
Encryption Schemes with Post-Challenge Auxiliary Inputs

Tsz Hon Yuen1, Ye Zhang2, and Siu Ming Yiu1

1 The University of Hong Kong, Hong Kong
{thyuen,smyiu}@cs.hku.hk

2 Pennsylvania State University, USA
yxz169@cse.psu.edu

Abstract. In this paper, we tackle the open problem of proposing a leakage-resilience encryption
model that can capture leakage from both the secret key owner and the encryptor, in the auxiliary
input model. Existing models usually do not allow adversaries to query more leakage information
after seeing the challenge ciphertext of the security games. On one hand, side-channel attacks
on the random factor (selected by the encryptor) are already shown to be feasible. Leakage from
the encryptor should not be overlooked. On the other hand, the technical challenge for allowing
queries from the adversary after he sees the ciphertext is to avoid a trivial attack to the system
since he can then embed the decryption function as the leakage function (note that we consider
the auxiliary input model in which the leakage is modeled as computationally hard-to-invert
functions). We solve this problem by defining the post-challenge auxiliary input model in which
the family of leakage functions must be defined before the adversary is given the public key.
Thus the adversary cannot embed the decryption function as a leakage function after seeing the
challenge ciphertext while is allowed to make challenge-dependent queries. This model is able to
capture a wider class of real-world side-channel attacks.
To realize our model, we propose a generic transformation from the auxiliary input model to our
new post-challenge auxiliary input model for both public key encryption (PKE) and identity-
based encryption (IBE). Furthermore, we extend Canetti et al.’s technique, that converts CPA-
secure IBE to CCA-secure PKE, into the leakage-resilient setting. More precisely, we construct
a CCA-secure PKE in the post-challenge auxiliary input model, by using strong one-time sig-
natures and strong extractor with hard-to-invert auxiliary inputs, together with a CPA-secure
IBE in the auxiliary input model. Moreover, we extend our results to signatures, to obtain fully
leakage-resilient signatures with auxiliary inputs using standard signatures and strong extractor
with hard-to-invert auxiliary inputs. It is more efficient than the existing fully leakage-resilient
signature schemes.

Keywords: leakage-resilient, auxiliary inputs, randomness

1 Introduction

In modern cryptography, we use a security model to capture the abilities of a potential attacker
(the adversary). For example, in the chosen-ciphertext attack (CCA) model for public key
encryption (PKE), the adversary is allowed to ask for the decryption of arbitrary ciphertexts,
except for the one that he intends to attack. This models the real-world scenario that the
adversary may obtain some pairs of messages and ciphertexts from the secret key owner. Under
a given model, a cryptographic scheme is said to be proven secure if the scheme is capable
of withstanding the attacks from adversaries with the abilities captured by the model. But
if the adversary has some extra abilities, the security of the scheme is no longer guaranteed.
In most traditional security models, it is assumed that the adversary does not have the
ability to obtain any information (even one single bit) about the secret key. However, due to
the advancement of a large class of side-channel attacks on the physical implementation of
cryptographic schemes, obtaining partial information of the secret key becomes feasible and
relatively easier. Thus, the assumption for absolute secrecy of the secret key may not hold. In

2 Tsz Hon Yuen, Ye Zhang, and Siu Ming Yiu

recent years, a number of works have been done in leakage-resilient cryptography to formalize
these attacks in the security model.

Leakage-resilient cryptography models various side-channel attacks by allowing the adver-
sary to specify an arbitrary, efficiently computable function f and to obtain the output of f
(representing the information leaked) applied to the secret key sk. Clearly, we must have some
restrictions on f such that the adversary should not be able to recover sk completely and to
win the security game trivially. One approach is to restrict the output size of f to be at most
ℓ bits such that ℓ must be less than |sk| [1]. Naor and Segev [17] considered the entropy of sk
and required that the decrease in entropy of the sk is at most ℓ bits upon observing f(sk).
Dodis et al. [10] further generalized the leakage functions and proposed the model of auxiliary
input which only requires the leakage functions to be computationally hard to compute sk

given f(sk).

1.1 Motivation for Post-Challenge Auxiliary Inputs

Post-challenge leakage query for PKE: The auxiliary input model is general enough
to capture a large class of side-channel leakages. However, there are still shortcomings. For
example, in the CCA security model for PKE, the adversary A is allowed to ask for the
decryption of arbitrary ciphertexts before and after receiving the challenge ciphertext C∗, in
order to maximize the ability of A3. But for most leakage-resilient PKE, the adversary A can
only specify and query the leakage function f(sk) before getting C∗. In real situations, this
is not true. The adversary should be able to obtain more information even after the attack
target is known. The main reason for not being able to have post-challenge leakage queries
(queries from the adversary after the challenge ciphertext is given) is as follows. If we allow A
to specify the leakage function after getting C∗, he can easily embed the decryption of C∗ as
the leakage function, which will lead to a trivial break to the security game. So, the issue is to
come up with a model with minimal restriction needed to allow post-challenge leakage query
after getting the challenge ciphertext, while avoiding the above trivial attack. Comparing with
the existing leakage-resilient PKE, the objective is to increase the ability of the adversary to
make the model more realistic and capture a larger class of side-channel attacks.

Leakage from the Encryptor: Another reason for considering post-challenge leakage query
is to model the leakage of encryptor. In generating the ciphertext, besides the encryption key,
the encryptor requires to pick a random value r in probabilistic encryption schemes. This
random value is also critical. If the adversary A can obtain the entire r, it can encrypt the
two challenge messages m0 and m1 by itself using r and compare if they are equal to the
challenge ciphertext, thus wins the game easily. Therefore, the leakage of this randomness
should not be overlooked. We demonstrate the impact of leaking encryption randomness in
the following artificial encryption scheme. We use (Enc, Dec) a leakage-resilient PKE scheme
in the auxiliary input model and one-time pad to form a new encryption scheme:

– Enc′: On input a message M and a public key pk, pick a random one-time pad P for M
and calculate C1 = Enc(pk, P), C2 = P ⊕M , where ⊕ is the bit-wise XOR. Return the
ciphertext C = (C1, C2).

