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Abstract. This paper investigated the use of instantaneous frequency (IF)
instead of power amplitude and power spectrum in side-channel analysis.
By opposition to the constant frequency used in Fourier Transform, instan-
taneous frequency reflects local phase differences and allows detecting
frequency variations. These variations reflect the processed binary data
and are hence cryptanalytically useful. IF exploits the fact that after higher
power drops more time is required to restore power back to its nominal
value. Whilst our experiments reveal IF does not bring specific benefits
over usual power attacks when applied to unprotected designs, IF allows
to obtain much better results in the presence of amplitude modification
countermeasures.

1 Introduction

In addition to its usual complexity postulates, cryptography silently assumes
that secrets can be physically protected in tamper-proof locations. All crypto-
graphic operations are physical processes where data elements must be repre-
sented by physical quantities in physical structures. These physical quantities
must be stored, sensed and combined by the elementary devices (gates) of any
technology from which we build tamper-resistant machinery.

At any given point in the evolution of a technology, the smallest logic devices
must have a definite physical extent, require a certain minimum time to perform
their function and dissipate a minimal switching energy when transiting from
one state to another.

The physical interpretation of data processing (a discipline named the physics
of computational systems [23]) draws fundamental comparisons between com-
puting technologies and provides physical lower bounds on the area, time and



energy required for computation [5,16]. In this framework, a corollary of the
second law of thermodynamics states that in order to introduce direction into a
transition between states, energy must be lost irreversibly. A system that con-
serves energy cannot make a transition to a definite state and thus cannot make a
decision (compute) ([23],9.5). In tamper-resistant devices this inescapable energy
transfer must, in addition, at least appear to be independent of the machine’s
secret parameters.

In 2005 it was observed, that not only signal amplitude, but also power spec-
trum, can leak secret information [10]. Following the introduction of Differential
Frequency Analysis (DFA) [11], frequency domain power analysis was investi-
gated in a thread of research papers [20,22,24,25]. DFA applies Fourier transform
to map a time-series into the frequency domain. Since each Fourier point is a
linear combination of all other sample points, a spectrum is a direct function
of the initial signal amplitude and hence, power spectra can also be used in
side-channel attacks.

[20] rightly noted that the term Differential Spectral Based Analysis (DSBA)
is semantically preferable to DFA because DFA does not exploit variations in
frequencies, but differences in spectra. As the matter of fact all time-domain
power models and distinguishers remain in principle fully applicable in the
frequency domain.

Dynamic Voltage Scrambling (DVS) is a particular side-channel countermeasure
that triggers random power supply changes meant to decorrelate the signal’s
amplitude from the processed data [2,19]. While DVS significantly degrades
DPA’s and DSBA’s performances, nothing prevents the existence of more subtle
side-channel attacks exploiting DVS-resistant die-hard information present in
the signal. This paper successfully exhibits and exploits such DVS-resistant
information.

Our contribution. We show that in addition to the signal’s amplitude and
spectrum, traditionally used for side-channel analysis, instantaneous frequency
variations may also leak secret data. To the authors’ best knowledge, ”pure”
frequency leakage has not been considered as a side-channel vector so far. Hence
a re-assessment of several countermeasures, especially, these based on amplitude
alterations, seems in order. As an example this paper examines DVS, which
makes AES implementation impervious to power and spectrum attacks while
leaving it vulnerable to Correlation Instantaneous Frequency Analysis (CIFA), a
new attack described in this paper.

Organization. This paper is organized as follows. Section 2 turns the Hilbert
Huang Transform (HHT, a signal processing algorithm), into an attack process.
Section 3 illustrates an HHT performed on a real power signal and motivates
the exploration of instantaneous frequency as a side-channel carrier. Section 4
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compares the cryptanalytic effectiveness of Correlation Instantaneous Frequency
Analysis, Correlation Power Analysis and Correlation Spectrum Based Analysis
on an unprotected AES FPGA implementation and on AES FPGA power traces
with a simulated DVS. Section 5 conjectures the previsible effect of CIFA on
other countermeasures and section 6 concludes the paper.

