denotes the inner-product
∑n

i=1 xivi. The vector 0⃗ is abused as the zero vector in
Fnq for any n. XT denotes the transpose of matrix X. A bold face letter denotes an element of vector
space V, e.g., x ∈ V. When bi ∈ V (i = 1, . . . , n), span⟨b1, . . . , bn⟩ ⊆ V (resp. span⟨x⃗1, . . . , x⃗n⟩)
denotes the subspace generated by b1, . . . , bn (resp. x⃗1, . . . , x⃗n). For bases B := (b1, . . . , bN ) and
B∗ := (b∗1, . . . , b

∗
N ), (x1, . . . , xN )B :=

∑N
i=1 xibi and (y1, . . . , yN )B∗ :=

∑N
i=1 yib

∗
i . e⃗j denotes the

canonical basis vector (

j−1︷ ︸︸ ︷
0 · · · 0, 1,

n−j︷ ︸︸ ︷
0 · · · 0) ∈ Fnq . GL(n,Fq) denotes the general linear group of degree

n over Fq.

2 Dual Pairing Vector Spaces (DPVS)

Definition 1. “Symmetric bilinear pairing groups” (q,G,GT , G, e) are a tuple of a prime q, cyclic
additive group G and multiplicative group GT of order q, G ̸= 0 ∈ G, and a polynomial-time com-
putable nondegenerate bilinear pairing e : G×G→ GT i.e., e(sG, tG) = e(G,G)st and e(G,G) ̸= 1.
Let Gbpg be an algorithm that takes input 1λ and outputs a description of bilinear pairing groups
(q,G,GT , G, e) with security parameter λ.

In this paper, we concentrate on the symmetric version of dual pairing vector spaces [25, 26].
constructed by using symmetric bilinear pairing groups given in Definition 1. For the asymmetric
version of DPVS, (q,V,V∗,GT ,A,A∗, e), see Appendix A.2 in the full version of [27].

Definition 2. “Dual pairing vector spaces (DPVS)” (q,V,GT ,A, e) by a direct product of symmetric

pairing groups (q,G,GT , G, e) are a tuple of prime q, N -dimensional vector space V :=

N︷ ︸︸ ︷
G× · · · ×G

over Fq, cyclic group GT of order q, canonical basis A := (a1, . . . ,aN ) of V, where ai := (

i−1︷ ︸︸ ︷
0, . . . , 0, G,

N−i︷ ︸︸ ︷
0, . . . , 0), and pairing e : V×V→ GT . The pairing is defined by e(x,y) :=

∏N
i=1 e(Gi,Hi) ∈ GT where

x := (G1, . . . , GN ) ∈ V and y := (H1, . . . ,HN ) ∈ V. This is nondegenerate bilinear i.e., e(sx, ty) =
e(x,y)st and if e(x,y) = 1 for all y ∈ V, then x = 0⃗. For all i and j, e(ai,aj) = e(G,G)δi,j where
δi,j = 1 if i = j, and 0 otherwise, and e(G,G) ̸= 1 ∈ GT . DPVS generation algorithm Gdpvs takes
input 1λ (λ ∈ N) and N ∈ N, and outputs a description of param′

V := (q,V,GT ,A, e) with security
parameter λ and N -dimensional V. It can be constructed by using Gbpg.

For matrix W := (wi,j)i,j=1,...,N ∈ FN×N
q and element g := (G1, . . . , GN ) in N -dimensional V,

gW denotes (
∑N

i=1Giwi,1, . . . ,
∑N

i=1Giwi,N ) = (
∑N

i=1wi,1Gi, . . . ,
∑N

i=1wi,NGi) by a natural mul-
tiplication of a N -dim. row vector and a N × N matrix. Thus it holds an associative law like
(gW )W−1 = g(WW−1) = g.

3 Functional Proxy-Re-Encryption

In this section, we define a notion of functional proxy-re-encryption, F-PRE, and its security. An
attribute and a predicate are expressed as x and v, respectively. We denote R(v, x) = 1 that a



8

relation holds for v and x. Informally speaking, F-PRE is functional encryption with re-encryption
mechanism, that is, an FE scheme with additional algorithms, re-encryption key generation (RKG)
and re-encryption (REnc). RKG algorithm, which takes as input a decryption key of FE skv and an
attribute x′, generates a re-encryption key rkv,x′ which is associated with v and x′. A proxy who
is given a re-encryption key rkv,x′ and an original ciphertext with x, can computes a re-encrypted
ciphertext with attribute x′ from a ciphertext with x using REnc algorithm if R(v, x) = 1.

Definition 3 (Functional Proxy-Re-Encryption: F-PRE). A functional proxy-re-encryption
scheme consists of the following seven algorithms.

Setup: takes as input a security parameter 1λ and a format parameter Λ. It outputs public key pk
and (master) secret key sk.

KG: takes as input the public key pk, the (master) secret key sk, and a predicate v. It outputs a
corresponding decryption key skv.

Enc: takes as input the public key pk, an attribute x, and a plaintext m in some associated plaintext
space. It outputs an original ciphertext octx.

RKG: takes as input the public key pk, a decryption key skv, and an attribute x′. It outputs a re-
encryption key rkv,x′.

REnc: takes as input the public key pk, a re-encryption key rkv,x′, and an original ciphertext octx. It
outputs a re-encrypted ciphertext rctx′.

Decoct: takes as input the public key pk, a decryption key skv, and an original ciphertext octx. It
outputs either a plaintext m or the distinguished symbol ⊥.

Decrct: takes as input the public key pk, a decryption key skv′, and a re-encrypted ciphertext rctx′. It
outputs either a plaintext m or the distinguished symbol ⊥.

The correctness for an F-PRE scheme is defined as:

1. For any plaintextm, any (pk, sk)
R← Setup(1λ), any v and x, any decryption key skv

R← KG(pk, sk, v),

and any original ciphertext octx
R← Enc(pk, x,m), we havem = Decoct(pk, skv, octx) if R(v, x) = 1.

Otherwise, it holds with negligible probability.

2. For any plaintextm, any (pk, sk)
R← Setup(1λ), any v, v′, x, x′, any decryption key skv

R← KG(pk, sk, v),

any re-encryption key rkv,x′
R← RKG(pk, skv, x

′), any original ciphertext octx
R← Enc(pk, x, m),

and re-encrypted ciphertext rctx′
R← REnc(pk, rkv,x′ , octx), we have m = Decrct(pk, skv′ , rctx′) if

R(v, x) = 1 and R(v′, x′) = 1. Otherwise, it holds with negligible probability.

Definition 4. We introduce a useful (multiplicative) notation “•” for describing our security defi-
nitions (Definitions 5–7) concisely. For any variable X,

X •R(v, x) :=

{
X if R(v, x) = 1,

⊥ if R(v, x) = 0.

Let m • R(v, x) • R(v′, x′) mean (m • R(v, x)) • R(v′, x′). Then, the results of items 1 and 2 in the
above correctness are rephrased as m • R(v, x) = Decoct(pk, skv, octx) and m • R(v, x) • R(v′, x′) =
Decrct(pk, skv′ , rctx′), respectively.

Next, we define four security properties of F-PRE.

Definition 5 (Attribute-Hiding for Original Ciphertexts (AH-OC)). The model for defin-
ing the (adaptively) attribute-hiding security for original ciphertexts of F-PRE against adversary A
(under chosen plaintext attacks) is given by the following game:
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Setup. The challenger runs the setup algorithm (pk, sk)
R← Setup(1λ), and it gives the security

parameter λ and the public key pk to the adversary A.
Phase 1. The adversary A is allowed to adaptively issue a polynomial number of queries as follows.

Decryption key query. For a decryption key query v, the challenger gives skv
R← KG(pk, sk, v)

to A.
Re-encryption key query. For a re-encryption key query (v, x′), the challenger computes

rkv,x′
R← RKG(pk, skv, x

′) where skv
R← KG(pk, sk, v). It gives rkv,x′ to A.

Re-encryption query. For a re-encryption query (v, x′, octx), the challenger computes rkv,x′
R← RKG(pk, skv, x

′) where skv
R← KG(pk, sk, v) and rctx′

R← REnc(pk, rkv,x′ , octx). It gives rctx′

to A.
Challenge. For a challenge query (m(0),m(1), x(0), x(1)) subjected to the following restrictions:

– Any decryption key query v and any re-encryption key query (vℓ, x
′
ℓ) for ℓ = 1, . . . , ν2 satisfy

m(0)•R(v, x(0)) = m(1)•R(v, x(1)) and m(0)•R(vℓ, x(0))•R(v, x′ℓ) = m(1)•R(vℓ, x(1))•R(v, x′ℓ).

The challenger flips a random bit b
U← {0, 1} and gives octx(b)

R← Enc(pk, x(b),m(b)) to A.
Phase 2. The adversary A may continue to issue decryption key queries, re-encryption key queries

and re-encryption queries, subjected to the restriction in challenge phase and the following addi-
tional restriction for re-encryption queries.
Re-encryption query. For a re-encryption query (vt, x

′
t, octt) for t = 1, . . . , ν3, subject to the

following restrictions:
– m(0) •R(vt, x(0)) •R(v′, x′t) = m(1) •R(vt, x(1)) •R(v′, x′t) for any decryption key query for
v′ if octt = octx(b)

The challenger computes rkvt,x′t
R← RKG(pk,KG(pk, sk, vt), x

′
t) and rctx′t

R← REnc(pk, rkvt,x′t , octt).
It gives rctx′t to A.

Guess. A outputs its guess b′ ∈ {0, 1} for b and wins the game if b = b′.

We define the advantage of A as AdvAH-OC
A (λ) := Pr[b = b′] − 1

2 . An F-PRE scheme is attribute-
hiding for original ciphertexts if all polynomial time adversaries have at most negligible advantage
in the above game. For each run of the game, we define three types of variables sm, srk,ℓ, srenc,t (ℓ =
1, . . . , ν2, t = 1, . . . , ν3) as follows:

– For challenge plaintexts m(0) and m(1), sm := 0 if m(0) ̸= m(1) and sm := 1, otherwise.
– For the ℓ-th re-encryption key query (vℓ, x

′
ℓ) and challenge (m(0), x(0)) and (m(1), x(1)),

srk,ℓ := 0 if m(0) •R(vℓ, x(0)) ̸= m(1) •R(vℓ, x(1)) and srk,ℓ := 1 otherwise.
– For the t-th re-encryption query (vt, x

′
t, octt) and challenge (m(0), x(0)) and (m(1), x(1)),

srenc,t := 0 if octt = octx(b) ∧ m(0) •R(vt, x(0)) ̸= m(1) •R(vt, x(1)),
srenc,t := 1 if octt = octx(b) ∧ m(0) •R(vt, x(0)) = m(1) •R(vt, x(1)), and srenc,t := 2 if octt ̸= octx(b)

The above variables, sm, srk,ℓ, srenc,t, are used for defining cases in the proof of Theorem 2 in Ap-
pendix D.3.

Definition 6 (Predicate- and Attribute-Hiding for Re-Encrypted Ciphertexts (PAH-
RC)). The model for defining the (adaptively) predicate- and attribute-hiding security for re-encrypted
ciphertexts of F-PRE against adversary A (under chosen plaintext attacks) is given by the following
game:

Setup, Phase 1. They are defined as the same as those in Definition 5, respectively.
Challenge. For a challenge query (m(0),m(1), x(0), x(1), v(0), v(1), x′(0), x′(1)) subjected to the follow-

ing restrictions:
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– (m(0), x(0), v(0)) •R(v′, x′(0)) = (m(1), x(1), v(1)) •R(v′, x′(1)) for any decryption key query v′.

The challenger flips a random bit b
U← {0, 1} and gives rctx′(b)

R← REnc(pk,RKG(pk,KG(pk, sk, v(b)),
x′(b)),Enc(pk, x(b),m(b))). Then it gives rctx′(b) to A.

Phase 2. The adversary A may continue to issue decryption key queries, re-encryption key queries
and re-encryption queries, subjected to the restriction in challenge phase.

Guess. A outputs its guess b′ ∈ {0, 1} for b and wins the game if b = b′.

We define the advantage of A as AdvPAH-RCA (λ) := Pr[b = b′] − 1
2 . An F-PRE scheme is predicate-

and attribute-hiding for re-encrypted ciphertexts if all polynomial time adversaries have at most
negligible advantage in the above game. For each run of the game, the variable sm,x,v is defined
as sm,x,v := 0 if (m(0), x(0), v(0)) ̸= (m(1), x(1), v(1)) for challenge (m(ι), x(ι), v(ι)) for ι = 0, 1, and
sm,x,v := 1, otherwise. The above variable, sm,x,v, is used for defining cases in the proof of Theorem 3
in Appendix D.4.

Definition 7 (Predicate- and Attribute-Hiding for Re-Encryption Keys (PAH-RK)). The
model for defining the (adaptively) predicate- and attribute-hiding security for re-encryption keys of
F-PRE against adversary A (under chosen plaintext attacks) is given by the following game:

Setup, Phase 1. They are defined as the same as those in Definition 5, respectively.
Challenge. For a challenge query (v(0), v(1), x′(0), x′(1)), subject to the following restrictions:

– v(0) •R(v′, x′(0)) = v(1) •R(v′, x′(1)) for any decryption key query v′.

The challenger flips a random bit b
U← {0, 1} and computes rkv(b),x′(b)

R← RKG(pk,KG(pk, sk, v(b)),

x′(b)). Then it gives rkv(b),x′(b) to A.
Phase 2. The adversary A may continue to issue decryption key queries, re-encryption key queries

and re-encryption queries, subjected to the restriction in challenge phase.
Guess. A outputs its guess b′ ∈ {0, 1} for b and wins the game if b = b′.

We define the advantage of A as AdvPAH-RKA (λ) := Pr[b = b′] − 1
2 . An F-PRE scheme is predicate-

and attribute-hiding for re-encryption keys if all polynomial time adversaries have at most negligible
advantage in the above game. For each run of the game, the variable sv is defined as sv := 0 if
v(0) ̸= v(1) for challenge predicates, and sv := 1 otherwise. The above variable sv is used for defining
cases in the proof of Theorem 4 in Appendix D.5.

Definition 8 (Unlinkability). An F-PRE scheme is unlinkable if the following two conditions hold:

(Unconditional) Unlinkability of Re-encryption Keys for all (sk, pk)
R← Setup(1λ, n), all pred-

icates v, all attributes x′, distributions (skv
R← KG(pk, sk, v), RKG(pk, skv, x

′)) and
(KG(pk, sk, v), RKG(pk,KG(pk, sk, v), x′)) are equivalent except for negligible probability.

(Computational) Unlinkability of Re-encrypted Ciphertexts Any probabilistic polynomial-
time adversary A has negligible success probability in the following game: The guessing game
is defined between an adversary A and a challenger as in Definitions 5–7, and Setup, Phase
1, Guess phases are the same as those in the definitions. In Challenge phase, A submits a
predicate v, attributes x, x′, and a message m, where R(v′, x′) = 0 for any decryption key query

v′ in Phase 1. The challenger then calculates skv
R← KG(pk, sk, v), flips a coin b

U← {0, 1}, and
gives (rkv,x′

R← RKG(pk, skv, x
′), octx

R← Enc(pk, x,m), REnc(pk, rkv,x′ , octx)) if b = 0,
(RKG(pk, skv, x

′), Enc(pk, x,m), REnc(pk,RKG(pk, KG(pk, sk, v), x′),Enc(pk, x,m)) if b = 1,
to A. (A outputs a guessed bit b′ in Guess phase.) Here, A can ask the challenger to obtain any
decryption key, re-encryption key, re-encrypted ciphertext in Phase 1 and Phase 2 under the
condition that no decryption key query v′ matches the challenge x′, i.e., R(v′, x′) = 0.
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4 Proposed Inner-Product Proxy-Re-Encryption (IP-PRE) Schemes

A special form of F-PRE formulated in Section 3 is IP-PRE, where decryption key parameter (predi-
cate) v and ciphertext parameter (attribute) x are given by n-dimensional vectors over Fq, i.e., v⃗ and
x⃗, and R(v⃗, x⃗) = 1 iff v⃗ ·x⃗ = 0. We normalize that x1 = 1 and vn = 1 for x⃗ := (xi)

i=1
n and v⃗ := (vi)

i=1
n .

In Section 4.1, we describe our basic IP-PRE scheme. Based on it, we propose a fully-anonymous
IP-PRE scheme in Section 4.2. We describe ingredients used for both schemes below.

A Strongly Unforgeable One-Time Signature Scheme. Since the CHK transform is crucial
for our schemes as is described in Section 1.3, we use a strongly unforgeable one-time signature
scheme. Refer to Appendix B.1 for the details. For simplicity, we assume verification key verk is
an element in Fq. (We can extend the construction to verification key over any distribution D by
first hashing verk using a collision resistant hash H : D→ Fq.)

Underlying IPE Schemes. We use a payload-hiding IPE scheme in our basic scheme, and a fully
attribute-hiding (FAH) IPE scheme in our fully anonymous scheme, whose message space is a
matrix space FN×N

q (N := 3n+4, 4n+4, respectively). In addition, we tweak the FAH-IPE for our
purpose: An ordinary FAH-IPE scheme consists of four algorithms, (SetupIPE,KGIPE,EncIPE,DecIPE).
EncIPE of a tweaked version is composed of two algorithms, EncxIPE and EncmIPE, where EncxIPE en-
crypts only attribute vector x⃗ and outputs prectx⃗, and EncmIPE takes as input prectx⃗ and plaintext
m and outputs ctx⃗ of m. Moreover, we add a re-randomization algorithm for ciphertexts, RRIPE.
Namely, it consists of seven algorithms, (SetupIPE,KGIPE,Enc

x
IPE,Enc

m
IPE,EncIPE,RRIPE,DecIPE).

Refer to Appendix B.2 for the details.
Random Dual Orthonormal Basis Generator. We describe random dual orthonormal basis

generator GIPEob below, which is used as a subroutine in the proposed schemes.

GIPEob (1λ, N) : param′
V := (q,V,GT ,A, e)

R← Gdpvs(1λ, N), ψ
U← F×

q , gT := e(G,G)ψ,

X := (χi,j)
U← GL(N,Fq), (ϑi,j) := ψ · (XT)−1, paramV := (param′

V, gT ),

bi :=
∑N

j=1 χi,jaj ,B := (b1, .., bN ), b
∗
i :=

∑N
j=1 ϑi,jaj ,B∗ := (b∗1, .., b

∗
N ), return (paramV,B,B∗).

4.1 Basic IP-PRE Scheme

We describe a construction idea of our basic IP-PRE for our full IP-PRE (in Section 4.2). For the
formal description of the basic IP-PRE scheme and its security, refer to Appendix C.

Setup generates a key pair for the underlying IPE, (pkIPE, skIPE), and a dual basis pair, (B,B∗), of
a (3n+4)-dimensional vector space. The master secret key sk is (b∗0, sk

IPE), and public key pk is

(B̂, B̂∗), where B̂ := (b0, .., bn+2, b3n+3), B̂∗ := (b∗1, .., b
∗
n+2, b

∗
2n+2, .., b

∗
3n+2). The first dimension is

used for decryption, the next n-dimension for embedding x⃗ and v⃗, the next 2-dimension for CHK
mechanism, the next n-dimension for security proof (hidden subspace), the rest for randomization.

KG takes (pk, sk, v⃗) as input, and generates k∗ := ( 1, δv⃗, 02, 0n, η⃗, 0)B∗ , skIPEv⃗
R← KGIPE(pkIPE, skIPE, v⃗),

where δ
U← Fq, η⃗

U← Fnq , and returns skv⃗ := (v⃗,k∗, skIPEv⃗ ).

Enc takes (pk, x⃗,m) as input, and generates (sigk, verk)
R← SigKG(1λ), ζ, ω, ρ, φ

U← Fq, and
c := ( ζ, ωx⃗, ρ(verk, 1), 0n, 0n, φ)B, cT := m · gζT , S

R← Sig(sigk, C), where C := (x⃗, c, cT ), and
returns octx⃗ := (C, verk, S), i.e., a CHK converted ciphertext.

RKG takes (pk, skv⃗, x⃗
′) as input, and generates W1

U← GL(3n+ 4,Fq),
k∗rk := (k∗+( 0, δ′v⃗, 02, 0n, η⃗ ′, 0)B∗)W1, ct

rk
x⃗′

R← EncIPE(pk
IPE, x⃗′,W1), where δ

′ U← Fq, η⃗ ′ U← Fnq ,
and D̂∗

1 := (d∗
i := b∗iW1)i=1,...,n+2,2n+2,...,3n+3, and returns rkv⃗,x⃗′ := (v⃗, x⃗′,k∗rk, ctrkx⃗′ , D̂

∗
1). k

∗rk is
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the product of (re-randomized) vector k∗ by matrix W1, and ctrkx⃗′ is a ciphertext of W1 with x⃗′.
Here, k∗rk is represented over basis D∗

1 := (b∗iW1)i=0,..,3n+3 as k∗rk = ( 1, δrkv⃗, 02, 0n, η⃗ rk, 0)D∗
1

where δrk, η⃗ rk are freshly random variables.
REnc takes (pk, rkv⃗,x⃗′ := (v⃗, x⃗′,k∗rk, ctrkx⃗′ , D̂

∗
1), octx⃗ := (C := (x⃗, c, cT ), verk, S)) as input, and first

verify that Ver(verk, C, S) = 1, and if so, generates W2
U← GL(3n+ 4,Fq) and

k∗renc := k∗rk+( 0, δ′′v⃗, σ(−1, verk), 0n, η⃗ ′′, 0)D∗
1
, crenc := (c+( ζ ′, ω′x⃗, ρ′(verk, 1), 0n, 0n, φ′)B)W2,

crencT := cT ·gζ
′

T , ct
renc
1,x⃗′

R← RRIPE(pk
IPE, ctrkx⃗′), ctrenc2,x⃗′

R← EncIPE(pk
IPE, x⃗′,W2), where δ

′′, σ, ζ ′, ω′, ρ′, φ′

U← Fq, η⃗ ′′ U← Fnq , and returns rctx⃗′ := (x⃗′, crenc, crencT ,k∗renc, {ctrenci,x⃗′ }i=1,2).

k∗renc is obtained by converted from k∗rk by embedding a CHK tag part σ(−1, verk), then, is
specialized for decrypting crenc only. (crenc, crencT ) are the products of (re-randomized) (c, cT ) by
W2, respectively, and {ctrenci,x⃗′ }i=1,2 are fresh ciphertexts ofW1 andW2, respectively, with x⃗

′. Here,
k∗renc is represented over basis D∗

1 as k∗renc = ( 1, δrencv⃗, σ(−1, verk), 0n, η⃗ renc, 0)D∗
1
, where

δrenc, η⃗ renc are freshly random, crenc and crencT are represented over basis D2 := (biW2)i=0,..,3n+3 as

crenc = ( ζrenc, ωrencx⃗, ρrenc(verk, 1), 0n, 0n, φrenc)D2 and crencT := m ·gζ
renc

T where ζrenc, ωrenc, φrenc

are freshly random.
Decoct takes (pk, skv⃗ := (v⃗,k∗, skIPEv⃗ ), octx⃗ := (C := (x⃗, c, cT ), verk, S)) as input, and first verify that

Ver(verk, C, S) = 1, and if so, calculates K := e(c,k∗), and returns m̃ := cT /K.
Decrct takes (pk, skv⃗′ := (v⃗′,k∗, skIPEv⃗′ ), rctx⃗′ := (x⃗′, crenc, crencT ,k∗renc, {ctrenci,x⃗′ }i=1,2)) as input, and cal-

culates W̃i
R← DecIPE(pk

IPE, skIPEv⃗′ , ct
renc
i,x⃗′ ) for i = 1, 2, K̃ := e(crencW̃−1

2 ,k∗rencW̃−1
1 ), and returns

m̃ := crencT /K̃. Here, (k∗rencW̃−1
1 , crencW̃−1

2 ) are represented over bases (B,B∗) as k∗rencW̃−1
1 =

( 1, δrencv⃗, σ(−1, verk), 0n, η⃗ renc, 0)B∗ and crencW̃−1
2 = ( ζrenc, ωrencx⃗, ρrenc(verk, 1), 0n, 0n, φrenc)B.

4.2 Fully-Anonymous IP-PRE Scheme

The basic IP-PRE scheme does not have predicate- and attribute-hiding security for re-encryption
keys because a predicate vector v⃗ and an attribute vector x⃗′ are included in re-encryption key rkv⃗,x⃗′ .
v⃗ is needed to re-randomize k∗rk and x⃗′ is needed to generate a ciphertext ctrenc1.x⃗′ in REnc algorithm.
In order to construct IP-PRE scheme with the predicate- and attribute-hiding for rkv⃗,x⃗′ , we modify
the basic IP-PRE scheme as follows: In order to remove v⃗ from rkv⃗,x⃗′ and re-randomize k∗rk in REnc,
RKG also outputs k∗rk

ran which is generated on the basis D∗
1 = B∗W1 (instead of the vector v⃗). Then,

the predicate vector v⃗ is embedded into k∗rk and k∗rk
ran in a hidden form from an adversary who

cannot decrypt ctrkx⃗′ i.e., cannot obtain W1. Similarly, in order to remove x⃗′ from rkv⃗,x⃗′ , RKG also
outputs a pre-ciphertext prectx⃗′ instead of the attribute vector x⃗′. From the attribute-hiding security
of the underlying IPE scheme, the vector x⃗′ is hidden from the adversary. In a similar manner, for
attribute-hiding for original ciphertexts, Enc also outputs cran instead of an attribute vector x⃗ which
is included into octx⃗. REnc re-randomizes c by using cran (instead of using x⃗). Our fully anonymous
IPE scheme is obtained by modifying our basic scheme as below including the above modifications.

1. The dimension of the vector space for (B,B∗) is enlarged to 4n+ 4.
2. An underlying IPE scheme is fully attribute-hiding.
3. b∗1, . . . , b

∗
n are included into sk as well as b∗0.

4. For re-randomization in RKG, an additional k∗
ran is included into decryption key skv⃗ as well as k

∗.
5. For re-randomization in REnc, an additional cran (resp.k∗rk

ran) is included into original ciphertext
octx⃗ as well as c (resp. re-encryption key rkv⃗,x⃗′ as well as k

∗rk). Moreover, prectx⃗′ is included into
rkv⃗,x⃗′ .

We give our fully-anonymous IP-PRE scheme below.
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Setup(1λ, n): (pkIPE, skIPE)
R← SetupIPE(1

λ, n),

(paramn,B = (b0, . . . , b4n+3),B∗ = (b∗0, . . . , b
∗
4n+3))

R← Gob(1λ, 4n+ 4),

B̂ := (b0, . . . , bn+2, b4n+3), B̂∗ := (b∗n+1, b
∗
n+2, b

∗
3n+3, . . . , b

∗
4n+2),

return pk := (1λ, pkIPE, paramn, B̂, B̂∗), sk := (b∗0, . . . , b
∗
n skIPE).

KG(pk, sk, v⃗): skIPEv⃗
R← KGIPE(pkIPE, skIPE, v⃗), δ, δran

U← Fq, η⃗, η⃗ran
U← Fnq ,

k∗ := ( 1, δv⃗, 02, 02n, η⃗, 0)B∗ , k∗
ran := ( 0, δranv⃗, 0

2, 02n, η⃗ran, 0)B∗ ,
return skv⃗ := (k∗,k∗

ran, sk
IPE
v⃗ ).

Enc(pk, x⃗,m): ζ, ω, ωran, ρ, ρran, φ, φran
U← Fq, (sigk, verk)

R← SigKG(1λ),
c := ( ζ, ωx⃗, ρ(verk, 1), 02n, 0n, φ)B, cran := ( 0, ωranx⃗, ρran(verk, 1), 02n, 0n, φran)B,

cT := m · gζT , C := (c, cran, cT ), S
R← Sig(sigk, C), return octx⃗ := (C, verk, S).

RKG(pk, skv⃗, x⃗
′): r, rran

U← Fq, η⃗ ′, η⃗ ′
ran

U← Fnq ,
W1

U← GL(4n+ 4,Fq), D̂∗
1 := (d∗

i := b∗iW1)i=n+1,n+2,3n+3,...,4n+2,
k∗rk := (k∗ + rk∗

ran + ( 0, 0n, 02, 02n, η⃗ ′, 0)B∗))W1,
k∗rk
ran := (rrank

∗
ran + ( 0, 0n, 02, 02n, η⃗ ′

ran, 0)B∗)W1,

ctrkx⃗′
R← EncIPE(pk

IPE, x⃗′,W1), prectx⃗′
R← EncxIPE(pk

IPE, x⃗′),

return rkv⃗,x⃗′ := (k∗rk,k∗rk
ran, ct

rk
x⃗′ , prectx⃗′ , D̂

∗
1).

REnc(pk, rkv⃗,x⃗′ := (k∗rk,k∗rk
ran, ct

rk
x⃗′ , prectx⃗′ , D̂

∗
1), octx⃗ := (C := (c, cran, cT ), verk, S)):

If Ver(verk, C, S) ̸= 1, return ⊥.
r′, σ, ζ ′, ξ, ρ′, φ′ U← Fq, η⃗ ′′ U← Fnq , W2

U← GL(4n+ 4,Fq)
k∗renc := k∗rk + r′k∗rk

ran + ( 0, 0n, σ(−1, verk), 02n, η⃗ ′′, 0)D∗
1
,

crenc := (c+ ξcran + ( ζ ′, 0n, ρ′(verk, 1), 02n, 0n, φ′)B)W2, crencT := cT · gζ
′

T ,

ctrenc1,x⃗′
R← RRIPE(pk

IPE, ctrkx⃗′), ctrenc2,x⃗′
R← EncmIPE(pk

IPE, prectx⃗′ ,W2),
return rctx⃗′ := (crenc, crencT ,k∗renc, {ctrenci,x⃗′ }i=1,2).

Decoct(pk, skv⃗ := (k∗,k∗
ran, sk

IPE
v⃗ ), octx⃗ := (C := (c, cran, cT ), verk, S)):

If Ver(verk, C, S) ̸= 1, return ⊥, K := e(c,k∗), return m̃ := cT /K.

Decrct(pk, skv⃗′ := (k∗,k∗
ran, sk

IPE
v⃗′ ), rctx⃗′ := (crenc, crencT ,k∗renc, {ctrenci,x⃗′ }i=1,2)):

W̃i
R← DecIPE(pk

IPE, skIPEv⃗′ , ct
renc
i,x⃗′ ) for i = 1, 2, K̃ := e(crencW̃−1

2 ,k∗rencW̃−1
1 ), return m̃ := crencT /K̃.

Remark 1 (Representations of (k∗rk,k∗rk
ran) and (k∗renc, crenc, crencT )).

1. Since components k∗rk and k∗rk
ran in a re-encryption key are generated from k∗ and k∗

ran in a
decryption key, we show k∗rk and k∗rk

ran are uniformly and independently distributed from the
decryption key components. k∗rk and k∗rk

ran are represented over basis D∗
1 := (b∗iW1)i=0,..,4n+3 as

k∗rk = ( 1, δrkv⃗, 02, 02n, η⃗ rk, 0)D∗
1
and k∗rk

ran = ( 0, δrkranv⃗, 02, 02n, η⃗ rk
ran, 0)D∗

1
with δrk :=

δ+rδran, δ
rk
ran := rranδran, η⃗

rk := η⃗+rη⃗ran+ η⃗
′, and η⃗ rk

1 := rranη⃗1+ η⃗
′
ran which are uniformly and

independently distributed from skv⃗ except when δran = 0, i.e., except for probability 1/q since
r, rran, η⃗

′, η⃗ ′
ran are uniformly and independently distributed.

2. Components k∗renc and (crenc, crencT ) in a re-encrypted ciphertext are generated from (k∗rk,k∗rk
ran)

in a re-encryption key and (c, cran, cT ) in a ciphertext, respectively. Hence, k∗renc is repre-
sented over basis D∗

1 as k∗renc = ( 1, δrencv⃗, σ(−1, verk), 02n, η⃗ renc, 0)D∗
1
with δrenc :=

δrk + r′δrkran, η⃗
renc := η⃗ rk + r′η⃗ rk

ran + η⃗ ′′, which are uniformly and independently distributed
from rkv⃗,x⃗′ except when δrkran = 0, i.e., except for probability 1/q since r′, η⃗ ′′ are uniformly and
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independently distributed. crenc and crencT are represented over basis D2 := (biW2)i=0,..,4n+3 as

crenc = ( ζrenc, ωrencx⃗, ρrenc(verk, 1), 02n, 0n, φrenc)D2 and crencT := m · gζ
renc

T with ζrenc := ζ + ζ ′,
ωrenc := ω + ξωran, ρ

renc := ρ + ξρran + ρ′, φrenc := φ + ξφran + φ′, which are uniformly and in-
dependently distributed from octx⃗ except when ωran = 0, i.e., except for probability 1/q since
ζ ′, ξ, ρ′, φ′ are uniformly and independently distributed.

[Correctness of Decoct] If x⃗ · v⃗ = 0, K = e(c,k∗) = gζ+ωδx⃗·v⃗T = gζT .

[Correctness of Decrct] (k∗rencW̃−1
1 , crencW̃−1

2 ) are represented over bases (B,B∗) as k∗rencW̃−1
1 =

( 1, δrencv⃗, σ(−1, verk), 02n, η⃗ renc, 0)B∗ and crencW̃−1
2 = ( ζrenc, ωrencx⃗, ρrenc(verk, 1), 02n, 0n, φrenc)B.

Hence, if x⃗ · v⃗ = 0, K̃ = e(crencW̃−1
2 ,k∗rencW̃−1

1 ) = gζ
renc+ωrencδrencx⃗·v⃗
T = gζ

renc

T .