– Dec′: On input a secret key sk and a ciphertext C = (C1, C2), calculate P ′ = Dec(sk, C1)
and output M = C2 ⊕ P ′.

3 Sometimes this is known as the CCA2 security, in contrast with the CCA1 security, where the adversary is
only allowed to ask the decryption oracle before getting the challenge ciphertext.

Encryption Schemes with Post-Challenge Auxiliary Inputs 3

The randomness used in Enc′ by the encryptor is P and the randomness in Enc. However,
leaking the first bit of P will lead to the leakage of the first bit in M . Therefore, leakage from
the encryptor helps the adversary to recover the message. Without post-challenge leakage
query, the side-channel attacks to the encryption randomness cannot be modeled easily.

In both scenarios, we should avoid the adversary A submitting a leakage function as the
decryption of C∗ in the security game (in case of leakage from secret key owner) or to submit
a leakage function to reveal the information for the encryption randomness r for a trivial
attack (in case of leakage from encryptor). A possible direction is to ask A to submit a set
of functions F0 before seeing the public key or C∗. After seeing the challenge ciphertext,
A can only ask for the leakage of arbitrary function f ′ ∈ F0. Therefore, f

′ cannot be the
decryption of C∗ and cannot lead to a trivial attack for the case of encryption randomness.
This restriction is reasonable in the real world since most side-channel attacks apply to the
physical implementation rather than the algorithm used (e.g. the leakage method of the power
or timing attacks are the same, no matter RSA or ElGamal encryption are applied; 512-bit
or 1024-bit keys are used.). Similar restriction was proposed by Yuen et al. [19] for leakage-
resilient signatures in the auxiliary input model4. However, directly applying this idea to PKE,
by simply allowing both pre-challenge and post-challenge leakages on sk, is not meaningful.
Specifically, as the possible choice of leakage function f ′ is chosen before seeing the challenge
ciphertext C∗, the post-challenge leakage f ′(sk) can simply be asked before seeing C∗, as
a pre-challenge leakage. Therefore this kind of post-challenge leakage can be captured by
slightly modifying the original auxiliary input model and does not strengthen our security
model for PKE. Hence, we propose the leakage f ′(r) on the encryption randomness of C∗ as
the post-challenge leakage query. This kind of post-challenge leakage cannot be captured by
the existing models. Since we focus on the auxiliary input model in this paper, we call our
new model as the post-challenge auxiliary input model.

Practical Threats to Randomness. Finally, we want to stress that information leakage
caused by poor implementation of pseudorandom number generator (PRNG) is practical.
Argyros and Kiayias [2] outlined the flaws of PRNG in PHP. Lenstra et al. [14] inspected
millions of public keys and found that some of the weak keys could be a result of poorly seeded
PRNGs. Michaelis et al. [15] uncovered signicant weaknesses of PRNG of some java runtime
libraries, including Android. These practical attacks demonstrate the potential weakness of
the encryption randomness when using PRNG in practice.

1.2 Our Contributions

In this paper, we propose the post-challenge auxiliary input model for public key encryption.
The significance of our post-challenge auxiliary input model is twofold. Firstly, it allows the
leakage after seeing the challenge ciphertext. Secondly, it considers the leakage of two different
parties: the secret key owner and the encryptor. In most leakage-resilient PKE schemes, they
only consider the leakage of the secret key. However, the randomness used by the encryptor
may also suffer from side-channel attacks. There are some encryption schemes which only
consider the leakage on randomness, but not the secret key. Bellare et al. [3] only allows ran-
domness leakage before receiving the public key. Namiki et al. [16] only allows randomness

4 Yuen et al. [19] named their model as the selective auxiliary input model, due to similarity to the selective-ID
model in identity-based encryption.

4 Tsz Hon Yuen, Ye Zhang, and Siu Ming Yiu

leakage before the challenge phase. Therefore our post-challenge auxiliary input model also
improves this line of research on randomness leakage. To the best of the authors’ knowledge,
no existing leakage-resilient PKE schemes consider the leakage of secret key and randomness
at the same time. Therefore, our post-challenge auxiliary input model is the first model to
consider the leakage from both the secret key owner and the encryptor. This model captures
a wider class of side-channel attacks than the previous models in the literature. We allow
for leakage on the values being computed on, which will be a function of both the encryp-
tion random r and the public key pk. Specifically, we allows for g(pk, f(r)) where g is any
polynomial-time function and f is any computationally hard-to-invert function. We put the
restriction on f(r) to avoid trivial attacks on our security model.

To illustrate the feasibility of the model, we propose a generic construction of CPA-
secure PKE in our new post-challenge auxiliary input model (pAI-CPA PKE). It is a generic
transformation from the CPA-secure PKE in the auxiliary input model (AI-CPA PKE, e.g.
[8]) and a new primitive called the strong extractor with hard-to-invert auxiliary inputs. The
strong extractor is used to ensure that given the partial leakage of the encryption randomness,
the ciphertext is indistinguishable from uniform distribution. As an independent technical
contribution, we instantiate the strong extractor using the extended Goldreich-Levin theorem.
Similar transformation can also be applied to identity-based encryption (IBE). Therefore we
are able to construct pAI-ID-CPA IBE from AI-ID-CPA IBE (e.g. [18]).

Furthermore, we extend the generic transformation for CPA-secure IBE to CCA-secure
PKE by Canetti et al. [7] into the leakage-resilient setting. The original transformation by
Canetti et al. [7] only requires the use of strong one-time signatures. However, the encryption
randomness of the PKE now includes both the encryption randomness used in IBE and the
randomness used in the strong one-time signatures. Leaking either one of them will not violate
our post-challenge auxiliary input model, but will lead to a trivial attack (details are explained
in §4.1). Therefore, we have to link the randomness used in the IBE and the strong one-time
signatures. We propose to use strong extractor with hard-to-invert auxiliary inputs as the
linkage. It is because the strong extractor allows us to compute the randomness of IBE and
the strong one-time signature from the same source, and yet remains indistinguishable from
uniform distribution. It helps to simulate the leakage of the randomness in the security proof.
Our contributions on encryption can be summarized in Fig. 1.