2 Preliminaries

The notion of instantaneous frequency, computable by the HHT, was introduced
in [14]. During the last decade, HHT found many practical applications includ-
ing oceanographic exploration and medical research [13]. This section recalls
HHT’s main mathematical features and describes the hardware setup used for
evaluating the attacks introduced in this paper.

2.1 Hilbert Huang Transform

The HHT represents the analysed signal in the time-frequency domain by com-
bining the Empirical Mode Decomposition (EMD) with the Discrete Hilbert
Transform (DHT).

DHT is a classical linear operator transforming a signal u(1), . . . , u(N) into a
time series Hu(1), . . . ,Hu(N) as follows:

Hu (t) =
2

π

∑
k 6=tmod 2

u(k)

t− k
(1)

DHT can be used to derive an analytical representation ua(1), . . . , ua(N) of the
real-valued signal u(t):

ua(t) = u(t) + iHu (t) for 1 ≤ t ≤ N (2)

Equation (2) can be rewritten in polar coordinates as

ua(t) = a(t)eiφ(t) (3)

where

a(t) =
√

(u2(t) +H2
u(t)) and φ(t) = arctan

(
Hu(t)

u(t)

)
(4)

represent the instantaneous amplitude and the instantaneous phase of the ana-
lytical signal, respectively.

The rate of phase change w (t) defined in equation (5) can be interpreted as an
instantaneous frequency (IF):

w(t) = φ′(t) =
d

dt
φ(t) (5)

May 18, 2013 3



For a real-valued time-series the definition of w(t) becomes:

w(t) = φ(t)− φ(t− 1) (6)

The derivative must be well defined since physically there can only be one
instantaneous frequency value w(t) at any given time t. This is insured by the
narrow band condition: the signal’s frequency must be uniform [15]. Further, the
physical meaningfulness of DHT’s output is closely related to the input’s fitness
into a narrow frequency band [6]. However, we wish to work with non-stationary
signals having more than one frequency. This is achieved by de-composing these
signals into several components, called Intrinsic Mode Functions, such that each
component has nearly the same frequency.

Definition 1 (Intrinsic Mode Function). An Intrinsic Mode Function (IMF) is a
function satisfying the following conditions:

1. the number of extrema and the number of zero crossings in the considered data set
must be either equal or differ by at most one;

2. the mean value of the curve specified as a sum of the envelope defined by the local
maxima and the envelope defined by the local minima is zero.

First step: Empirical Mode Decomposition (EMD). EMD, the HHT’s first step,
is a systematic way to extract IMFs from a signal. EMD involves approximation
with splines. By Definition 1, EMD uses local maxima and minima separately.
All the local signal’s maxima are connected by a cubic spline to define an upper
envelope. The same procedure is repeated for the local minima to yield a lower
envelope. The first EMD component h1,0(t) is obtained by subtraction from u(t)
the envelopes’ mean m1,0(t) (see Fig. 1):

h1,0(t) = u(t)−m1,0(t) (7)

Ideally, h1,0(t) should be an IMF, in reality this is not always the case and EMD
has to be applied to h1,0(t) as well:

h1,1(t) = h1,0(t)−m1,1(t) (8)

EMD is iterated k times, until an IMF h1,k(t) is reached, that is

h1,k(t) = h1,k−1(t)−m1,k(t) (9)

Then, h1,k(t) is defined as the first IMF component c1(t).

c1(t)
def
= h1,k(t) (10)

Next, the IMF component c1(t) is removed from u(t)

r1(t) = u(t)− c1(t) (11)
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Fig. 1. Illustration of the EMD: (a) is the original signal u(t); (b) u(t) in thin solid black
line, upper and lower envelopes are dot-dashed with their mean mi,j in thick solid red
line; (c) shows the difference between u(t) and the envelope’s mean.

and the procedure is iterated on all the subsequent residues, until the residue
rn(t) becomes a monotonic function from which no further IMFs can be ex-
tracted. 

r2(t) = r1(t)− c2(t)
. . .

rn(t) = rn−1(t)− cn(t)
(12)

Finally, the initial signal u(t) is re-written as a sum:

u(t) =

n∑
j=1

cj(t) + rn(t), for 1 ≤ t ≤ N (13)

where, cj(t) are IMFs and rn(t) is a constant or a monotonic residue.