The DLIN assumption is given in Appendix A, and the OT12 IPE scheme is given in Definition
15 in Appendix B.2.

Theorem 1 (Main Theorem). The proposed IP-PRE scheme is fully-anonymous under the DLIN
assumption provided the underlying signature scheme is a strongly unforgeable one-time signature
scheme and the underlying IPE scheme is given by the OT12 IPE scheme.

Proof. From Corollary 1 (and Theorems 2–4) and Theorem 5, we obtain Theorem 1. ⊓⊔

The proofs of Theorems 2–5 are given in Appendices D.3–D.6 respectively. When the underlying
IPE scheme is given by the OT12 IPE scheme, we have Corollary 1 below.

Theorem 2. The proposed IP-PRE scheme is attribute-hiding for original ciphertexts against chosen
plaintext attacks under the DLIN assumption provided the underlying signature scheme is a strongly
unforgeable one-time signature scheme and the underlying IPE scheme is fully attribute-hiding.

Theorem 3. The proposed IP-PRE scheme is predicate- and attribute-hiding for re-encrypted ci-
phertexts against chosen plaintext attacks provided the underlying IPE scheme is fully attribute-
hiding.

Theorem 4. The proposed IP-PRE scheme is predicate- and attribute-hiding for re-encryption keys
against chosen plaintext attacks provided the underlying IPE scheme is fully attribute-hiding.

Corollary 1 The proposed IP-PRE scheme is attribute-hiding for original ciphertexts against chosen
plaintext attacks under the DLIN assumption provided the underlying signature scheme is a strongly
unforgeable one-time signature scheme and the underlying IPE scheme is given by the OT12 IPE
scheme.

It is predicate- and attribute-hiding for re-encrypted ciphertexts against chosen plaintext attacks
under the DLIN assumption provided the underlying IPE scheme is given by the OT12 IPE scheme.

It is predicate- and attribute-hiding for re-encryption key against chosen plaintext attacks under
the DLIN assumption provided the underlying IPE scheme is given by the OT12 IPE scheme.

Theorem 5. The proposed IP-PRE scheme is unlinkable.

5 Proposed Ciphertext Policy Functional Proxy-Re-Encryption (CP-F-PRE)
Scheme

We propose a CP-F-PRE scheme with the access structure given by Okamoto-Takashima [27]. The
scheme is payload-hiding for original ciphertexts, payload-hiding for re-encrypted ciphertexts, and
attribute-hiding for re-encryption keys under the DLIN assumption and the existence of a strongly
unforgeable one-time signature scheme (Corollary 3). In addition, the scheme is unlinkable (Theorem
11). For security definitions, the proposed scheme and its security theorems, refer to Appendix E.
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A Decisional Linear (DLIN) Assumption

Definition 9 (DLIN: Decisional Linear Assumption [5]). The DLIN problem is to guess

β ∈ {0, 1}, given (paramG, G, ξG, κG, δξG, σκG, Yβ)
R← GDLIN

β (1λ), where GDLIN
β (1λ) : paramG :=

(q,G,GT , G, e)
R← Gbpg(1λ), κ, δ, ξ, σ

U← Fq, Y0 := (δ + σ)G,Y1
U← G, return (paramG, G, ξG, κG,

δξG, σκG, Yβ), for β
U← {0, 1}. For a probabilistic machine E, we define the advantage of E for the

DLIN problem as: AdvDLIN
E (λ) :=

∣∣∣Pr [E(1λ, ϱ)→1
∣∣∣ϱ R←GDLIN

0 (1λ)
]
−Pr

[
E(1λ, ϱ)→1

∣∣∣ϱ R← GDLIN
1 (1λ)

]∣∣ .
The DLIN assumption is: For any probabilistic polynomial-time adversary E, the advantage AdvDLIN

E (λ)
is negligible in λ.

B Building Blocks for the Proposed IP-PRE Schemes in Section 4

B.1 One-Time Signatures

Definition 10 (Signature Scheme). A signature scheme consists of the following three algorithms.

SigKG takes as input a security parameter 1λ and outputs verification key verk and signing key sigk.

Sig takes as input a message m and a signing key sigk and outputs a signature S.

Ver takes as input a message m, a signature S, and a verification key sigk and outputs a boolean
value accept = 1 or reject = 0

A signature scheme should have the following correctness property: for any (verk, sigk)
R← SigKG(1λ),

any messagem, and any signature S
R← Sig(sigk,m), it holds that 1 = Ver(verk,m, S) with probability

1.
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Definition 11 (Strong Unforgeability). For an adversary, we define AdvOS,SUF
B4

(λ) to be the suc-
cess probability in the following experiment for any security parameter λ. A signature scheme is
a strongly unforgeable one-time signature scheme if the success probability of any polynomial-time
adversary is negligible:

1. The challenger runs (verk, sigk)
R← SigKG(1λ) and gives verk to the adversary.

2. The adversary makes signing query on a message m and receives S
R← Sig(sigk,m) at most ones.

We denote the pair of message and signature (m,S) if the sining oracle is queried.
3. At the end, the adversary outputs (m′, S′).

We say the adversary succeeds if Ver(verk,m′, S′) = 1 and (m,S) ̸= (m′, S′) (assuming the signing
oracle is queried).

B.2 Underlying Fully Attribute-Hiding IPE

We tweak a usual fully attribute-hiding IPE to be used in our fully-anonymous IP-PRE.
In this subsection, we propose new concept of an IPE scheme. We define relation R(v⃗, x⃗) = 1 if and

only if v⃗ · x⃗ = 0. In ordinarily IPE scheme, there are four algorithms (SetupIPE,KGIPE,EncIPE,DecIPE).
In order to construct secure IP-PRE scheme, we introduce new algorithms EncxIPE and EncmIPE to IPE
scheme. Roughly speaking, EncxIPE encrypts only attribute vector x⃗ and EncmIPE encrypts only plaintext
m by deriving attribute x⃗ from EncxIPE whereas Enc encrypts both an attribute and a plaintext. We
consider IPE scheme that message space is matrix space FN×N

q . That is, EncIPE is a sequential

composition of EncxIPE and EncmIPE, which takes as input an attribute x⃗ and a plaintext X ∈ FN×N
q ,

respectively.

Definition 12. An inner-product encryption scheme consists of the following seven algorithms.

SetupIPE: takes as input a security parameter 1λ and a positive integer n outputs public key pk and
(master) secret key sk.

KGIPE: takes as input a public key pk, a (master) secret key sk, and a predicate vector v⃗. It outputs
a corresponding decryption key skv⃗.

EncxIPE: takes as input a public key pk and an attribute vector x⃗. It outputs a pre-ciphertext prectx⃗.
EncmIPE: takes as input a public key pk, a pre-ciphertext prectx⃗, a plaintext X ∈ FN×N

q in some
associated plaintext space. It outputs a ciphertext ctx⃗.

EncIPE: takes as input a public key pk, a plaintext X ∈ FN×N
q in some associated plaintext space,

and an attribute vector x⃗. It outputs a ciphertext ctx⃗
R← EncmIPE(pk

IPE,EncxIPE(pk
IPE, x⃗), X).

RRIPE: takes as input a public key pk, a ciphertext ctx⃗. It outputs a (re-randomized) ciphertext c̃tx⃗.
DecIPE: takes as input a public key pk, a decryption key skv⃗, and an original ciphertext ctx⃗. It outputs

either plaintext X ∈ FN×N
q or the distinguished symbol ⊥.

We require the correctnesses for an IPE scheme: (1) For any plaintext X ∈ FN×N
q , any (pk, sk)

R←
SetupIPE(λ), any v⃗ and x⃗, any decryption key skv⃗

R← KGIPE(pk, sk, v⃗), and any ciphertext ctx⃗
R←

EncIPE(pk, X, x⃗), we have m = DecIPE(pk, skv⃗, ctx⃗) if R(v⃗, x⃗) = 1. Otherwise it holds with neg-

ligible probability. (2) For any plaintext m, any (pk, sk)
R← SetupIPE(λ), any v⃗ and x⃗, any de-

cryption key skv⃗
R← KGIPE(pk, sk, v⃗), any pre-ciphertext prectx⃗

R← EncxIPE(pk, x⃗) and any ciphertext

ctx⃗
R← EncmIPE(pk, prectx⃗, X), we have m = DecIPE(pk, skv⃗, ctx⃗) if R(v⃗, x⃗) = 1. Otherwise it holds with

negligible probability. The above two conditions also hold for a re-randomized c̃tx⃗
R← RRIPE(pk, ctx⃗)

instead of an ordinary ciphertext ctx⃗.
We then define fully attribute-hiding security of IPE scheme.
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Definition 13 (Attribute-Hiding Security). The model for defining the fully attribute-hiding
security of IPE against adversary A under chosen plaintext attacks is given as follows:

Setup. The challenger runs the setup algorithm (pk, sk)
R← SetupIPE(1

λ, n), and it gives the security
parameter λ and the public key pk to the adversary A.

Phase 1. The adversary A is allowed to adaptively issue a polynomial number of key queries. For

a decryption key query v, the challenger gives skv
R← KGIPE(pk, sk, v⃗) to A.

Challenge. For a challenge query (X(0), X(1), x⃗(0), x⃗(1)), subject to the following restriction:
1. R(v⃗, x⃗(0)) = R(v⃗, x⃗(1)) = 0 for all the decryption key queries v⃗, or
2. Two challenge plaintexts are equal, i.e., X(0) = X(1), and any decryption key query v⃗ satisfies

R(v⃗, x⃗(0)) = R(v⃗, x⃗(1)).

The challenger flips a random b ∈ {0, 1} and computes ctx⃗(b)
R← EncIPE(pk, x⃗

(b), X(b)). Then it
gives ctx⃗(b) to A.

Phase 2. The adversary A is allowed to adaptively issue a polynomial number of key queries. For
a decryption key query v, subject to the restriction given it challenge phase.

Finally, A outputs its guess b′ ∈ {0, 1} for b and wins the game if b = b′. We define the advantage

of A as AdvIPE,AHA (λ) = Pr[b = b′]− 1
2 . An IPE scheme is fully attribute-hiding if all polynomial time

adversaries have at most negligible advantage in the above game. If item 1 in Challenge is allowed
for A, an IPE scheme is payload-hiding if all polynomial time adversaries have at most negligible
advantage in the game.

Definition 14 ((Unconditional) Unlinkability). An IPE scheme is unconditionally unlinkable
if the following two conditions hold:

Unlinkability of Ciphertexts for all (sk, pk)
R← SetupIPE(1

λ, n), all attribute vectors x⃗, all plain-

texts X ∈ FN×N
q , distributions (prectx⃗

R← EncxIPE(pk, x⃗), EncmIPE(pk, prectx⃗, X)) and (prectx⃗
R←

EncxIPE(pk, x⃗), EncIPE(pk, x⃗,X)) are equivalent except for negligible probability.

Unlinkability of Re-randomized Ciphertexts for all (sk, pk)
R← SetupIPE(1

λ, n), all attribute

vectors x⃗, all plaintexts X ∈ FN×N
q , distributions (ctx⃗

R← EncIPE(pk, x⃗,X), RRIPE(pk, ctx⃗)) and

(ctx⃗
R← EncIPE(pk, x⃗,X), EncIPE(pk, x⃗,X)) are equivalent except for negligible probability.

Fully attribute-hiding IPE scheme which is proposed in [29] is an instantiation of the above un-
derlying IPE scheme. We give specific underlying IPE scheme (SetupIPE,KGIPE,Enc

x
IPE,Enc

m
IPE,EncIPE,

RRIPE,DecIPE) based on fully attribute-hiding IPE scheme proposed in [29].

Definition 15 (The OT12 IPE Scheme). Let E be an injective encoding function from Fq to
GT . Assume that the security parameter is chosen so that E is an injective function.

SetupIPE(1
λ, n): (paramn,BIPE = (b0, . . . , b4n+1),B∗

IPE = (b∗0, . . . , b
∗
4n+1))

R← Gob(1λ, 4n+ 2),

B̂IPE := (b0, . . . , bn, b4n+1), B̂∗
IPE := (b∗0, . . . , b

∗
n, b

∗
3n+1, . . . , b

∗
4n),

return pkIPE := (1λ, paramn, B̂IPE), skIPE := B̂∗
IPE.

KGIPE(pk
IPE, skIPE, v⃗): δ

U← Fq, η⃗
U← Fnq , k∗ := ( 1, δv⃗, 02n, η⃗, 0)B∗

IPE
, return skIPEv⃗ := k∗.

EncxIPE(pk, x⃗): ω, φ
U← Fq, c′ := (0, ωx⃗, 02n, 0n, φ)BIPE

, return prectx⃗ := c′.

EncmIPE(pk, prectx⃗, X := (Xi,j)i,j=1,...,n ∈ FN×N
q ): ξ′0, φ

′
0

U← Fq, c0 := ξ′0c
′ + φ′

0b4n+1,

for i, j = 1, . . . , n, ζi,j , ξ
′
i,j , φ

′
i,j

U← Fq,
ci,j := ξ′i,jc

′ + ( ζi,j , 0n, 02n, 0n, φ′
i,j)BIPE

, cT,i,j := E(Xi,j) · g
ζi,j
T ,

return ctx⃗ := (c0, {ci,j , cT,i,j}i,j=1,...,n).
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EncIPE(pk, x⃗,X ∈ FN×N
q ): prectx⃗

R← EncxIPE(pk, x⃗), return ctx⃗
R← EncmIPE(pk, prectx⃗, X).

RRIPE(pk, ctx⃗ := (c0, {ci,j , cT,i,j}i,j=1,...,n)): ξ̃0, φ̃0
U← Fq, c̃0 := ξ̃0c0 + φ̃0b4n+1,

for i, j = 1, . . . , n, ζ̃i,j , ξ̃i,j , φ̃i,j
U← Fq,

c̃i,j := ξ̃i,jc0 + ( ζ̃i,j , 0n, 02n, 0n, φ̃i,j)BIPE
, c̃T,i,j := cT,i,j · g

ζ̃i,j
T ,

return c̃tx⃗ := (c̃0, {c̃i,j , c̃T,i,j}i,j=1,...,n).

DecIPE(pk, sk
IPE
v⃗ , ctx⃗): Ki,j := e(ci,j ,k

∗), E(X̃i,j) := cT,i,j/Ki,j,

return X̃ := (X̃i,j)i,j=1,...,n by decoding of E(X̃i,j).

We obtain a fully attribute-hiding IPE scheme with the above message space based on a fully attribute-
hiding IPE in [29]. We call it the OT12 IPE scheme.

Lemma 1. The OT12 IPE scheme is fully-attribute-hiding under the DLIN assumption.

Proof. The OT12 IPE scheme is equivalent fully-attribute-hiding IPE scheme which is proposed
in [29] except that there exists EncxIPE and EncmIPE. So, the security proof of fully-attribute-hiding is
also similarly obtained to the security proof in [29]. 2

Lemma 2. The OT12 IPE scheme is unconditionally unlinkable.

Proof. It holds c0 = (0, ω0x⃗, 02n, 0n, φ0)BIPE
with uniformly and independently distributed ω0 :=

ξ′0ω, φ0 := ξ′0φ + φ′
0 since ξ′0, φ

′
0

U← Fq, and ci,j = ( ζi,j , ωi,j x⃗, 02n, 0n, φi,j)BIPE
with uniformly

and independently distributed ζi,j , ωi,j := ξ′i,jω, φi,j := ξ′i,jφ + φ′
i,j except when ω = 0, i.e., except

for probability 1/q since ζi,j , ξ
′
i,j , φ

′
i,j

U← Fq for i, j = 1, . . . , n. This completes the unlinkability of

ciphertexts ctx⃗ := (c0, {ci,j , cT,i,j}i,j=1,...,n). The unlinkability of re-randomized ciphertexts c̃tx⃗ :=
(c̃0, {c̃i,j , c̃T,i,j}i,j=1,...,n) is similarly proven. ⊓⊔

C Basic IP-PRE

Setup(1λ, n): (pkIPE, skIPE)
R← SetupIPE(1

λ, n),

(paramn,B = (b0, . . . , b3n+3),B∗ = (b∗0, . . . , b
∗
3n+3))

R← Gob(1λ, 3n+ 4),

B̂ := (b0, . . . , bn+2, b3n+3), B̂∗ := (b∗1, . . . , b
∗
n+2, b

∗
2n+2, . . . , b

∗
3n+2),

return pk := (1λ, pkIPE, paramn, B̂, B̂∗), sk := (b∗0, sk
IPE).

KG(pk, sk, v⃗): skIPEv⃗
R← KGIPE(pkIPE, skIPE, v⃗),

δ
U← Fq, η⃗

U← Fnq , k∗ := ( 1, δv⃗, 02, 0n, η⃗, 0)B∗ ,

return skv⃗ := (v⃗,k∗, skIPEv⃗ ).

Enc(pk, x⃗,m): ζ, ω, ρ, φ
U← Fq, (sigk, verk)

R← SigKG(1λ),
c := ( ζ, ωx⃗, ρ(verk, 1), 0n, 0n, φ)B,

cT := m · gζT , C := (x⃗, c, cT ), S
R← Sig(sigk, C), return octx⃗ := (C, verk, S).

RKG(pk, skv⃗, x⃗
′): δ′

U← Fq, η⃗ ′ U← Fnq , W1
U← GL(3n+ 4,Fq),

d∗
i := b∗iW1 for i = 1, . . . , n+ 2, 2n+ 3, . . . , 3n+ 3, D̂∗

1 := (d∗
1, . . . ,d

∗
n+2,d

∗
2n+2, . . . ,d

∗
3n+3)

k∗rk := (k∗ + ( 0, δ′v⃗, 02, 0n, η⃗ ′, 0)B∗)W1,

ctrkx⃗′
R← EncIPE(pk

IPE, x⃗′,W1), return rkv⃗,x⃗′ := (v⃗, x⃗′,k∗rk, D̂∗
1, ct

rk
x⃗′).

Remark k∗rk is represented over basis D∗
1 := (b∗iW1)i=0,..,3n+3 as k

∗rk = ( 1, δrkv⃗, 02, 0n, η⃗ rk, 0)D∗
1

with δrk := δ + δ′, η⃗ rk := η⃗ + η⃗ ′, which are uniformly and independently distributed from
skv⃗.
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REnc(pk, rkv⃗,x⃗′ := (v⃗, x⃗′,k∗rk, D̂∗
1, ct

rk
x⃗′), octx⃗ := (C := (x⃗, c, cT ), verk, S)):

If Ver(verk, C, S) ̸= 1, return ⊥.
δ′′, σ, ζ ′, ω′, ρ′, φ′ U← Fq, η⃗ ′′ U← Fnq , W2

U← GL(3n+ 4,Fq)
k∗renc := k∗rk + ( 0, δ′′v⃗, σ(−1, verk), 0n, η⃗ ′′, 0)D∗

1
,

crenc := (c0 + ( ζ ′, ω′x⃗, ρ′(verk, 1), 0n, 0n, φ′)B)W2, crencT := cT · gζ
′

T

ctrenc1,x⃗′
R← RRIPE(pk

IPE, ctrkx⃗′), ctrencx⃗′
R← EncIPE(pk

IPE, x⃗′,W2),
return rctx⃗′ := (x⃗′,k∗renc, crenc, crencT , {ctrenci,x⃗′ }i=1,2).

Remark k∗renc is represented over basis D∗
1 as k

∗renc = ( 1, δrencv⃗, σ(−1, verk), 0n, η⃗ renc, 0)D∗
1

with δrenc := δrk+δ′′, η⃗ renc := η⃗ rk+ η⃗′′, which are uniformly and independently distributed
from rkv⃗,x⃗′ . c

renc and crencT are represented over basis D2 := (biW2)i=0,..,3n+3 as

crenc = ( ζrenc, ωrencx⃗, ρrenc(verk, 1), 0n, 0n, φrenc)D2 and crencT := m · gζ
renc

T with
ζrenc := ζ + ζ ′, ωrenc := ω + ω′, ρrenc := ρ+ ρ′, φrenc := φ+ φ′, which are uniformly
and independently distributed from octx⃗.

Decoct(pk, skv⃗ := (v⃗,k∗, skIPEv⃗ ), octx⃗ := (C := (x⃗, c, cT ), verk, S)):
If Ver(verk, C, S) ̸= 1, return ⊥, K := e(c,k∗), return m̃ := cT /K.

Decrct(pk, skv⃗′ := (v⃗′,k∗, skIPEv⃗′ ), rctx⃗′ := (x⃗′,k∗renc, crenc0 , crenc1 , {ctrenci,x⃗′ }i=1,2)):

W̃i
R← DecIPE(pk

IPE, skIPEv⃗′ , ct
renc
i,x⃗′ ) for i = 1, 2, K̃ := e(crencW̃−1

2 ,k∗rencW̃−1
1 ),

return m̃ := crencT /K̃.

Remark (k∗rencW̃−1
1 , crencW̃−1

2 ) are represented over bases (B,B∗) as

k∗rencW̃−1
1 = ( 1, δrencv⃗, σ(−1, verk), 0n, η⃗ renc, 0)B∗ and

crencW̃−1
2 = ( ζrenc, ωrencx⃗, ρrenc(verk, 1), 0n, 0n, φrenc)B.

Theorem 6. The proposed basic IP-PRE scheme is payload-hiding for original ciphertexts against
chosen plaintext attacks under the DLIN assumption, payload-hiding of underlying IPE scheme and
strong unforgeability of one-time signature.

Theorem 7. The proposed basic IP-PRE scheme is payload-hiding for re-encrypted ciphertexts against
chosen plaintext attacks under payload-hiding of underlying IPE scheme.

Corollary 2 The proposed basic IP-PRE scheme is payload-hiding for original ciphertexts against
chosen plaintext attacks under the DLIN assumption and strong unforgeability of one-time signature
with instantiating underlying IPE by OT12 IPE scheme.

The proposed basic IP-PRE scheme is payload-hiding for re-encrypted ciphertexts against chosen
plaintext attacks under the DLIN assumption with instantiating underlying IPE by OT12 IPE scheme.

The proof of Theorems 6 and 7 and Corollary 2 are similarly given to Theorems and Corollary
for fully-anonymous IP-PRE in Section D.

D Security Proofs of Theorems 2-5

D.1 Key Technique: Information-Theoretical Insulation of a Subspace for Re-Enc
Key Basis D∗

1

The dual system encryption (DSE) approach is developed by Waters [37] for achieving an adaptively
secure FE schemes, and subsequent works [15, 14, 27, 29, 16, 30] successfully apply the approach to
obtain various kinds of adaptively secure schemes. The main key point in the game transformation
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subspace insulation    -th

hidden from adversary

subspace insulation    

for basis
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pairwise independence

-th
-th

pairwise independence

of coefficients         

Fig. 2. Overview of Game Changes between Games 1-3-(ℓ− 1) and 1-3-ℓ

of the approach is to interleave a computational change with a conceptual (information-theoretical)
change, in turn for each key query. Usually, the computational one is given by a kind of subspace
assumption on a dual pairing vector space (in a prime-order pairing group) or a composite-order
pairing group, and the conceptual one is based on a pairwise independence argument for key and
ciphertext parameters, e.g., attribute vector v⃗ and predicate vector x⃗ in IPE. Lewko-Waters [16] gave
a nice strategy for new applications by replacing the conceptual one by some computational one.

For our application, we develop another instantiation for the above conceptual step, subspace
insulation for basis D∗

1. The basis D∗
1 := B∗W1 is generated in re-encryption key generation. In

Figure 2, a high-level description of game changes between Games 1-3-(ℓ− 1) and 1-3-ℓ for AH-OC
is given, in particular, (a part of) a normal form reply k∗ rk (and k∗ rk

ran ) for the ℓ-th re-enc key query
(v⃗, x⃗′) is changed to a semi-functional one in two different ways depending on srk,ℓ = 0 or 1 (Precisely,

the simulator first guesses the value of srk,ℓ by using τrk
U← {0, 1} and follows the guess. See Proof

Outline of Lemma 5 near Figure 3 for the details.). Importantly, the obtained semi-functional forms
must be the same to proceed the game transformation in turn since we cannot ramify the challenger’s
simulation depending on all (polynomial number of) values of srk,ℓ for ℓ = 1, . . . , ν2.

By definition of the AH-OC security game (Definition 5), the ℓ-th re-enc key query (v⃗, x⃗′) satisfies
that

for any decryption key query v⃗′, challenge messages (m(0),m(1)) and attributes (x⃗(0), x⃗(1)),

it holds that m(0) •R(v⃗, x⃗(0)) •R(v⃗′, x⃗′) = m(1) •R(v⃗, x⃗(1)) •R(v⃗′, x⃗′).

When srk,ℓ = 0, it holds that R(v⃗′, x⃗′) = 0 for any decryption key query v⃗′. When srk,ℓ = 1, it holds
thatm(0)•R(v⃗, x⃗(0)) = m(1)•R(v⃗, x⃗(1)) for challenge (m(0),m(1)) and (x⃗(0), x⃗(1)). The latter condition
is the same as the previous fully-attribute-hiding security condition for IPE schemes, hence, we can
execute the proof in a similar manner to that in [29] based on a pairwise independence argument.

In the former case, since R(v⃗′, x⃗′) = 0 for any decryption key query v⃗′, the adversary cannot
decrypt ctrkx⃗′ , i.e., cannot obtain W1. Therefore, the adversary has no information on the subspace
basis (d∗

0, . . . ,d
∗
n,d

∗
n+3, . . . ,d

∗
2n+2). We call this information-theoretical insulation of a subspace for

basis D∗
1, and using this information gap for the adversary, we conceptually change a normal form
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k∗ rk to a semi-functional one. For the details of the technique, refer to Figures 4 and 6, and their
explanations (“Overview of Sub-Games”) in Appendix D.3.

D.2 Preliminary Lemmas: Lemmas 3–6

Definition 16 (Problem 1). Problem 1 is to guess β, given (param,B, B̂∗, eβ,1, {ei}i=2,...,n)
R←

GP1β (1λ, n), where

GP1β (1λ, n) : (paramn,B,B∗)
R← Gob(1λ, 4n+ 4),

B̂∗ := (b∗0, .., b
∗
n+2, b

∗
2n+3, .., b

∗
4n+3), ω, γ

U← Fq, z⃗
U← Fnq , e⃗1 := (1, 0n−1) ∈ Fnq ,

n+3︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷ 1︷︸︸︷
e0,1 := ( 0, ωe⃗1, 02, 02n, 0n, γ )B,

e1,1 := ( 0, ωe⃗1, 02, z⃗, 0n, 0n, γ )B,

ei := ωbi for i = 2, . . . , n,

return (paramn,B, B̂∗, eβ,1, {ei}i=2,...,n),

for β
U← {0, 1}. For a probabilistic machine B, we define the advantage of B as the quantity AdvP1B (λ) :=∣∣∣Pr[B(1λ, ϱ)→1

∣∣∣ϱ R←GP10 (1λ,n)
]
−Pr

[
B(1λ, ϱ)→1

∣∣∣ϱ R←GP11 (1λ,n)
]∣∣∣ .

Lemma 3. For any adversary B, there exist probabilistic machines E, whose running times are
essentially the same as that of B, such that for any security parameter λ, AdvP1B (λ) ≤ AdvDLIN

E (λ) +
5/q.

The proof of Lemma 3 is given in a similar manner to the security proof of Problem 1 in [27] to
DLIN. ⊓⊔

Definition 17 (Problem 2). Problem 2 is to guess β, given (paramn, B̂,B∗, {h∗
β,i,ei}i=1,...,n)

R←
GP2β (1λ, n), where

GP2β (1λ, n) : (paramn,B,B∗)
R← Gob(1λ, 4n+ 4),

B̂ := (b0, .., bn+2, b2n+3, .., b4n+3), δ, ω, τ, σ
U← Fq,

for i = 1, . . . , n, e⃗i := (0i−1, 1, 0n−i) ∈ Fnq , η⃗i
U← Fnq ,

n+3︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷ 1︷︸︸︷
h∗
0,i := ( 0, δe⃗i, 02, 02n, η⃗i, 0 )B∗

h∗
1,i := ( 0, δe⃗i, 02, τ e⃗i, 0n, η⃗i, 0 )B∗

ei := ( 0, ωe⃗i, 02, σe⃗i, 0n, 0n, 0 )B,

return (paramn, B̂,B∗, {h∗
β,i, ei}i=1,..,n),

for β
U← {0, 1}. For a probabilistic adversary B, the advantage of B for Problem 2, AdvP2B (λ), is

similarly defined as in Definition 16.

Lemma 4. For any adversary B, there exists a probabilistic machine E, whose running time is
essentially the same as that of B, such that for any security parameter λ, AdvP2B (λ) ≤ AdvDLIN

E (λ) +
5/q.
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The proof of Lemma 4 is given in a similar manner to the security proof of Problem 2 in [27] to
DLIN. ⊓⊔

Definition 18 (Problem 3). Problem 3 is to guess β, given (paramn, B̂,B∗, {h∗
β,i, ei}i=1,2)

R←
GP3β (1λ, n), where

GP3β (1λ, n) : (paramn,B,B∗)
R← Gob(1λ, 4n+ 4),

B̂ := (b0, .., bn+2, b2n+3, .., b4n+3), δ, ω, τ, σ
U← Fq, Z

U← GL(n,Fq), U := (Z−1)T,

for i = 1, 2, e⃗1 := (1, 0), e⃗2 := (0, 1) ∈ F 2
q , η⃗i

U← Fnq ,
n+3︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷ 1︷︸︸︷

h∗
0,i := ( 0n+1, δe⃗i, 02n, η⃗i, 0 )B∗

h∗
1,i := ( 0n+1, δe⃗i, (τ e⃗i, 0

n−2)U, 0n, η⃗i, 0 )B∗

ei := ( 0n+1, ωe⃗i, (σe⃗i, 0
n−2)Z, 0n, 0n, 0 )B,

return (paramn, B̂,B∗, {h∗
β,i, ei}i=1,2),

for β
U← {0, 1}. For a probabilistic adversary B, the advantage of B for Problem 3, AdvP3B (λ), is

similarly defined as in Definition 16.

Lemma 5. For any adversary B, there exists a probabilistic machine E, whose running time is
essentially the same as that of B, such that for any security parameter λ, AdvP3B (λ) ≤ AdvDLIN

E (λ) +
5/q.

The proof of Lemma 5 is given in a similar manner to the security proof of Problem 2 in [27] to
DLIN. ⊓⊔

Definition 19 (Problem 4). Problem 4 is to guess β, given (paramn, B̂,B∗, {h∗
β,i, ei,fi}i=1,...,n)

R←
GP4β (1λ, n), where

GP4β (1λ, n) : (paramn,B,B∗)
R← Gob(1λ, 4n+ 4),

B̂ := (b0, .., bn+2, b3n+3, .., b4n+3), B̂∗ := (b0, .., bn+2, b2n+3, .., b4n+3), τ, ω′, ω′′, κ′, κ′′
U← Fq,

for i = 1, . . . , n, e⃗i := (0i−1, 1, 0n−i) ∈ Fnq , η⃗i
U← Fnq ,

n+3︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷ 1︷︸︸︷
h∗
0,i := ( 0n+3, τ e⃗i, 0n, η⃗i, 0 )B∗

h∗
1,i := ( 0n+3, 0n, τ e⃗i, η⃗i, 0 )B∗

ei := ( 0n+3, ω′e⃗i, ω
′′e⃗i, 0n, 0 )B,

fi := ( 0n+3, κ′e⃗i, κ
′′e⃗i, 0n, 0 )B,

return (paramn, B̂, B̂∗, {h∗
β,i,ei,fi}i=1,..,n),

for β
U← {0, 1}. For a probabilistic adversary B, the advantage of B for Problem 4, AdvP4B (λ), is

similarly defined as in Definition 16.

Lemma 6. For any adversary B, there exists a probabilistic machine E, whose running time is
essentially the same as that of B, such that for any security parameter λ, AdvP4B (λ) ≤ AdvDLIN

E (λ) +
8/q.

The proof of Lemma 6 is given in a similar manner to the security proof of Problem 3 in [29] to
DLIN. ⊓⊔
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D.3 Proof of Theorem 2 (AH-OC: Attribute-Hiding for Original Ciphertexts)

The variables sm, srk,ℓ, srenc,t in Definition 5 are used for defining cases in the proof of Theorem 2. For
that purpose, the following claims are important, which are deduced from the restriction described
in Challenge phase.

– When sm = 0, it holds that R(v, x(0)) = R(v, x(1)) = 0 for any decryption key query v.
– When sm = 1, it holds that R(v, x(0)) = R(v, x(1)) for any decryption key query v.
– When srk,ℓ = 0, it holds that R(v, x′ℓ) = 0 for any decryption key query v and the ℓ-th re-

encryption key query (vℓ, x
′
ℓ).

– When sm = 0 and srk,ℓ = 1, it holds that R(vℓ, x
(0)) = R(vℓ, x

(1)) = 0 for the ℓ-th re-encryption
key query (vℓ, x

′
ℓ).

– When sm = 1 and srk,ℓ = 1, it holds that R(vℓ, x
(0)) = R(vℓ, x

(1)) for the ℓ-th re-encryption key
query (vℓ, x

′
ℓ).

– When srenc,t = 0, it holds that R(v, x′t) = 0 for any decryption key query v and the t-th re-
encryption query (vt, x

′
t, octt).

– When sm = 0 and srenc,t = 1, it holds that R(vt, x
(0)) = R(vt, x

(1)) = 0 for the t-th re-encryption
query (vt, x

′
t, octt).

– When sm = 1 and srenc,t = 1, it holds that R(vt, x
(0)) = R(vt, x

(1)) for the t-th re-encryption
query (vt, x

′
t, octt).