AI-ID-CPA IBE

strong extractor

pAI-ID-CPA IBE

one-time sig
pAI-CCA PKE

AI-ID-CPA PKE
strong extractor

pAI-CPA PKE

stronger than AI-sID-CPA IBE

strong extractor

stronger than

Fig. 1. Our Contributions on Encryption

Finally, we also observe that the strong extractor with hard-to-invert auxiliary inputs
also helps us to construct fully leakage-resilient signatures with auxiliary inputs. We consider

Encryption Schemes with Post-Challenge Auxiliary Inputs 5

the selective auxiliary input model by Yuen et al. [19], which allows the attacker to obtain
(hard-to-invert) leakage on all randomness used by the secret key owner. Similar to our post-
challenge auxiliary input model, a set of possible leakage functions must be submitted at
the beginning of the security game, in order to avoid trivial attack (such as generating a
forgery of a signature directly). We find a generic construction of such signature scheme by
using a standard signature and the strong extractor with hard-to-invert auxiliary inputs.
It greatly simplifies the construction of most generic leakage-resilient signatures (either in
bounded leakage or hard-to-invert leakage; the leakage function either takes the secret key as
input only or takes all intermediate randomness as input), which usually involves a number
of primitives such as simulation sound NIZK, lossy encryption, admissible hash functions, etc
[13, 6, 9, 5, 11, 19]. As a result, our scheme is the most efficient fully leakage-resilient signatures.

Related Works. Dodis et al. [10] introduced the model of auxiliary inputs leakage functions.
PKE secure in the auxiliary input model was proposed in [8]. Signature schemes secure in the
auxiliary input model were independently proposed by Yuen et al. [19] and Faust et al. [11],
under different restrictions to the security model. All of these works only consider the leakage
from the owner of the secret key.

For leakage-resilient PKE, Naor and Segev wrote in [17] that

“It will be very interesting to find an appropriate framework that allows a certain
form of challenge-dependent leakage.”

Halevi and Lin [12] proposed the model for after-the-fact leakage which also considered
leakage that occurs after the challenge ciphertext is generated. In their entropic leakage-
resilient PKE, even if the adversary designs its leakage function according to the challenge
ciphertext, if it only leaks k bits then it cannot amplify them to learn more than k bits about
the plaintext. Halevi and Lin [12] mentioned that

“Our notion only captures leakage at the receiver side (i.e., from the secret key)
and not at the sender side (i.e., from the encryption randomness). It is interesting to
find ways of simultaneously addressing leakage at both ends.”

Recently, Bitansky et al. [4] showed that any non-committing encryption scheme is tolerant
to leakage on both the secret key sk and encryption randomness r (together), such that leaking
L bits on (sk, r) reveals no more than L bits on the underlying encrypted message.

We solve the open problem of allowing simultaneous leakage from sender and encryptor
by our post-challenge auxiliary input model, which allows hard-to-invert leakage and does not
reveals any bit on the underlying encrypted message.

2 Security Model of Post-Challenge Auxiliary Inputs

We denote the security parameter by λ. We use the notation neg(λ) to refer to some negligible
function of λ, and poly(λ) to refer to some polynomial function of λ.

We give the new post-challenge auxiliary input model for (probabilistic) public key en-
cryption. Denote the message space as M. A public-key encryption scheme Π consists of
three Probabilistic Polynomial Time (PPT) algorithms:

– Gen(1λ): On input the security parameter λ, output a public key pk and a secret key sk.

6 Tsz Hon Yuen, Ye Zhang, and Siu Ming Yiu

– Enc(pk,M): Denote the message space asM. On input a message M ∈M and pk, output
a ciphertext C.

– Dec(sk, C): On input sk and C, output the message M or ⊥ for invalid ciphertext.

For correctness, we require Dec(sk, Enc(pk,M)) = M for all M ∈ M and (pk, sk)← Gen(1λ).

As introduced in §1.1, the basic setting of our new security model is similar to the classic
IND-CCA model and the auxiliary input model for public key encryption. Our improvement
is to require the adversary A to submit a set of possible leakages F0 that may be asked later
in the security game, in order to avoid the trivial attacks mentioned in §1.1. Since A is a PPT
algorithm, we consider that m := |F0| is polynomial in the security parameter λ.

During the security game, A is only allowed to ask for at most q queries f ′
1, . . . f

′
q ∈ F0

to the post-challenge leakage oracle and obtains f ′
1(r

′), . . . f ′
q(r

′), where r′ is the encryption
randomness of the challenge ciphertext, but A cannot recover r′ with probability better than
ǫr. A can make these choices adaptively after seeing the challenge ciphertext. Hence, the
post-challenge leakage query is meaningful. Denote the number of pre-challenge leakage oracle
queries as q′.

We are now ready to give the formal definition of the model below. Let Π = (Gen, Enc, Dec)
be a public-key encryption scheme. The security against post-challenge auxiliary inputs and
adaptive chosen-ciphertext attacks is defined as the following game pAI-CCA, with respect
to the security parameter λ.

1. The adversary A submits a set of leakage functions F0 to the challenger C with m := |F0|
is polynomial in λ.

2. C runs (pk, sk)← Gen(1λ) and outputs pk to A.

3. A may adaptively query the (pre-challenge) leakage oracle:

– LOs(fi) with fi. LOs(fi) returns fi(sk, pk) to A.

4. A submits two messages m0,m1 ∈ M of the same length to C. C samples b← {0, 1} and
the randomness of encryption r′ ← {0, 1}∗. It returns C∗ ← Enc(pk,mb; r

′) to A.

5. A may adaptively query the (post-challenge) leakage oracle and the decryption oracle:

– LOr(f
′
i) with f ′

i ∈ F0. It returns f
′
i(r

′) to A.

– DEC(C) with C 6= C∗. It returns Dec(sk, C) to A.

6. A outputs its guess b′ ∈ {0, 1}. The advantage of A is AdvpAI−CCA
A (Π) = |Pr[b = b′]− 1

2 |.