Second step: Representation. The second HHT step is the representation of
the initial signal in the time-frequency domain. All components cj(t), j∈[1, n]
obtained during the first step are transformed into analytical functions cj(t) +
iHcj (t), allowing the computation of instantaneous frequencies by formula (6).
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The final transform U(t, w) of u(t) is:

U(t, w) =

n∑
j=1

aj(t) exp

(
i

t∑
`=1

wj(`)

)
(14)

where j∈[1, n] is indexing components, t∈[1, N ] represents time and:

aj(t) =
√
c2j (t) +H2

cj (t) is the instantaneous amplitude;

wj(t) = arctan
(
Hcj

(t+1)

cj(t+1)

)
− arctan

(
Hcj

(t)

cj(t)

)
is the instantaneous frequency;

Equation (14) represents the amplitude and the instantaneous frequency as a
function of time in a three-dimensional plot, in which amplitude can be con-
toured on the frequency-time plane. This frequency-time amplitude distribution
is called the Hilbert amplitude spectrum U(t, w), or simply the Hilbert spectrum
[14]. In addition to the Hilbert spectrum, we define the marginal spectrum or
HTT power spectral density h(w), as

h(wj) =

T∑
t=1

U(t, wj) (15)

The marginal spectrum measures the total amplitude (or energy) contributed by
each frequency value.

To illustrate HHT decomposition consider the function u(t) = cos (t (a+ bt)). In
Fig. 2a parameters a and b were arbitrarily set to a = 1 and b = 0.02. Fig. 2a
shows that the cosine’s frequency increases progressively. Fig. 2b presents the
Hilbert marginal spectrum of the signal u(t) = cos((1 + 0.02t)t). Fig. 2c shows
the contour of Hilbert’s amplitude spectrum, i.e. frequency evolution in time,
and this evolution is indeed nearly linear. The 3D Hilbert amplitude spectrum is
illustrated in Fig. 2.1.

2.2 AES Hardware Implementation

The AES-128 implementation used for our experiments runs on an Altera Cy-
clone II FPGA development board clocked by an external 50MHz oscillator. The
AES architecture uses a 128-bit datapath. Each AES round is completed in one
clock cycle and key schedule is performed during encryption. The substitution
box is described as a VHDL table mapped into combinational logic after FPGA
synthesis. Encryption is triggered by a high start signal, used as well as a
side-channel acquisition trigger. After completing the rounds the device halts
and drives a done signal high.

The implementation has no side-channel countermeasures. To simulate DVS,
200,000 physically acquired power consumption traces were processed by Al-
gorithm 2. Algorithm 2 splits a time-series into segments and adds a uniformly
distributed random voltage offset to each segment.
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Fig. 2. Analysis of the function cos((a+ bt)t)
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Fig. 3. Hilbert amplitude spectrum U(t, w) of Fig. 2a

The rationale for simulating a DVS by processing a real signal (rather than
adding to the FPGA a simple DVS module) is the desire to work with a rigorously
modelled signal, free of the power consumption artefacts created by the DVS
module itself.

3 Hilbert Huang Transform and Frequency Leakage

3.1 Why Should Instantaneous Frequency Variations Leak Information?

Most of the power consumed by a digital circuit is dissipated during rising or
falling clock edges when registers are rewritten with new values. This activity is
typically reflected in the power consumption trace as spikes occurring exactly
during clock’s rising edges. Spike frequency, computed by the Fourier transform,
is usually assumed to be constant because clock frequency is stable. In reality,
this assumption is incorrect since each spike has its own period and consequently
its own assortment of frequencies.