Theorem 2 The proposed IP-PRE scheme is attribute-hiding for original ciphertexts against chosen
plaintext attacks under the DLIN assumption provided the underlying signature scheme is a strongly
unforgeable one-time signature scheme and the underlying IPE scheme is fully attribute-hiding.

For any adversary A, there exist probabilistic machines E’s, whose running times are essentially
the same as that of A, such that for any security parameter λ, the advantage AdvAH-OC

A (λ) is upper-
bounded by the sum of the right hand side of Eq. (4), that of Eq. (5), and that of Eq. (27). The sum
is given by the total of

– one advantage of the strong unforgeability against the underlying one-time signatures,
– 8(ν2 + ν3) advantages of the attribute-hiding security against the underlying IPE scheme, and
– 12(ν1 + ν2) + 11ν3 + 7 advantages of DLIN

for E algorithms, which are E machines with parameters (ι, h, ℓ, t, j, l) as described in Lemmas 7,
8, and 17. Here, ν1, ν2, ν3 are the maximum number of A’s decryption key queries, that of A’s
re-encryption key queries, and that of A’s re-encryption queries, respectively.

Proof. For each run of the security game, we define variable sverk as: sverk := 0 if there exists
a re-encryption query (v⃗, x⃗′, oct := (C, verk, S)) such that Ver(verk, C, S) = 1, oct ̸= oct(b) and
verk = verk♣ where oct(b) := (C♣, verk♣, S♣) (then (C, S) ̸= (C♣, S♣)) is the challenge original
ciphertext, and sverk := 1 otherwise.

First, we execute a preliminary game transformation from Game 0 (original game in Definition 5)

to Game 0′, which is the same as Game 0 except that flip a coin τverk
U← {0, 1} before setup, and

the game is aborted at the final step if sverk ̸= τverk. We define that A wins with probability 1/2
when the game is aborted and the advantage in Game 0′ is Pr[A wins] − 1/2 as well. Since τverk is
independent from sverk, the probability that the game is aborted is 1/2. So, the advantage in Game

0′ is a half of that in Game 0, that is Adv
(0′)
A (λ) = 1/2 · Adv(0)A (λ) = 1/2 · AdvAH-OC

A (λ). Moreover,
Pr[A wins] = 1/2(Pr[A wins|τverk = 0] + Pr[A wins|τverk = 1]) in Game 0′. Namely,

AdvAH-OC
A (λ) = Adv

(0)
A (λ) = 2 · Adv(0

′)
A (λ)

= (Pr[A wins in Game 0′ | τverk = 0]− 1/2) + (Pr[A wins in Game 0′ | τverk = 1]− 1/2). (2)



25

Then, we execute a second preliminary game transformation from Game 0′ to Game 0′′, which

is the same as Game 0′ except that flip a coin τm
U← {0, 1} before setup, and the game is aborted

in challenge phase if sm ̸= τm. As before, we define that A wins with probability 1/2 when the
game is aborted and the advantage in Game 0′′ is Pr[A wins] − 1/2 as well. Since τm is inde-
pendent from sm, the probability that the game is aborted is 1/2. So, the advantage in Game
0′′ when τverk = 1 is a halt of that in Game 0′, that is Pr[A wins in Game 0′′ | τverk = 1]) − 1/2 =
1/2(Pr[A wins in Game 0′ | τverk = 1])−1/2). Moreover, Pr[A wins|τverk = 1] = 1/2(Pr[A wins|τverk =
1 ∧ τm = 0] + Pr[A wins|τverk = 1 ∧ τm = 1]) in Game 0′′. Combining Eq. (2), in Game 0′′,

AdvAH-OC
A (λ) = (Pr[A wins in Game 0′ | τverk = 0]− 1/2)

+(Pr[A wins in Game 0′′ | τverk = 1 ∧ τm = 0]− 1/2)

+(Pr[A wins in Game 0′′ | τverk = 1 ∧ τm = 1]− 1/2). (3)

The advantage in the case τverk = 0 i.e., Pr[A wins in Game 0′ | τverk = 0]−1/2 is upper-bounded
by the advantage of some machine against strong unforgeability of the underlying one-time signature
scheme in Lemma 7, and the advantages in the case τverk = 1, i.e., Pr[A wins in Game 0′′ | τverk =
1 ∧ τm = 0] − 1/2 and Pr[A wins in Game 0′′ | τverk = 1 ∧ τm = 1] − 1/2 are upper-bounded by
those of DLIN in Lemmas 8 and 17, respectively.

This completes the proof of Theorem 2. ⊓⊔

Corollary 1-1. The proposed IP-PRE scheme is attribute-hiding for original ciphertexts against
chosen plaintext attacks under the DLIN assumption provided the underlying signature scheme is a
strongly unforgeable one-time signature scheme and the underlying IPE scheme is given by the OT12
IPE scheme.

Proof of Theorem 2 (AH-OC) in the Case τverk = 0

Lemma 7. The proposed IP-PRE scheme is attribute-hiding for original ciphertexts against cho-
sen plaintext attacks in the case τverk = 0 provided an underlying signature scheme is a strongly
unforgeable one-time signature scheme.

For any adversary A, there exist probabilistic machines E, whose running time is essentially the
same as that of A, such that for any security parameter λ in Case 0

Pr[A wins in Game 0′ | τverk = 0]− 1/2 ≤ AdvOS,SUF
E (λ). (4)

Proof. In order to prove Lemma 7, we construct a probabilistic machine E against the strong un-
forgeability of the underlying one-time signature using an adversary A in a security game (Game 0′)
as a black box as follows:

1. E is given a verification key instance from the challenger of the strong unforgeability, verk♣.
2. E plays a role of the challenger in the security game against A.
3. At the first step of the game, E generates a pair of public and secret key of the IP-PRE scheme,

(pk, sk). E provides A with a public key pk.

4. When a decryption key query is issued for a vector v⃗, E computes a normal key skv⃗
R← KG(pk, sk, v⃗)

and provides A with it. Similarly, when a re-encryption key query is issued for (v⃗, x⃗′), E computes

a normal re-encryption key rkv⃗,x⃗′
R← RKG(pk,KG(pk, sk, v⃗), x⃗′) and provides A with it.

5. When a re-encryption query is issued for (v⃗, x⃗′, oct := (C, verk, S)), if Ver(verk, C, S) ̸= 1, E
returns ⊥ to A. Otherwise, E computes a normal form of re-encrypted ciphertext rctx⃗′

R←
REnc(pk,RKG(pk,KG(pk, sk, v⃗), x⃗′), oct) and provides A with it.
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6. When a challenge query is issued for (x⃗(0), x⃗(1),m(0),m(1)), E picks a bit b
U← {0, 1} and ζ, ω, ωran,

ρ, ρran, φ, φran
U← Fq and computes using verk♣,

c := ( ζ, ωx⃗(b), ρ(verk♣, 1), 03n, φ )B, cran := ( 0, ωranx⃗
(b), ρran(verk

♣, 1), 03n, φran )B,

cT := m(b) · gζT , and

E asks the challenger of the strong unforgeability with a signature query for message C♣ :=
(c, cran, cT ) and obtain the signature S from the challenger. E sets a challenge ciphertext oct(b) :=
(C♣, verk♣, S♣) to A.

7. For a decryption key, re-encryption key, and re-encryption queries after the challenge, E responds
to A as in the same manner as in steps 4 and 5.

8. A finally outputs bit b′.
If there is a re-encryption query (v⃗, x⃗′, oct := (C, verk, S)) with verk = verk♣, (C, S) ̸= (C♣, S♣)
and Ver(verk, C, S), E outputs a forgery (C, S). Otherwise, E aborts the game.

If there is a re-encryption query (v⃗, x⃗′, oct := (C, verk, S)) with verk = verk♣, (C,S) ̸= (C♣, S♣)
and Ver(verk, C, S), then sverk = 0. Since if sverk ̸= τverk(= 0), the game is aborted and A wins with
probability 1/2, i.e., Pr[A wins in Game 0′ | τverk = 0 ∧ sverk ̸= τverk] = 1/2,

Pr[A wins in Game 0′ | τverk = 0]− 1/2

= Pr[A wins in Game 0′ | τverk = 0 ∧ sverk = τverk] Pr[sverk = τverk|τverk = 0]

+Pr[A wins in Game 0′ | τverk = 0 ∧ sverk ̸= τverk] Pr[sverk ̸= τverk|τverk = 0]− 1/2

= Pr[A wins in Game 0′ | τverk = 0 ∧ sverk = τverk] Pr[sverk = τverk|τverk = 0]

+1/2(1− Pr[sverk = τverk|τverk = 0])− 1/2

=
(
Pr[A wins in Game 0′ | τverk = 0 ∧ sverk = τverk]− 1/2

)
Pr[sverk = τverk|τverk = 0]

≤ Pr[sverk = τverk|τverk = 0] = AdvOS,SUF
E (λ).

This completes the proof of Lemma 7. 2

Proof of Theorem 2 (AH-OC) in the Case τverk = 1 ∧ τm = 0

In Lemmas 8–16 and their proofs, we consider only the case τverk = 1 ∧ τm = 0.

Lemma 8. The proposed IP-PRE scheme is attribute-hiding for original ciphertexts against chosen
plaintext attacks in the case τverk = 1 ∧ τm = 0 under the DLIN assumption provided an underlying
IPE scheme is attribute-hiding.

For any adversary A, there exist probabilistic machines Eι-1, Eι-2-j , Eι-3-A-j , Eι-3-B-j , Eι-4-A-j , Eι-4-B-j ,
E1-6 for ι = 1, 2, j = 1, 2, whose running times are essentially the same as that of A, such that for
any security parameter λ,

Pr[A wins|τverk = 1 ∧ τm = 0]− 1/2

≤
2∑
ι=1

(
AdvDLIN

Eι-1 (λ) +
∑ν1

h=1

∑2
j=1Adv

DLIN
Eι-2-h-j (λ) +

∑ν2
ℓ=1

∑2
j=1

(
AdvIPE,AHEι-3-ℓ-A-j (λ) + AdvDLIN

Eι-3-ℓ-B-j (λ)
)

+
∑ν3

t=1

∑2
j=1

(
AdvIPE,AHEι-4-t-A-j (λ) + AdvDLIN

Eι-4-t-B-j (λ)
))

+ AdvDLIN
E1-6 (λ) + ϵ (5)

where Eι-2-h-j(·) := Eι-2-j(h, ·), Eι-3-ℓ-A-j(·) := Eι-3-A-j(ℓ, ·), Eι-3-ℓ-B-j(·) := Eι-3-B-j(ℓ, ·), Eι-4-t-A-j(·) :=
Eι-4-A-j(t, ·), Eι-4-t-B-j(·) := Eι-4-B-j(t, ·) for h = 1, . . . , ν1, ℓ = 1, . . . , ν2 and t = 1, . . . , ν3, ϵ =
(14ν1 + 17ν2 + 17ν3 + 15)/q and ν1, ν2, ν3 are the maximum numbers of A’s decryption key queries,
that of A’s re-encryption key queries, and that of A’s re-encryption queries, respectively.
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Fig. 3. Game Transformations for AH-OC Security in the Case τverk = 1 ∧ τm = 0.

Proof Outline of Lemma 8. To prove Lemma 8, we consider τverk = 1 ∧ τm = 0 case.
Overview of Game Transformation. We employ Game 0′′ through Game 2-5. In this proof, there are
main two sequences, the Game 1 sequence and the Game 2 sequence (Figure 3), whose aims are to
change components c and cran of the challenge ciphertext to independent ones from challenge bit b
(random form), respectively.

We employ Game 0′′ through Game 1-7 in the Game 1 sequence. In Game 0′′, all the replies to A’s
queries are in normal forms (Eqs.(6)–(10)). In Game 1-1, c of the challenge ciphertext is changed to
semi-functional form in Eq.(11). Let ν1, ν2, ν3 be the maximum numbers ofA’s decryption key queries,
that of A’s re-encryption key queries, and that of A’s re-encryption queries, respectively. There are
ν1 game changes from Game 1-1 (Game 1-2-0) through Game 1-2-ν1. In Game 1-2-h (h = 1, . . . , ν1),
the reply to the h-th decryption key query is changed to semi-functional form (Eq.(12)). There are ν2
game changes from Game 1-2-ν1 (Game 1-3-0) through Game 1-3-ν2. In Game 1-3-ℓ (ℓ = 1, . . . , ν2),
the reply to the ℓ-th re-encryption key query is changed to semi-functional form (Eq.(13)). There are
ν3 game changes from Game 1-3-ν2 (Game 1-4-0) through Game 1-4-ν3. In Game 1-4-t (t = 1, . . . , ν3),
the reply to the t-th re-encrypted ciphertext query is changed to semi-functional form (Eq.(14)). In
Game 1-5, c of the challenge ciphertext is changed to random form in Eq.(15).

Then, in Game 1-6, replies to all the decryption key, re-encryption key and re-encrypted ciphertext
queries are changed to a form, which is normal except for component c of the challenge, and the
game is a preparation for the Game 2 sequence. In the Game 2 sequence, cran is changed to random
form in Eq.(16) by proceeding similar to game transformations in the Game 1 sequence. In the final
Game 2-5, the advantage of the adversary is zero.

As Figure 3 shows, the advantage gap between Game 0 and Game 1-1 is bounded by the advantage
of Problem 1. The advantage gaps between Games 1-2-(h−1) and 1-2-h (resp. 2-2-(h−1) and 2-2-h)
are bounded by the advantage of Problem 2. The advantage gaps between Games 1-3-(ℓ−1) and 1-3-ℓ
(resp.Games 2-3-(ℓ− 1) and 2-3-ℓ) are bounded by the advantages of Problem 2 and the attribute-
hiding security of the underlying IPE scheme. The advantage gaps between Games 1-4-(t − 1) and
Game 1-4-t (resp.Games 2-4-(t − 1) and 2-4-t) are bounded by the advantages of Problems 2, 3
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Fig. 4. Sub-Games between Games 1-3-(ℓ− 1) and 1-3-ℓ, and Games 1-4-(t− 1) and 1-4-t

and attribute-hiding security of the underlying IPE scheme. Since the advantages of Problems 1,
2 and 3 are bounded by that of DLIN, the advantage of A is bounded by those of DLIN and the
attribute-hiding security of the underlying IPE.

Overview of Sub-Games. We employ Sub-Games between Games 1-3-(ℓ− 1) and 1-3-ℓ, and Games
1-4-(t− 1) and 1-4-t as described in Figure 4.

First, Game 1-3-(ℓ − 1) is changed to Game 1-3-(ℓ − 1)′ which is the same as Game 1-3-(ℓ − 1)

except that flip a coin τrk
U← {0, 1} before setup, and the game is aborted if τrk ̸= srk,ℓ when the

variable srk,ℓ is determined at the challenge step or the ℓ-th re-encryption key query step (Definition

4). Since τrk
U← {0, 1}, the advantage of A in Game 1-3-(ℓ− 1)′ is a half of that in Game 1-3-(ℓ− 1).

When τrk = 0, we employ three intermediate sub-games, Sub-Games 1-3-ℓ-A-j (j = 1, 2, 3). In
Game 1-3-ℓ-A-1, ctrkx⃗′ in the reply to the ℓ-th re-encryption key query is changed to EncIPE(pk

IPE, x⃗′, R)
where R is a random matrix in FN×N

q . In Game 1-3-ℓ-A-2, k∗rk and k∗rk
ran of the reply are changed to

semi-functional forms in Eq.(13). In Game 1-3-ℓ-A-3, ctrkx⃗′ returns back to normal ctrkx⃗′ := EncIPE(pk
IPE,

x⃗′,W1). When τrk = 1, in Game 1-3-ℓ-B, k∗rk and k∗rk
ran of the reply to the ℓ-th re-encryption key

query are (directly) changed to semi-functional forms in Eq.(13).

Both final games, Game 1-3-ℓ-A-3 (when τrk = 0) and Game 1-3-ℓ-B (when τrk = 1) are equivalent

to Game 1-3-ℓ′′ which is the same as Game 1-3-ℓ except that flip a coin τrk
U← {0, 1} before setup,
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and the game is aborted if τrk ̸= srk,ℓ when the variable srk,ℓ is determined at the challenge step or
the ℓ-th re-encryption key query step (Definition 4). Similarly to Game 1-3-(ℓ − 1)′, the advantage
of A in Game 1-3-ℓ′′ is a half of that in Game 1-3-ℓ.

As Figure 4 shows, when τrk = 0, the advantage gap between Games 1-3-(ℓ − 1)′ and 1-3-ℓ-A-1
(resp. 1-3-ℓ-A-2 and 1-3-ℓ-A-3) is bounded by the advantage of the attribute-hiding security of the
underlying IPE scheme. Game 1-3-ℓ-A-1 (resp. 1-3-ℓ-A-3) is conceptually changed to Game 1-3-ℓ-A-2
(resp. 1-3-ℓ′′). When τrk = 1, the advantage gap between Games 1-3-(ℓ− 1)′ and 1-3-ℓ-B is bounded
by the advantage of Problem 2, and Game 1-3-ℓ-B is conceptually changed to Game 1-3-ℓ′′.

For bounding the advantage gap between Games 1-4-(t−1) and 1-4-t, similar Sub-Games are used

(the lower diagram in Figure 4). The difference from the above is that a ternary coin τrenc
U← {0, 1, 2}

is used, so, the advantage of A in Game 1-4-(t − 1)′ is a third of that in Game 1-4-(t − 1). Here,
while the gap is bounded by the advantage of Problem 2 when τrenc = 1, the gap is bounded by that
of Problem 3 when τrenc = 2.

Proof of Lemma 8. Let ν1 be the maximum number of A’s decryption key queries, ν2 be the
maximum number of A’s re-encryption key queries and ν3 be the maximum number of A’s re-
encryption queries. To prove Lemma 8, we consider the following 2(ν1+ ν2+ ν3)+6 games. In Game
0′, a part framed by a box indicates coefficients to be changed in a subsequent game. In the other
games, a part framed by a box indicates coefficients which were changed in a game from the previous
game.

Game 0′′: We only describe the components which are changed in the other games.

– k∗ and k∗
ran of the reply to a decryption key query for v⃗ is:

k∗ := ( 1, δv⃗, 02, 0n , 0n , η⃗, 0 )B∗ , k∗
ran := ( 0, δranv⃗, 0

2, 0n , 0n , η⃗, 0 )B∗ , (6)

where δ, δran
U← Fq, η⃗, η⃗ran

U← Fnq .
– k∗rk, k∗rk

ran and ctrkx⃗′ of the reply to a re-encryption key query for (v⃗, x⃗′) is:

k∗rk := ( 1, δrkv⃗, 02, 0n , 0n , η⃗ rk, 0 )D∗
1
, k∗rk

ran := ( 0, δrkranv⃗, 0
2, 0n , 0n , η⃗ rk

ran, 0 )D∗
1
, (7)

where δrk, δrkran
U← Fq, η⃗ rk, η⃗ rk

ran
U← Fnq , W1

U← GL(4n+ 4,Fq) and D∗
1 := B∗W1.

– k∗renc and ctrencx⃗′ of the reply to a re-encryption query for (v⃗, x⃗′, octx⃗ = (C := (c, cran, cT ), S, verk))
is ⊥ if Ver(verk, C, S) ̸= 1. Otherwise, the reply is:

k∗renc := ( 1, δrencv⃗, σ(−1, verk), 0n , 0n , η⃗ renc, 0 )D∗
1
, (8)

where δrenc, σ
U← Fq, η⃗ renc U← Fnq , W1

U← GL(4n+ 4,Fq) and D∗
1 := B∗W1.

– The reply to a challenge query for (x⃗(0), x⃗(1),m(0),m(1)), oct(b) := (C, verk♣, S), is given as:

c := ( ζ , ωx⃗(b) , ρ(verk♣, 1), 0n , 0n , 0n, φ )B, (9)

cran := ( 0, ωranx⃗
(b) , ρran(verk

♣, 1), 0n , 0n, 0n, φran )B, (10)

cT := gζT , C := (c, cran, cT ), S
R← Sig(sigk♣, C, cT )) where b

U← {0, 1}, ζ, ω, ωran, ρ, ρran, φ, φran
U← Fq and (sigk♣, verk♣)

R← SigKG(1λ).
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Game 1-1: Game 1-1 is the same as Game 0′′ except that the reply to the challenge query for
(x⃗(0), x⃗(1),m(0),m(1)) is

c := ( ζ, ωx⃗(b), ρ(verk♣, 1), u⃗ , 0n, 0n, φ )B, (11)

where u⃗
U← Fnq and all the other variables are generated as in Game 0′′.

Game 1-2-h (h = 1, . . . , ν1): Game 1-2-0 is Game 1-1. Game 1-2-h is the same as Game 1-2-(h−1)
except that the reply to the h-th decryption key query for v⃗ is

k∗ := ( 1, δv⃗, 02, r⃗ , 0n, η⃗, 0 )B∗ , k∗
ran := ( 0, δranv⃗, 0

2, r⃗ran , 0
n, η⃗ran, 0 )B∗ , (12)

where r⃗, r⃗ran
U← Fnq and all the other variables are generated as in Game 1-2-(h− 1).

Game 1-3-ℓ (ℓ = 1, . . . , ν2): Game 1-3-0 is Game 1-2-ν1. Game 1-3-ℓ is the same as Game 1-3-
(ℓ− 1) except that the reply to the ℓ-th re-encryption key query for (v⃗, x⃗) is as follow:

k∗rk := ( 1, δrkv⃗, 02, r⃗ ′ , 0n, η⃗ rk, 0 )D∗
1
, k∗rk

ran := ( 0, δrkranv⃗, 0
2, r⃗ ′

ran , 0
n, η⃗ rk

ran, 0 )D∗
1
, (13)

where r⃗ ′, r⃗ ′
ran

U← Fnq and all the other variables are generated as in Game 1-3-(ℓ− 1).

Game 1-4-t (t = 1, . . . , ν3): Game 1-4-0 is Game 1-3-ν2. Game 1-4-t is the same as Game 1-4-(t−
1) except that the reply to the t-th re-encryption query for (v⃗, x⃗′, octx⃗ = (C := (c, cran, cT ), verk, S))
is, if Ver(verk, C, S) = 1,

k∗renc := ( 1, δrencv⃗, σ(−1, verk), r⃗ ′′ , 0n, η⃗ renc, 0 )D∗
1
, (14)

where r⃗ ′′ U← Fnq and all the other variables are generated as in Game 1-4-(t− 1).

Game 1-5: Game 1-5 is the same as Game 1-4-ν3 except that the reply to the challenge query for
(x⃗(0), x⃗(1),m(0),m(1)) is:

c := ( ζ ′ , u⃗′ , ρ(verk♣, 1), u⃗, u⃗′′ , 0n, φ )B, (15)

where ζ ′
U← Fq, u⃗′, u⃗′′

U← Fnq and all the other variables are generated as in Game 1-4-ν3.

Game 1-6: Game 1-6 is the same as Game 1-5 except that the reply to every decryption key query
for v⃗ is

k∗ := ( 1, δv⃗, 02, 0n, π⃗ , η⃗, 0 )B∗ , k∗
ran := ( 0, δranv⃗, 0

2, 0n, π⃗ran , η⃗ran, 0 )B∗ ,

where π⃗, π⃗ran
U← Fnq and the reply to every re-encryption key query for (v⃗, x⃗) is

k∗rk := ( 1, δrkv⃗, 02, 0n, π⃗ ′ , η⃗ rk, 0 )D∗
1
, k∗rk

ran := ( 0, δrkranv⃗, 0
2, 0n, π⃗ ′

ran , η⃗
rk

ran, 0 )D∗
1
,

where π⃗ ′, π⃗ ′
ran

U← Fnq and the reply to every re-encryption query for (x⃗′, octx⃗ = (C := (c, cran, cT ),
S, verk)) is, if Ver(verk, C, S) = 1,

k∗renc := ( 1, δrencv⃗, σ(−1, verk), 0n, π⃗ ′′ , η⃗ renc, 0 )D∗
1
,

where π⃗ ′′ U← Fnq and all the other variables are generated as in Game 1-5.
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Game 2-1: Game 2-1 is the same as before Game 1-6 except that the reply to the challenge query
for (x⃗(0), x⃗(1),m(0),m(1)) is

cran := ( 0, ωranx⃗
(b), ρran(verk

♣, 1), u⃗ran , 0
n, 0n, φ )B,

where u⃗ran
U← Fnq and all the other variables are generated as in Game 1-6.

Game 2-2-h (h = 1, . . . , ν1): Game 2-2-0 is Game 2-1. Game 2-2-h is the same as Game 2-2-(h−1)
except that the reply to the h-th decryption key query for v⃗, (k∗,k∗

ran), is

k∗ := ( 1, δv⃗, 02, r⃗ , π⃗, η⃗, 0 )B∗ , k∗
ran := ( 0, δranv⃗, 0

2, r⃗ran , π⃗ran, η⃗ran, 0 )B∗ ,

where r⃗, r⃗ran
U← Fnq and all the other variables are generated as in Game 2-2-(h− 1).

Game 2-3-ℓ (ℓ = 1, . . . , ν2): Game 2-3-0 is Game 2-2-ν1. Game 2-3-ℓ is the same as Game 2-3-
(ℓ− 1) except that the reply to the ℓ-th re-encryption key query for (v⃗, x⃗), (k∗rk,k∗rk

ran), is

k∗rk := ( 1, δrkv⃗, 02, r⃗ ′ , π⃗ ′, η⃗ rk, 0 )D∗
1
, k∗rk

ran := ( 0, δrkranv⃗, 0
2, r⃗ ′

ran , π⃗
′

ran, η⃗
rk

ran, 0 )D∗
1
,

where r⃗′, r⃗′ran
U← Fnq and all the other variables are generated as in Game 2-3-(ℓ− 1).

Game 2-4-t (t = 1, . . . , ν3): Game 2-4-0 is Game 2-3-ν2. Game 2-4-t is the same as Game 2-4-(t−
1) except that the reply to the t-th re-encryption query for (v⃗, x⃗′, octx⃗ = (C := (c, cran, cT ), verk, S)),
k∗renc, is, if Ver(verk, C, S) = 1,

k∗renc := ( 1, δrencv⃗, σ(−1, verk), r⃗ ′′ , π⃗ ′′, η⃗ renc, 0 )D∗
1
,

where r⃗ ′′ U← Fnq and all the other variables are generated as in Game 2-4-(t− 1).
Game 2-5: Game 2-5 is the same as Game 2-4-ν3 except that the reply to the challenge query for

(x⃗(0), x⃗(1),m(0),m(1)) is:

cran := ( 0, u⃗′ , ρ(verk♣, 1), u⃗, 0n, 0n, φ )B, (16)

where u⃗′
U← Fnq and all the other variables are generated as in Game 2-4-ν3.

Let Adv
(0′′)
A (λ), Adv

(ι-1)
A (λ), Adv

(ι-2-h)
A (λ), Adv

(ι-3-ℓ)
A (λ), Adv

(ι-4-t)
A (λ), and Adv

(ι-5)
A (λ), be the ad-

vantages of A in Game 0′′, ι-1, ι-2-h, ι-3-ℓ, ι-4-t and ι-5 for ι = 1, 2, respectively. We will show
eight lemmas (Lemma 9-16) that evaluate the gaps between pairs of neghoboring games. From these
lemmas and Lemmas 3-5, we obtain

Adv
(0′)
A (λ) ≤

∣∣∣Adv(0′)A (λ)− Adv
(1-1)
A (λ)

∣∣∣
+

2∑
ι=1

(∑ν1
h=1

∣∣∣Adv(ι-2-(h−1))
A (λ)− Adv

(ι-2-h)
A (λ)

∣∣∣+∑ν2
ℓ=1

∣∣∣Adv(ι-3-(ℓ−1))
A (λ)− Adv

(ι-3-ℓ)
A (λ)

∣∣∣
+
∑ν3

t=1

∣∣∣Adv(ι-4-(t−1))
A (λ)− Adv

(ι-4-t)
A (λ)

∣∣∣+ ∣∣∣Adv(ι-4-ν3)A (λ)− Adv
(ι-5)
A (λ)

∣∣∣)
+
∣∣∣Adv(1-5)A (λ)− Adv

(1-6)
A (λ)

∣∣∣+ Adv
(2-5)
A (λ).

≤
2∑
ι=1

(
AdvDLIN

Eι-1 (λ) +
∑ν1

h=1

∑2
j=1Adv

DLIN
Eι-2-h-j (λ) +

∑ν2
ℓ=1

∑2
j=1

(
AdvIPE,AHEι-3-ℓ-A-j (λ) + AdvDLIN

Eι-3-ℓ-B-j (λ)
)

+
∑ν3

t=1

∑2
j=1

(
AdvIPE,AHEι-4-t-A-j (λ) + AdvDLIN

Eι-4-t-B-j (λ)
))

+ AdvDLIN
E1-6 (λ) + ϵ,

where ϵ := (14ν1 + 17ν2 + 17ν3 + 15)/q. This completes the proof of Lemma 8. 2
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Lemma 9. For any adversary A, there exists a probabilistic machine B1-1, whose running time is

essentially the same as that of A, such that for any security parameter λ, |Adv(0
′′)

A (λ)−Adv(1-1)A (λ)| ≤
AdvP1B1-1(λ).

Proof. In order to prove Lemma 9, we construct a probabilistic machine B1-1 against Problem 1
using an adversary A in a security game (Game 0′′ or Game 1-1) as a black box as follows:

1. B1-1 is given a Problem 1 instance, (paramn,B, B̂∗,eβ,1, {ei}i=2,...,n).

2. B1-1 plays a role of the challenger in the security game against A.
3. At the first step of the game, B1-1 generates a pair of public and secret key of the underlying

IPE scheme, (pkIPE, skIPE)
R← SetupIPE(1

λ, n). B1-1 sets B̂ := (b0, . . . , bn+2, b4n+3) and B̂∗ :=
(b∗n+1, b

∗
n+2, b

∗
3n+3, . . . , b

∗
4n+2) and provides A with a public key pk := (λ, paramn, B̂, B̂∗, pkIPE).

4. When a decryption key query is issued for a vector v⃗, B1-1 computes a normal form of decryption

key skv⃗ := (k∗,k∗
ran, sk

IPE
v⃗ ) using B̂∗ of the Problem 1 instance and skIPEv⃗

R← KGIPE(sk
IPE, v⃗). B1-1

provides A with a decryption key skv⃗.
5. When a re-encryption key query is issued for (v⃗, x⃗′), B1-1 computes a normal form of re-encryption

key rkv⃗,x⃗′ := (k∗rk,k∗rk
ran, ct

rk
x⃗′ , prectx⃗′ , D̂

∗
1) using B̂∗ of the Problem 1 instance and pkIPE. B1-1

provides A with the re-encryption key rkv⃗,x⃗′ .
6. When a re-encryption query is issued for (v⃗, x⃗′, oct := (C := (c, cran, cT ), verk, S)), if Ver(verk, C, S)
̸= 1, B1-1 returns ⊥ to A. Otherwise, B1-1 computes a normal form of re-encrypted ciphertext
rctx⃗′ := (k∗renc, crenc, crencT , {ctrenci,x⃗′ }i=1,2) using Problem 1 instance and pkIPE. B1-1 provides A with
the re-encrypted ciphertext rctx⃗′ .

7. When a challenge query is issued for (x⃗(0), x⃗(1),m(0),m(1)), B1-1 picks a bit b
U← {0, 1} and

ζ, ρ, ρran, ωran, φran
U← Fq and generates (sigk♣, verk♣)

R← SigKG(1λ). Next, B1-1 computes

c := ζb0 + x
(b)
1 eβ.1 +

n∑
i=2

x
(b)
i ei + ρ verk♣bn+1 + ρbn+2,

cran :=
n∑
i=1

ωranx
(b)
i bi + ρranverk

♣bn+1 + ρranbn+2 + φranb4n+3,

cT := m(b) · gζT , and S
R← Sig(sigk♣, (c, cran, cT )).

B1-1 provides A with a challenge ciphertext octx⃗(b) := (c, cran, cT , verk
♣, S).

8. A finally outputs bit b′. If b = b′, B1-1 outputs β′ := 0. Otherwise, B1-1 outputs β′ := 1.

Since the challenge ciphertext octx⃗(b) is of the form Eq.(9) (resp. of the form Eq.(11)) if β = 0 (resp.
β = 1), the view of A given by B1-1 is distributed as Game 0′′ (resp. Game 1) if β = 0 (resp. β = 1).

Then,
∣∣∣Adv(0′′)A (λ)− Adv

(1-1)
A (λ)

∣∣∣ = |Pr[B1-1(1λ, ϱ)→1|ϱ R←GP10 (1λ,n)]−Pr[B1-1(1λ, ϱ)→1|ϱ R←GP11 (1λ,n)]|
≤ AdvP1B1-1(λ). This completes the proof of Lemma 9. 2

Lemma 10. For any adversary A, there exist probabilistic machines B1-2-h-1 and B1-2-h-2, whose
running time are essentially the same as that of A, such that for any security parameter λ, |Adv(1-2-(h−1))

A (λ)−
Adv

(1-2-h)
A (λ)| ≤ AdvP2B1-2-h-1(λ)+AdvP2B1-2-h-2(λ)+4/q, where B1-2-h-1(·) := B1-2-1(h, ·) and B1-2-h-2(·) :=

B1-2-2(h, ·).

Proof. In order to prove Lemma 10, we construct probabilistic machines B1-2-1 and B1-2-2 against
Problem 2 using an adversary A in a security game (Game 1-2-(h−1) or Game 1-2-h) as a black box.
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First, we consider the intermediate game Game 1-2-h-1. Game 1-2-h-1 is the same as Game 1-2-(h−1)
except that k∗ of the reply to h-th decryption key query is of semi-functional form in Eq.(12).