Note that in the pre-challenge leakage stage, A may choose fi(sk, pk) to encode Dec(sk, ·)
to query the pre-challenge leakage oracle LOs. Recall that we do not restrict fi to be in F0.
Therefore to provide an explicit decryption oracle is superfluous.

Furthermore, our model implicitly allows the adversary to obtain some leakage g on inter-
mediate values during the encryption process, in the form of g(pk,m0, f(r

∗)) and g(pk,m1,
f(r∗)), where f is any hard-to-invert function. Since the adversary knows pk, m0 and m1, it
can compute this kind of leakage for any polynomial time function g given the knowledge of
f(r∗).

Denote the set of functions asked in the pre-challenge leakage oracle LOs as Fs. We have
to define the families (Fs,F0) for the leakage functions asked in the oracles. We can define
the family of length-bounded function by restricting the size of the function output as in [10]
(Refer to [10] for the definition of such family). In this paper, we consider the families of
one-way function for auxiliary input model. We usually consider F0 as a family of one-way
function How, which is extended from the definition in [10]:

Encryption Schemes with Post-Challenge Auxiliary Inputs 7

– Let How(ǫr) be the class of all polynomial-time computable functions h : {0, 1}|r
′| →

{0, 1}∗, such that given h(r′) (for a randomly generated r′), no PPT algorithm can find
r′ with probability greater than ǫr

5. The function h(r′) can be viewed as a composition
of q ∈ N

+ functions: h(r′) = (h1(r
′), . . . , hq(r

′)). Therefore {h1, . . . , hq} ∈ How(ǫr).

Also, we consider Fs as a family of one-way function Hpk−ow, which is extended from the
definition in [10]:

– LetHpk−ow(ǫs) be the class of all polynomial-time computable functions h : {0, 1}|sk|+|pk| →
{0, 1}∗, such that given (pk, h(sk, pk)) (for a randomly generated (sk, pk)), no PPT al-
gorithm can find sk with probability greater than ǫs

6. The function h(sk, pk) can be
viewed as a composition of q′ functions: h(sk, pk) = (h1(sk, pk), . . . , hq′(sk, pk)). There-
fore {h1, . . . , hq′} ∈ Hpk−ow(ǫs).

Definition 1. We say that Π is pAI-CCA secure with respect to the families (Hpk−ow(ǫs),
How(ǫr)) if the advantage of any PPT adversary A in the above game is negligible.

We can also define the security for chosen plaintext attack (CPA) similarly. By forbidding
the decryption oracle query, we have the security model for pAI-CPA. If we further forbid the
leakage of the encryption randomness, we get the original AI-CPA model in [10].

We also define the security model for identity-based encryption similarly in Appendix A.

3 CPA Secure PKE Construction Against Post-Challenge Auxiliary

Inputs

In this section, we give the construction of a public key encryption which is pAI-CPA secure.
We show that it can be constructed from an AI-CPA secure encryption (e.g., [8]) and a strong
extractor with ǫ-hard-to-invert auxiliary inputs leakage.

3.1 Strong Extractor with Hard-to-invert Auxiliary Inputs

We first give the definition of the strong extractor with ǫ-hard-to-invert auxiliary inputs
leakage as follows.

Definition 2 (Strong extractor with ǫ-hard-to-invert auxiliary inputs). Let Ext :
{0, 1}l1 × {0, 1}l2 → {0, 1}m

′

, where l1, l2 and m′ are polynomial in λ. Ext is said to be a
strong extractor with ǫ-hard-to-invert auxiliary inputs, if for every PPT adversary A, and for
all pairs (x, f) such that x ∈ {0, 1}l2 and f ∈ How(ǫ), we have:

|Pr[A(r, f(x),Ext(r, x)) = 1]− Pr[A(r, f(x), u) = 1]| < neg(λ).

where r ∈ {0, 1}l1 , u ∈ {0, 1}m
′

are chosen uniformly random.

5 Otherwise, for example, A can choose an identity mapping f . Then, A can learn r′ = f(r′) and test if
C∗ = Enc(pk,m∗

0; r
′) to determine b and win the game.

6 Note that we consider the probability of hard-to-invert function given the public key, the public parameters
and other related parameters in the security game. Similar to the weak-AI-CPA model in [10], no PPT
algorithm will output sk with ǫs probability given fi, pk, as pk leaks some information about sk. Therefore,
we also define that no PPT algorithm will output r′ with ǫr probability given f ′

i , C
∗, pk,m∗

0,m
∗

1. We omit
these extra input parameters for simplicity in the rest of the paper.

8 Tsz Hon Yuen, Ye Zhang, and Siu Ming Yiu

An interesting property of the above definition is that such a strong extractor itself is
ǫ-hard-to-invert. This property is useful when we prove pAI-CCA encryption security.

Lemma 1. Let r ∈ {0, 1}l1 be chosen uniformly random. For any pair (x, f) where x ∈
{0, 1}l2 and f ∈ How(ǫ), given (r, f(x)) and Ext(r, x), no PPT adversary can find x with
probability ≥ ǫ, provided that Ext(r, x) is a strong extractor with ǫ-hard-to-invert auxiliary
inputs.

Proof. Suppose on the contrary, x can be recovered with probability ǫ when knowing r, f(x)
and Ext(r, x). However by the definition of strong extractor, fix any auxiliary-input function
f ∈ How(ǫ), 〈r, f(x),Ext(r, x)〉 is indistinguishable with 〈r, f(x), u〉. It leads to a contradiction,
since if x can be recovered with probability ǫ, the attacker of Ext can compare that: (1) if
f(x) value is correct, then it receives Ext(r, x); (2) else it receives u instead. It breaks the
strong extractor with probability ǫ, which is a contradiction. ⊓⊔

Interestingly, we find that a strong extractor with ǫ-hard-to-invert auxiliary inputs can be
constructed from the modified Goldreich-Levin theorem from [8]. Denote 〈r, x〉 =

∑l
i=1 rixi

as the inner product of x = (x1, . . . xl) and r = (r1, . . . , rl).