Differences in period come from the fact that the circuit’s power supply must be
restored to its nominal value after switching. Bigger amplitude spikes take more
time to resorb than smaller amplitude ones.

To illustrate these spike differences, consider the simple circuit in Fig. 4. Each
parallel branch has a resistor r, a switch Si and a capacitor C simulating a
single inverter when switched from low to high. Resistor Rs and the current is
represent the circuit’s static current and Ra is the resistor used for acquisition.
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Fig. 4. Inverters switch simulation.

Initially all the switches S1 . . . Sk are open, so the current flowing through Ra is
simply is.

Assume that at t0 = 0 all the switches S1 . . . Sk are suddenly closed. All ca-
pacitors start charging and current flowing through Ra rises according to the
following equation:

io(t) = is + k

(
Vdd
r
e−

t
rC

)
(16)

Equation (16) shows that current amplitude depends on the number of closed
switches. However, there is one more parameter in the equation, namely the
time t characterizing the switching spike. The current io needs some time to
”practically” reach an asymptotic nominal value is and this time depends on the
number of closed switches k. Consider the time Tk required by io(t) to reach Γ%
of its asymptotic value, i.e. Γ

100 is:

io(Tk) = is − k
(
Vdd
r
e−

Tk
rC

)
=

Γ

100
is (17)

This is equivalent to:

Tk = rC ln

(
100

100− Γ
Vdd
isr

)
+ rC ln (k) = α+ β ln(k) (18)

Equation (18) shows that convergence time has a constant part α and a variable
part β ln(k) that depends on the number of closed switches k. Equation (18)
shows that both spike period and spike frequency depend on the processed
data and could hence in principle be used as side-channel carriers. Nevertheless,
power consumption is a non-stationary signal, which justifies the use of HHT.
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Fig. 5. Netlist of a 4-bit register.

Intuitively and dirtily, if we assimilate the curves in Fig. 6a to sines, we see that
the instantaneous frequency 1

Tk
reflects the number of closed switches k.

The dependency between the number of switches and spike period in equation
(18) is non-linear and hard to formalize as a simple formula for a real circuit.
Section 3.2 shows that the standard Hamming distance model can be used in
conjunction with instantaneous frequency.

3.2 Register Simulation

The relationship between processed binary values and power amplitude is a
well understood phenomenon [1,9,12,18]. However, to the best of our knowl-
edge the dependency of instantaneous frequency on processed data has not
been explored so far. This may be partially explained by the fact that Fourier
Transform, previously examined in some papers, is not inherently adapted to
non-stationary and non-linear signals. Fourier analysis cannot extract frequency
variations from a signal because frequency is defined as a constant parameter
of the underlying sine function spanning the whole data-set u(t). By opposi-
tion, HHT allows extracting instantaneous frequencies and exploiting them for
subsequent cryptanalytic purposes.

To illustrate information leakage through frequency variations, the power con-
sumption of a 4-bits register was simulated using the Virtuoso toolkit. Power
supply was set to 1.5V and the circuit was clocked by a 50 MHz oscillator (Fig. 5).

Two scenarios were simulated under identical temperature and voltage condi-
tions:

Single Latch: The register was reset. After a sufficiently long time a high input
IN2 was latched on flip-flop FF4. At the next clock rising edge the D-latch
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updated its state and transmitted a 1 to Q3. The simulation of the register’s
power consumption shown in Fig. 6a (blue signal).

Triple Latch: The register was reset. After a sufficiently long time a high input
IN1 was latched on three the flip-flops FF1, FF2, FF3. At the next clock rising
edge the three D-latches updated their state and transmitted 1s to their outputs.
Again, the power consumption’s simulation is illustrated in Fig. 6a (red signal).

In classic side-channel models [9], the energies consumed for flipping 1 bit and
3 bits differ. Fig. 6a shows that such is indeed the case. As per our assumption,
the frequency signatures of these two operations are also different.