Also, k∗
ran is the normal form Eq.(6). In order to prove that |Adv(1-2-(h−1))

A (λ) − Adv
(1-2-h-1)
A (λ)| ≤

AdvP2B1-2-h-1(λ) + 2/q, we construct a probabilistic machine B1-2-1 with an index h against Problem
2 using an adversary A in a security game (Game 1-2-(h − 1) or Game 1-2-h-1) as a black box as
follows:

1. B1-2-1 is given an index h and a Problem 2 instance, (paramn,B∗, B̂, {hβ,i}i=1,...,n, {ei}i=1,...,n).
2. B1-2-1 plays a role of the challenger in the security game against A.
3. At the first step of the game, B1 generates a pair of public and secret key of the underly-

ing IPE scheme, (pkIPE, skIPE)
R← SetupIPE(1

λ, n). B1 sets B̂ := (b0, . . . , bn+2, b4n+3) and B̂∗ :=
(b∗n+1, b

∗
n+2, b

∗
3n+3, . . . , b

∗
4n+2) and provides A with a public key pk := (λ, paramn, B̂, B̂∗, pkIPE).

4. When the j-th decryption key query is issued for a vector v⃗, B1-2-1 computes skIPEv⃗
R← KGIPE(sk

IPE, v⃗)
and normal form k∗

ran using B∗ of the Problem 2 instance,
– in the case of j < h, B1-2-1 computes semi-functional form k∗ in Eq.(12) using B∗ of the

Problem 2 instance.
– in the case of j = h, B1-2-1 chooses πi, ui

U← Fq for i = 1, . . . , n,

k∗ := b∗0 +

n∑
i=1

viπih
∗
β.i +

n∑
i=1

uib
∗
3n+2+i

using the Problem 2 instance where v⃗ := (v1, . . . , vn).
– in the case of j > h, B1-2-1 computes a normal form k∗ in Eq.(6) using B∗ of the Problem 2

instance.
B1-2-1 provides A with a decryption key skv⃗ := (k∗,k∗

ran, sk
IPE
v⃗ ).

5. When a re-encryption key query is issued for (v⃗, x⃗′), B1-2-1 computes a normal form of re-
encryption key rkv⃗,x⃗′ := (k∗rk,k∗rk

ran, ct
rk
x⃗′ , prectx⃗′ , D̂

∗
1) using B∗ of the Problem 2 instance and pkIPE.

B1-2-1 provides A with a re-encryption key rkv⃗,x⃗′ .
6. When a re-encryption query is issued for (v⃗, x⃗′, octx⃗ := (C := (c, cran, cT ), verk, S)), if Ver(verk, C,
S) ̸= 1, B1-2-1 returns ⊥ to A. Otherwise, B1-2-1 computes a normal form of re-encrypted cipher-
text rctx⃗′ := (k∗renc, crenc, crencT , {ctrenci,x⃗′ }i=1,2) using Problem 2 instance and pkIPE. B1-2-1 provides
A with the re-encrypted ciphertext rctx⃗′ .

7. When a challenge query is issued for (x⃗(0), x⃗(1),m(0),m(1)), B1-2-1 picks a bit b
U← {0, 1} and

ζ, ρ, ωran, ρran, φran
U← Fq and generates (sigk♣, verk♣)

R← SigKG(1λ). Next, B1-2-1 computes

c := ζb0 +

n∑
i=1

x
(b)
i ei + ρ verk♣bn+1 + ρbn+2,

cran :=

n∑
i=1

ωranx
(b)
i bi + ρran verk♣bn+1 + ρranbn+2 + φranb4n+3,

cT := m(b) · gζT , C := (c, cran, cT ), S
R← Sig(sigk♣, C).

B1-2-1 provides A with a challenge ciphertext octx(b) := (C, verk♣, S).
8. A finally outputs bit b′. If b = b′, B1-2-1 outputs β′ := 0. Otherwise, B1-2-1 outputs β′ := 1.

Since k∗ of the h-th decryption key is of the form Eq.(6) (resp. of the form Eq.(12)) if β = 0 (resp.
β = 1), the view of A given by B1-2-1 is distributed as Game 1-2-(h − 1) (resp. Game 1-2-h-1) if
β = 0 (resp. β = 1) except that δ defined in Problem 2 is zero i.e., except for probability 1/q (resp.
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1/q).

Then,
∣∣∣Adv(1-2-(h−1))

A (λ)− Adv
(1-2-h-1)
A (λ)

∣∣∣ = ∣∣∣Pr[B(1λ, ϱ)→1
∣∣∣ϱ R←GP20 (1λ,n)

]
−Pr

[
B(1λ, ϱ)→1

∣∣∣ϱ R←GP21 (1λ,n)
]∣∣∣+ 2/q ≤ AdvP2B1-2-h-1(λ) + 2/q. 2

Next, in order to prove that |Adv(1-2-h-1)A (λ)−Adv(1-2-h-2)A (λ)| ≤ AdvP2B1-2-h-2(λ)+2/q, we construct
a probabilistic machine B1-2-h-2 against Problem 2 using an adversary A in a security game (Game
1-2-h-1 or Game 1-2-h-2) as a black box. Game 1-2-h-2 is the same as Game 1-2-h-1 except that
k∗
ran of the reply to the h-th decryption key query is semi-functional form in Eq.(12). That is, Game

1-2-h-2 is Game 1-2-h. Hence, this proof is similar to the above proof. So, we have Adv
(1-2-h-1)
A (λ)−

Adv
(1-2-h-2)
A (λ)| ≤ AdvP2B1-2-h-2(λ) + 2/q

By the hybrid argument, |Adv(1-2-(h−1))
A (λ)−Adv(1-2-h)A (λ)| ≤ AdvP2B1-2-h-1(λ)+AdvP2B1-2-h-2(λ)+4/q.

2

Lemma 11. For any adversary A, there exists probabilistic machines B1-3-ℓ-A-ι and B1-3-ℓ-B-ι (ι =
1, 2), whose running time are essentially the same as that of A, such that for any security parame-

ter λ, |Adv(1-3-(ℓ−1))
A (λ) − Adv

(1-3-ℓ)
A (λ)| ≤ AdvIPE,AHB1-3-ℓ-A-1(λ) + AdvIPE,AHB1-3-ℓ-A-2(λ) + AdvP2B1-3-ℓ-B-1(λ) +

AdvP2B1-3-ℓ-B-2(λ) + 7/q, where B1-3-ℓ-A-ι(·) := B1-3-A-ι(ℓ, ·) and B1-3-ℓ-B-ι(·) := B1-3-B-ι(ℓ, ·) for
ι = 1, 2.

Proof. First, we execute a preliminary game transformation from Game 1-3-(ℓ − 1) to Game 1-3-

(ℓ− 1)′, which is the same as Game 1-3-(ℓ− 1) except that flip a coin τrk
U← {0, 1} before setup, and

the game is aborted when the variable srk,ℓ is determined (Definition 5) if τrk ̸= srk,ℓ. Since srk,ℓ := 0 if
v⃗ℓ · x⃗(0) ̸= 0 ∧ v⃗ℓ · x⃗(1) ̸= 0, srk,ℓ is determined at the challenge step if the ℓ-th re-encryption key query
is asked in Phase 1, and at the ℓ-th re-encryption key query step if it is asked in Phase 2. We define
that A wins with probability 1/2 when the game is aborted (and the advantage in Game 1-3-(ℓ− 1)′

is Pr[A wins in Game 1-3-(ℓ − 1)′ ] − 1/2 as well). Since τrk is independent from srk,ℓ, the game is
aborted with probability 1/2. Hence, the advantage in Game 1-3-(ℓ − 1)′ is a half of that in Game

1-3-(ℓ− 1), i.e., Adv
1-3-(ℓ−1)′

A (λ) = 1/2 ·Adv1-3-(ℓ−1)
A (λ). Moreover, Pr[A wins in Game 1-3-(ℓ− 1)′] =

1
2 (Pr[A wins in Game 1-3-(ℓ− 1)′ | τrk = 0] + Pr[A wins in Game 1-3-(ℓ− 1)′ | τrk = 1]), since τrk is
uniformly and independently generated. Therefore,

Adv
1-3-(ℓ−1)
A (λ) = 2 · Adv1-3-(ℓ−1)′

A (λ)

= Pr[A wins in Game 1-3-(ℓ−1)′ | τrk = 0] + Pr[A wins in Game 1-3-(ℓ−1)′ | τrk = 1]− 1. (17)

Similarly, we define a new game, Game 1-3-ℓ′′, which is the same as Game 1-3-ℓ except that

flip a coin τrk
U← {0, 1} before setup, and the game is aborted when the variable srk,ℓ is determined

if τrk ̸= srk,ℓ. Note that Game 1-3-ℓ′ aborts if τrk ̸= srk,ℓ+1, which is different from Game 1-3-ℓ′′.
Similarly to Eq. (17),

Adv1-3-ℓA (λ) = 2 · Adv1-3-ℓ′′A (λ)

= Pr[A wins in Game 1-3-ℓ′′ | τrk = 0] + Pr[A wins in Game 1-3-ℓ′′ | τrk = 1]− 1. (18)

Case τrk = 0 As for the conditional probability with τrk = 0, we introduce three games as:

Sub-Game 1-3-ℓ-A-1: When τrk = 0, Sub-Game 1-3-ℓ-A-1 is the same as Game 1-3-(ℓ − 1)′ except
that the reply to the ℓ-th re-encryption key query for (v⃗, x⃗′) are

ctrkx⃗′
R← EncIPE(pk

IPE, x⃗′, R ), (19)
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where R
U← GL(4n + 4,Fq), r⃗′

U← Fnq and all the other variables are generated as in Game 1-3-
(ℓ− 1)′.

Sub-Game 1-3-ℓ-A-2: When τrk = 0, Sub-Game 1-3-ℓ-A-2 is the same as Sub-Game 1-3-ℓ-A-1 except
that (k∗rk,k∗rk

ran) of the reply to the ℓ-th re-encryption key query for (v⃗, x⃗′) are of semi-functional
form as given in Eq.(13).

Sub-Game 1-3-ℓ-A-3: When τrk = 0, Sub-Game 1-3-ℓ-A-3 is the same as Sub-Game 1-3-ℓ-A-2 except
that ctrkx⃗′ of the reply to the ℓ-th re-encryption key query for (v⃗, x⃗′) is

ctrkx⃗′
R← EncIPE(pk

IPE, x⃗′, W1 ), (20)

where W1 ∈ GL(4n + 4,Fq) is defined in Game 0′′ and it satisfies that D∗
1 := B∗W1 and all the

other variables are generated as in Sub-Game 1-3-ℓ-A-2. Note that Sub-Game 1-3-ℓ-A-3 is the
same as Game 1-3-ℓ′′ when τrk = 0.

From Claims 1, 2, and 3,∣∣Pr[A wins in Game 1-3-(ℓ− 1)′ | τrk = 0]− Pr[A wins in Game 1-3-ℓ′′ | τrk = 0]
∣∣

≤
∣∣Pr[A wins in Game 1-3-(ℓ− 1)′ | τrk = 0]− Pr[A wins in Game 1-3-ℓ-A-1 | τrk = 0]

∣∣
+ |Pr[A wins in Game 1-3-ℓ-A-1 | τrk = 0]− Pr[A wins in Game 1-3-ℓ-A-2 | τrk = 0]|
+ |Pr[A wins in Game 1-3-ℓ-A-2 | τrk = 0]− Pr[A wins in Game 1-3-ℓ-A-3 | τrk = 0]|
≤ AdvIPE,AHB1-3-ℓ-A-1(λ) + AdvIPE,AHB1-3-ℓ-A-2(λ) + 3/q. (21)

Case τrk = 1 As for the conditional probability with τrk = 1, we introduce a game as:

Sub-Game 1-3-ℓ-B: When τrk = 1, Sub-Game 1-3-ℓ-B is the same as Game 1-3-(ℓ− 1)′ except that
(k∗rk,k∗rk

ran) of the reply to the ℓ-th re-encryption key query for (v⃗, x⃗′) is of semi-functional form
as given in Eq.(13). Note that Sub-Game 1-3-ℓ-B is the same as Game 1-3-ℓ′′ when τrk = 1.

From Claim 4,∣∣Pr[A wins in Game 1-3-(ℓ− 1)′ | τrk = 1]− Pr[A wins in Game 1-3-ℓ′′ | τrk = 1]
∣∣

=
∣∣Pr[A wins in Game 1-3-(ℓ− 1)′ | τrk = 1]− Pr[A wins in Game 1-3-ℓ-B | τrk = 1]

∣∣
≤ AdvP2B1-3-ℓ-B-1(λ) + AdvP2B1-3-ℓ-B-2(λ) + 4/q. (22)

Therefore, from Eqs. (17), (18), (21), and (22),

|Adv1-3-(ℓ−1)
A (λ)− Adv1-3-ℓA (λ)|

= |Pr[A wins in Game 1-3-(ℓ− 1)′ | τrk = 0] + Pr[A wins in Game 1-3-(ℓ− 1)′ | τrk = 1]− 1

−
(
Pr[A wins in Game 1-3-ℓ′′ | τrk = 0] + Pr[A wins in Game 1-3-ℓ′′ | τrk = 1]− 1

)∣∣
= |Pr[A wins in Game 1-3-(ℓ− 1)′ | τrk = 0]− Pr[A wins in Game 1-3-ℓ′′ | τrk = 0]

+Pr[A wins in Game 1-3-(ℓ− 1)′ | τrk = 1]− Pr[A wins in Game 1-3-ℓ′′ | τrk = 1]
∣∣

≤ AdvIPE,AHB1-3-ℓ-A-1(λ) + AdvIPE,AHB1-3-ℓ-A-2(λ) + AdvP2B1-3-ℓ-B-1(λ) + AdvP2B1-3-ℓ-B-2(λ) + 7/q.

This completes the proof of Lemma 11. 2

Claim 1 For any adversary A, there exists a probabilistic machine B1-3-A-1, whose running time is
essentially the same as that of A, such that for any security parameter λ,
|Pr[A wins in Game 1-3-(ℓ − 1)′ | τrk = 0] − Pr[A wins in Sub-Game 1-3-ℓ-A-1 | τrk = 0]| ≤
AdvIPE,AHB1-3-ℓ-A-1(λ) + 1/q, where B1-3-ℓ-A-1(·) := B1-3-A-1(ℓ, ·).
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Proof. In order to prove Claim 1, we construct a probabilistic machine B1-3-A-1 against the attribute-
hiding security of the underlying IPE scheme using an adversary A in a security game (Game 1-3-
(ℓ− 1)′ or Sub-Game 1-3-ℓ-A-1) as a black box as follows:

1. B1-3-A-1 is given an index ℓ and a public key of the IPE, pkIPE, from the challenger for the IPE
attribute-hiding security.

2. B1-3-A-1 plays a role of the challenger in the security game against A.
3. At the first step of the game, B1-3-A-1 generates (paramn,B = (b0, . . . , b4n+3),B∗ = (b∗0, . . . ,

b∗4n+3))
R← Gob(1λ, 4n + 4), and sets B̂ := (b0, . . . , bn+2, b4n+3) and B̂∗ := (b∗n+1, b

∗
n+2, b

∗
3n+3, . . . ,

b∗4n+2). B1 then provides A with a public key pk := (1λ, pkIPE, paramn, B̂, B̂∗).

4. When a decryption key query is issued for a vector v⃗, B1-3-A-1 computes a semi-functional form
(k∗,k∗

ran) in Eq.(12), by using B∗ and ask a key query v⃗ to the challenger of the underlying IPE,
then obtain the decryption key skIPEv⃗ , and providesA with a decryption key skv⃗ := (k∗,k∗

ran, sk
IPE
v⃗ ).

5. When the j-th re-encryption key query is issued for (v⃗, x⃗′), B1-3-A-1 computes as follows:

– When j < ℓ, using B∗ and W1
U← GL(4n + 4,Fq), B1-3-A-1 computes a semi-functional form

rkv⃗,x⃗′ := (k∗rk,k∗rk
ran, ct

rk
x⃗′ , prectx⃗′ , D̂

∗
1), where (k

∗rk,k∗rk
ran) are given in Eq.(13), and B1-3-A-1 sends

rkv⃗,x⃗′ to A.
– When j = ℓ, B1-3-A-1 generates X(0) := W1, X

(1) := R
U← GL(4n + 4,Fq), and sends a

challenge query to the challenger of the IPE scheme with (x⃗(0) := x⃗(1) := x⃗ ′, X(0), X(1)),
receives a reply ctrkx⃗′ . B1-3-A-1 then computes prectx⃗′ by himself. Using B∗ and W1, B1-3-A-1
computes a normal form (k∗rk,k∗rk

ran), which are given in Eq.(7), and B1-3-A-1 sends rkv⃗,x⃗′ :=

(k∗rk,k∗rk
ran, ct

rk
x⃗′ , prectx⃗′ , D̂

∗
1) to A.

– When j > ℓ, using B∗ and W1
U← GL(4n+ 4,Fq), B1-3-A-1 computes a normal form rkv⃗,x⃗′ :=

(k∗rk,k∗rk
ran, ct

rk
x⃗′ , prectx⃗′ , D̂

∗
1), where (k∗rk,k∗rk

ran) are given in Eq.(7), and B1-3-A-1 sends rkv⃗,x⃗′ to
A.

6. When a re-encryption query is issued for (v⃗, x⃗′, octx⃗ := (C, verk, S)), if Ver(verk, C, S) ̸= 1, B1-3-A-1
returns⊥ toA. Otherwise, B1-3-A-1 computes a re-encrypted ciphertext rctx⃗′ := (k∗renc, crenc, crencT ,

{cti,rencx⃗′ }i=1,2) as in Definition 5. The re-encrypted ciphertext, rctx⃗′ , is calculated by using (B,B∗)
which is given at setup since it does not include a key component of the underlying IPE scheme.
B1-3-A-1 provides A with rctx⃗′ .

7. When the challenge query is issued for (x⃗(0), x⃗(1),m(0),m(1)), B1-3-A-1 calculates the challenge
ciphertext as in Definition 5, and sends it to A.

8. A finally outputs bit b. B1-3-A-1 then outputs b to the challenger for the IPE attribute-hiding
security game.

Since ctrkx⃗′ of the ℓ-th re-encryption key is of the form Eq.(20) (resp. of the form Eq.(19)) if
β = 0 (resp. β = 1), the view of A given by B1-3-A-1 is distributed as Game 1-3-(ℓ − 1)′ (resp.
Sub-Game 1-3-ℓ-A-1) if β = 0 (resp. β = 1). Then, |Pr[A wins in Game 1-3-(ℓ − 1)′ | τrk = 1] −
Pr[A wins in Sub-Game 1-3-ℓ-A-1 | τrk = 1]| ≤ AdvIPE,AHB1-3-ℓ-A-1(λ) + 1/q,. 2

Claim 2 For any adversary A,
|Pr[A wins in Sub-Game1-3-ℓ-A-1 | τrk = 0]− Pr[A wins in Sub-Game 1-3-ℓ-A-2 | τrk = 0]| ≤ 1/q.

Proof. To prove Claim 2, we will show distribution (pk, {skv⃗}, {rkv⃗,x⃗′}, {rctx⃗′}, octx⃗(b)) in Game 3-ℓ
and Sub-Game 3-ℓ-A-1 are equivalent. In this proof, since we change to the component k∗rk

0 of the
ℓ-th re-encryption key using the base D∗

1 in Sub-Game 3-ℓ-A-1, we focus the only components D∗
1.
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Note that there does not exist the component using D1 which is the dual base of D∗
1. We define new

basis U∗ of V as follows; We chooses r⃗ := (r1, . . . , rn), r⃗
′ := (r′1, . . . , r

′
n)

U← Fnq , and set

u∗
0 := d∗

0 −
∑n

i=1 rid
∗
n+2+i, u∗

n := d∗
n −

∑n
i=1 r

′
id

∗
n+2+i.

We set U∗ := (u∗
0,d

∗
1, . . . ,d

∗
n−1,u

∗
n,d

∗
n+1, . . . ,d

∗
4n+3). The components of ℓ-th re-encryption key,

(k∗rk
0 ,k∗rk

1 ) in Sub-Game 3-ℓ-A-1 are expressed over base D∗
1.

k∗rk = ( 1, δrkv⃗, 02, 0n, 0n, η⃗ rk, 0)D∗
1
= ( 1, δrkv⃗, 02, r⃗, 0n, η⃗ rk, 0)U∗

k∗rk
ran = ( 0, δrkranv⃗, 0

2, 0n, 0n, η⃗ rk
ran, 0)D∗

1
= ( 0, δrkranv⃗, 0

2, δrkranvnr⃗
′, 0n, η⃗ rk

ran, 0)U∗ ,

where r⃗, δrkranvnr⃗
′ are uniformly and independently distributed except that δrkran = 0, i.e., except for

probability 1/q since vn ̸= 0. Thus, Sub-Game 1-3-ℓ-A-1 can be conceptually changed to Sub-Game
1-3-ℓ-A-2 except for probability 1/q. 2

Claim 3 For any adversary A, there exists a probabilistic machine B3-A-2, whose running time is
essentially the same as that of A, such that for any security parameter λ,

|Pr[A wins in Sub-Game 1-3-ℓ-A-2 | τrk = 0]− Pr[A wins in Sub-Game 1-3-ℓ-A-3 | τrk = 0]| ≤
AdvIPE,AHB1-3-ℓ-A-2(λ) + 1/q, where B1-3-ℓ-A-2(·) := B1-3-A-2(ℓ, ·).

Proof. The game change between Sub-Game 1-3-ℓ-A-2 and Sub-Game 1-3-ℓ-A-3 is the reverse of that
between Game 1-3-(ℓ − 1)′ and Sub-Game 1-3-ℓ-A-1 (except the form of the ℓ-th re-encryption key
(k∗rk,k∗rk

ran)). Therefore, Claim 3 is proven in a similar manner to Claim 1. 2

Claim 4 For any adversary A, there exists a probabilistic machine B1-3-B, whose running time is
essentially the same as that of A, such that for any security parameter λ,

|Pr[A wins in Game 1-3-(ℓ− 1)′ | τrk = 1]− Pr[A wins in Sub-Game 1-3-ℓ-B | τrk = 1]| ≤
AdvP2B1-3-ℓ-B-1(λ) + AdvP2B1-3-ℓ-B-2(λ) + 4/q, where B1-3-ℓ-B-ι(·) := B1-3-B(ℓ, ·) for ι = 1, 2.

Proof. When τrk = 1, only when v⃗ ·x⃗(0) ̸= 0 and v⃗ ·x⃗(1) ̸= 0, the game is not aborted by the challenger.
Then, the left hand side of the inequality in Claim 4 is related to the case v⃗ · x⃗(0) ̸= 0 and v⃗ · x⃗(1) ̸= 0.
Hence, this claim is proven in a similar manner to that of Lemma 10. 2

Lemma 12. For any adversary A, there exists probabilistic machines B1-4-t-A and B1-4-t-B, whose
running times are essentially the same as that of A, such that for any security parameter λ,

|Adv(1-4-(t−1))
A (λ)−Adv(1-4-t)A (λ)| ≤ AdvIPE,AHB1-4-t-A-1(λ)+AdvIPE,AHB1-4-t-A-2(λ)+AdvP2B1-4-t-B-1(λ)+AdvP3B1-4-t-B-2(λ)+

7/q, where B1-4-t-A-ι(·) := BB1-4-A-ι(t, ·) and B1-4-t-B-ι(·) := BB1-4-B-ι(t, ·) for ι = 1, 2.

Proof. First, we execute a preliminary game transformation from Game 1-4-(t − 1) to Game 1-4-

(t− 1)′, which is the same as Game 1-4-(t− 1) except that flip a coin τrenc
U← {0, 1, 2} before setup,

and the game is aborted when the variable srenc,t is determined (Definition 5) if τrenc ̸= srenc,t. Since
srenc,t is defined by v⃗t, x⃗

(0), x⃗(1), octt, octx⃗(b) , the value of srenc,t is determined at the t-th re-encryption
query step if it is asked in Phase 2. We define that A wins with probability 1/2 when the game is
aborted (and the advantage in Game 1-4-(t− 1)′ is Pr[A wins in Game 1-4-(t− 1)′ ]− 1/2 as well).
Since τrenc is independent from srenc,t, the game is aborted with probability 2/3. Hence, the advantage

in Game 1-4-(t−1)′ is a third of that in Game 1-4-(t−1), i.e., Adv
1-4-(t−1)′

A (λ) = 1/3 ·Adv1-4-(t−1)
A (λ).
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Moreover, Pr[A wins in Game 1-4-(t− 1)′] = 1
3

∑2
ι=0 Pr[A wins in Game 1-4-(t− 1)′ | τrenc = ι] since

τrenc is uniformly and independently generated. Therefore,

Adv
1-4-(t−1)
A (λ) = 3 · Adv1-4-(t−1)′

A (λ)

=

2∑
ι=0

Pr[A wins in Game 1-4-(t−1)′ | τrenc = ι]− 3/2. (23)

Similarly, we define a new game, Game 1-4-t′′, which is the same as Game 1-4-t except that flip a

coin τrenc
U← {0, 1, 2} before setup, and the game is aborted when the variable srenc,t is determined if

τrenc ̸= srenc,t. Note that Game 1-4-t′ aborts if τrenc ̸= srenc,t+1, which is different from Game 1-4-t′′.
Similarly to Eq. (23),

Adv
1-4-(t−1)
A (λ) = 3 · Adv1-4-t′′A (λ) =

2∑
ι=0

Pr[A wins in Game 1-4-t′′ | τrenc = ι]− 3/2. (24)

Case τrenc = 0 As for the conditional probability with τrenc = 0, we introduce three games as:

Sub-Game 1-4-t-A-1: When τrenc = 0, Sub-Game 1-4-t-A-1 is the same as Game 1-4-(t− 1)′ except
that the reply to the t-th re-encryption query for (v⃗, x⃗′, oct) are

ctrenc1,x⃗′
R← EncIPE(pk

IPE, x⃗′, R ),

where R
U← GL(4n+ 4,Fq) and all the other variables are generated as in Game 1-4-(t− 1)′.

Sub-Game 1-4-t-A-2: When τrenc = 0, Sub-Game 1-4-t-A-2 is the same as Sub-Game 1-4-t-A-1
except that k∗renc of the reply to the t-th re-encryption query for (v⃗, x⃗′, oct) are of semi-functional
form as given in Eq. (14).

Sub-Game 1-4-t-A-3: When τrenc = 0, Sub-Game 1-4-t-A-3 is the same as Sub-Game 1-4-t-A-2
except that ctrenc1,x⃗′ of the reply to the t-th re-encryption key query for (v⃗, x⃗′, oct) is

ctrenc1,x⃗′
R← EncIPE(pk

IPE, x⃗′, W1 )

where W1 ∈ GL(4n + 4,Fq) is defined in Game 0′′ and it satisfies that D∗
1 = B∗W1 and all the

other variables are generated as in Sub-Game 1-4-t-A-2. Note that Sub-Game 1-4-t-A-3 is the
same as Game 1-4-t′′ when τrenc = 0.

From Claims 5, 6, and 7,∣∣Pr[A wins in Game 1-4-(t− 1)′ | τrenc = 0]− Pr[A wins in Game 1-4-t′′ | τrenc = 0]
∣∣

≤
∣∣Pr[A wins in Game 1-4-(t− 1)′ | τrenc = 0]− Pr[A wins in Game 1-4-t-A-1 | τrenc = 0]

∣∣
+ |Pr[A wins in Game 1-4-t-A-1 | τrenc = 0]− Pr[A wins in Game 1-4-t-A-2 | τrenc = 0]|
+ |Pr[A wins in Game 1-4-t-A-2 | τrenc = 0]− Pr[A wins in Game 1-4-t-A-3 | τrenc = 0]|
≤ AdvIPE,AHB1-4-t-A-1(λ) + AdvIPE,AHB1-4-t-A-2(λ) + 3/q. (25)

Case τrenc = 1 or 2 As for the conditional probability with τrenc = 1 or 2, we introduce a game as:

Sub-Game 1-4-t-B: When τrenc = 1 or τrenc = 2, Sub-Game 1-4-t-B is the same as Game 1-4-(t− 1)′

except that k∗renc of the reply to the t-th re-encryption key query for (v⃗, x⃗′, oct) is of semi-
functional form as given in Eq.(13). Note that Sub-Game 1-4-t-B is the same as Game 1-3-t′′

when τrenc = 1 or τrenc = 2.
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From Claim 8, ∣∣Pr[A wins in Game 1-4-(t− 1)′ | τrenc = 1 or τrenc = 2]

−Pr[A wins in Game 1-4-t′′ | τrenc = 1 or τrenc = 2]
∣∣

=
∣∣Pr[A wins in Game 1-4-(t− 1)′ | τrenc = 1 or τrenc = 2]

−Pr[A wins in Game 1-4-t-B | τrenc = 1 or τrenc = 2]|
≤ AdvP2B1-4-t-B-1(λ) + AdvP3B1-4-t-B-2(λ) + 4/q. (26)

Therefore, from Eqs. (23), (24), (25), and (26),

|Adv1-4-(t−1)
A (λ)− Adv1-4-tA (λ)|

=
∣∣∣∑2

ι=0 Pr[A wins in Game 1-4-(t− 1)′ | τrenc = ι]− 3/2

−(
∑2

ι=0 Pr[A wins in Game 1-4-t′′ | τrenc = ι]− 3/2)
∣∣∣

=
∣∣∣∑2

ι=0 (Pr[A wins in Game 1-4-(t− 1)′ | τrenc = ι]− Pr[A wins in Game 1-4-t′′ | τrenc = ι])
∣∣∣

≤ AdvIPE,AHB1-4-t-A-1(λ) + AdvIPE,AHB1-4-t-A-2(λ) + AdvP2B1-4-t-B-1(λ) + AdvP3B1-4-t-B-2(λ) + 7/q.

This completes the proof of Lemma 12. 2

Claim 5 For any adversary A, there exists a probabilistic machine B1-4-A-1, whose running time is
essentially the same as that of A, such that for any security parameter λ,

|Pr[A wins in Game 1-4-(t − 1)′ | τrenc = 0] − Pr[A wins in Sub-Game 1-4-t-A-1 | τrenc = 0]| ≤
AdvIPE,AHB1-4-t-A-1(λ) + 1/q, where B1-4-t-A-1(·) := B1-4-A-1(t, ·).

Claim 6 For any adversary A,
|Pr[A wins in Sub-Game1-4-t-A-1 | τrenc = 0]− Pr[A wins in Sub-Game 1-4-t-A-2 | τrenc = 0]| ≤ 1/q.

Claim 7 For any adversary A, there exists a probabilistic machine B4-A-2, whose running time is
essentially the same as that of A, such that for any security parameter λ,

|Pr[A wins in Sub-Game 1-4-t-A-2 | τrenc = 0]− Pr[A wins in Sub-Game 1-4-t-A-3 | τrenc = 0]| ≤
AdvIPE,AHB1-4-t-A-2(λ) + 1/q, where B1-4-t-A-2(·) := B1-4-A-2(t, ·).

Claim 8 For any adversary A, there exists a probabilistic machine B1-4-B-1, whose running time is
essentially the same as that of A, such that for any security parameter λ,

|Pr[A wins in Game 1-4-(t− 1)′ | τrenc = 1]− Pr[A wins in Sub-Game 1-4-t-B | τrenc = 1]| ≤
AdvP2B1-4-t-B-1(λ) + 2/q, where B1-4-t-B-1(·) := B1-4-B-1(t, ·).

The proofs of Claims 5–8 are given in similar manners to those of Claims 1–4, respectively.

Claim 9 For any adversary A, there exists a probabilistic machine B1-4-B-2, whose running time is
essentially the same as that of A, such that for any security parameter λ,

|Pr[A wins in Game 1-4-(t− 1)′ | τrenc = 2]− Pr[A wins in Sub-Game 1-4-t-B | τrenc = 2]| ≤
AdvP3B1-4-t-B-2(λ) + 2/q, where B1-4-t-B-2(·) := B1-4-B-2(t, ·).

Proof. The proof strategy of Claim 9 is similar to Theorem 1 in [7]. In order to prove Claim 9, we
construct a probabilistic machine B1-4-B-2 against Problem 3 using an adversary A in a security
game (Game 1-4-(t− 1)′ or Sub-Game 1-4-t-B) as a black box as follows:
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1. B1-4-B-2 is given an index t and a Problem 3 instance, (paramn,B∗, B̂, {hβ,i, ei}i=1,2).
2. B1-4-B-2 plays a role of the challenger in the security game against A.
3. At the first step of the game, B1-4-B-2 generates a pair of public and secret key of the IPE scheme,

(pkIPE, skIPE)
R← SetupIPE(1

λ, n). B1-4-B-2 sets B̂∗ := (b∗n+1, b
∗
n+2, b

∗
3n+4, . . . , b

∗
4n+2) and provides

A with a public key pk := (λ, paramn, B̂, B̂∗, pkIPE).
4. When a decryption key query is issued for a vector v⃗, B1-4-B-2 computes semi-functional form

(k∗, k∗
ran) and skIPEv⃗ . B1-4-B-2 provides A with the decryption key skv⃗ := (k∗,k∗

ran, sk
IPE
v⃗ ).

5. When a re-encryption key query is issued for (v⃗, x⃗′), B1-4-B-2 semi-functional form k∗rk and k∗rk
ran

and normal form ctrkx⃗′ , prectx⃗′ and D̂∗
1. B1-4-B-2 provides A with the re-encryption key rkv⃗,x⃗′ :=

(k∗rk,k∗rk
ran, ct

rk
x⃗′ , prectx⃗′ , D̂

∗
1).