Theorem 1 ([8]). Let q be a prime, and let H̄ be an arbitrary subset of GF (q). Let f : H̄ n̄ →
{0, 1}∗ be any (possibly randomized) function. s is chosen randomly from H̄ n̄, r is chosen
randomly from GF (q)n̄ and u is chosen randomly from GF (q). We also have y = f(s). If
there is a distinguisher D that runs in time t such that

|Pr[D(r, y, 〈r, s〉) = 1]− Pr[D(r, y, u)] = 1| = δ,

then there is an inverter A that runs in time t′ = t · poly(n̄, |H̄ |, 1δ) such that Pr[A(y) = s] ≥
δ3

512n̄q2
.

Now we are ready to show that strong extractor with ǫ-hard-to-invert auxiliary inputs can
be instantiated using inner product.

Theorem 2. Let λ be the security parameter. Let x be chosen uniformly random from {0, 1}l(λ)

where l(λ) = poly(λ). Similarly, we choose r uniformly random from GF (q)l(λ) and u uni-
formly random from GF (q). Then, given f ∈ How(ǫ), no PPT algorithm A′ can distinguish
(r, f(x), 〈r, x〉) from (r, f(x), u) with probability ǫ′ ≥ (512l(λ)q2ǫ)1/3.

Proof. Now, we let H̄ = {0, 1} ⊂ GF (q), n̄ = l(λ). Suppose there is an algorithm that can
distinguish (r, f(x), 〈r, x〉) and (r, f(x), u) in time t = poly1(λ) with probability ǫ′. Then, there
exists an inverter A that runs in time t · poly(l(λ), 2, 1

ǫ) = poly′(λ) such that Pr[A(f(x)) =

x] ≥ ǫ′3

512l(λ)q2 ≥ ǫ if ǫ′ ≥ (512l(λ)q2ǫ)1/3. It contradicts that f ∈ How(ǫ). ⊓⊔

3.2 Construction of pAI-CPA Secure PKE

LetΠ ′ = (Gen′, Enc′, Dec′) be an AI-CPA secure encryption (with respect to familyHpk−ow(ǫs))
where the encryption randomness is in {0, 1}m

′

, Ext : {0, 1}l1 ×{0, 1}l2 → {0, 1}m
′

is a strong
extractor with ǫr-hard-to-invert auxiliary inputs leakage, then a pAI-CPA secure (with respect
to families (Hpk−ow(ǫs),How(ǫr))) encryption scheme Π can be constructed as follows.

Encryption Schemes with Post-Challenge Auxiliary Inputs 9

1. Gen(1λ): It runs (pk, sk)← Gen′(1λ) and chooses r uniformly random from {0, 1}l1 . Then,
we set the public key PK = (pk, r) and the secret key SK = sk.

2. Enc(PK,M): It picks x uniformly random from {0, 1}l2 . Then, it computes y = Ext(r, x).
The ciphertext is c = Enc′(pk,M ; y).

3. Dec(SK, c): It returns Dec′(sk, c).

Theorem 3. If Π ′ is an AI-CPA secure encryption with respect to family Hpk−ow(ǫs) and
Ext is a strong extractor with ǫr-hard-to-invert auxiliary inputs leakage, then Π is pAI-CPA
secure with respect to families (Hpk−ow(ǫs),How(ǫr)).

Proof. Denote the randomness used in the challenge ciphertext as x∗. Let Game0 be the
pAI-CPA security game with Π scheme. Game1 is the same as Game0 except that when
encrypting the challenge ciphertext c = Enc′(pk,mb; y), we replace y = Ext(r, x∗) with y′

which is chosen uniformly at random in {0, 1}m
′

. The leakage oracle outputs fi(x
∗) for both

games.
Let AdvGamei

A (Π) be the advantage that the adversary A wins in Gamei with Π scheme.
Now, we need to show for any PPT adversary A:

|AdvGame0
A (Π)−AdvGame1

A (Π)| ≤ neg(λ).

Assume that there exists an adversary A such that |AdvGame0
A (Π) − AdvGame1

A (Π)| ≥ ǫA
which is non-negligible.

The simulator S is given (r, f1(x
∗), f2(x

∗), . . . , fq(x
∗), T) where T is either T0 = 〈r, x∗〉

or T1 = u which is a random number as in Definition 2. Given f1(x
∗), . . . , fq(x

∗), no PPT
adversary can recover x∗ with probability greater than ǫr by the definition of How(ǫr). Then,
the simulator generates (pk, sk) ← Gen′(1λ). It sets SK = sk and gives the adversary PK =
(pk, r). The simulator can answer pre-challenge leakage oracle as it has PK and SK. The
adversary submits two message m0 and m1 to the simulator where the simulator flips a coin
b. It encrypts the challenge ciphertext C∗ = Enc(pk,mb;T) and gives it to A. A can ask fi(x)
as the post-challenge leakage queries. A outputs its guess bit b′ to the simulator. If b = b′,
the simulator outputs 1; otherwise, it outputs 0.

Since the difference of advantage of A between Game0 and Game1 is ǫA, then

AdvS =

∣

∣

∣

∣

1

2
Pr[S outputs 1|T1] +

1

2
Pr[S outputs 0|T0]−

1

2

∣

∣

∣

∣

=

∣

∣

∣

∣

1

2
Pr[S outputs 1|T1] +

1

2
(1− Pr[S outputs 1|T0])−

1

2

∣

∣

∣

∣

=
1

2
(
∣

∣Pr[b = b′|T1]− Pr[b = b′|T0]
∣

∣) ≥
ǫA

2
.

which is non-negligible if ǫA is non-negligible. It contradicts the definition of strong extractor
in Definition 2. Therefore, no PPT adversary can distinguish Game0 from Game1 with non-
negligible probability.

Next, we want to show that

AdvGame1
A (Π) = neg(λ).