Fig. 6a shows that the recovery time following a 3 bits change is longer than the
compensation time of 1 bit. This recovery time difference results in a frequency
variation. Fig. 6a shows that the 3 bits’ current spike has a longer pulse period
than the 1 bit spike, therefore the 3 bits signal alteration presents a lower fre-
quency. Intuition suggests (and experiments confirm) that this difference will be
detected by the HHT.

To show that HHT can detect frequency differences consider the power spectral
density (PSD) of both signals during 1 bit and 3 bits switch (Fig. 6b). The maximal
spectral amplitude of the 1 bit change is located at 4.99 GHz (point f1) while the
maximal spectral amplitude of the 3 bits change (point f3) is at 4.55 GHz which
is supportive of the hypothesis that HHT can distinguish frequency variations
even in non-stationary signals. As expected, Fig. 6c shows that two sine functions
(4.55 GHz and 4.99 GHz) correspond well to the side-channels’ shapes.

This shows that not only amplitude but also frequency varies during register
switch. Logically, power consumption increases as more bits are flipped. How-
ever, simulation cannot prove that this variation is detectable in practice because
frequency changes heavily depend on the Hamming weight of the data stored in
the register. That is why the next section carefully examines the effect of register
alteration on IF in a real AES FPGA implementation.

3.3 Hilbert Huang Transform of an AES Power Consumption Signal

We start by performing a Hilbert Huang decomposition of a real signal. The
analysis was performed on the power trace of the previously described AES-128
implementation. Signals were averaged 10 times and had 1,000 samples (Fig. 7a).

EMD decomposed the power trace to five IMFs and a residue, shown in Fig. 7b.
After decomposition, each IMF was Hilbert Transformed to derive the power
signal’s time-frequency representation. Fig. 8 is an IF distribution of Fig. 7a.

Amplitude combination over frequency gave the power spectral density plot
of Fig. 9a. An important observation in Fig. 9a is that HHT spectrum shows the
distribution of a periodic variable over the main peak frequencies. Notably, the
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peak near 50 MHz that corresponds to the board’s oscillator is not represented

May 18, 2013 12



by a single point, but by a set of points. This data scatter can be explained by the
fact that the IF of AES rounds varies, and HHT distinguishes this variation.

The main difference between HHT and FFT spectra (see Fig. 9b) is that HHT
defines frequency as the speed of phase change and can hence detect intra-time-
series deviations from the carrier’s oscillation, whereas FFT frequency stems
from the sine function, which is independent of the signals’ shape.

So far, it was shown that IF varies for different rounds even within a given trace.
However, an attack is only possible when IF depends on the data’s Hamming
weight.

The dependency is apparent in Fig. 10 showing the relationship between Ham-
ming distance of the 9-th and 10-th AES round states and IF, taken from the first
IMF component at the beginning of the 10-th round. Fig. 10 was drawn using
200,000 HHT-processed power traces. The thin solid line in Fig. 10 represents
the mean IF value, obtained from the first IMF component, as a function of
Hamming distance.

The principal trend is the ascending line. Fig. 10 corresponds well to the simula-
tion of a register’s power consumption since frequency is decreasing due to the
increase in Hamming distance. The relationship in Fig. 10 between Hamming
distance and IF looks linear and therefore the Pearson correlation coefficient can
be used as an SCA distinguisher.

IF adoption for side-channel attacks presents some particularities. The disadvan-
tage of the method is that data scatter is higher than in usual DPA and hence
the attack requires more power traces. Another issue is that each time-series
will be decomposed into a set of IMFs, hence every sample will be wrapped-
up with a set of IFs virtually multiplying the amount of data to be processed.
However, the advantage is that because frequency based analysis is indepen-
dent of local amplitude, CIFA can still be attempted in the presence of certain
countermeasures.

4 Correlation Instantaneous Frequency Analysis

This section introduces Correlation Instantaneous Frequency Analysis (CIFA)
and compares its performance with Correlation Power Analysis (CPA) and to
Correlation Spectral Based Analysis (CSBA).