6. When a k-th re-encryption query is issued for (v⃗, x⃗′, octx⃗ = (C := (c, cran, cT ), verk, S)), B1-4-B-2
executes as follows:
– If Ver(verk, C, S) ̸= 1, then B1-4-B-2 returns ⊥ to A.
– If Ver(verk, C, S) = 1 then B1-4-B-2 normally computes crenc from (c, cran) and {ctrenci,x⃗′ }i=1,2

from {Wi
U← GL(N,Fq)}i=1,2, and

• when k < t, B1-4-B-2 computes semi-functional form k∗renc from Eq.(14).

• when k = t, B1-4-B-2 chooses ρ, ui
R← Fq for i = 1, . . . , n and computes

k∗renc :=

(
b∗0 +

n∑
i=1

δvib
∗
i + ρ verk h∗

β.1 + ρh∗
β.2 +

n∑
i=1

uib
∗
3n+2+i

)
W1.

• when k > t, B1-4-B-2 computes normal form k∗renc from Eq.(8).
B1-4-B-2 provides A with the re-encrypted ciphertext rctx⃗′ := (k∗renc, crenc, crencT , ctrkx⃗′ , ct

renc
x⃗′ ).

7. When a challenge query is issued for (x⃗(0), x⃗(0),m(0),m(1)), B1-4-B-2 picks a bit b
U← {0, 1} and

ζ, ρ
U← Fq and generates (sigk♣, verk♣)

R← SigKG(1λ). Next, B1-4-B-2 computes

c := ζb0 +

n∑
i=1

ωx
(b)
i bi + ρ verk♣e1 + ρe2 + φranb4n+3,

cran :=

n∑
i=1

ωranx
(b)
i bi + ρranverk

♣e1 + ρrane2 + φranb4n+3,

cT := m(b) · gζT , C := (c, cran, cT ), S
R← Sig(sigk♣, C).

B1-4-B-2 provides A with a challenge ciphertext octx⃗(b) := (C, verk♣, S).
8. A finally outputs bit b′. If b = b′, B1-4-B-2 outputs β′ := 0. Otherwise, B1-4-B-2 outputs β′ := 1.

Since the t-th re-encrypted ciphertext is of the form Eq.(8) (resp. of the form Eq.(14)) if β = 0 (resp.
β = 1), the view of A given by B1-4-B-2 is distributed as Game 1-4-(t− 1)′ (resp. Sub-Game 1-4-t-B)
if β = 0 (resp. β = 1) except that δ defined in Problem 3 is zero (i.e., except for probability 1/q (resp.
1/q)). Then, |Pr[A wins in Game 1-4-(t− 1)′ | τrenc = 2]− Pr[A wins in Sub-Game 1-4-t-B | τrenc = 2]| =∣∣∣Pr[B(1λ, ϱ)→1

∣∣∣ϱ R←GP30 (1λ,n)
]
− Pr

[
B(1λ, ϱ)→1

∣∣∣ϱ R←GP31 (1λ,n)
]∣∣∣+ 2/q ≤ AdvP3B1-4-t-B-2(λ)+2/q. 2

Lemma 13. For any adversary A, |Adv(1-4-ν3)A (λ)− Adv
(1-5)
A (λ)| ≤ 1/q.

Proof. To prove Lemma 13, we will show distribution (pk, {skv⃗}, {rkv⃗.x⃗}, {rctx⃗′}, octx⃗(b)) in Game 4-ν3
and that in Game 5 are equivalent. In this proof, since we change to the component c of the challenger
ciphertext octx⃗(b) using the base B in the Game 4-ν3, we focus the only components using the bases
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B or B∗. We define new basis U of V and U∗ of V∗ as follows; We generate F := (ξi,s)1≤i,s≤n, F̃ :=

(ξ̃i,s)1≤i,s≤n
U← Fn×nq , θ⃗ := (θi)1≤i≤n

U← Fnq and set for i = 1, . . . , n

un+2+i := bn+2+i −
∑n

s=1

(
ξi,sbs + ξ̃i,sb2n+2+s

)
− θib0,

u∗
0 := b∗0 +

∑n
s=1θsb

∗
n+2+s, u∗

i := b∗i +
∑n

s=1ξs,ib
∗
n+2+s, u∗

2n+2+i := b∗2n+2+i +
∑n

s=1ξ̃s,ib
∗
n+2+s.

We set U := (b0, . . . , bn+2,un+3, . . . ,u2n+2, b2n+3, . . . , b4n+3) and U∗ := (u∗
0, . . . ,u

∗
n, b

∗
n+1, . . . , b

∗
2n+2,

u∗
2n+3, . . . ,u

∗
3n+2, b

∗
3n+3, . . . , b

∗
4n+3). We then easily verify that U and U∗ are dual orthonormal, and

are distributed the same as the original bases B and B∗.
We note that if (the ℓ-th) re-encryption key query (v⃗ℓ, x⃗

′
ℓ) has a matching decryption key query

v⃗, that is, R(v⃗, x⃗′ℓ) = 1, then matrixW1 and converted key k∗rkW−1
1 are included in adversary’s view.

Similarly, if (the t-th) re-encryption query (v⃗t, x⃗
′
t, oct) has a matching decryption key query v⃗, that

is, R(v⃗, x⃗′t) = 1, then matrix W1 and converted key k∗rencW−1
1 are included in adversary’s view.

Therefore, in Game 1-4-ν3, (k
∗, k∗

ran) of the decryption key queries, (k∗rk,k∗rk
ran) of the re-encryption

key queries with a matching decryption key query, and k∗renc of the re-encryption queries with a
matching decryption key query are expressed over bases B∗ and U∗ as

k∗ = ( 1, δv⃗, 02, r⃗, 0n, η⃗, 0 )B∗ = ( 1, δv⃗, 02, w⃗, 0n, η⃗, 0 )U∗ ,

k∗
ran = ( 0, δranv⃗, 0

2, r⃗ran, 0
n, η⃗ran, 0 )B∗ = ( 0, δranv⃗, 0

2, w⃗ran, 0
n, η⃗, 0 )U∗ ,

k∗rkW−1
1 = ( 1, δrkv⃗, 02, r⃗ ′, 0n, η⃗ rk, 0 )B∗ = ( 1, δrkv⃗, 02, w⃗ ′, 0n, η⃗rk, 0 )U∗ ,

k∗rk
ranW

−1
1 = ( 0, δrkranv⃗, 0

2, r⃗′ran, 0
n, η⃗ rk

ran, 0 )B∗ = ( 0, δrkranv⃗, 0
2, w⃗ ′

ran, 0
n, η⃗rkran, 0 )U∗ ,

k∗rencW−1
1 = ( 1, δrencv⃗, σ(−1, verk), r⃗ ′′, 0n, η⃗renc, 0 )B∗

= ( 1, δrencv⃗, σ(−1, verk), w⃗ ′′, 0n, η⃗renc, 0 )U∗ ,

where w⃗ := r⃗ − δv⃗ · FT − θ⃗, w⃗ran := r⃗ran − δranv⃗ · FT − θ⃗, w⃗ ′ := r⃗ ′ − δrkv⃗ · FT − θ⃗, w⃗ ′
ran :=

r⃗ ′ran− δrkranv⃗ ·FT− θ⃗, and w⃗ ′′ := r⃗ ′′− δrencv⃗ ·FT− θ⃗ are uniformly and independently distributed since

r⃗, r⃗ran, r⃗
′, r⃗ ′ran, r⃗

′′ U← Fq.
c and cran of the challenge ciphertext octx⃗(b) := (C := (c, cran, cT ), verk

♣, S) in Game 1-4-ν3 are
expressed over bases B and U as

c = ( ζ, ωx⃗(b), ρ(verk♣, 1), u⃗, 0n, 0n, φ )B

= ( ζ + u⃗ · θ⃗, ωx⃗(b) + u⃗ · F, ρ(verk♣, 1), u⃗, u⃗ · F̃ , 0n, φ )U,

cran = ( 0, ωranx⃗
(b), ρran(verk

♣, 1), 0n, 0n, 0n, φran )B

= ( 0, ωranx⃗
(b), ρran(verk

♣, 1), 0n, 0n, 0n, φran )U,

where ζ+ u⃗ · θ⃗, ωx⃗(b)+ u⃗ ·F and u⃗ ·F̃ are uniformly and independently distributed except when u⃗ = 0⃗,

i.e., except for probability ≤ 1/q, since u⃗
U← Fnq , θ⃗

U← Fnq , F, F̃
U← Fn×nq . In the light of adversary’s

view, both (B,B∗) and (U,U∗) are consistent with public key pk. Since k∗, k∗rk, k∗renc, and crenc can
be expressed in two ways in Game 1-4-ν3 over (B,B∗) and in Game 1-5 over bases (U,U∗). Thus,
Game 1-4-ν3 can be conceptually changed to Game 1-5. 2

Lemma 14. For any adversary A, there exists a probabilistic machine B1-5, whose running time is

essentially the same as that of A, such that for any security parameter λ, |Adv(1-5)A (λ)−Adv(1-6)A (λ)| ≤
AdvP4B1-5(λ).

Proof. In order to prove Lemma 14, we construct a probabilistic machine B1-5 against Problem 4
using an adversary A in a security game (Game 1-5 or Game 1-6) as a black box as follows:
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1. B1-5 is given a Problem 4 instance, (paramn, B̂, B̂∗, {h∗
β,i, ei,fi}i=1,...,n).

2. B1-5 plays a role of the challenger in the security game against A.
3. At the first step of the game, B1-5 generates a pair of public and secret key of the underlying

IPE scheme, (pkIPE, skIPE)
R← SetupIPE(1

λ, n). B1-5 sets B̂ := (b0, . . . , bn+2, b4n+3) and B̂∗ :=
(b∗n+1, b

∗
n+2, b

∗
3n+3, . . . , b

∗
4n+2) and provides A with a public key pk := (λ, paramn, B̂, B̂∗, pkIPE).

4. When a decryption key query is issued for a vector v⃗ := (v1, . . . , vn), B1-5 computes skIPEv⃗
R←

KGIPE(sk
IPE, v⃗) and using {h∗

β,i}i=1,...,n, B̂∗ of the Problem 4 instance,

k∗ := b∗0 +
∑n

i=1(δvib
∗
i + πih

∗
β,i + ηib

∗
3n+2+i), k∗

ran :=
∑n

i=1(δranvib
∗
i + πran,ih

∗
β,i + ηran,ib

∗
3n+2+i),

where δ, δran, πi, πran,i, ηi, ηran,i
U← Fq. B1-5 providesA with the decryption key skv⃗ := (k∗,k∗

ran, sk
IPE
v⃗ ).

5. When a re-encryption key query is issued for (v⃗ := (v1, . . . , vn), x⃗
′), B1-5 computes ctrkx⃗′ , prectx⃗′

using pkIPE, D̂∗
1 := (d∗

i := b∗iW1)i=n+1,n+2,3n+3,...,4n+2 with W1
U← GL(4n+ 4,Fq), and

k∗rk := b∗0 +
∑n

i=1(δ
rkvib

∗
i + π′ih

∗
β,i + ηrki b

∗
3n+2+i),

k∗rk
ran :=

∑n
i=1(δ

rk
ranvib

∗
i + π′ran,ih

∗
β,i + ηrkran,ib

∗
3n+2+i),

where δrk, δrkran, π
′
i, π

′
ran,i, η

rk
i , η

rk
ran,i

U← Fq. B1-5 provides A with the re-encryption key rkv⃗,x⃗′ :=

(k∗rk,k∗rk
ran, ct

rk
x⃗′ , prectx⃗′ , D̂

∗
1).

6. When a re-encryption query is issued for (v⃗ := (v1, . . . , vn), x⃗
′, oct := (C := (c, cran, cT ), verk, S)),

if Ver(verk, C, S) ̸= 1, B1-5 returns ⊥ to A. Otherwise, B1-5 computes a normal form of (crenc, crencT ,
{ctrenci,x⃗′ }i=1,2) using C := (c, cran, cT ), the Problem 4 instance and pkIPE, and

k∗renc := b∗0 + σ(−b∗n+1 + verk b∗n+2) +
∑n

i=1(δ
rencvib

∗
i + π′′i h

∗
β,i + ηrenci b∗3n+2+i),

where δrenc, π′′i , η
renc
i

U← Fq. B1-5 provides A with the re-encrypted ciphertext rctx⃗′ := (k∗renc, crenc,
crencT , {ctrenci,x⃗′ }i=1,2)

7. When a challenge query is issued for (x⃗(0), x⃗(1),m(0),m(1)), B1-5 picks a bit b
U← {0, 1} and

ζ, ρ, ωran, ρran, φran
U← Fq and generates (sigk♣, verk♣)

R← SigKG(1λ). Next, B1-5 computes

c := ζb0 +
∑n

i=1 ωx
(b)
i bi + ρ(verk♣bn+1 + bn+2) +

∑n
i=1(u1,iei + u2,ifi),

where ζ, ω, ρ, u1,i, u2,i
U← Fq, and cran, cT , S

R← Sig(sigk♣, C) are generated in a normal manner
with C := (c, cran, cT ). B1-5 provides A with the challenge ciphertext octx(b) := (C, verk♣, S).

8. A finally outputs bit b′. If b = b′, B1-5 outputs β′ := 0. Otherwise, B1-5 outputs β′ := 1.

Since all the replies to decryption key, re-encryption key, re-encrypted ciphertext, and challenge

queries are of the form in Game 1-5 (resp.Game 1-6) if β = 0 (resp.β = 1),
∣∣∣Adv(1-5)A (λ)− Adv

(1-6)
A (λ)

∣∣∣ =∣∣∣Pr[B1-5(1λ, ϱ)→1
∣∣∣ϱ R←GP40 (1λ,n)

]
− Pr

[
B1-5(1λ, ϱ)→1

∣∣∣ϱ R←GP41 (1λ,n)
]∣∣∣ ≤ AdvP4B1-5(λ). 2

The game changes between Game 1-6 and Game 2-4-ν3 is similar to those between Game 0′′

and Game 1-4-ν3 except the form of the component of the challenge ciphertext cran is changed to
semi-functional form. Therefore, the advantage of between Game 1-6 and Game 2-4-ν3 is bounded
by a similar manner to those obtained in Lemmas 9–12.

Lemma 15. For any adversary A, |Adv(2-4-ν3)A (λ)− Adv
(2-5)
A (λ)| ≤ 1/q.



43

Proof. Lemma 15 is proven in similar manner to Lemma 13. ⊓⊔

Lemma 16. For any adversary A, Adv(2-5)A (λ) = 0.

Proof. The value of b is independent from adversary’s view in Game 2-5. So, Adv
(2-5)
A (λ) = 0. 2

Proof of Theorem 2 (AH-OC) in the Case τverk = 1 ∧ τm = 1
In Lemmas 17–27 and their proofs, we consider only the case τverk = 1 ∧ τm = 1.

Lemma 17. The proposed IP-PRE scheme is attribute-hiding for original ciphertexts against chosen
plaintext attacks in the case τverk = 1 ∧ τm = 1 under the DLIN assumption provided the underlying
IPE scheme is attribute-hiding.

For any adversary A, there exist probabilistic machines Eι-1, Eι-2-j-l, Eι-3-A-j , Eι-3-B-j-l, Eι-4-A-j ,
Eι-4-B-l, Eι-4-C , E1-6, E1-7 for ι = 1, 2; j = 1, 2; l = 1, 2, whose running times are essentially the same
as that of A, such that for any security parameter λ in Game 0′′,

Pr[A wins|τverk = 1 ∧ τm = 1]− 1/2 ≤
2∑
ι=1

(
AdvDLIN

Eι-1 (λ) +
∑ν1

h=1

∑2
j=1

∑2
l=1Adv

DLIN
Eι-2-h-j-l(λ)

+
∑ν2

ℓ=1

∑2
j=1

(
AdvIPE,AHEι-3-ℓ-A-j (λ) +

∑2
l=1Adv

DLIN
Eι-3-ℓ-B-j-l(λ)

)
+
∑ν3

t=1

(∑2
j=1Adv

IPE,AH
Eι-4-t-A-j (λ) +

∑2
l=1Adv

DLIN
Eι-4-t-B-l(λ) + AdvDLIN

Eι-4-t-C (λ)
))

+
∑ν3

t=0Adv
DLIN
E1-6-t(λ) + AdvDLIN

E1-7 (λ) + ϵ, (27)

where Eι-2-h-j-l(·) := Eι-2-j-l(h, ·), Eι-3-ℓ-A-j(·) := Eι-3-A-j(ℓ, ·), Eι-3-B-ℓ-j-l(·) := Eι-3-B-j-l(ℓ, ·),
Eι-4-t-A-j(·) := Eι-4-A-j(t, ·), Eι-4-t-B-l(·) := Eι-4-B-l(t, ·), Eι-4-t-C(·) := Eι-4-C(t, ·), E1-6-t(·) := E1-6(t, ·),
ϵ := (66ν1+70ν2+91ν3+20)/q and ν1, ν2, ν3 are the maximum number of A’s decryption key queries,
that of A’s re-encryption key queries, and that of A’s re-encryption queries, respectively.

Proof Outline of Lemma 17. To prove Lemma 17, we consider τverk = 1 ∧ τm = 1 case.
Overview of Game Transformation. We employ Game 0′′ through Game 2-5. In this proof, there are
main two sequences, the Game 1 sequence and the Game 2 sequence (Figure 5), whose aims are to
change components c and cran of the challenge ciphertext to independent ones from challenge bit b
(random form), respectively.

We employ Game 0′′ through Game 1-7 in the Game 1 sequence. In Game 0′′, all the replies
to A’s queries are in normal forms (Eqs.(28)–(32)). In Game 1-1, c of the challenge ciphertext is
changed to temporal 1 form given in [29] (Eq.(33)). Let ν1, ν2, ν3 be the maximum numbers of A’s
decryption key queries, that of A’s re-encryption key queries, and that of A’s re-encryption queries,
respectively. There are ν1 game changes from Game 1-1 (Game 1-2-0) through Game 1-2-ν1. In Game
1-2-h (h = 1, . . . , ν1), the reply to the h-th decryption key query is changed to temporal 2 form given
in [29] (Eq.(34)). There are ν2 game changes from Game 1-2-ν1 (Game 1-3-0) through Game 1-3-ν2.
In Game 1-3-ℓ (ℓ = 1, . . . , ν2), the reply to the ℓ-th re-encryption key query is changed to temporal
2 form given in [29] (Eq.(35)). There are ν3 game changes from Game 1-3-ν2 (Game 1-4-0) through
Game 1-4-ν3. In Game 1-4-t (t = 1, . . . , ν3), the reply to the t-th re-encrypted ciphertext query is
changed to temporal 2 form in [29] (Eq.(36)) or semi-functional form (Eq.(37)). In Game 1-5, c of
the challenge ciphertext is changed to unbiased form in [29] (Eq.(38)).

Then, through Game 1-6-t (t = 0, . . . , ν3), replies to all the decryption key, re-encryption key and
re-encrypted ciphertext queries are changed to a normal form. In Game 1-7, the challenge ciphertext
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Fig. 5. Game Transformations for AH-OC Security in the case τverk = 1 ∧ τm = 1.

is changed to a normal and unbiased ciphertext (Eq. (39)), and the game is a preparation for the
Game 2 sequence. In the Game 2 sequence, cran is changed to random form in Eq.(40) by proceeding
similar to game transformations in the Game 1 sequence. In the final Game 2-5, the advantage of
the adversary is zero.

As Figure 5 shows, the advantage gap between Game 0′′ and Game 1-1 is bounded by the
advantage of Problem 1. The advantage gaps between Games 1-2-(h− 1) and 1-2-h (resp. 2-2-(h− 1)
and 2-2-h) are bounded by the advantage of Problems 2 and 4. The advantage gaps between Games
1-3-(ℓ− 1) and 1-3-ℓ (resp.Games 2-3-(ℓ− 1) and 2-3-ℓ) are bounded by the advantages of Problems
2, 4 and the attribute-hiding security of the underlying IPE scheme. The advantage gaps between
Games 1-4-(t−1) and Game 1-4-t (resp.Games 2-4-(t−1) and 2-4-t) are bounded by the advantages
of Problems 2, 3, 4 and attribute-hiding security of the underlying IPE scheme. Since the advantages
of Problems 1, 2, 3 and 4 are bounded by that of DLIN, the advantage of A is bounded by those of
DLIN and the attribute-hiding security of the underlying IPE.

Overview of Sub-Games. We employ Sub-Games between Games 1-3-(ℓ− 1) and 1-3-ℓ, and Games
1-4-(t− 1) and 1-4-t as described in Figure 6.

First, Game 1-3-(ℓ − 1) is changed to Game 1-3-(ℓ − 1)′ which is the same as Game 1-3-(ℓ − 1)

except that flip a coin τrk
U← {0, 1} before setup, and the game is aborted if τrk ̸= srk,ℓ when the

variable srk,ℓ is determined at the challenge step or the ℓ-th re-encryption key query step (Definition

4). Since τrk
U← {0, 1}, the advantage of A in Game 1-3-(ℓ− 1)′ is a half of that in Game 1-3-(ℓ− 1).

When τrk = 0, we employ three intermediate sub-games, Sub-Games 1-3-ℓ-A-j (j = 1, 2, 3). In
Game 1-3-ℓ-A-1, ctrkx⃗′ in the reply to the ℓ-th re-encryption key query is changed to EncIPE(pk

IPE, x⃗′, R)
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Fig. 6. Sub-Games between Games 1-3-(ℓ− 1) and 1-3-ℓ, and Games 1-4-(t− 1) and 1-4-t

where R is a random matrix in FN×N
q . In Game 1-3-ℓ-A-2, k∗rk and k∗rk

ran of the reply are changed

to temporal 2 forms in Eq.(35). In Game 1-3-ℓ-A-3, ctrkx⃗′ returns back to normal ctrkx⃗′ := EncIPE(pk
IPE,

x⃗′,W1). When τrk = 1, we employ eight intermediate sub-games, Sub-Games 1-3-ℓ-B-j-l (j = 1, 2; l =
1, . . . , 4). Through the eight games, in Game 1-3-ℓ-B-2-4, k∗rk and k∗rk

ran of the reply to the ℓ-th re-
encryption key query are changed to temporal 2 forms in Eq.(35).

Both final games, Game 1-3-ℓ-A-3 (when τrk = 0) and Game 1-3-ℓ-B-2-4 (when τrk = 1) are

equivalent to Game 1-3-ℓ′′ which is the same as Game 1-3-ℓ except that flip a coin τrk
U← {0, 1} before

setup, and the game is aborted if τrk ̸= srk,ℓ when the variable srk,ℓ is determined at the challenge step
or the ℓ-th re-encryption key query step (Definition 4). Similarly to Game 1-3-(ℓ−1)′, the advantage
of A in Game 1-3-ℓ′′ is a half of that in Game 1-3-ℓ.

As Figure 6 shows, when τrk = 0, the advantage gap between Games 1-3-(ℓ − 1)′ and 1-3-ℓ-A-1
(resp. 1-3-ℓ-A-2 and 1-3-ℓ-A-3) is bounded by the advantage of the attribute-hiding security of the
underlying IPE scheme. When τrk = 1, the advantage gap between Games 1-3-(ℓ−1)′ and 1-3-ℓ-B-1-1
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(resp. 1-3-ℓ-B-1-4 and 1-3-ℓ-B-2-1) is bounded by the advantage of Problem 2, that between Games
1-3-ℓ-1-2 and 1-3-ℓ-B-1-3 (resp. 1-3-ℓ-B-2-2 and 1-3-ℓ-B-2-3) is bounded by the advantage of Problem
4. All the other games are conceptually changed from the previous one.

For bounding the advantage gap between Games 1-4-(t−1) and 1-4-t, similar Sub-Games are used

(the lower diagram in Figure 6). The difference from the above is that a ternary coin τrenc
U← {0, 1, 2}

is used, so, the advantage of A in Game 1-4-(t − 1)′ is a third of that in Game 1-4-(t − 1). And,
when τrenc = 1, there are just four intermediate sub-games. Here, while the gap is bounded by the
advantage of Problems 2 and 4 when τrenc = 1, the gap is bounded by that of Problem 3 when
τrenc = 2.

Proof of Lemma 17. Let ν1 be the maximum number of A’s decryption key queries, ν2 be the
maximum number of A’s re-encryption key queries and ν3 be the maximum number of A’s re-
encryption queries. To prove Lemma 17, we consider the following 2(ν1 + ν2) + 3ν3 + 6 games. In
Game 0′′, a part framed by a box indicates coefficients to be changed in a subsequent game. In the
other games, a part framed by a box indicates coefficients which were changed in a game from the
previous game.

Game 0′′: We only describe the components which are changed in the other games.

The reply to a decryption key query for v⃗ is:

k∗ := ( 1, δv⃗, 02, 0n, 0n , η⃗, 0 )B∗ , k∗
ran := ( 0, δranv⃗, 0

2, 0n, 0n , η⃗ran, 0 )B∗ , (28)

and skIPEv⃗ , where δ, δran
U← Fq, η⃗, η⃗ran

U← Fnq .
k∗rk, k∗rk

ran and ctrkx⃗′ of the reply to a re-encryption key query for (v⃗, x⃗′) is:

k∗rk := ( 1, δrkv⃗, 02, 0n, 0n , η⃗ rk, 0)D∗
1
, k∗rk

ran := ( 0, δrkranv⃗, 0
2, 0n, 0n , η⃗ rk

ran, 0)D∗
1
, (29)

where δrk, δrkran
U← Fq, η⃗ rk, η⃗ rk

ran
U← Fnq , W1

U← GL(4n+ 4,Fq), D∗
1 := B∗W1.

k∗renc of the reply to a re-encryption query for (v⃗, x⃗′, octx⃗ = (C := (c, cran, cT ), S, verk)) is ⊥ if
Ver(verk, C, S) ̸= 1. Otherwise, the reply is:

k∗renc := ( 1, δrencv⃗, σ(−1, verk), 0n, 0n , η⃗ renc, 0 )D∗
1
, (30)

where, δrenc, σ
U← Fq, η⃗ renc U← Fnq , W1

U← GL(4n+ 4,Fq), D∗
1 := B∗W1.

The reply to a challenge query for (x⃗(0), x⃗(1),m(0),m(1)) is:

c := ( ζ, ωx⃗(b) , ρ(verk♣, 1), 0n , 0n , 0n, φ )B, (31)

cran := ( 0, ωranx⃗
(b) , ρran(verk

♣, 1), 0n , 0n , 0n, φran )B, (32)

cT := m(b)·gζT , C := (c, cran, cT ), S
R← Sign(sigk♣, C), where b

U← {0, 1}, ζ, ω, ωran, ρ, ρran, φ, φran
U←

Fq and (sigk♣, verk♣)
R← SigKG(1λ).

Game 1-1: Game 1-1 is the same as Game 0′′ except that the reply to the challenge query for
(x⃗(0), x⃗(1),m(0),m(1)) is

c := ( ζ, ωx⃗(b), ρ(verk♣, 1), ω′x⃗(b) , ω′′
0 x⃗

(0) + ω′′
1 x⃗

(1) , 0n, φ )B, (33)

where ω′, ω′′
0 , ω

′′
1

U← Fq and all the other variables are generated as in Game 0′′.
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Game 1-2-h (h = 1, . . . , ν1): Game 1-2-0 is Game 1-1. Game 1-2-h is the same as Game 1-2-(h−1)
except that the reply to the h-th decryption key query for v⃗ is

k∗ := ( 1, δv⃗, 02, 0n, δ′v⃗ , η⃗, 0 )B∗ , k∗
ran := ( 0, δranv⃗, 0

2, 0n, δ′v⃗ , η⃗ran, 0 )B∗ , (34)

where δ′, δ′ran
U← Fq and all the other variables are generated as in Game 1-2-(h− 1).

Game 1-3-ℓ (ℓ = 1, . . . , ν2): Game 1-3-0 is Game 1-2-ν1. Game 1-3-ℓ is the same as Game 1-3-
(ℓ− 1) except that the reply to the ℓ-th re-encryption key query for (v⃗, x⃗ ′) is as follow:

k∗rk := ( 1, δrkv⃗, 02, 0n, δ′rkv⃗ , η⃗ rk, 0 )D∗
1
, k∗rk

ran := ( 1, δrkranv⃗, 0
2, 0n, δ′rkranv⃗ , η⃗

rk
ran, 0 )D∗

1
, (35)

where δ′rk
U← Fq and all the other variables are generated as in Game 1-3-(ℓ− 1).

Game 1-4-t (t = 1, . . . , ν3): Game 1-4-0 is Game 1-3-ν2. Game 1-4-t is the same as Game 4-
(t − 1) except that the reply to the t-th re-encryption query for (v⃗, x⃗′, oct = (C, verk, S)) is, if
Ver(verk, C, S) = 1,

if oct = octx⃗(b) , k
∗renc := ( 1, δrencv⃗, σ(−1, verk), 0n, δ′rencv⃗ , η⃗ renc, 0 )D∗

1
, (36)

if oct ̸= octx⃗(b) , k
∗renc := ( 1, δrencv⃗, σ(−1, verk), 0n, r⃗ ′′ , η⃗ renc, 0 )D∗

1
, (37)

where δ′renc
U← Fq, r⃗ ′′

U← Fnq and all the other variables are generated as in Game 1-4-(t− 1).
Game 1-5: Game 1-5 is the same as Game 1-4-ν3 except that the reply to the challenge query for

(x⃗(0), x⃗(1),m(0),m(1)) is:

c := ( ζ, ω0x⃗
(0) + ω1x⃗

(1) , ρ(verk♣, 1), ω′
0x⃗

(0) + ω′
1x⃗

(1), ω′′
0 x⃗

(0) + ω′′
1 x⃗

(1), 0n, φ )B, (38)

where ω0, ω1
U← Fq and all the other variables are generated as in Game 1-4-ν3.

Game 1-6-0: Game 1-6-0 is the same as Game 1-5 except that the reply to every decryption key
query for v⃗ is

k∗ := ( 1, δv⃗, 02, 0n, 0n , η⃗, 0 )B∗ , k∗
ran := ( 0, δranv⃗, 0

2, 0n, 0n , η⃗ran, 0 )B∗ ,

and the reply to every re-encryption key query for (v⃗, x⃗) is as

k∗rk := ( 1, δrkv⃗, 02, 0n, 0n , η⃗ rk, 0 )D∗
1
, k∗rk

ran := ( 1, δrkranv⃗, 0
2, 0n, 0n , η⃗ rk

ran, 0 )D∗
1
,

and the reply to every re-encryption query for (v⃗, x⃗′, oct = (C, S, verk)) is, if Ver(verk, C, S) = 1,

if oct = octx⃗(b) , k
∗renc := ( 1, δrencv⃗, σ(−1, verk), 0n, 0n , η⃗ renc, 0 )D∗

1
,

where all the other variables are generated as in Game 1-5.
Game 1-6-t (t = 1, . . . , ν3): Game 1-6-t is the same as Game 1-6-(t− 1) except that the reply to

the t-th re-encryption query for (v⃗, x⃗ ′, oct = (C,S, verk)) is, if Ver(verk, C, S) = 1,

if oct ̸= octx⃗(b) , k
∗renc := ( 1, δrencv⃗, σ(−1, verk), 0n, 0n , η⃗ renc, 0 )D∗

1
,

where all the variables are generated as in Game 1-6-(t− 1).
Game 1-7: Game 1-7 is the same as Game 1-6-ν3 except that the reply to the challenge query for

(x⃗(0), x⃗(1),m(0),m(1)) is:

c := ( ζ, ω0x⃗
(0) + ω1x⃗

(1), ρ(verk♣, 1), 0n, 0n , 0n, φ )B, (39)

where ω0, ω1
U← Fq and all the other variables are generated as in Game 1-6-ν3.
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Game 2-1: Game 2-1 is the same as Game 1-7 except that the reply to the challenge query for
(x⃗(0), x⃗(1),m(0),m(1)) is

cran := ( 0, ωx⃗(b), ρ(verk♣, 1), ω′x⃗(b) , ω′′
0 x⃗

(0) + ω′′
1 x⃗

(1) , 0n, φ )B,

where ω′, ω′′
0 , ω

′′
1

U← Fq and all the other variables are generated as in Game 1-7.

Game 2-2-h (h = 1, . . . , ν1): Game 2-1 is Game 2-2-0. Game 2-2-h is the same as Game 2-2-(h−1)
except that the reply to the h-th decryption key query for v⃗, (k∗,k∗

ran), is of the form in Eq. (34),

where δ′
U← Fq and all the other variables are generated as in Game 2-2-(h− 1).

Game 2-3-ℓ (ℓ = 1, . . . , ν2): Game 2-3-0 is Game 2-2-ν1. Game 2-3-ℓ is the same as Game 2-3-
(ℓ− 1) except that the reply to the ℓ-th re-encryption key query for (v⃗, x⃗), (k∗rk,k∗rk

ran), is of the

form in Eq. (35), where δ′rk
U← Fq and all the other variables are generated as in Game 2-3-(ℓ−1).

Game 2-4-t (t = 1, . . . , ν3): Game 2-4-0 is Game 2-3-ν2. Game 2-4-t is the same as Game 2-4-
(t− 1) except that the reply to the t-th re-encryption query for (v⃗, x⃗′, oct = (C, verk, S)), k∗renc,
is given, if Ver(verk, C, S) = 1, of the form in Eq. (36) if oct = octx⃗(b) , or of the form in Eq. (37) if

oct ̸= octx⃗(b) , where δ
′renc U← Fq and all the other variables are generated as in Game 2-4-(t− 1).