Note that the challenge ciphertext now is c = Enc′(pk,M ; y′) where y′ is chosen uniformly
at random in {0, 1}m

′

. Therefore the output of the leakage oracle fi(x
∗) will not reveal any

information related to c. Then Game1 is the same as the AI-CPA game with Π ′. As Π is
based on Π ′ which is AI-CPA secure, we have that AdvGame1

A (Π) is negligible. ⊓⊔

10 Tsz Hon Yuen, Ye Zhang, and Siu Ming Yiu

Extension to IBE. We can use the same technique to construct pAI-ID-CPA secure IBE. Let
Σ′ = (Setup′,Extract′, Enc′, Dec′) be an AI-ID-CPA secure IBE (e.g. [18]) where the encryption
randomness is in {0, 1}m

′

, Ext : {0, 1}l1 × {0, 1}l2 → {0, 1}m
′

is a strong extractor with ǫr-
hard-to-invert auxiliary inputs leakage, then construct a pAI-ID-CPA secure IBE scheme Σ

as follows.

1. Setup(1λ): It runs (mpk,msk)← Setup′(1λ) and chooses r uniformly random from {0, 1}l1 .
Then, we set the master public key MPK = (mpk, r) and the master secret key MSK = msk.

2. Extract(MSK, ID): It returns skID ← Extract(MSK, ID).

3. Enc(MPK, ID,M): It chooses x uniformly random from {0, 1}l2 . Then, it computes y =
Ext(r, x). The ciphertext is c = Enc′(mpk, ID,M ; y).

4. Dec(skID, c): It returns Dec
′(skID, c).

Theorem 4. If Σ′ is an AI-ID-CPA secure IBE with respect to family Hpk−ow(ǫs) and Ext

is a strong extractor with ǫr-hard-to-invert auxiliary inputs leakage, then Σ is pAI-ID-CPA
secure with respect to families (Hpk−ow(ǫs),How(ǫr)).

The proof is similar to the proof of Theorem 3 and hence is omitted.

Corollary 1. Instantiating with the strong extractor construction in §3.1 and the identity-
based encryption scheme in [18], the identity-based encryption construction Σ′ is pAI-ID-CPA
secure.

4 CCA Public Key Encryption from CPA Identity-Based Encryption

In this section, we show that auxiliary-inputs (selective-ID) CPA secure IBE and strong one-
time signatures imply post-challenge auxiliary-inputs CCA secure PKE. Canetti et al. [7]
showed that a CCA secure encryption can be constructed from a (selective-ID) CPA secure
IBE and a strong one-time signatures. We would like to show that this transformation can
also be applied to the auxiliary input model after some modifications. As in [7], we use the
strong one-time signature to prevent the PKE adversaries asking for decrypting ciphertexts
of ID∗ in the post stage as the IBE adversaries are not allowed to ask Extract(ID∗). However,
we cannot apply the technique in [7] directly.

4.1 Intuition

Let (Gens, Sign, Verify) be a strong one-time signature scheme. Let (Setup′,Extract′, Enc′,
Dec′) be an auxiliary-inputs CPA secure IBE scheme (refer to the definition in Appendix A,
by dropping the post-challenge query). The construction directly following Canetti et al.’s
transformation [7] is as follows.

1. Gen(1λ): Run (mpk,msk) ← Setup′(1λ). Set the public key pk = mpk and the secret key
sk = msk.

2. Enc(pk,M): Run (vk, sks)← Gens(1
λ). Calculate c← Enc′(pk, vk,M) and σ ← Sign(sks, c).

Then, the ciphertext is C = (c, σ, vk).

3. Dec(sk, C): First, test Verify(vk, c, σ)
?
= 1. If it is “1”, compute skvk = Extract′(sk, vk) and

return Dec′(skvk, c). Otherwise, return ⊥.

Encryption Schemes with Post-Challenge Auxiliary Inputs 11

Problems in the Post-Challenge Auxiliary Input Model. At first glance it seems
that Canetti et al.’s transformation [7] also works in our pAI-CCA model for PKE, if we
simply change the underlying IBE to be secure in the corresponding post-challenge auxil-
iary input model. However, we find that this is not true. The main challenge of pAI-CCA
secure PKE is how to handle the leakage of the randomness used in the challenge cipher-
text. It includes the randomness used in Gens, Sign and Enc′, denoted as rsig

1
, rsig

2
and

renc respectively. Specifically, we have (vk, sks) ← Gens(1
λ; rsig

1
), σ ← Sign(sks, c; rsig

2
) and

c← Enc′(mpk, vk,mb; renc).

Let A be a pAI-CCA adversary of the PKE. Let f be (one of) the post-challenge leakage
function submitted by A before seeing the public key. Then, after receiving the challenge
ciphertext C∗ = (c∗, σ∗, vk∗), A can ask the leakage f(r′) where r′ = (renc, rsig1 , rsig2) is the
randomness used to produce C∗. To some extreme, A may ask:

– f1(r
′) = renc, such that f1 is still hard-to-invert upon r′. In this case, A can test c∗

?
=

Enc′(mpk, vk, m0; renc) to win the pAI-CCA game; or

– f2(r
′) = (rsig1 , rsig2), such that f2 is still hard-to-invert upon r′. In this case, given rsig1 ,

A can generate (vk, sks) = Gens(1
λ; rsig1) which causes Pr[Forge] defined in [7] to be non-

negligible (“Forge” is the event that A wins the game by outputting a forged strong
one-time signature).

Therefore, leaking part of the randomness in r′ will make the proof of [7] fail in our model.

Our Solution: To get rid of this problem, we set both rsig1 , rsig2 and renc are generated from
the same source of randomness x ∈ {0, 1}l2 . Suppose rsig1 ||rsig2 and renc are bit-strings of

length n′. Suppose Ext : {0, 1}l1 × {0, 1}l2 → {0, 1}n
′

is a strong extractor with ǫr-hard-to-
invert auxiliary inputs; r1 and r2 are independent and uniformly chosen from {0, 1}l1 which
are also included in the public key pk. Then the randomness used in the IBE and the one-time
signature can be calculated by renc = Ext(r1, x) and (rsig1 ||rsig2) = Ext(r2, x) respectively. In
the security proof, the pAI-CCA adversary A can ask for the leakage of f(x), where f is any
hard-to-invert function.