4.1 Correlation Instantaneous Frequency Analysis on Unprotected
Hardware

During the acquisition step 200,000 power traces were acquired at a sampling
rate of 2.5 GS/s. Each power signal was averaged 10 times to reduce noise. All
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Fig. 7. Power consumption of our experimental AES-128 implementation.
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traces were HHT-processed using the Matlab HHT code of [3,4]. Most traces
were decomposed into 6 components, but 5 and 7 IMFs occurred as well. To
reduce the amount of processed information only the first four IMFs were used.

Generally, each higher rank IMF carries information present in smaller instanta-
neous frequencies (Fig. 8), this is why IMFs from different power traces were
aligned index-wise, i.e. all first IMFs from every encryption were analyzed first,
then all second IMFs and so on.

We chose the Hamming distance model and Pearson’s correlation coefficient
(see Algorithm 1) to investigate CIFA’s properties and compare CIFA with other
attacks.

CPA. CPA applied to power traces produces Fig. 11(a). Clearly, CPA outperforms
CIFA. CIFA’s poorer performance can be partially attributed to the power model,
because IF is not linearly dependent on the Hamming distance.
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Algorithm 1 Generic Side-Channel Analysis Algorithm
Input:
M ciphertexts C1, . . . , CM ;
ujt any type of side-channel information, where j∈ [1,M ] is an encryption number,

and t∈ [1, N ] is a sample number.1

Output:
The maximum likelihood key byte k∗;
for k = 0 to 255 do

. Create a power model µ
for j = 1 to M do

µk,j ← HammingDistance (Cj , InvShiftRows (InvSbox [Cj ⊕ k]))
end for

. Correlate the power model µ and the side-channel data u
for t = 1 to N do

ρk,t ← corr
(
{ujt}Mj=1, {µk,j}Mj=1

)
end for

. For each byte value select the maximum correlation
ρk ← max

1≤t≤N
ρk,t

end for

. Find the key byte maximizing correlation
return the k∗ ∈ [0, 255] such that ρk∗ = max

0≤k≤255
(ρk)

CSBA. Fig. 11(b) presents CSBA applied against Fourier power trace spectra
with the same power power model and distinguisher. The correct key byte can
be distinguished from 2000 power traces and on.

CIFA. The application of the selected power model and of the distinguisher to
IFs yields Fig. 11(c) where the correct key byte emerges from 16,000 power traces
and on.

The three experiments seem to suggest that CSBA is superior to CIFA but inferior
to CPA. That is CIFA < CSBA < CPA.

While it appears that CPA and CSBA outperform CIFA in the absence of coun-
termeasures, we will now see that CIFA survives countermeasures that derail
CPA and CSBA.

4.2 Correlation Instantaneous Frequency Analysis in the Presence of DVS

As mentioned previously DVS alters power supply to reduce dependency be-
tween data and consumed power. According to [2,19] DVS is cheap in terms of

1 Note that t defines frequency when indexing PSD, and time when indexing power or
IF.
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Fig. 11. Maximum correlation coefficients for a byte of the last round AES key in an unpro-
tected implementation. Although the three attacks eventually succeed CPA>CSBA>CIFA.
(a) CPA (b) CSBA (c) CIFA.

area overhead since only a voltage controller and a random number generator
must be added to the protected design.

To simulate DVS all the traces of the unprotected AES were modified by Al-
gorithm 2. Each power trace was partitioned into γ segments of normally dis-
tributed lengths covering the whole dataset.2. Each segment was lifted by a
uniformly distributed random offset ` that did not exceed a predetermined
value D set to D = 12 mV. A trace modification example is presented in Fig. 12,
in which the trace of Fig. 7a was processed by Algorithm 2.

Logically, DVS decreases power analysis performance by reducing the attacker’s
SNR. We disposed of 200,000 DVS-modified power traces. All of which were
used to mount power analysis attacks under the same conditions as before,
i.e., using Pearson’s correlation coefficient and the Hamming distance model
(Algorithm 1).