Game 2-5: Game 2-5 is the same as Game 2-4-ν3 except that the reply to the challenge query for
(x⃗(0), x⃗(1),m(0),m(1)) is:

cran := ( 0, ω0x⃗
(0) + ω1x⃗

(1) , ρ(verk♣, 1), ω′
0x⃗

(0) + ω′
1x⃗

(1), ω′′
0 x⃗

(0) + ω′′
1 x⃗

(1), φ )B, (40)

where ω0, ω1
U← Fq and all the other variables are generated as in Game 2-4-ν3.

Let Adv
(0′′)
A (λ), Adv

(ι-1)
A (λ), Adv

(ι-2-h)
A (λ), Adv

(ι-3-ℓ)
A (λ), Adv

(ι-4-t)
A (λ), and Adv

(ι-5)
A (λ), be the ad-

vantages of A in Game 0′′, ι-1, ι-2-h, ι-3-ℓ, ι-4-t and ι-5 for ι = 1, 2, respectively. We will show seven
lemmas (Lemmas 18-27) that evaluate the gaps between pairs of neghoboring games. From these
lemmas and Lemma 3-6, we obtain

Adv
(0′)
A (λ) ≤

∣∣∣Adv(0′)A (λ)− Adv
(1-1)
A (λ)

∣∣∣
+

2∑
ι=1

(∑ν1
h=1

∣∣∣Adv(ι-2-(h−1))
A (λ)− Adv

(ι-2-h)
A (λ)

∣∣∣+∑ν2
ℓ=1

∣∣∣Adv(ι-3-(ℓ−1))
A (λ)− Adv

(ι-3-ℓ)
A (λ)

∣∣∣
+
∑ν3

t=1

∣∣∣Adv(ι-4-(t−1))
A (λ)− Adv

(ι-4-t)
A (λ)

∣∣∣+ ∣∣∣Adv(ι-4-ν3)A (λ)− Adv
(ι-5)
A (λ)

∣∣∣)
+
∣∣∣Adv(1-5)A (λ)− Adv

(1-6-0)
A (λ)

∣∣∣+∑ν3
t=1

∣∣∣Adv(1-6-(t−1))
A (λ)− Adv

(1-6-t)
A (λ)

∣∣∣
+
∣∣∣Adv(1-6-ν3)A (λ)− Adv

(1-7)
A (λ)

∣∣∣+ Adv
(2-5)
A (λ).

≤
2∑
ι=1

(
AdvDLIN

Eι-1 (λ) +
∑ν1

h=1

∑2
j=1

∑2
l=1Adv

DLIN
Eι-2-h-j-l(λ)

+
∑ν2

ℓ=1

∑2
j=1

(
AdvIPE,AHEι-3-ℓ-A-j (λ) +

∑2
l=1Adv

DLIN
Eι-3-ℓ-B-j-l(λ)

)
+
∑ν3

t=1

(∑2
j=1Adv

IPE,AH
Eι-4-t-A-j (λ) +

∑2
l=1Adv

DLIN
Eι-4-t-B-l(λ) + AdvDLIN

Eι-4-t-C (λ)
))

+
∑ν3

t=0Adv
DLIN
E1-6-t(λ) + AdvDLIN

E1-7 (λ) + ϵ,

where ϵ := (66ν1 + 70ν2 + 91ν3 + 20)/q. This completes the proof of Lemma 17. 2
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Lemma 18. For any adversary A, there exists a probabilistic machine B1, whose running time is

essentially the same as that of A, such that for any security parameter λ, |Adv(0)A (λ)−Adv
(1-1)
A (λ)| ≤

AdvP1B1-1(λ) + 2/q.

Proof. Lemma 18 is proven in similar manner to Lemmas 6 and 7 in [29]. ⊓⊔

Lemma 19. For any adversary A, there exists a probabilistic machine B1-2-j-2 and B1-2-j-4 for
j = 1, 2 whose running time is essentially the same as that of A, such that for any security parame-

ter λ, |Adv(1-2-(h−1))
A (λ)− Adv

(1-2-h)
A (λ)| ≤

∑2
j=1

(
AdvP2B1-2-h-j-2(λ) + AdvP4B1-2-h-j-4(λ)

)
+ 20/q, where

B1-2-h-j-2(·) := B1-2-j-2(h, ·) and B1-2-h-j-4(·) := B1-2-j-4(h, ·) for j = 1, 2.

Proof. Lemma 19 is proven in similar manner to Lemmas 7-10 in [29]. We define intermediate games,
Sub-Game 1-2-h-1-ι and Sub-Game 1-2-h-2-ι (ι := 1 . . . , 4) as follows. The purpose of the game
changes between Sub-Game 1-2-h-1-1 and Sub-Game 1-2-h-1-4 (resp. between Sub-Game 1-2-h-2-1
and Sub-Game 1-2-h-2-4) is that the normal form k∗ (resp. k∗

ran) is changed to temporal 2 form.

Sub-Game 1-2-h-1-1 (h = 1, . . . , ν1): Sub-Game 1-2-h-1-1 is the same as Sub-Game 1-2-(h−1)-2-4
except that the reply to the challenge query for (x⃗(0), x⃗(1),m(0),m(1)) where m(0) = m(1) is:

c := ( ζ, ωx⃗(b), ρ(verk♣, 1), ω′x⃗(b) , ω′′
0 x⃗

(0) + ω′′
1 x⃗

(1) , 0n, φ )B,

where ω′, ω′′
0 , ω

′′
1

U← Fq and all the other variables are generated as in Sub-Game 1-2-(h− 1)-2-4.
Sub-Game 1-2-h-1-2 (h = 1, . . . , ν1): Sub-Game 1-2-h-1-2 is the same as Sub-Game 1-2-h-1-1 ex-

cept that the reply to the decryption key query for v⃗ is:

k∗ := ( 1, δv⃗, 02, δ′v⃗ , 0n, η⃗ rk, 0 )B∗ , (41)

where δ′
U← Fq and all the other variables are generated as in Sub-Game 1-2-h-1-1.

Sub-Game 1-2-h-1-3 (h = 1, . . . , ν1): Sub-Game 1-2-h-1-3 is the same as Sub-Game 1-2-h-1-2 ex-
cept that the reply to the challenge query for (x⃗(0), x⃗(1),m(0),m(1)) where m(0) = m(1) is:

c := ( ζ, ωx⃗(b), ρ(verk♣, 1), ω′
0x⃗

(0) + ω′
1x⃗

(1) , ω′′
0 x⃗

(0) + ω′′
1 x⃗

(1), 0n, φ )B, (42)

where ω′
0, ω

′
1

U← Fq and all the other variables are generated as in Sub-Game 1-2-h-1-2.
Sub-Game 1-2-h-1-4 (h = 1, . . . , ν1): Sub-Game 1-2-h-1-4 is the same as Sub-Game 1-2-h-1-3 ex-

cept that the reply to the decryption key query for v⃗ is:

k∗ := ( 1, δv⃗, 02, 0n, δ′′v⃗ , η⃗ rk, 0 )B∗ , (43)

where δ′′
U← Fq and all the other variables are generated as in Sub-Game 1-2-h-1-3.

Sub-Game 1-2-h-2-1 (h = 1, . . . , ν1): Sub-Game 1-2-h-2-1 is the same as Sub-Game 1-2-h-1-4.
That is, Sub-Game 1-2-h-2-1 is the same as Sub-Game 1-2-h-1-4 except that c of the reply
to the challenge query for (x⃗(0), x⃗(1),m(0),m(1)) where m(0) = m(1) is temporal 1 form Eq. (33).

Sub-Game 1-2-h-2-2 (h = 1, . . . , ν1): Sub-Game 1-2-h-2-2 is the same as Sub-Game 1-2-h-2-1 ex-
cept that the reply to the decryption key query for v⃗ is:

k∗
ran := ( 0, δranv⃗, 0

2, δ′ranv⃗ , 0
n, η⃗ rk

ran, 0 )B∗ , (44)

where δ′ran
U← Fq and all the other variables are generated as in Sub-Game 1-2-h-2-1.
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Sub-Game 1-2-h-2-3 (h = 1, . . . , ν1): Sub-Game 1-2-h-2-3 is the same as Sub-Game 1-2-h-2-2.
That is, Sub-Game 1-2-h-2-3 is the same as Sub-Game 1-2-h-2-2 except that c of the reply
to the challenge query for (x⃗(0), x⃗(1),m(0),m(1)) where m(0) = m(1) is temporal 2 form Eq. (42).

Sub-Game 1-2-h-2-4 (h = 1, . . . , ν1): Sub-Game 1-2-h-2-4 is the same as Sub-Game 1-2-h-2-3 ex-
cept that the reply to the decryption key query for v⃗ is:

k∗
ran := ( 0, δranv⃗, 0

2, 0n, δ′′ranv⃗ , η⃗
rk

ran, 0 )B∗ , (45)

where δ′′ran
U← Fq and all the other variables are generated as in Sub-Game 1-2-h-2-3.

The advantage gaps between Sub-Game 1-2-h-1-1 and Sub-Game 1-2-h-1-4 (resp. Sub-Game
1-2-h-2-1 and Sub-Game 1-2-h-2-4) are bounded by the advantages of Problem 2 and Problem 4,
respectively. The proof of this lemma is completed in a similar manner to Lemmas 7-10 in [29]. 2

Lemma 20. For any adversary A, there exist probabilistic machines B1-3-A-j and B1-3-B-j-l for
j = 1, 2; l = 1, 2, whose running time is essentially the same as that of A, such that for any security
parameter λ,

|Adv(1-3-(ℓ−1))
A (λ)−Adv(1-3-ℓ)A (λ)| ≤

∑2
j=1

(
AdvIPE,AHB1-3-ℓ-A-j (λ) + AdvP2B1-3-ℓ-B-j-1(λ) + AdvP4B1-3-ℓ-B-j-2(λ)

)
+

22/q, where B1-3-ℓ-A-j(·) := B1-3-A-j(ℓ, ·), B1-3-ℓ-B-j-l(·) := B1-3-B-j-l(ℓ, ·).

Proof. The proof strategy is similar to Lemma 11.
First, we execute a preliminary game transformation from Game 1-3-(ℓ−1) to Game 1-3-(ℓ−1)′,

which is the same as Game 1-3-(ℓ−1) except that flip a coin τrk
U← {0, 1} before setup, and the game

is aborted when the variable srk,ℓ is determined (Definition 5) if τrk ̸= srk,ℓ. Since srk,ℓ := 0 if v⃗ · x⃗(0) ̸=
0 ∧ v⃗ · x⃗(1) ̸= 0, or v⃗ · x⃗(0) = 0 ∧ v⃗ · x⃗(1) = 0, srk,ℓ is determined at the challenge step if the ℓ-th re-
encryption key query is asked in Phase 1, and at the ℓ-th re-encryption key query step if it is asked in
Phase 2. We define that A wins with probability 1/2 when the game is aborted (and the advantage in
Game 1-3-(ℓ−1)′ is Pr[A wins in Game 1-3-(ℓ−1)′ ]−1/2 as well). Since τrk is independent from srk,ℓ,
the game is aborted with probability 1/2. Hence, the advantage in Game 1-3-(ℓ− 1)′ is a half of that

in Game 1-3-(ℓ−1), i.e., Adv1-3-(ℓ−1)′

A (λ) = 1/2·Adv1-3-(ℓ−1)
A (λ). Moreover, Pr[A wins in Game 1-3-(ℓ−

1)′] = 1
2 (Pr[A wins in Game 1-3-(ℓ− 1)′ | τrk = 0] + Pr[A wins in Game 1-3-(ℓ− 1)′ | τrk = 1]) since

τrk is uniformly and independently generated. As in the proof of Lemma 20, Eq. (17) holds.
Similarly, we define a new game, Game 1-3-ℓ′′, which is the same as Game 1-3-ℓ except that flip

a coin τrk
U← {0, 1} before setup, and the game is aborted when the variable srk,ℓ is determined if

τrk ̸= srk,ℓ. Note that Game 1-3-ℓ′ aborts if τrk ̸= srk,ℓ+1, which is different from Game 1-3-ℓ′′. As in
the proof of Lemma 20, Eq. (18) holds.
Case τrk = 0 As for the conditional probability with τrk = 0, we introduce three games as:

Sub-Game 1-3-ℓ-A-1: When τrk = 0, Sub-Game 1-3-ℓ-A-1 is the same as Game 1-3-(ℓ − 1)′ except
that the reply to the ℓ-th re-encryption key query for (v⃗, x⃗′) are

ctrkx⃗′
R← EncIPE(pk

IPE, x⃗′, R ),

where R
U← GL(4n + 4,Fq), r⃗′

U← Fnq and all the other variables are generated as in Game 1-3-
(ℓ− 1)′.

Sub-Game 1-3-ℓ-A-2: When τrk = 0, Sub-Game 1-3-ℓ-A-2 is the same as Sub-Game 1-3-ℓ-A-1 except
that (k∗rk,k∗rk

ran) of the reply to the ℓ-th re-encryption key query for (v⃗, x⃗′) is of the form as given
in Eq. (35).
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Sub-Game 1-3-ℓ-A-3: When τrk = 0, Sub-Game 1-3-ℓ-A-3 is the same as Sub-Game 1-3-ℓ-A-2 except
that ctrkx⃗′ of the reply to the ℓ-th re-encryption key query for (v⃗, x⃗′) is

ctrkx⃗′
R← EncIPE(pk

IPE, x⃗′, W1 ),

where W1 ∈ GL(4n + 4,Fq) is defined in Game 0′′ and it satisfies that D∗
1 = B∗W1 and all the

other variables are generated as in Sub-Game 1-3-ℓ-A-2. Note that Sub-Game 1-3-ℓ-A-3 is the
same as Game 1-3-ℓ′′ when τrk = 0.

As in the proof of Lemma 11,∣∣Pr[A wins in Game 1-3-(ℓ− 1)′ | τrk = 0]− Pr[A wins in Game 1-3-ℓ′′ | τrk = 0]
∣∣

≤
∣∣Pr[A wins in Game 1-3-(ℓ− 1)′ | τrk = 0]− Pr[A wins in Game 1-3-ℓ-A-1 | τrk = 0]

∣∣
+ |Pr[A wins in Game 1-3-ℓ-A-1 | τrk = 0]− Pr[A wins in Game 1-3-ℓ-A-2 | τrk = 0]|
+ |Pr[A wins in Game 1-3-ℓ-A-2 | τrk = 0]− Pr[A wins in Game 1-3-ℓ-A-3 | τrk = 0]|
≤ AdvIPE,AHB1-3-ℓ-A-1(λ) + AdvIPE,AHB1-3-ℓ-A-2(λ) + 2/q. (46)

Case τrk = 1 As for the conditional probability with τrk = 1, we introduce eight games as in the
proof of Lemma 19:

Eight Sub-Games, i.e., Sub-Game 1-3-ℓ-B-1-1, . . ., Sub-Game 1-3-ℓ-B-2-4 are defined as in similar
manners to Sub-Game 1-2-h-1-1, . . ., Sub-Game 1-2-h-2-4: In Sub-Game 1-3-ℓ-B’s, the reply to the ℓ-
th re-encryption key query, (k∗rk,k∗rk

ran), are transformed to the form Eqs. (41),(43), and Eqs. (44),(45),
respectively, instead of (k∗,k∗

ran) used in Sub-Game 1-2-h’s.
As in the proof of Lemma 19, we have∣∣Pr[A wins in Game 1-3-(ℓ− 1)′ | τrk = 1]− Pr[A wins in Game 1-3-ℓ′′ | τrk = 1]

∣∣
≤

2∑
ι=1

(
AdvP2B1-3-ℓ-B-1-ι(λ) + AdvP4B1-3-ℓ-B-2-ι(λ)

)
+ 20/q. (47)

Therefore, from Eqs. (17), (18), (46), and (47),

|Adv1-3-(ℓ−1)
A (λ)− Adv1-3-ℓA (λ)|

= |Pr[A wins in Game 1-3-(ℓ− 1)′ | τrk = 0] + Pr[A wins in Game 1-3-(ℓ− 1)′ | τrk = 1]− 1

−
(
Pr[A wins in Game 1-3-ℓ′′ | τrk = 0] + Pr[A wins in Game 1-3-ℓ′′ | τrk = 1]− 1

)∣∣
= |Pr[A wins in Game 1-3-(ℓ− 1)′ | τrk = 0]− Pr[A wins in Game 1-3-ℓ′′ | τrk = 0]

+Pr[A wins in Game 1-3-(ℓ− 1)′ | τrk = 1]− Pr[A wins in Game 1-3-ℓ′′ | τrk = 1]
∣∣

≤ AdvIPE,AHB1-3-ℓ-A-1(λ) + AdvIPE,AHB1-3-ℓ-A-2(λ) +
2∑
ι=1

(
AdvP2B1-3-ℓ-B-1-ι(λ) + AdvP4B1-3-ℓ-B-2-ι(λ)

)
+ 22/q.

This completes the proof of Lemma 20. 2

Lemma 21. For any adversary A, there exists a probabilistic machine B1-4-A-j, B1-4-B-j for j =
1, 2, and B1-4-C , whose running times are essentially the same as that of A, such that for any

security parameter λ, |Adv(1-4-(t−1))
A (λ)−Adv

(1-4-t)
A (λ)| ≤

∑2
j=1 Adv

IPE,AH
B1-4-t-A-j (λ) +AdvP2B1-4-t-B-1(λ) +

AdvP4B1-4-t-B-2(λ) + AdvP3B1-4-t-C (λ) + 24/q,
where B1-4-t-A-j(·) := B1-4-A-j(t, ·), B1-4-t-B-j(·) := B1-4-B-j(t, ·), B1-4-t-C(·) := B1-4-C(t, ·).
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Proof. The proof strategy is similar to Lemma 12.
First, we execute a preliminary game transformation from Game 1-4-(t− 1) to Game 1-4-(t− 1)′,

which is the same as Game 1-4-(t− 1) except that flip a coin τrenc
U← {0, 1, 2} before setup, and the

game is aborted when the variable srenc,t is determined (Definition 5) if τrenc ̸= srenc,t. Since srenc,t is
defined by v⃗t, x⃗

(0), x⃗(1), octt, octx⃗(b) , the value of srenc,t is determined at the t-th re-encryption query
step if it is asked in Phase 2. We define that A wins with probability 1/2 when the game is aborted
(and the advantage in Game 1-4-(t − 1)′ is Pr[A wins in Game 1-4-(t − 1)′ ] − 1/2 as well). Since
τrenc is independent from srenc,t, the game is aborted with probability 2/3. Hence, the advantage in

Game 1-4-(t− 1)′ is a third of that in Game 1-4-(t− 1), i.e., Adv
1-4-(t−1)′

A (λ) = 1/3 · Adv1-4-(t−1)
A (λ).

Moreover, Pr[A wins in Game 1-4-(t− 1)′] = 1
3

∑2
ι=0 Pr[A wins in Game 1-4-(t− 1)′ | τrenc = ι] since

τrenc is uniformly and independently generated. Therefore,

Adv
1-4-(t−1)
A (λ) = 3 · Adv1-4-(t−1)′

A (λ)

=

2∑
ι=0

Pr[A wins in Game 1-4-(t−1)′ | τrenc = ι]− 3/2. (48)

Similarly, we define a new game, Game 1-4-t′′, which is the same as Game 1-4-t except that flip a

coin τrenc
U← {0, 1, 2} before setup, and the game is aborted when the variable srenc,t is determined if

τrenc ̸= srenc,t. Note that Game 1-4-t′ aborts if τrenc ̸= srenc,t+1, which is different from Game 1-4-t′′.
Similarly to Eq. (48),

Adv
1-4-(t−1)
A (λ) = 3 · Adv1-4-t′′A (λ) =

2∑
ι=0

Pr[A wins in Game 1-4-t′′ | τrenc = ι]− 3/2. (49)

Case τrenc = 0 As for the conditional probability with τrenc = 0, we introduce three games as:

Sub-Game 1-4-t-A-1: When τrenc = 0, Sub-Game 1-4-t-A-1 is the same as Game 1-4-(t− 1)′ except
that the reply to the t-th re-encryption query for (v⃗, x⃗′, oct) are

ctrenc1,x⃗′
R← EncIPE(pk

IPE, x⃗′, R ),

where R
U← GL(4n+ 4,Fq) and all the other variables are generated as in Game 1-4-(t− 1)′.

Sub-Game 1-4-t-A-2: When τrenc = 0, Sub-Game 1-4-t-A-2 is the same as Sub-Game 1-4-t-A-1
except that k∗renc of the reply to the t-th re-encryption query for (v⃗, x⃗′, oct) are of the form as
given in Eq. (36).

Sub-Game 1-4-t-A-3: When τrenc = 0, Sub-Game 1-4-t-A-3 is the same as Sub-Game 1-4-t-A-2
except that ctrkx⃗′ of the reply to the t-th re-encryption query for (v⃗, x⃗′, oct) is

ctrenc1,x⃗′
R← EncIPE(pk

IPE, x⃗′, W1 ),

where W1 ∈ GL(4n + 4,Fq) is defined in Game 0′′ and it satisfies that D∗
1 = B∗W1 and all the

other variables are generated as in Sub-Game 1-4-t-A-2. Note that Sub-Game 1-4-t-A-3 is the
same as Game 1-4-t′′ when τrenc = 0.

As in the proof of Lemma 12 (Claims 5, 6, and 7),∣∣Pr[A wins in Game 1-4-(t− 1)′ | τrenc = 0]− Pr[A wins in Game 1-4-t′′ | τrenc = 0]
∣∣

≤
∣∣Pr[A wins in Game 1-4-(t− 1)′ | τrenc = 0]− Pr[A wins in Game 1-4-t-A-1 | τrenc = 0]

∣∣
+ |Pr[A wins in Game 1-4-t-A-1 | τrenc = 0]− Pr[A wins in Game 1-4-t-A-2 | τrenc = 0]|
+ |Pr[A wins in Game 1-4-t-A-2 | τrenc = 0]− Pr[A wins in Game 1-4-t-A-3 | τrenc = 0]|
≤ AdvIPE,AHB1-4-t-A-1(λ) + AdvIPE,AHB1-4-t-A-2(λ) + 2/q. (50)
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Case τrenc = 1 As for the conditional probability with τrenc = 1, we introduce four new games.
Four Sub-Games, i.e., Sub-Game 1-4-t-B-1, . . ., Sub-Game 1-4-t-B-4 are defined as in similar

manners to Sub-Game 1-2-h-1-1, . . ., Sub-Game 1-2-h-1-4: In Sub-Game 1-4-t-B’s, the reply to the
t-th re-encryption query, k∗renc, are transformed to the form Eqs. (41),(34), respectively, instead of
k∗ used in Sub-Game 1-2-h’s.

As in the proof of Lemma 19, we have∣∣Pr[A wins in Game 1-4-(t− 1)′ | τrenc = 1]− Pr[A wins in Game 1-4-t′′ | τrenc = 1]
∣∣

≤ AdvP2B1-4-t-B-1(λ) + AdvP4B1-4-t-B-2(λ) + 20/q. (51)

Case τrenc = 2 As for the conditional probability with τrenc = 2, we introduce a game as:

Sub-Game 1-4-t-C: When τrenc = 2, Sub-Game 1-4-t-C is the same as Game 1-4-(t− 1)′ except that
k∗renc of the reply to the t-th re-encryption query for (v⃗, x⃗′, oct) is of the form as given in Eq.(37).
Note that Sub-Game 1-4-t-C is the same as Game 1-4-t′′ when τrenc = 2.

From Claim 9,∣∣Pr[A wins in Game 1-4-(t− 1)′ | τrenc = 2]− Pr[A wins in Game 1-4-t′′ | τrenc = 2]
∣∣

=
∣∣Pr[A wins in Game 1-4-(t− 1)′ | τrenc = 2]− Pr[A wins in Game 1-4-t-B | τrenc = 2]

∣∣
≤ AdvP3B1-4-t-C (λ) + 2/q. (52)

Therefore, from Eqs. (48), (49), (50), (51), and (52),

|Adv1-4-(t−1)
A (λ)− Adv1-4-tA (λ)|

=
∣∣∣∑2

ι=0 Pr[A wins in Game 1-4-(t− 1)′ | τrenc = ι]− 3/2

−(
∑2

ι=0 Pr[A wins in Game 1-4-t′′ | τrenc = ι]− 3/2)
∣∣∣

=
∣∣∣∑2

ι=0 (Pr[A wins in Game 1-4-(t− 1)′ | τrenc = ι]− Pr[A wins in Game 1-4-t′′ | τrenc = ι])
∣∣∣

≤ AdvIPE,AHB1-4-t-A-1(λ) + AdvIPE,AHB1-4-t-A-2(λ) + AdvP2B1-4-t-B-1(λ) + AdvP4B1-4-t-B-2(λ) + AdvP3B1-4-t-C (λ) + 24/q.

This completes the proof of Lemma 21. ⊓⊔

Lemma 22. For any adversary A, |Adv(1-4-ν3)A (λ)− Adv
(1-5)
A (λ)| ≤ 1/q,.

Proof. Lemma 22 is proven in a similar manner to Lemma 11 in [29]. ⊓⊔

Lemma 23. For any adversary A, there exists a probabilistic machine B1-5, whose running time is

essentially the same as that of A, such that for any security parameter λ, |Adv(1-5)A (λ)−Adv(1-6-0)A (λ)| ≤
AdvP2B1-6-0(λ).

Proof. Lemma 23 is proven in a similar manner to Lemma 14 using Problem 2 instead of Problem
4. ⊓⊔

Lemma 24. For any adversary A, there exists a probabilistic machine B1-6, whose running time

is essentially the same as that of A, such that for any security parameter λ, |Adv(1-6-(t−1))
A (λ) −

Adv
(1-6-t)
A (λ)| ≤ AdvP3B1-6-t(λ) + 2/q, where B1-6-t(·) := B1-6(t, ·).

Proof. Lemma 24 is proven in a similar manner to Claim 9. ⊓⊔
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Lemma 25. For any adversary A, there exists a probabilistic machine B1-7, whose running time is

essentially the same as that of A, such that for any security parameter λ, |Adv(1-6)A (λ)−Adv(1-7)A (λ)| ≤
AdvP1B1-7(λ) + 2/q.

Proof. Lemma 25 is proven in a similar manner to Lemma 18. ⊓⊔

The game changes between Game 1-7 and Game 2-4-ν3 is similar to those between Game 0′′

and Game 1-4-ν3 except the form of the component of the challenge ciphertext cran is changed to
unbiased form. Therefore, the advantage of between Game 1-7 and Game 2-4-ν3 is bounded by a
similar manner to those obtained in Lemmas 18–21.

Lemma 26. For any adversary A, |Adv(2-4-ν3)A (λ)− Adv
(2-5)
A (λ)| ≤ 1/q,.

Proof. Lemma 26 is proven in similar manner to Lemma 11 in [29].

Lemma 27. For any adversary A, Adv(2-5)A (λ) = 0.

Proof. The value of b is independent from adversary’s view in Game 2-5. So, Adv
(2-5)
A (λ) = 0. 2

D.4 Proof of Theorem 3 (PAH-RC: Predicate- and Attribute-Hiding for
Re-Encrypted Ciphertexts)

The variable sm,x,v in Definition 6 is used for defining cases in the proof of Theorem 3. For that
purpose, the following claims are important, which are deduced from the restriction described in
Challenge phase.

– When sm,x,v = 0, it holds that R(v′, x′(0)) = R(v′, x′(1)) = 0 for any decryption key query v′.
– When sm,x,v = 1, it holds that R(v′, x′(0)) = R(v′, x′(1)) for any decryption key query v′.

Theorem 3. The proposed IP-PRE scheme is predicate- and attribute-hiding for re-encrypted cipher-
texts against chosen plaintext attacks provided the underlying IPE scheme is fully attribute-hiding.
For any adversary A there exist probabilistic machines E1-1, E1-2, E2-1 and E2-2 whose running times
are essentially the same as that of A, such that for any security parameter λ,

AdvPAH-RCA (λ) ≤ AdvIPE,AHE1-1 (λ) + AdvIPE,AHE1-2 (λ) +
1

2
(AdvIPE,AHE2-1 (λ) + AdvIPE,AHE2-2 (λ)).

Proof. First, we execute a game transformation from the original security game (Game 0) to Game

0′ which is the same as Game 0 except flip a coin τm,x,v
U← {0, 1} before setup and game is aborted

if τm,x,v ̸= sm,x,v. We define that A wins with probability 1/2 when the game is aborted.

Hence the advantage in Game 0′ is a half of that in Game 0’ i.e., Adv
(0′)
A (λ) = 1/2·Adv(0)A (λ) where

Adv
(0)
A (λ) = AdvPAH-RCA (λ). Moreover, Pr[A wins] := 1/2 · (Pr[A wins|τm,x,v = 0]+Pr[A wins|τm,x,v =

1]) in Game 0′.

AdvPAH-RCA (λ) = Adv
(0)
A (λ) = 2 · Adv(0

′)
A (λ)

= Pr[A wins|τm,x,v = 0] + Pr[A wins|τm,x,v = 1]− 1

= (Pr[A wins|τm,x,v = 0]− 1/2) + (Pr[A wins|τm,x,v = 1]− 1/2).

As for the conditional probabilities with τm,x,v = 0 and τm,x,v = 1, i.e., Pr[A wins|τm,x,v = 0]

and Pr[A wins|τm,x,v = 1], Lemmas 28 and 32 hold. Therefore, AdvPAH-RCA (λ) ≤ AdvIPE,AHE1-1 (λ) +

AdvIPE,AHE1-2 (λ) + 1
2(Adv

IPE,AH
E2-1 (λ) + AdvIPE,AHE2-2 (λ)). This completes the proof of Theorem 3. ⊓⊔

Corollary 1-2. The proposed IP-PRE scheme is predicate- and attribute-hiding for re-encrypted
ciphertexts against chosen plaintext attacks under the DLIN assumption provided the underlying IPE
scheme is given by the OT12 IPE scheme.
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Proof of Theorem 3 (PAH-RC) in the Case τm,x,v = 0

Lemma 28. The proposed IP-PRE scheme is predicate- and attribute-hiding for re-encrypted ci-
phertexts against chosen plaintext attack in the case τm,x,v = 0 under the attribute-hiding security of
the underlying IPE scheme.

For any adversary A, there exist probabilistic machines E1-1 and E1-2, whose running times are
essentially the same as that of A, such that for any security parameter λ in the case τm,x,v = 0,

Pr[A wins|τm,x,v = 0]− 1/2 ≤ AdvIPE,AHE1-1 (λ) + AdvIPE,AHE1-2 (λ).

Proof Outline of Lemma 28. The purpose of this game transformation is that {ctrenc
ι,x⃗(b)
}ι=1,2 are

changed to ciphertexts with a random attribute and a random plaintext. We employ Game 0′, Game 1
and Game 2. In Game 1, {ctrenc

ι,x⃗(b)
}ι=1,2 are changed to {EncIPE(pkIPE, r⃗ι, Rι)}ι=1,2, respectively, where

r⃗ι
U← Fnq and Rι

U← GL(4n+ 4,Fq) for ι = 1, 2. In the Case τm,x,v = 0, the adversary does not make

decryption query v⃗ such that v⃗ · x⃗(b) = 0. So, {ctrenc
ι,x⃗(b)
}ι=1,2 is changed to {EncIPE(pkIPE, r⃗ι, Rι)}ι=1,2

by using the attribute-hiding security of the underlying IPE scheme.
To prove the advantage gap between Game 0′ and Game 1 is bounded by the advantage of the

attribute-hiding security of the underlying IPE scheme, we construct a simulator of the challenger
of Game 0′ or Game 1 by using an instance with pkIPE of the underlying IPE scheme.

Proof of Lemma 28. To prove Lemma 28, we consider the following 2 games. In Game 0′, a part
framed by a box indicates coefficients to be changed in a subsequent game. In the other games, a
part framed by a box indicates coefficients which were changed in a game from the previous game.

Game 0′: Same as a Game 0 except that flip a coin τm,x,v
U← {0, 1} before setup, and the game is

aborted if τm,x,v ̸= sm,x,v. In order to prove Lemma 28, we consider the case with τm,x,v = 0. We
only describe the components which are changed in the other games. k∗renc, crenc, {ctrenc

ι,x⃗′(b)
}ι=1,2

of the reply to a challenge query for (m(0),m(1), x⃗(0), x⃗(1), v⃗(0), v⃗(1), x⃗′(0), x⃗′(1)) are:

k∗renc := ( 1, δrencv⃗(b) , σ(−1, verk♣), 0n, 0n, η⃗ renc, 0)D∗
1
,

crenc := ( ζrenc , ωrencx⃗(b) , ρrenc(verk♣, 1), 0n, 0n, φrenc)D2 , crencT := m(b) · gζ
renc

T ,

ctrenc
1,x⃗′(b)

R← EncIPE(pk
IPE, x⃗′(b) , W1 ), ctrenc

2,x⃗′(b)
R← EncIPE(pk

IPE, x⃗′(b) , W2 ), (53)

where W1,W2
U← GL(4n+ 4,Fq), D∗

1 := B∗W1, D2 := BW2.
Game 1: Game 1 is the same as Game 0′ except that the reply to the challenge query for

(m(0),m(1), x⃗(0), x⃗(1), v⃗(0), v⃗(1), x⃗′(0), x⃗′(1)) is

ctrenc
1,x⃗′(b)

R← EncIPE(pk
IPE, r⃗1 , R1 ), ctrenc

2,x⃗′(b)
R← EncIPE(pk

IPE, r⃗2 , R2 ), (54)

where r⃗1, r⃗2
U← Fnq and R1, R2

U← GL(4n + 4,Fq) (R1, R2 are independent from W1,W2) and all
the other variables are generated as in Game 0′.