The main part of the security proof is to use the pAI-CCA adversary A to break the AI-
ID-CPA security of the underlying IBE scheme Π ′. The simulator of the pAI-CCA game has
to simulate the post-challenge leakage oracle without knowing the encryption randomness x of
the challenge ciphertext, which was produced by the challenger ofΠ ′. We solve this problem by
proving that it is indistinguishable by replacing r∗enc = Ext(r1, x

∗) and r∗sig1 ||r
∗
sig2

= Ext(r2, x
∗)

with random numbers. Therefore, the post-challenge leakages on x∗ will be independent with
r∗enc and r∗sig1 ||r

∗
sig2

which are used to produce the real challenge ciphertext. Then, the sim-
ulator can randomly choose x∗ and simulate the post-challenge oracles by it own. However,
when we show to replace r∗sig1 ||r

∗
sig2

with a random number, the simulator needs to compute
renc∗ = Ext(r1, x

∗). One way to solve it is to include Ext(r1, x
∗) as a post-challenge leakage

query in the pAI-CCA game. As we will see later (by Lemma 1), including Ext(r1, x
∗) in

leakage queries is still ǫr-hard-to-invert.

Following [7], the transformation also works for the weaker selective identity (sID) model.
As a result, we only need a AI-sID-CPA secure IBE. To sum up, we need three primitives
to construct a pAI-CCA secure PKE: strong extractor with auxiliary inputs, strong one-time
signatures and AI-sID-CPA secure IBE.

12 Tsz Hon Yuen, Ye Zhang, and Siu Ming Yiu

4.2 Post-Challenge Auxiliary Inputs CCA secure PKE

We are now ready to describe our post-challenge auxiliary inputs CCA secure PKE. Denote a
AI-sID-CPA secure IBE scheme Π ′ = (Setup′,Extract′, Enc′, Dec′), a strong one-time signature
scheme Πs = (Gens, Sign, Verify) and a strong extractor with ǫr-hard-to-invert auxiliary
input Ext : {0, 1}l1 ×{0, 1}l2 → {0, 1}n

′

, where the size of renc and rsig1 ||rsig2 are both {0, 1}n
′

;
and the verification key space of Πs is the same as the identity space of Π ′. We construct a
PKE scheme Π = (Gen, Enc, Dec) as follows.

1. Gen(1λ): Run (mpk,msk)← Setup′(1λ). Choose r1, r2 uniformly random from {0, 1}l1 . Set
the public key pk = (mpk, r1, r2) and the secret key sk = msk.

2. Enc(pk,m): Randomly sample x ∈ {0, 1}l2 , calculate renc = Ext(r1, x) and rsig1 ||rsig2 =
Ext(r2, x). Run (vk, sks) = Gens(1

λ; rsig1). Let c = Enc′(pk, vk,m; renc); σ = Sign(sks, c;
rsig2). Then, the ciphertext is C = (c, σ, vk).

3. Dec(sk, C): First, test Verify(vk, c, σ)
?
= 1. If it is “1”, compute skvk = Extract(sk, vk) and

return Dec′(skvk, c). Otherwise, return ⊥.

Theorem 5. Assuming that Π ′ is a AI-sID-CPA secure IBE scheme with respect to family
Hpk−ow(ǫs), Πs is a strong one-time signature and Ext is ǫr hard-to-invert strong extrac-
tor, then there exists a PKE scheme Π which is pAI-CCA secure with respect to families
(Hpk−ow(ǫs),How(ǫr)).

Proof. We prove the security by a number of security games. Let Game0 be the original pAI-
CCA game for the PKE scheme Π. Specifically for the challenge ciphertext, the simulator
picks a random number x∗ to compute r∗enc = Ext(r1, x

∗) and r∗sig1 ||r
∗
sig2

= Ext(r2, x
∗). Let

Game1 be the same as Game0, except that r∗sig1 ||r
∗
sig2

is randomly chosen from {0, 1}n
′

. Let

Game2 be the same as Game1, except that r
∗
enc is randomly chosen from {0, 1}n

′

.

Lemma 2. For any PPT adversary A, Game0 is indistinguishable from Game1 if Ext is a
strong extractor with ǫr-hard-to-invert auxiliary inputs.

Lemma 3. For any PPT adversary A, Game1 is indistinguishable from Game2 if Ext is a
strong extractor with ǫr-hard-to-invert auxiliary inputs.

Lemma 4. For any PPT adversary A, the advantage in Game2 is negligible if Π ′ is a AI-
sID-CPA secure IBE scheme with respect to family Hpk−ow(ǫs) and Πs is a strong one-time
signature.

Using the above three lemmas, we have proved the theorem. ⊓⊔

Proof (Lemma 2). Let AdvGamei
A (Π) be the advantage that the adversary A wins in Gamei

with Π scheme. Now, we need to show for any PPT adversary A:

|AdvGame0
A (Π)−AdvGame1

A (Π)| ≤ neg(λ).

Assume that there exists an adversary A such that |AdvGame0
A (Π) − AdvGame1

A (Π)| ≥ ǫA
which is non-negligible.

The simulator S picks a random r1, r2 ∈ {0, 1}
l1 . The simulator is given (r2, f1(x

∗), . . .,
fq(x

∗), fq+1(x
∗), T) where f1, . . . , fq ∈ F0, fq+1(x

∗) = Ext(r1, x
∗), and T is either T0 = 〈r2, x

∗〉
or T1 = u (a random number as in Definition 2). Given f1(x

∗), . . . , fq(x
∗), no PPT adversary

Encryption Schemes with Post-Challenge Auxiliary Inputs 13

can recover x∗ with probability greater than ǫr by the definition of How(ǫr) (We will later
show that including Ext(r1, ·) is also ǫr-hard-to-invert).

Then, the simulator generates (mpk,msk) ← Setup′(1λ). It sets sk = msk and gives the
adversary pk = (mpk, r1, r2). The simulator can answer pre-challenge leakage oracle as it
has pk and sk. The adversary submits two messages m0 and m1 to the simulator where
the simulator flips a coin b. It sets rsig1 ||rsig2 = T , runs (vk, sks) ← Gens(1

λ; rsig1), c =
Enc′(pk, vk,mb; fq+1(x

∗)) and σ = Sign(sks, c; rsig2). It returns the challenge ciphertext C∗ =
(c, σ, vk) to A. A can ask fi(x

∗) as the post-challenge leakage queries. A outputs its guess bit
b′ to the simulator. If b = b′, the simulator outputs 1; otherwise, it outputs 0.