2 The mean m and the standard deviation σ were arbitrary set to m = 40 ns and σ = 5
ns in our experiment
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The same final round key byte used for attacks against the unprotected imple-
mentation was targeted. CPA and CSBA failed to detect the correct key byte
even with 150,000 traces (Fig. 13(a),13(b). This confirms the intuition that DVS
has a beneficial effect on the required number of power traces.

However CIFA was able to recover the byte from 60,000 traces and on (Fig. 13(c)).
This illustrates that whilst CIFA is usually outperformed by CPA and CSBA,
CIFA is much more resilient to DVS, to which CPA and CSBA are very sensitive.

5 Previsible Effect on other Countermeasures

In the light of the above the re-assessment of other side-channel countermeasures
seems in order.

Side-channel countermeasures [21] can be categorised into 4 broad groups.

1 Leakage reduction diminishes the dependency between power consumption
and binary data at the logic level (e.g. [17,27]).

CIFA should offer no advantage when attacking a leakage reduction counter-
measure because signal recovery time strongly depends on signal amplitude,
which tends to be constant.

2 Noise consists in injecting an unpredictable component to the power trace
either by scrambling amplitude or by shuffling operations in time (e.g.
[19,21,26] or [7,8,28,29]).
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Algorithm 2 Dynamic Voltage Scrambling (DVS) Simulator
Input:

A power trace u(1), . . . , u(N);
γ : the number of segments;
m : mean value of segment length m def

= N/γ;
σ : standard deviation of segment length;
D : maximum offset for segment lifting;

Output:
a DVS-protected power trace u′(1), . . . , u′(N);

. Split the power trace to a set of segments of normally distributed random length
chunks
τ0 ← 1
τγ ← N
for i = 1 to γ − 1 do

τi ← τi−1 +N (m,σ)
end for

. Lift each segment by a uniformilly distributed random offset `
for s = 1 to γ do

`s∈R [0, D]
for t = τs−1 to τs do

u′(t)← u(t) + `s
end for

end for

This paper showed that IF can overcome certain types of amplitude noise
countermeasures. Moreover, because HHT was developed to handle non-
stationary and non-linear signals, the HHT marginal spectrum can be ad-
justed to deal with temporal noise countermeasures.

3 Randomization changes the secret’s representation so that sensitive data is
no longer processed in clear. Randomization is typically implemented as
explained in [21] or by using arithmetic and homomorphic properties of
public key cryptosystems allowing to compute a result in one of many ways.
Whenever the results of subroutines are independent, the defender may also
execute these routines in a random order.

IF analysis is based on the Hamming weight model, hence CIFA is not
expected to outperform CPA or DPA because these countermeasures prevent
the attacker from creating the correct power model.

4 Protocol-level solutions consist in using leaky implementations in a secure
way. Protocol-level countermeasures typically limit the number of encryp-
tions per key (EEPROM counter per key), randomize encrypted or signed
message or update keys continuously.

Protocol level protections limit the number of traces available to the attacker.
Combination of signal amplitude, Fourier spectra and IF may bring some
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Fig. 13. Maximum correlation coefficient for a byte of the last round AES key with
simulated DVS. (a) CPA (b) CSBA (c) CIFA.

advantage when discarding key values because three of these attacks rely
on different noise models and may thus be applied independently. This
conjecture must nonetheless be confirmed experimentally.

6 Conclusions and Further Research

This paper investigated the use of instantaneous frequency instead of power
amplitude and power spectrum in side-channel analysis. By opposition to the
constant frequency used in Fourier Transform, instantaneous frequency reflects
local phase differences and allows detecting frequency variations. These vari-
ations depend on the processed binary data and are hence cryptanalytically
useful. The relationship stems from the fact that after higher power drops more
time is required to restore power back to its nominal value.
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IF analysis does not bring specific benefits when applied to unprotected designs
on which CPA and CSBA yield better results. However, CIFA allows to discard
the effect of amplitude modification countermeasures, e.g. DVS, because CIFA
extracts from signal features not exploited so far.
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