Game 2: Game 2 is the same as Game 1 except that the reply to the challenge query for
(m(0),m(1), x⃗(0), x⃗(1), v⃗(0), v⃗(1), x⃗′(0), x⃗′(1)) is

k∗renc = ( 1, u⃗ , σ(−1, verk♣), 0n, 0n, η⃗ renc, 0)D∗
1
,

crenc := ( ζ ′ , u⃗ ′ , ρrenc(verk♣, 1), 0n, 0n, φrenc )D2 , crencT := m(b) · gζ
renc

T ,
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where u⃗, u⃗ ′ U← Fnq , ζ ′
U← Fq (ζ ′ is independent from ζrenc) and all the other variables are generated

as in Game 1.

Let Adv
(0′)
A (λ),Adv

(1)
A (λ) and Adv

(2)
A (λ) be the advantages of A in Games 0′, 1, and 2, respec-

tively. We will show three lemmas (Lemma 29- 31) that evaluate the gaps between pairs of neghobor-

ing games. We obtain Adv
(0′)
A (λ) ≤

∣∣∣Adv(0′)A (λ)− Adv
(1)
A (λ)

∣∣∣ + ∣∣∣Adv(1)A (λ)− Adv
(2)
A (λ)

∣∣∣ + Adv
(2)
A (λ) ≤

AdvIPE,AHB1-1 (λ) + AdvIPE,AHB1-2 (λ). This completes the proof of Lemma 28. 2

Lemma 29. For any adversary A, there exists a probabilistic machine B1-1 and B1-2, whose running

time is essentially the same as that of A, such that for any security parameter λ, |Adv(0
′)

A (λ) −
Adv

(1)
A (λ)| ≤ AdvIPE,AHB1-1 (λ) + AdvIPE,AHB1-2 (λ).

Proof. In order to prove to Lemma 29, we construct probabilistic machines B1-1 and B1-2 against
the fully attribute-hiding security using an adversary A in a security game (Game 0′ or Game 1)
as a black box. First, we consider the intermediate game Game 1′. Game 1’ is the same as Game
0′ except that ctrencx⃗′ of the reply to the challenge re-encrypted ciphertext is of the form in Eq.(54).

In order to prove that |Adv(0
′)

A (λ)−Adv
(1′)
A (λ)| ≤ AdvIPE,AHB1-1 (λ), we construct a probabilistic machine

B1-1 against the fully attribute-hiding security using an adversary A in a security game (Game 0′ or
Game 1′) as a black box as follows:

1. B1-1 is given a public key pkIPE of the IPE, from the challenger for the attribute-hiding security
of the underlying IPE.

2. B1-1 plays a role of the challenger in the security game against A.
3. At the first step of the game, B1-1 generates a public and secret key as follows: (paramn,B =

(b0, . . . , b4n+3),B∗ = (b∗0, . . . , b
∗
4n+3))

R← Gob(1λ, 4n + 4), B̂ := (b0, . . . , bn+2, b4n+3), B̂∗ :=

(b∗n+1, b
∗
n+2b

∗
3n+3, . . . , b

∗
4n+2). Finally, B1-1 provides A with pk := (1λ, pkIPE, paramn, B̂, B̂∗).

4. When a decryption key query is issued for a vector v⃗, B1-1 computes a normal form decryption
key k∗,k∗

ran using B∗ and ask a key query v⃗ to the challenger of the underlying IPE, then obtain
the decryption key skIPEv⃗ , and provides A with a decryption key skv⃗ := (k∗,k∗

ran, sk
IPE
v⃗ ).

5. When a re-encryption key query is issued for (v⃗, x⃗′), B1-1 computes a normal form re-encryption
key rkv⃗,x⃗′ := (k∗rk,k∗rk

ran, D̂∗
1, ct

rk
x⃗′ , prectx⃗′) using B∗ and pkIPE. Finally, B1-1 provides A with a

re-encryption key rkv⃗,x⃗′ .
6. When a re-encryption query is issued for (v⃗, x⃗′, octx⃗ = (x⃗, c, cran, cT , verk, S)), if

Ver(verk, (c, cran, cT ), S) ̸= 1, B1-1 returns ⊥ to A. Otherwise, B1-1 computes a normal form re-
encrypted ciphertext rctx⃗′ := (k∗renc, crenc, crencT , {ctrencι,x⃗′ }ι=1,2) using B, B∗ and pkIPE. B1-1 provides
A with a re-encrypted ciphertext rctx⃗′ .

7. When the challenge query is issued for (m(0),m(1), x⃗(0), x⃗(1), v⃗(0), v⃗(1), x⃗′(0), x⃗′(1)), B1-1 picks a bit

b
U← {0, 1} and generates (sigk♣, verk♣)

R← SigKG(1λ). B1-1 computes a normal form k∗renc, crenc,
crencT and ctrk

x⃗(b)
using B, B∗ and pkIPE. Next, B1-1 submits (X(b) := W2, X

(1−b) := R, x⃗(b) :=

x⃗′(b), x⃗(1−b) := r⃗) to the attribute-hiding challenger of the underlying IPE scheme where r⃗
U← Fnq

and R
U← GL(4n + 4,Fq) and receives ctx⃗(β) for β

U← {0, 1}. Finally, B1-1 provides A with a
challenge re-encrypted ciphertext rctx⃗(b) := (crenc, crencT ,k∗renc, ctrenc

1,x⃗′(b)
, ctrenc

2.x⃗′(b)
:= ctx⃗′β ).

8. A finally outputs bit b′. B1-1 outputs β = 0 if b′ = b, otherwise outputs β = 1.

Since ctrenc2,x⃗′ of the challenge re-encrypted ciphertext is of the form Eq.(53) (resp. of the form Eq.(54)
if β = 0 (resp. β = 1), the view of A given by B1-1 is distributed as Game 1′ (resp. Game 0′) if β = 0

(resp. β = 1). Then,
∣∣∣Adv(0)A (λ)− Adv

(1′)
A (λ)

∣∣∣ ≤ |Pr[b = b′]− 1/2| ≤ AdvIPE,AHB1-1 (λ).
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Next, in order to prove that |Adv(1
′)

A (λ)−Adv
(1)
A (λ)| ≤ AdvIPE,AHB1-2 (λ), we construct a probabilistic

machine B1-2 against the fully attribute-hiding security using an adversary A in a security game
(Game 1’ or Game 1) as a black box. Game 1 is the same as Game 1’ except that ctrkx⃗′ of the reply to

the challenge re-encrypted ciphertext ctrkx⃗′ = EncIPE(pk
IPE, r⃗ ′,W1) where r⃗

U← Fnq . Hence, this proof

is similar to the above proof. So, we have |Adv(1
′)

A (λ)− Adv
(1)
A (λ)| ≤ AdvIPE,AHB1-2 (λ).

By using hybrid argument, we have |Adv(0
′)

A (λ)− Adv
(1)
A (λ)| ≤ AdvIPE,AHB1-1 (λ) + AdvIPE,AHB1-2 (λ). 2

Lemma 30. For any adversary A, Adv(1)A (λ) = Adv
(2)
A (λ)

Proof. The basis of crenc, that is D2 := BW2 is random basis for the adversary A since the informa-
tion of W2 appears only in crenc in Game 1. So, from the adversary’s view, (ζrenc, ωrencx⃗, ρ∗(verk♣, 1),

0n, 0n, φrenc)D2 and crenc := (ζ ′renc, ωrencx⃗, ρ∗(verk♣, 1), 0n, 0n, φrenc)D2 where ζ ′renc
U← Fq are informa-

tion theoretically indistinguishable. This completes the proof of Lemma 30 2

Lemma 31. For any adversary A, Adv(2)A (λ) = 0.

Proof. The value of b is independent from adversary’s view in Game 2. So, Adv
(2)
A (λ) = 0. ⊓⊔

Proof of Theorem 3 (PAH-RC) in the Case τm,x,v = 1

Lemma 32. The proposed IP-PRE scheme is predicate- and attribute-hiding for re-encrypted cipher-
texts against chosen plaintext attack in the case τm,x,v = 1 under the fully-attribute-hiding security of
the underlying IPE scheme.

For any adversary A, there exist probabilistic machines E2-1 and E2-2, whose running times are
essentially the same as that of A, such that for any security parameter λ in the case τm,x,v = 1,

Pr[A wins|τm,x,v = 1]− 1/2 ≤ 1

2
(AdvIPE,AHE2-1 (λ) + AdvIPE,AHE2-2 (λ)).

Proof Outline Lemma 32. The purpose of this game transformation is that {ctrenc
ι,x⃗ ′(b)}ι=1,2 are

changed to ciphertexts with the opposite attribute x⃗ ′(1−b). We employ Game 0′ and Game 1. In

Game 1, {ctrenc
ι,x⃗ ′(b)}ι=1,2 are changed to ctrenc

ι,x⃗ ′(b)
U← EncIPE(pk

IPE, x⃗ ′(1−b),Wι), respectively, by using

the fully-attribute-hiding security of the IPE scheme. For the proof, we construct a simulator of the
challenger of Game 0′ or Game 1 by using an instance with pkIPE of the underlying IPE scheme.

Proof of Lemma 32. To prove Lemma 32, we consider the following 2 games. In Game 0′, a part
framed by a box indicates coefficients to be changed in a subsequent game. In the other games, a
part framed by a box indicates coefficients which were changed in a game from the previous game.

Game 0′: Same as a Game 0 expect that flip a coin τm,x,v
U← {0, 1} before setup, and the game is

aborted if τm,x,v ̸= sm,x,v. In order to prove Lemma 32, we consider the case with τm,x,v = 1. We
only describe the components which are changed in the other games. The reply to a challenge
query for (m, x⃗, v⃗, x⃗′(0), x⃗′(1)) with (m, x⃗, v⃗) := (m(0), x⃗(0), v⃗(0)) = (m(1), x⃗(1), v⃗(1)) is:

ctrenc
1,x⃗′(b)

R← EncIPE(pk
IPE, x⃗′(b) ,W1), ctrenc

2,x⃗′(b)
R← EncIPE(pk

IPE, x⃗′(b) ,W2),

where W1,W2
U← GL(4n+ 4,Fq).
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Game 1: Game 1 is the same as Game 0′ except that the reply to the challenge query for
(m, x⃗, v⃗, x⃗′(0), x⃗′(1)) with (m, x⃗, v⃗) := (m(0), x⃗(0), v⃗(0)) = (m(1), x⃗(1), v⃗(1)) is

ctrenc
1,x⃗′(b)

R← EncIPE(pk
IPE, x⃗′(1−b) ,W1), ctrenc

2,x⃗′(b)
R← EncIPE(pk

IPE, x⃗′(1−b) ,W2),

and all the other variables are generated as in Game 0′.

Let Adv
(0′)
A (λ) and Adv

(1)
A (λ) be the advantages of A in Game 0′ and Game 1, respectively. We will

show two lemmas (Lemma 33- 34) that evaluate the gaps between pairs of neghoboring games. We

obtain Adv
(0′)
A (λ) ≤

∣∣∣Adv(0′)A (λ)− Adv
(1)
A (λ)

∣∣∣+ Adv
(1)
A (λ) ≤ AdvIPE,AHB2-1 (λ) + AdvIPE,AHB2-2 (λ) + Adv

(1)
A (λ).

From Lemma 34, Adv
(0′)
A (λ) ≤ 1

2(Adv
IPE,AH
B2-1 (λ)+AdvIPE,AHB2-2 (λ)) This completes the proof of Lemma 32.

⊓⊔

Lemma 33. For any adversary A, there exists a probabilistic machine B2-1 and B2-2, whose running

time is essentially the same as that of A, such that for any security parameter λ, |Adv(0
′)

A (λ) −
Adv

(1)
A (λ)| ≤ AdvIPE,AHB2-1 (λ) + AdvIPE,AHB2-2 (λ).

Proof. Lemma 33 is proven in similar manner to Lemma 29.

Lemma 34. For any adversary A, Adv(1)A (λ) = −Adv(0
′)

A (λ).

Proof. The challenge re-encrypted ciphertext for the opposite bit 1 − b to the challenge bit b and

the others components are normal forms in Game 1 Hence, success probability Pr[Succ
(1)
A ] in Game

1 is 1−Pr[Succ
(0′)
A ], where Succ

(0′)
A is success probability in Game 0′. Therefore, we have Adv

(1)
A (λ) =

−Adv(0
′)

A (λ). ⊓⊔

D.5 Proof of Theorem 4 (PAH-RK: Predicate- and Attribute-Hiding for
Re-Encryption Keys)

The variable sv in Definition 7 is used for defining cases in the proof of Theorem 4. For that purpose,
the following claims are important, which are deduced from the restriction described in Challenge
phase.

– When sv = 0, it holds that R(v′, x′(0)) = R(v′, x′(1)) = 0 for any decryption key query v′.

– When sv = 1, it holds that R(v′, x′(0)) = R(v′, x′(1)) for any decryption key query v′.

Theorem 4. The proposed IP-PRE scheme is predicate- and attribute-hiding for re-encryption keys
against chosen plaintext attacks provided the underlying IPE scheme is fully attribute-hiding.

For any adversary A there exist probabilistic machines E1-1, E1-2, E2-1 and E2-2 whose running
times are essentially the same as that of A, such that for any security parameter λ,

AdvPAH-RKA (λ) ≤ AdvIPE,AHE1-1 (λ) + AdvIPE,AHE1-2 (λ) +
1

2
(AdvIPE,AHE2-1 (λ) + AdvIPE,AHE2-2 (λ)).

Proof. The main proof strategy of Theorem 4 is similar to the proof of the fully attribute-hiding
security for IPE scheme in [29].

First, we execute a game transformation from the original security game (Game 0) to Game 0′

which is the same as Game 0 except flip a coin τv
U← {0, 1} before setup and game is aborted if

τv ̸= sv. We define that A wins with probability 1/2 when the game is aborted.
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Hence the advantage in Game 0′ is a half of that in Game 0 i.e., Adv
(0′)
A (λ) = 1/2 ·Adv(0)A (λ) where

Adv
(0)
A (λ) = AdvPAH-RKA (λ). Moreover, Pr[A wins] = 1/2 · (Pr[A wins|τv = 0] + Pr[A wins|τv = 1]) in

Game 0′.

AdvPAH-RKA (λ) = Adv
(0)
A (λ) = 2 · Adv(0

′)
A (λ)

= Pr[A wins|τv = 0] + Pr[A wins|τv = 1]− 1

= (Pr[A wins|τv = 0]− 1/2) + (Pr[A wins|τv = 1]− 1/2).

As for the conditional probabilities with τv = 0 and τv = 1, i.e., Pr[Awins|τv = 0] and Pr[Awins|τv =
1], Lemmas 35 and 39 hold. Therefore, AdvPAH-RKA (λ) ≤ AdvIPE,AHE1-1 (λ)+AdvIPE,AHE1-2 (λ)+AdvIPE,AHE1-1 (λ)+

AdvIPE,AHE1-2 (λ). This completes the proof of Theorem 4. ⊓⊔

Corollary 1-3. The proposed IP-PRE scheme is predicate- and attribute- hiding for re-encryption
key against chosen plaintext attacks under the DLIN assumption provided the underlying IPE scheme
is given by the OT12 IPE scheme.

Proof of Theorem 4 (PAH-RK) in the Case τv = 0

Lemma 35. The proposed IP-PRE scheme is predicate- and attribute-hiding for re-encryption keys
against chosen plaintext attack in the case τv = 0 under attribute-hiding security of an underlying
IPE scheme.

For any adversary A, there exist probabilistic machines E1-1 and E1-2, whose running times are
essentially the same as that of A, such that for any security parameter λ,

Pr[A wins|τv = 0]− 1/2 ≤ AdvIPE,AHE1-1 (λ) + AdvIPE,AHE1-2 (λ).

Proof Outline of Lemma 35. The challenge re-encryption key is (k∗rk,k∗rk
ran, D̂∗

1, ct
rk
x⃗′(b)

, prectx⃗′(b)).

In the case τv = 0, the adversary does not issues decryption key query on v⃗′ such that v⃗′ · x⃗′(0) = 1 or
v⃗′ · x⃗′(1) = 1. So, a matrix W1 which is the plaintext of ctrk

x⃗′(b)
and x⃗′(b) which is an attribute of ctrk

x⃗′(b)

and prectx⃗′(b) are hidden from the adversary by using the payload and attribute-hiding property of the
underlying IPE scheme. So, the basis vectors (d∗

0, . . . ,d
∗
n) are unknown to the adversary. Therefore,

the predicate v⃗(b) is hidden to the adversary. In the case τv = 0, we employ Game 0′ through Game
2. In Game 1, ctrk

x⃗′(b)
:= EncIPE(pk

IPE, x⃗(b),W1) and prectx⃗′(b) := EncxIPE(pk
IPE, x⃗(b)) are changed to

ctrk
x⃗′(b)

:= EncIPE(pk
IPE, r⃗, R) and prectx⃗′(b) := EncxIPE(pk

IPE, r⃗′), respectively, where r⃗, r⃗′
U← Fnq and

R
U← GL(4n + 4,Fq) by using the payload and attribute-hiding property of the underlying IPE.

Next, we show Game 1 can be conceptually changed to Game 2 by using the fact that a part of basis,
(d∗

0, . . . ,d
∗
n,d

∗
n+3, . . . ,d

∗
2n+2) are unknown to the adversary.

Proof of Lemma 35. To prove Lemma 35, we consider the following 3 games when τv = 0. In
Game 0′, a part framed by a box indicates coefficients to be changed in a subsequent game. In the
other games, a part framed by a box indicates coefficients which were changed in a game from the
previous game.

Game 0′: We only describe the components which are changed in the other games. Same as a Game

0 expect that flip a coin τv
U← {0, 1} before setup, and the game is aborted if τv ̸= sv. In order

to prove Lemma 35, we consider the case with τv = 0. The reply to a challenge re-encryption
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rkv⃗(b),x⃗′(b) for (v⃗
(0), v⃗(1), x⃗

′(0), x⃗
′(1)) is

k∗rk := ( 1, δrkv⃗(b) , 02, 0n, η⃗rk, 0)D∗
1
, k∗rk

ran := ( 0, δrkranv⃗
(b) , 02, 0n, η⃗rkran, 0)D∗

1
,

ctrk
x⃗′(b)

R← EncIPE(pk
IPE, x⃗

′(b) , W1 ), prectx⃗′(b)
R← EncxIPE(pk

IPE, x⃗
′(b) ),

where b
U← {0, 1}, W1

R← GL(4n+ 4,Fq) and D∗
1 := B∗W1.

Game 1: Game 1 is the same as Game 0′ except that ctrk
x⃗′(b)

and prectx⃗′(b) of the challenge re-
encryption key rkv⃗(b),x⃗′(b)

ctrk
x⃗′(b)

R← EncIPE(pk
IPE, r⃗ , R ), prectx⃗′(b)

R← EncxIPE(pk
IPE, r⃗ ′ ), (55)

where R
R← GL(4n+4,Fq) and r⃗, r⃗ ′ U← Fnq , and all the other variables are generated as in Game

0′.
Game 2: Game 2 is the same as Game 1 except that k∗rk and k∗rk

ran of the challenge re-encryption
key rkv⃗(b),x⃗′(b)

k∗rk := ( u⃗ , 02, 02n, η⃗rk, 0)D∗
1
, k∗rk

ran := ( u⃗ ′ , 02, 02n, η⃗rkran, 0)D∗
1
, (56)

where u⃗, u⃗ ′ U← Fn+1
q and all the other variables are generated as in Game 1.

Let Adv
(0′)
A (λ) ,Adv

(1)
A (λ), and Adv

(2)
A (λ) be the advantage of A in Game 0′, Game 1, and Game 2

when τv = 0, respectively. We will show two lemmas (Lemma 36 - Lemma 38) that evaluate the

gaps between pairs of neghoboring games. From these lemmas, we obtain Adv
(0′)
A (λ) ≤ |Adv(0

′)
A (λ)−

Adv
(1)
A (λ)|+ |Adv(1)A (λ)− Adv

(2)
A (λ)|+ Adv

(2)
A (λ) ≤ AdvIPE,AHB1-2 (λ) + AdvIPE,AHB1-2 (λ). 2

Lemma 36. For any adversary A, there exists a probabilistic machine B1-1, whose running time is

essentially the same as that of A, such that for any security parameter λ, |Adv(0
′)

A (λ)− Adv
(1)
A (λ)| ≤

AdvIPE,AHB1-1 (λ) + AdvIPE,AHB1-2 (λ).

Proof. In order to prove to Lemma 36, we construct a probabilistic machine B1-1 and B1-2 against
the fully attribute-hiding using an adversary A in a security game (Game 0′ or Game 1) as a black
box.

First, we consider the intermediate game Game 1′. Game 1′ is the same as Game 0′ except that
ctrkx⃗′ of the reply to the challenge re-encryption key is of the form in Eq.(55). In order to prove that

|Adv(0
′)

A (λ)− Adv
(1′)
A (λ)| ≤ AdvIPE,AHB1-1 (λ), we construct a probabilistic machine B1-1 against the fully

attribute-hiding using an adversary A in a security game (Game 0′ or Game 1′) as a black box as
follows:

1. B1-1 is given a public key pkIPE of the IPE, from the challenger for the attribute-hiding security
of the underlying IPE.

2. B1-1 plays a role of the challenger in the security game against A.
3. At the first step of the game, B1-1 generates a public and secret key as follows: (paramn,B =

(b0, . . . , b3n+3),B∗ = (b∗0, . . . , b
∗
4n+3))

R← Gob(1λ, 4n + 4), B̂ := (b0, . . . , bn+2, b3n+3), B̂∗ :=

(b∗n+1, b
∗
n+2, b

∗
3n+2, . . . , b

∗
4n+2). Finally, B1-1 provides A with pk := (1λ, pkIPE, paramn, B̂, B̂∗).

4. When a decryption key query is issued for a vector v⃗, B1-1 computes a normal form decryption
key k∗,k∗

ran using B∗ and ask a key query v⃗ to the challenger of the underlying IPE, then obtain
the decryption key skIPEv⃗ , and provides A with a decryption key skv⃗ := (k∗,k∗

ran, sk
IPE
v⃗ ).
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5. When a re-encryption key query is issued for (v⃗, x⃗′), B1-1 computes a normal form of re-encryption
key rkv⃗,x⃗′ := (k∗rk,k∗rk

ran, D̂∗
1, ct

rk
x⃗′ , prectx⃗′). Finally, B1-1 provides A with a re-encryption key rkv⃗,x⃗′ .

6. When a re-encryption query is issued for (v⃗, x⃗′, octx⃗ = (c, cran, cT , verk, S)), if Ver(verk, (c, cran, cT ),
S) ̸= 1, B1-1 returns ⊥ to A. Otherwise, B1-1 computes a normal form of re-encrypted ciphertext
rctx⃗′ := (k∗renc, crenc, crencT , {ctrencι,x⃗′ }ι=1,2). B1-1 provides A with a re-encrypted ciphertext rctx⃗′ .

7. When the challenge query is issued for (v⃗(0), v⃗(1), x⃗′(0), x⃗′(1)), B1-1 chooses b
U← {0, 1}, W1, R

U←
GL(4n + 4,Fq) and a random vector r⃗

U← Fnq . B1-1 submits (X(b) := W1, X
(1−b) := R, x⃗(b) :=

x⃗′(b), x⃗(1−b) := r⃗) to the attribute-hiding challenger and receives ctx⃗(β) for β
U← {0, 1}. B1-1

computes a normal form k∗rk, k∗rk
ran, D̂∗

1 and prectx⃗(b) . Finally, B1-1 provides A with rkv⃗(b),x⃗(b) :=

(k∗rk,k∗rk
ran, D̂∗

1, ct
rk
x⃗(b)

:= ctx⃗(β) , prectx⃗(b)).

8. Finally, A outputs b′. B1-1 outputs β = b if b = b′, otherwise, B1-1 outputs β = 1− b.

Since the challenge re-encryption key is of the form ctrk
x⃗(β)

R← EncIPE(pk
IPE, x⃗′(b),W1) (resp. of the

form ctrk
x⃗(β)

R← EncIPE(pk
IPE, r⃗, R) if β = b (resp. β = 1− b), the view of A given by B1-1 is distributed

as Game 1 (resp. Game 0′). Then, |Adv(0
′)

A (λ)− Adv
(1′)
A (λ)| ≤ AdvIPE,AHB1-1 (λ).

Next, in order to prove that |Adv(1
′)

A (λ)−Adv
(1)
A (λ)| ≤ AdvIPE,AHB1-2 (λ), we construct a probabilistic

machine B1-2 against the fully attribute-hiding security using an adversary A in a security game
(Game 1’ or Game 1) as a black box. Game 2 is the same as Game 1’ except that prectx⃗′ of the

reply to the challenge re-encryption key prectx⃗′ = EncxIPE(pk
IPE, r⃗) where r⃗

U← Fnq . Hence, this proof

is similar to the above proof. So, we have |Adv(1
′)

A (λ)− Adv
(1)
A (λ)| ≤ AdvIPE,AHB1-2 (λ).

By using hybrid argument, we have |Adv(0
′)

A (λ)− Adv
(1)
A (λ)| ≤ AdvIPE,AHB1-1 (λ) + AdvIPE,AHB1-2 (λ). 2

Lemma 37. For any adversary A, Adv(1)A (λ) = Adv
(2)
A (λ).

Proof. First, we note that since D∗
1 and the public key B̂ are independent from adversary A not in

possession of a matrix W1, we only consider vector element over basis D∗
1, now.

We define new dual orthonormal basis (U,U∗) of DPVS V below. First we generate U
R←

GL(n+ 1,Fq), and set

u∗
0
...

u∗
n

 := U ·

d∗
0
...

d∗
n

 , and U∗ := (u∗
0, . . . ,u

∗
n,d

∗
n+1, . . . ,d

∗
4n+3). Since non-

zero vectors (1, δrkv⃗(b)) and (0, δrkranv⃗
(b)) in Fn+1

q are linearly independent and U
U← GL(n+ 1,Fq),

k∗rk := (1, δrkv⃗(b), 02, 02n, η⃗rk, 0)D∗
1
= (u⃗, 02, 02n, η⃗rk, 0)U∗

k∗rk
ran := (0, δrkranv⃗

(b), 02, 02n, η⃗rkran, 0)D∗
1
= (u⃗ ′, 02, 02n, η⃗rkran, 0)U∗ ,

where u⃗ := (1, δrkv⃗(b)) · U and u⃗ ′ := (0, δrkranv⃗
(b)) · U in Fn+1

q are uniformly and independently dis-
tributed. Therefore, the view of A in Game 1 can be conceptually changed to that in Game 2. ⊓⊔

Lemma 38. Adv
(2)
A (λ) = 0.

Proof. The value of b is independent from A’s view in Game 2. Hence, Adv
(2)
A (λ) = 0. 2
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Proof of Theorem 4 (PAH-RK) in the Case τv = 1

Lemma 39. The proposed IP-PRE scheme is predicate- and attribute-hiding for re-encryption keys
against chosen plaintext attack in the case τv = 1 under fully-attribute-hiding of the underlying IPE
scheme.

For any adversary A, there exist probabilistic machines E2-1 and E2-2, whose running times are
essentially the same as that of A, such that for any security parameter λ, in Game 0′.

Pr[A wins|τv = 1]− 1/2 ≤ AdvIPE,AHE2-1 (λ) + AdvIPE,AHE2-2 (λ).

Proof Outline of Lemma 39. In the case τv = 1, ctrk
x⃗′(b)

and prectx⃗′(b) are changed to ciphertexts

with the opposite attribute x⃗′(1−b) by using the fully attribute-hiding property of the underlying IPE
scheme. Also, the challenge predicates are equal, v⃗(0) = v⃗(1), by the restriction of the game in this
case. Hence, in the final game, a bit b is hidden to the adversary. In the case τv = 1, we employ Game
0′ and Game 1. In Game 1, ctrk

x⃗′(b)
:= EncIPE(pk

IPE, x⃗(b),W1) and prectx⃗′(b) := EncxIPE(pk
IPE, x⃗(b)) are

changed to ctrk
x⃗′(b)

:= EncIPE(pk
IPE, x⃗(1−b),W1) and prectx⃗′(b) := EncxIPE(pk

IPE, x⃗(1−b)), respectively.

Proof of Lemma 39. To prove Lemma 39, we consider the following 2 games when τv = 1. In
Game 0′, a part framed by a box indicates coefficients to be changed in a subsequent game. In the
other games, a part framed by a box indicates coefficients which were changed in a game from the
previous game.

Game 0′: Same as a Game 0 expect that flip a coin τv
U← {0, 1} before setup, and the game is

aborted if τv ̸= sv. In order to prove Lemma 39, we consider the case with τv = 1. We only
describe the components which are changed in the other games. ctrk

x⃗′(b)
and prectx⃗′(b) of the reply

to a challenge re-encryption key rkv⃗,x⃗′(b) for (v⃗, x⃗
′(0), x⃗

′(1)) where v⃗ := v⃗(0) = v⃗(1) are given as,

ctrk
x⃗′(b)

R← EncIPE(pk
IPE, x⃗′(b) ,W1), prectx⃗′(b)

R← EncxIPE(pk
IPE, x⃗′(b) ),

where b
U← {0, 1},W1

R← GL(4n+ 4,Fq).
Game 1: Game 1 is the same as Game 0′ except that ctrk

x⃗′(b)
and prectx⃗′(b) of the challenge re-

encryption key rkv⃗,x⃗′(b) are

ctrk
x⃗
′(b)

R← EncIPE(pk
IPE, x⃗′(1−b) ,W1), prectx⃗′(b)

R← EncxIPE(pk
IPE, x⃗′(1−b) ),

where b
U← {0, 1} and all the other variables are generated as in Game 0′.

Let Adv
(0′)
A (λ) and Adv

(1)
A (λ) be the advantage of A in Game 0′ and Game 1 when τv = 1, respectively.

We will show Lemma 39 that evaluate the gaps between Game 0′ and Game 1. From Lemmas 40 and

41, we obtain Adv
(0′)
A (λ) ≤ |Adv(0

′)
A (λ)− Adv

(1)
A (λ)|+ Adv

(1)
A (λ) ≤ 1

2(Adv
IPE,AH
B2-1 (λ) + AdvIPE,AHB2-2 (λ)). 2

Lemma 40. For any adversary A, there exists a probabilistic machine B2-1 and B2-2, whose running

time is essentially the same as that of A, such that for any security parameter λ, |Adv(0
′)

A (λ) −
Adv

(1)
A (λ)| ≤ AdvIPE,AHB2-1 (λ) + AdvIPE,AHB2-2 (λ).

Proof. Lemma 40 is proven in similar manner to Lemma 36.

Lemma 41. Adv
(1)
A (λ) = −Adv(0

′)
A (λ).

Proof. The challenge re-encryption key for the opposite bit 1 − b to the challenge bit b and the

others components are normal forms in Game 1. Hence, success probability Pr[Succ
(1)
A ] in Game 1

is 1− Pr[Succ
(0′)
A ], where Succ

(0′)
A is success probability in Game 0′. Therefore, we have Adv

(1)
A (λ) =

−Adv(0
′)

A (λ). ⊓⊔
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D.6 Proof of Theorem 5

Theorem 5 The proposed IP-PRE scheme is unlinkable.

Proof. The item 1 of Remark 1 (Section 4.2) shows the unconditional unlinkability of re-encryption
keys, and, Lemma 42 shows the computational unlinkability of re-encrypted ciphertexts. This com-
pletes the proof of Theorem 5. ⊓⊔

Lemma 42. The proposed IP-PRE scheme is (computationally) unlinkable for re-encrypted cipher-
texts.

For any adversary A, there exist probabilistic machines E1-1, E1-2 and E2, whose running times
are essentially the same as that of A, such that for any security parameter λ, for the security game
defined in Definition 8,

Pr[A wins]− 1/2 ≤
∑2

i=1 Adv
IPE,AH
E1-i (λ) + AdvDLIN

E2 (λ) + ϵ,

where ϵ := 6/q

Proof. We show the (computational) unlinkability of re-encrypted ciphertexts. Note that, as shown
in item 2 of Remark 1 (Section 4.2), randomness (ζrenc, ωrenc, ρrenc, φrenc,W2) used in components

(crenc, crencT ) in rctx⃗′(
R← REnc(pk, rkv⃗,x⃗′ , octx⃗)) are uniformly and independently distributed from input

octx⃗. From this fact and the (unconditional) unlinkability of re-encryption keys, we need to show
that, for any probabilistic poly-time adversary A in the game, the challenge

( rkv⃗,x⃗′
R← RKG(pk, skv⃗, x⃗

′), rct
(0)
x⃗′

R← REnc(pk, rkv⃗,x⃗′ , octx⃗) ) if b = 0,

and

( rkv⃗,x⃗′
R← RKG(pk, skv⃗, x⃗

′), rct
(1)
x⃗′

R← REnc(pk, rk
(1)
v⃗,x⃗′ , octx⃗) ) if b = 1,

where rk
(1)
v⃗,x⃗′

R← RKG(pk, skv⃗, x⃗
′)

are indistinguishable by A. We define Game 0 as a security game, where a challenger flips a coin

b
U← {0, 1}, and gives the upper (resp. lower) instance to A when b = 0 (resp. b = 1) in the challenge

phase, and the rest of the game is the same as in Definition 8. (In particular, any decryption key
query v⃗′ satisfy R(v⃗′, x⃗′) = 0 for the challenge x⃗′.) We will show that any probabilistic poly-time A
has no advantage over it. Let components (k∗rk,k∗rk

ran, D̂∗
1, ct

rk
x⃗′
) be in rkv⃗,x⃗′ and (k∗renc(b), ct

renc(b)
1,x⃗′ ) in

rct
(b)
x⃗′ for b ∈ {0, 1}. As is mentioned above, we should show that

(k∗rk,k∗rk
ran, D̂∗

1, ct
rk
x⃗′ ;k

∗renc(0), ct
renc(0)
1,x⃗′ ) and (k∗rk,k∗rk

ran, D̂∗
1, ct

rk
x⃗′ ;k

∗renc(1), ct
renc(1)
1,x⃗′ )

are indistinguishable byA, in particular. Here, note that ct
renc(b)
1,x⃗′ are generated by the re-randomization

of IPE ciphertexts, then, it is distributed as ct
renc(b)
1,x⃗′

R← EncIPE(pk
IPE, x⃗′,W

(b)
1 ). We will show the se-

curity by game changes: We consider the following 4 games. In Game 0, a part framed by a box
indicates coefficients to be changed in a subsequent game. In the other games, a part framed by a
box indicates coefficients which were changed in a game from the previous game.
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Game 0: We only describe the components which are related for the subsequent game changes.

k∗rk := (1, δrkv⃗, 02, 02n, η⃗rk, 0)D∗
1
, k∗rk

ran := (0, δrkranv⃗, 0
2, 02n, η⃗rkran, 0)D∗

1
,

D̂∗
1 := (d∗

i := b∗iW1)i=n+1,n+2,3n+3,...,4n+2, ctrkx⃗′
R← EncIPE(pk

IPE, x⃗′, W1 ),

k∗renc(b) := ( 1, δrencv⃗, σ(−1, verk), 02n, η⃗ renc, 0)D∗(b)
1

,

ct
renc(b)
1,x⃗′

R← EncIPE(pk
IPE, x⃗′, W

(b)
1 ),

where b
U← {0, 1}, W1 :=W

(0)
1 ,W

(1)
1

U← FN×N
q , D∗

1 := D∗(0)
1 := B∗ ·W1, D

∗(1)
1 := B∗ ·W (1)

1 .

Game 1: Game 1 is the same as Game 0 except that ctrkx⃗′ and ctrenc1,x⃗′ of the challenge are

ctrkx⃗′
R← EncIPE(pk

IPE, x⃗′, R1 ), ct
renc(b)
1,x⃗′

R← EncIPE(pk
IPE, x⃗′, R2 ),

where R1, R2
U← F N×N

q and all the other variables are generated as in Game 0.

Game 2: Game 2 is the same as Game 1 except that k∗renc(b) of the challenge is

k∗renc(b) := ( 1, δrencv⃗, σ(−1, verk), r⃗renc , η⃗ renc, 0)D∗(b)
1

,

where r⃗renc
U← F 2n

q .

Game 3: Game 3 is the same as Game 2 except that k∗renc(b) of the challenge is

k∗renc(b) U← V,

and all the other variables are generated as in Game 2.

Let Adv
(j)
A (λ) be the advantage of A in Game j (j = 0, . . . , 3), respectively. From Lemmas 43–46,

we obtain Adv
(0)
A (λ) ≤

∑3
i=1 |Adv

(i-1)
A (λ)− Adv

(i)
A (λ)|+ Adv

(3)
A (λ) ≤

∑2
i=1 Adv

IPE,AH
B1-i

(λ) + AdvP1B2
(λ) +

1/q ≤
∑2

i=1 Adv
IPE,AH
E1-i (λ) + AdvDLIN

E2 (λ) + 6/q. ⊓⊔

Lemma 43. For any adversary A, there exist probabilistic machines B1-1 and B1-2, whose running

times are essentially the same as that of A, such that for any security parameter λ, |Adv(0)A (λ) −
Adv

(1)
A (λ)| ≤

∑2
i=1 Adv

IPE,AH
B1-i

(λ).

Proof. Lemma 43 is proven in similar manner to Lemmas 29 and 36.

Lemma 44. For any adversary A, there exist a probabilistic machine B2 whose running time is

essentially the same as that of A, such that for any security parameter λ, |Adv(1)A (λ)− Adv
(2)
A (λ)| ≤

AdvP1B2
(λ).

Proof. Since ctrkx⃗′ , ct
renc
1,x⃗′ are ciphertexts of randommatrices and in Game 1, subbasis (d

∗(b)
i )i=n+3,...,3n+2

of D∗(b) are hidden from the adversary’s view. Hence, a simulator with a Problem 1 instance can be
constructed for Lemma 44 as in Lemma 9. ⊓⊔

Lemma 45. |Adv(2)A (λ)− Adv
(3)
A (λ)| ≤ 1/q.
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Proof. A coefficient of k∗renc(b) over a hidden subbasis (d
∗(b)
i )i=n+3,...,3n+2 of D∗(b) is given by r⃗renc,

which is non-zero except for the probability 1/q. Moreover, coefficients of k∗rk,k∗rk
ran over a hidden

subbasis (d∗
i )i=n+3,...,3n+2 are 0. Therefore, k∗renc is uniformly distributed in the whole space V and

independent from other variables since the hidden subbasis vectors (d∗
i )i=n+3,...,3n+2 are uniformly

and independently generated. ⊓⊔

Lemma 46. Adv
(3)
A (λ) = 0.

Proof. The value of b is independent from A’s view in Game 3. Hence, Adv
(3)
A (λ) = 0. ⊓⊔

E Ciphertext Policy Functional Proxy-Re-Encryption (CP-F-PRE)

We will construct a CP-F-PRE scheme with the access structure given by Okamoto-Takashima [27].
The scheme has the attribute-hiding security for a re-encryption key, rkΓ,S, as well as usual payload
hiding for original and re-encrypted ciphertexts. In a typical application, Γ indicates attributes of
a user who generates rkΓ,S for a proxy, where hiding attributes Γ is an important requirement for
anonymous re-encryption outsourcing.

E.1 Span Programs and Non-Monotone Access Structures

Definition 20 (Span Programs [3]). Let {p1, . . . , pn} be a set of variables. A span program over
Fq is a labelled matrix M̂ := (M,ρ) where M is a (ℓ × r) matrix over Fq and ρ is a labelling of
the rows of M by literals from {p1, . . . , pn,¬p1, . . . , ¬pn} (every row is labelled by one literal), i.e.,
ρ : {1, . . . , ℓ} → {p1, . . . , pn,¬p1, . . . , ¬pn}.

A span program accepts or rejects an input by the following criterion. For every input sequence
δ ∈ {0, 1}n define the submatrixMδ of M consisting of those rows whose labels are set to 1 by the input
δ, i.e., either rows labelled by some pi such that δi = 1 or rows labelled by some ¬pi such that δi = 0.
(i.e., γ : {1, . . . , ℓ} → {0, 1} is defined by γ(j) = 1 if [ρ(j) = pi] ∧ [δi = 1] or [ρ(j) = ¬pi] ∧ [δi = 0],
and γ(j) = 0 otherwise. Mδ := (Mj)γ(j)=1, where Mj is the j-th row of M .)

The span program M̂ accepts δ if and only if 1⃗ ∈ span⟨Mδ⟩, i.e., some linear combination of the
rows of Mδ gives the all one vector 1⃗. (The row vector has the value 1 in each coordinate.) A span
program computes a Boolean function f if it accepts exactly those inputs δ where f(δ) = 1.

A span program is called monotone if the labels of the rows are only the positive literals {p1, . . . , pn}.
Monotone span programs compute monotone functions. (So, a span program in general is “non”-
monotone.)

We assume that no row Mi (i = 1, . . . , ℓ) of the matrix M is 0⃗. We now introduce a non-
monotone access structure with evaluating map γ by using the inner-product of attribute vectors,
that is employed in the proposed functional encryption schemes.

Definition 21 (Inner-Products of Attribute Vectors and Access Structures). Ut (t = 1,
. . . , d and Ut ⊂ {0, 1}∗) is a sub-universe, a set of attributes, each of which is expressed by a pair of
sub-universe id and nt-dimensional vector, i.e., (t, v⃗), where t ∈ {1, . . . , d} and v⃗ ∈ Fnt

q \ {⃗0}.
We now define such an attribute to be a variable p of a span program M̂ := (M,ρ), i.e., p := (t, v⃗).

An access structure S is span program M̂ := (M,ρ) along with variables p := (t, v⃗), p′ := (t′, v⃗′), . . .,
i.e., S := (M,ρ) such that ρ : {1, . . . , ℓ} → {(t, v⃗), (t′, v⃗′), . . ., ¬(t, v⃗),¬(t′, v⃗′), . . .}.

Let Γ be a set of attributes, i.e., Γ := {(t, x⃗t) | x⃗t ∈ Fnt
q \ {⃗0}, 1 ≤ t ≤ d}, where 1 ≤ t ≤ d means

that t is an element of some subset of {1, . . . , d}.
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When Γ is given to access structure S, map γ : {1, . . . , ℓ} → {0, 1} for span program M̂ := (M,ρ)
is defined as follows: For i = 1, . . . , ℓ, set γ(i) = 1 if [ρ(i) = (t, v⃗i)] ∧[(t, x⃗t) ∈ Γ ] ∧[v⃗i · x⃗t = 0] or
[ρ(i) = ¬(t, v⃗i)] ∧[(t, x⃗t) ∈ Γ ] ∧[v⃗i · x⃗t ̸= 0]. Set γ(i) = 0 otherwise.

Access structure S := (M,ρ) accepts Γ iff 1⃗ ∈ span⟨(Mi)γ(i)=1⟩.

We now construct a secret-sharing scheme for a non-monotone access structure or span program.

Definition 22. A secret-sharing scheme for span program M̂ := (M,ρ) is:

1. Let M be ℓ×r matrix. Let column vector f⃗T := (f1, . . . , fr)
T U← F rq . Then, s0 := 1⃗ · f⃗T =

∑r
k=1 fk

is the secret to be shared, and s⃗T := (s1, . . . , sℓ)
T :=M · f⃗T is the vector of ℓ shares of the secret

s0 and the share si belongs to ρ(i).
2. If span program M̂ := (M,ρ) accept δ, or access structure S := (M,ρ) accepts Γ , i.e., 1⃗ ∈

span⟨(Mi)γ(i)=1⟩ with γ : {1, . . . , ℓ} → {0, 1}, then there exist constants {αi ∈ Fq | i ∈ I} such
that I ⊆ {i ∈ {1, . . . , ℓ} | γ(i) = 1} and

∑
i∈I αisi = s0. Furthermore, these constants {αi} can

be computed in time polynomial in the size of matrix M .

We define a CP-F-PRE scheme For access structures, Γ and S, given in Definition 21, and its
security below. (Definition 23 is just a specialization of Definition 3 with Γ and S.)

Definition 23. A functional proxy-re-encryption scheme consists of the following seven algorithms.

Setup: takes as input a security parameter 1λ and a format n⃗ := (d;n1, . . . , nd). It outputs public key
pk and (master) secret key sk.

KG: takes as input the public key pk, the (master) secret key sk, and attributes Γ. It outputs a
corresponding decryption key skΓ.

Enc: takes as input the public key pk, an access structure S, and a plaintext m in some associated
plaintext space. It outputs an original ciphertext octS.

RKG: takes as input the public key pk, a decryption key skΓ, and an access structure S′. It outputs a
re-encryption key rkΓ,S′.

REnc: takes as input the public key pk, a re-encryption key rkΓ,S′ , and an original ciphertext octS. It
outputs a re-encrypted ciphertext rctS′ .

Decoct: takes as input the public key pk, a decryption key skΓ, and an original ciphertext octS. It
outputs either a plaintext m or the distinguished symbol ⊥.

Decrct: takes as input the public key pk, a decryption key skΓ′, and a re-encrypted ciphertext rctS′. It
outputs either a plaintext m or the distinguished symbol ⊥.

The correctness for a CP-F-PRE scheme is defined in a similar manner as general F-PRE in Section
3.

Next, we define three security properties of CP-F-PRE.

Definition 24 (Payload-Hiding for Original Ciphertexts). The model for defining the adap-
tively payload-hiding security for original ciphertexts of CP-F-PRE under chosen plaintext attack is
given by the following game:

Setup. The challenger runs the setup algorithm (pk, sk)
R← Setup(1λ, n), and it gives the security

key λ and the public key pk to the adversary A.
Phase 1. The adversary A is allowed to adaptively issue a polynomial number of queries as follows.

Decryption key query. For a decryption key query Γ, the challenger gives skΓ
R← KG(pk, sk,Γ)

to A.



67

Re-encryption key query. For a re-encryption key query (Γ, S′), the challenger computes rkΓ,S′
R←

RKG(pk, skΓ,S′) where skΓ
R← KG(pk, sk,Γ). It gives rkΓ,S′ to A.

Re-encryption query. For a re-encryption query (Γ, S′, octS), the challenger computes rkΓ,S′
R←

RKG(pk, skΓ,S′) where skΓ
R← KG(pk, sk,Γ) and rctS′

R← REnc(pk, rkΓ,S′ , octS). It gives rctS′ to
A.

Challenge. For a challenge query (m(0),m(1), S) subjected to the following restrictions:

– Any decryption key query Γ satisfies R(Γ, S) = 0, and any re-encryption key query (Γ, S′)
satisfies
• R(Γ, S) = 0 or
• R(Γ′, S′) = 0 for any decryption key query Γ′ (and no restriction on Γ)

The challenger flips a random bit b ∈ {0, 1} and gives oct
(b)
S

R← Enc(pk, S,m(b)) to A.
Phase 2. The adversary A may continue to issue decryption key queries, re-encryption key queries

and re-encryption queries, subjected to the restriction in challenge phase and the following addi-
tional restriction for re-encryption queries.
Re-encryption query. For a re-encryption query (Γ, S′, octS), subject to the following restric-

tions:
– R(Γ′, S′) = 0 for any decryption key query for Γ′ if octS = oct

(b)
S

The challenger computes rkΓ,S′
R← RKG(pk,KG(pk, sk,Γ),S′) and rctS′

R← REnc(pk, rkΓ,S′ , octS).
It gives rctS′ to A.

Guess. A outputs its guess b′ ∈ {0, 1} for b and wins the game if b = b′.

We define the advantage of A as AdvCPFPRE,PH-OC
A (λ) := Pr[b = b′] − 1

2 . A CP-F-PRE scheme
is payload-hiding for original ciphertexts if all polynomial time adversaries have at most negligible
advantage in the above game.

Definition 25 (Payload-Hiding for Re-Encrypted Ciphertexts). The model for defining the
adaptively payload-hiding security for re-encrypted ciphertexts of CP-F-PRE under chosen plaintext
attack is given by the following game:

Setup. The challenger runs the setup algorithm (pk, sk)
R← Setup(1λ, n), and it gives the security

key λ and the public key pk to the adversary A.
Phase 1. The adversary A is allowed to adaptively issue a polynomial number of queries as follows.

Decryption key query. For a decryption key query Γ, the challenger gives skΓ
R← KG(pk, sk,Γ)

to A.
Re-encryption key query. For a re-encryption key query (Γ, S′), the challenger computes rkΓ,S′

R← RKG(pk, skΓ,S′) where skΓ
R← KG(pk, sk,Γ). It gives rkΓ,S′ to A.

Re-encryption query. For a re-encryption query (Γ, S′, octS), the challenger computes rkΓ,S′
R←

RKG(pk, skΓ,S′) where skΓ
R← KG(pk, sk,Γ) and rctS′

R← REnc(pk, rkΓ,S′ , octS). It gives rctS′ to
A.

Challenge. For a challenge query (m(0),m(1), S,Γ, S′) subjected to the following restrictions:
– R(Γ′,S′) = 0 for all the decryption key queries Γ′.

The challenger flips a random bit b ∈ {0, 1} and gives rctS′
R← REnc(RKG(pk,Γ, S′),Enc(S,m(b))).

Then it gives rctS′ to A.
Phase 2. The adversary A may continue to issue decryption key queries, re-encryption key queries

and re-encryption queries, subjected to the restriction in challenge phase.
Guess. A outputs its guess b′ ∈ {0, 1} for b and wins the game if b = b′.
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We define the advantage of A as AdvCPFPRE,PH-RCA (λ) := Pr[b = b′] − 1
2 . A CP-F-PRE scheme is

payload-hiding for re-encrypted ciphertexts if all polynomial time adversaries have at most negligible
advantage in the above game.

Definition 26 (Attribute-Hiding for Re-Encryption Keys). The model for defining the adap-
tively attribute-hiding security for re-encryption keys of CP-F-PRE under chosen plaintext attack is
given by the following game:

Setup. The challenger runs the setup algorithm (pk, sk)
R← Setup(1λ, n), and it gives the security

key λ and the public key pk to the adversary A.
Phase 1. The adversary A is allowed to adaptively issue a polynomial number of queries as follows.

Decryption key query. For a decryption key query Γ, the challenger gives skΓ
R← KG(pk, sk,Γ)

to A.
Re-encryption key query. For a re-encryption key query (Γ, S′), the challenger computes rkΓ,S′

R← RKG(pk, skΓ,S′) where skΓ
R← KG(pk, sk,Γ). It gives rkΓ,S′ to A.

Re-encryption query. For a re-encryption query (Γ, S′, octS), the challenger computes rkΓ,S′
R←

RKG(pk, skΓ,S′) where skΓ
R← KG(pk, sk,Γ) and rctS′

R← REnc(pk, rkΓ,S′ , octS). It gives rctS′ to
A.

Challenge. For a challenge query (Γ(0),Γ(1), S′), subject to the following restrictions:

– R(Γ′,S′) = 0 for all decryption key queries Γ′.

The challenger flips a random bit b
U← {0, 1} and computes rkΓ(b),S′

R← RKG(pk,KG(pk, sk,Γ(b)), S′).
Then it gives rkΓ(b),S′ to A.

Phase 2. The adversary A may continue to issue decryption key queries, re-encryption key queries
and re-encryption queries, subjected to the restriction in challenge phase.

Guess. A outputs its guess b′ ∈ {0, 1} for b and wins the game if b = b′.

We define the advantage of A as AdvCPFPRE,AH-RKA (λ) := Pr[b = b′] − 1
2 . A CP-F-PRE scheme

is attribute-hiding for re-encryption keys if all polynomial time adversaries have at most negligible
advantage in the above game.

The unlinkability of a CP-F-PRE scheme is defined in a similar manner to that in Definition 8.

E.2 Underlying Ciphertext-Policy Functional Encryption (CP-FE)

We use a payload-hiding CP-FE scheme with message space FN0×N0
q × · · · × FNd×Nd

q × X as an
underlying CP-FE scheme, where N0 := 9, {Nt := 3nt + 1}t=1,...,d for a format n⃗ := (d;n1, . . . , nd),
and X is a set of all attributes Γ with security parameter λ.

Definition 27 (Ciphertext-Policy Functional Encryption : CP-FE). A ciphertext-policy func-
tional encryption scheme consists of four algorithms.

Setup This is a randomized algorithm that takes as input security parameter and format n⃗ :=
(d;n1, . . . , nd) of attributes. It outputs the public parameters pk and a master key sk.

KG This is a randomized algorithm that takes as input a set of attributes, Γ := {(t, x⃗t)|x⃗t ∈ Fnt
q , 1 ≤

t ≤ d}, pk and sk. It outputs a decryption key.

Enc This is a randomized algorithm that takes as input access structure S := (M,ρ), a message X
in a message space FN0×N0

q × · · · × FNd×Nd
q × X , and the public parameters pk. It outputs the

ciphertext.
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Dec This takes as input the ciphertext that was encrypted under access structure S, the decryption
key for a set of attributes Γ, and the public parameters pk. It outputs either plaintext m or the
distinguished symbol ⊥.

A CP-FE scheme should have the following correctness property: for all (pk, sk)
R← Setup(1λ, n⃗), all

attribute sets Γ, all decryption keys skΓ
R← KeyGen(pk, sk,Γ), all messages X, all access structures S,

all ciphertexts ctS
R← Enc(pk,S, X), it holds thatX = Dec(pk, skΓ, ctS) with overwhelming probability,

if S accepts Γ.

Definition 28. The model for defining the adaptively payload-hiding security of CP-FE under chosen
plaintext attack is given by the following game:

Setup The challenger runs the setup algorithm, (pk, sk)
R← Setup(1λ, n⃗), and gives the public param-

eters pk to the adversary.
Phase 1 The adversary is allowed to issue a polynomial number of queries, Γ, to the challenger or

oracle KeyGen(pk, sk, ·) for private keys, skΓ associated with Γ.
Challenge The adversary submits two messages X(0), X(1) and an access structure, S := (M,ρ),

provided that the S does not accept any Γ sent to the challenger in Phase 1. The challenger flips

a random coin b
U← {0, 1}, and computes ct

(b)
S

R← Enc(pk, S, X(b)). It gives ct
(b)
S to the adversary.

Phase 2 The adversary is allowed to issue a polynomial number of queries, Γ, to the challenger or
oracle KeyGen(pk, sk, ·) for private keys, skΓ associated with Γ, provided that S does not accept Γ.

Guess The adversary outputs a guess b′ of b.

The advantage of an adversary A in the above game is defined as AdvCP-FE,PHA (λ) := Pr[b′ =
b] − 1/2 for any security parameter λ. A CP-FE scheme is adaptively payload-hiding secure if all
polynomial time adversaries have at most a negligible advantage in the above game.

We obtain a payload-hiding CP-FE scheme with the above message space based on a payload
hiding CP-FE in [27], with a similar encoding of messages as in Definition 15. We call it the OT10
CP-FE.

E.3 Construction

We assume that xt,1 = 1 for x⃗t := (xt,1, . . . , xt,n) in attributes Γ and vj,n ̸= 0 for v⃗j := (vj,1, . . . , vj,n)
in an access structure S.

Our CP-F-PRE is constructed with using our IP-PRE schemes as a building block. While payload-
hiding are obtained as in IP-PRE, to achieve the attribute-hiding security, we add dummy compo-
nents (k∗rk

t ,k∗rk
t,ran) for (t, ·) ̸∈ Γ in re-encryption-key rkΓ,S, where Γ is attributes.

Setup(1λ, n⃗ = (d;n1, . . . , nd)) : (pkCP-FE, skCP-FE)
R← SetupCP-FE(1

λ, n⃗)

N0 := 9, Nt := 3nt + 1 for t = 1, . . . , d, ψ
U← F×

q , gT := e(G,G)ψ,
for t = 0, . . . , d,

param′
t := (q,Vt,GT ,At, e)

R← Gdpvs(1λ, Nt),

Xt :=

 χ⃗t,1
...

χ⃗t,Nt

 := (χt,i,j)i,j
U← GL(Nt,Fq),

 ϑ⃗t,1
...

ϑ⃗t,Nt

 := (ϑt,i,j)i,j := ψ · (XT
t )

−1,

paramn⃗ := ({paramt}t=0,...,d, gT ),
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bt.i :=
∑Nt

j=1 χt,i,jat,j ,Bt := (bt.1, . . . , bt.Nt),

b∗t.i :=
∑Nt

j=1 ϑt,i,jat,j ,B∗
t := (b∗t.1, . . . , b

∗
t.Nt

),

B̂0 := (b0,1, . . . , b0,4, b0,9), B̂t := (bt,1, . . . , bt,nt , bt,Nt) for t = 1, . . . , d,

B̂∗
0 := (b∗0,2, b

∗
0,3, b

∗
0,4, b

∗
0,7, b

∗
0,8), B̂∗

t := (b∗t,1, . . . , b
∗
t,nt

, b∗t,2nt+1, . . . , b
∗
t,3nt

) for t = 1, . . . , d,

return pk = (1λ, pkCP-FE, paramn⃗, {B̂t, B̂∗
t }t=0,...,d), sk = (skCP-FE, b∗0,1).

KG(pk, sk,Γ = ({(t, x⃗t)|x⃗t ∈ Fnt
q \ {⃗0}, 1 ≤ t ≤ d}) :

skCP-FEΓ
R← KGCP-FE(pkCP-FE, skCP-FE,Γ), δ

U← Fq, φ⃗0
U← F2

q , φ⃗t
U← Fnt

q for (t, x⃗t) ∈ Γ

k∗
0 := ( 1, δ, 02, 02, φ⃗0, 0 )B∗

0
,

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷ ︸︸ ︷
k∗
t := ( δx⃗t, 0nt , φ⃗t, 0 )B∗

t
for (t, x⃗t) ∈ Γ,

return skΓ := (Γ, skCP-FEΓ ,k∗
0, {k∗

t }(t,x⃗t)∈Γ).

Enc(pk,m, S = (M,ρ)) : (sigk, verk)
R← SigKG(1λ),

f⃗
U← Frq, s⃗T := (s1, . . . , sl)

T :=M · f⃗T, s0 := 1⃗ · f⃗T, π, η0, ζ
U←− Fq,

c0 := ( ζ, − s0, π(verk, 1), 02, 02, η0 )B0 , cT := m · gζT ,

for i = 1, . . . , l,
if ρ(i) = (t, v⃗i := (vi.1, . . . , vi.nt) ∈ Fnt

q \ {⃗0})(vi,nt ̸= 0),

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷ ︸︸ ︷
θi, ηi

U← Fq, ci := ( sie⃗t,1 + θiv⃗i, 0nt , 0nt , ηi )Bt ,

if ρ(i) = ¬(t, v⃗i),

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷ ︸︸ ︷
ηi

U← Fq, ci := ( siv⃗i, 0nt , 0nt , ηi )Bt ,

S
R← Sig(sigk, C := (S, {ci}i=0,...,l, cT )),

return octS := (S, {ci}i=0,...,l, cT , verk, S).

RKG (pk, skΓ := (Γ, skCP-FEΓ ,k∗
0, {k∗

t }(t,x⃗t)∈Γ), S′):
δ′, δ′ran

U← Fq, φ⃗′, φ⃗′
ran

U← F2
q , φ⃗′

t, φ⃗
′
t,ran

U← Fnt
q ,

W1,0
U← GL(9,Fq), W1.t

U← GL(3nt + 1,Fq) for t = 1, . . . , d,

D̂∗
0 := (d∗

0,i := b∗0,iW1,0)i=3,4,7,8, D̂∗
t := (d∗

t,i := b∗0,iW1,t)i=2nt+1,...,3nt for t = 1, . . . , d,

k∗rk
0 := (k∗

0 + ( 0, δ′, 04, φ⃗′, 0)B∗)W1,0, k∗rk
0,ran := ( 0, δ′ran, 0

4, φ⃗′
ran, 0)B∗W1,0,

k∗rk
t := (k∗

t + ( δ′x⃗t, 0
nt , φ⃗′

t, 0)B∗
t
)W1,t, k∗rk

t,ran := ( δ′ranx⃗t, 0
nt , φ⃗′

t,ran, 0)B∗
t
W1,t for (t, x⃗t) ∈ Γ,

k∗rk
t , k∗rk

t,ran
U← span⟨d∗

t,1, . . . ,d
∗
t,nt

,d∗
t,2nt+1, . . . ,d

∗
t,3nt
⟩ for (t, ·) ̸∈ Γ,

ctrkS′
R← EncCP-FE(pk

CP-FE, S′, ({W1,t}t=0,...,d,Γ)),

return rkΓ,S′ := (S′, {k∗rk
t ,k∗rk

t,ran, D̂∗
t }t=0,...,d, ct

rk
S′).
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REnc (pk, rkΓ,S′ := (S′, {k∗rk
t ,k∗rk

t,ran, D̂∗
t }t=0,...,d, ct

rk
S′), octS := (C := (S, {ci}i=0,...,l, cT ), verk, S)):

If Ver(verk, C, S) ̸= 1, return ⊥,
r, σ, π′, η′, ζ ′

U←− Fq, φ⃗′
0

U← F2
q , φ⃗

′
t

U← Fnt
q for t = 1, . . . , d,

f⃗ ′
U← Frq, s⃗

′T := (s′1, . . . , s
′
l)
T :=M · f⃗ ′T, s′0 := 1⃗ · f⃗ ′

T
, W2

R← GL(9,Fq)
k∗renc
0 := k∗rk

0 + rk∗rk
0.ran + ( 02, σ(−1, verk), 02, φ⃗′

0, 0 )D∗
0

k∗renc
t := k∗rk

t + rk∗rk
t.ran + ( 02nt , φ⃗′

t, 0 )D∗
t
for t = 1, . . . , d,

crenc0 := (c0 + ( ζ ′, − s′0, π′(verk, 1), 02, 02, η′)B0)W2,

ctrenc1,S′
R← RRCP-FE(pk

CP-FE, ctrkS′), ctrenc2,S′
R← EncCP-FE(pk

CP-FE, S′,W2), crencT := cT · gζ
′

T ,

for i = 1, . . . , l,

if ρ(i) = (t, v⃗i := (vi.1, . . . , vi.nt) ∈ Fnt
q \ {⃗0})(vi,nt ̸= 0), θ′i, η

′
i

U← Fq,

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷ ︸︸ ︷
crenci := ci+ ( s′ie⃗t.1 + θ′iv⃗i, 0nt , 0nt , η′i )Bt ,

if ρ(i) = ¬(t, v⃗i), η′i
U← Fq,

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷ ︸︸ ︷
crenci := ci+ ( s′iv⃗i, 0nt , 0nt , η′i )Bt ,

return rctS′ := (S′, S, {k∗renc
t }t=0,...,d, {crenci }i=0,...,ℓ, c

renc
T , {ctrencι,S′ }ι=1,2).

Decoct (pk, skΓ = (Γ, skCP-FEΓ ,k∗
0, {k∗

t }(t,x⃗t)∈Γ), octS = (C := (S, {ci}i=0,...,l, cT ), verk, S)):
If Ver(verk, C, S) ̸= 1, return ⊥,
If S = (M,ρ) accepts Γ := {(t, x⃗t)}, then compute I and {αi}i∈I such that 1⃗ =

∑
i∈I αiMi where

Mi is the i-th row of M , and

I ⊆ {i ∈ {1, .., l} | [ρ(i) = (t, v⃗i)∧ (t, x⃗t) ∈ Γ∧ v⃗i·x⃗t = 0]∨[ρ(i) = ¬(t, v⃗i)∧ (t, x⃗t) ∈ Γ∧ v⃗i·x⃗t ̸= 0]},

K := e(c0,k
∗
0)

∏
i∈I∧ρ(i)=(t,v⃗i)

e(ci,k
∗
t )
αi

∏
i∈I∧ρ(i)=¬(t,v⃗i)

e(ci,k
∗
t )
αi/(v⃗i·x⃗t)

return m′ := cT /K.

Decrct (pk, skΓ′ := (skCP-FEΓ′ ,k∗
0, {k∗

t }(t,x⃗′t)∈Γ′),
rctS′ := (S′, S, {k∗renc

t }t=0,...,d, {crenci }i=0,...,ℓ, c
renc
T , {ctrencι,S′ }ι=1,2)):

({W̃1,t}t=0,...,d,Γ)
R← DecCP-FE(pk

CP-FE, skCP-FEΓ′ , ctrenc1,S′ ), W̃2
R← DecCP-FE(pk

CP-FE, skCP-FEΓ′ , ctrenc2,S′ ),

If S = (M,ρ) accepts Γ := {(t, x⃗t)}, then compute I and {αi}i∈I such that 1⃗ =
∑

i∈I αiMi where
Mi is the i-th row of M , and

I ⊆ {i ∈ {1, .., l} | [ρ(i) = (t, v⃗i)∧ (t, x⃗t) ∈ Γ∧ v⃗i·x⃗t = 0]∨[ρ(i) = ¬(t, v⃗i)∧ (t, x⃗t) ∈ Γ∧ v⃗i·x⃗t ̸= 0]},

k̃∗
0 := k∗renc

0 W̃−1
1,0 , k̃∗

t := k∗renc
t W̃−1

1,t for (t, x⃗) ∈ Γ, c̃0 := crenc0 W̃−1
2 ,

K̃ := e(c̃0, k̃
∗
0)

∏
i∈I∧ρ(i)=(t,v⃗i)

e(crenci , k̃∗
t )
αi

∏
i∈I∧ρ(i)=¬(t,v⃗i)

e(crenci , k̃∗
t )
αi/(v⃗i·x⃗t),

return m′ := cT /K̃,
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E.4 Security

Theorem 8. The proposed CP-F-PRE scheme is payload-hiding for original ciphertexts against cho-
sen plaintext attacks under the DLIN assumption, payload-hiding of underlying CP-FE scheme and
strong unforgeability of one-time signature.

Theorem 9. The proposed CP-F-PRE scheme is payload-hiding for re-encrypted ciphertexts against
chosen plaintext attacks under payload-hiding of underlying CP-FE scheme.

Theorem 10. The proposed CP-F-PRE scheme is attribute-hiding for re-encryption key against
chosen plaintext attacks under payload-hiding of underlying CP-FE scheme.

Corollary 3 The proposed CP-F-PRE scheme is payload-hiding for original ciphertexts against cho-
sen plaintext attacks under the DLIN assumption and strong unforgeability of one-time signature with
instantiating underlying CP-FE by the OT10 CP-FE scheme.

The proposed CP-F-PRE scheme is payload-hiding for re-encrypted ciphertexts against chosen
plaintext attacks under the DLIN assumption with instantiating underlying CP-FE by the OT10
CP-FE scheme.

The proposed CP-F-PRE scheme is attribute-hiding for re-encryption keys against chosen at-
tribute attacks under the DLIN assumption with instantiating underlying CP-FE by the OT10 CP-FE
scheme.

Theorem 11. The proposed CP-F-PRE scheme is unlinkable.

The proofs of Theorems 8–10 (and Corollary 3) and Theorem 11 are given in the full version of
this paper. They are given in a similar manner to the security proofs for IP-PRE given in Appendix
D.