Since the difference of advantage of A between Game0 and Game1 is ǫA, then

AdvS =

∣

∣

∣

∣

1

2
Pr[S outputs 1|T1] +

1

2
Pr[S outputs 0|T0]−

1

2

∣

∣

∣

∣

=
1

2
(
∣

∣Pr[b = b′|T1]− Pr[b = b′|T0]
∣

∣) ≥
ǫA

2
.

which is non-negligible if ǫA is non-negligible. It contradicts the definition of strong extractor
in Definition 2. Therefore, no PPT adversary can distinguish Game0 from Game1 with non-
negligible probability.

Finally, we need to show that including Ext(r1, ·) is also ǫr-hard-to-invert. This follows
directly from Lemma 1 if we set f = (f1(x

∗), . . . , fq(x
∗)) ∈ How(ǫr). ⊓⊔

Proof (Lemma 3). The post-challenge query functions (f1, . . . , fq) ∈ F0 are ǫr-hard-to-invert
by definition. Fix any auxiliary-input function f1, . . . , fq, 〈r1, f1(x

∗), . . . , fq(x
∗),Ext(r1, x

∗)〉
is indistinguishable with 〈r1, f1(x

∗), . . . , fq(x
∗), u〉 where u is randomly chosen from {0, 1}n

′

,
by the definition of strong extractor. Hence Game1 is indistinguishable from Game2. The
reduction is similar to the previous proof. ⊓⊔

Proof (Lemma 4). Let A be an adversary to Π on Game2 and we construct an AI-sID-CPA
adversary A′ to Π ′ that runs A as a subroutine. Initially, A submits a set of leakage functions
F0 that he would like to ask in the Game2 to A′. A′ picks rsig1 ||rsig2 uniformly random from

{0, 1}n
′

and computes (vk∗, sk∗s) = Gens(1
λ; rsig1). A

′ submits the challenge identity vk∗ to
the AI-sID-CPA challenger C, and C returns mpk to A′. Then A′ picks r1 and r2 which are
independent and uniformly chosen from {0, 1}l1 . A′ gives pk = (mpk, r1, r2) to A.

In the pre-challenge query phase, A can adaptively query fi(pk,msk). A′ records and
forwards all the queries to C; and uses the output by C to answer A.

In the challenge phase, A submits m0,m1 to A′, and A′ forwards m0,m1 as the challenge
message to C. C returns c∗ = Enc′(mpk, vk∗,mb; renc) to A′ for some random bit b and ran-
domness renc. Then A

′ computes σ∗ = Sign(sk∗s, c
∗; rsig

2
). A′ sends C∗ = (c∗, σ∗, vk∗) to A as

its challenge ciphertext. A′ picks a random x∗ ∈ {0, 1}l2 .

In the post-challenge query phase, A′ can answer the adaptive query f ′
i on the randomness

x∗ asked byA.Amay also adaptively query DEC(c, σ, vk). A′ returns⊥ if Verify(vk, c, σ) 6= 1.
Otherwise, there are two cases. If vk = vk∗, it means (c, σ) 6= (c∗, σ∗). However, it implies
that A forges the one-time signature. This happens with only a negligible probability. Else,
vk 6= vk∗, A′ asks the extraction oracle EO(vk) to C and uses skvk to decrypt c.

Finally A outputs its guess b′ and A′ forwards it to C as its guess bit. Therefore, if A wins
the Game2 with a non-negligible probability, then A′ will win the AI-sID-CPA game also with
a non-negligible probability, which contradicts that Π ′ is AI-sID-CPA secure.

14 Tsz Hon Yuen, Ye Zhang, and Siu Ming Yiu

To show that the probability that A asks for the decryption of a valid ciphertext with
identity vk∗ is negligible, let C′ be the challenger of the strong one-time signature scheme.
We construct an algorithm B to break the strong one-time signature scheme by running A
as a subroutine. Initially, A submits its post-challenge leakage class F0 to B. C′ gives vk∗ to
B. B runs (mpk,msk)← Setup′(1λ) and picks r1 and r2 which are independent and uniformly
chosen from {0, 1}l1 . B returns pk = (mpk, r1, r2) to A.

In the pre-challenge query phase, A can adaptively query fi(pk,msk) and B can answer
them by itself.

In the challenge phase, A submits m0,m1 to B. B picks renc uniformly random from
{0, 1}n

′

. B picks a random bit b and calculates c∗ = Enc′(mpk, vk∗,mb; renc). Then B asks C′

to sign on c∗ and obtains the signature σ∗. B gives the challenge ciphertext C∗ = (c∗, σ∗, vk∗)
to A. B picks a random x∗ ∈ {0, 1}l2 .

In the post query phase, A can adaptively ask the post-challenge leakage f ′
i ∈ F0 to B and

B can answer it with x∗. A may also ask for the decryption oracle. Decryption of ciphertext
involving vk 6= vk∗ can be answered by using msk. However, if A asks for the decryption of a
valid ciphertext (c, σ, vk∗) that is not identical to (c∗, σ∗, vk∗), B returns (c, σ) to C′. Therefore,
the probability that A can output a forged signature is negligible provided that Πs is a strong
one-time signature, which completes the proof. ⊓⊔

5 Fully Leakage Resilient Signatures with Selective Auxiliary Inputs

In the previous section, we used a strong extractor to generate the randomness of IBE and the
strong one-time signatures, in order to achieve CCA security for PKE, in the post-challenge
auxiliary input model. As shown in §3, using the strong extractor to generate the randomness
of AI-CPA secure PKE (and IBE) can enhance the security to the post-challenge auxiliary
input model. One natural question to ask is that if the strong extractor can be used to increase
the security of signature schemes.

A signature scheme is fully leakage-resilient [13] if it is existentially unforgeable under an
adaptive chosen-message attack even if an adversary may obtain leakage information (either
bounded or hard-to-invert leakage) on all intermediate values that are used throughout the
lifetime of the system. We find a new generic construction of fully leakage-resilient signatures
from standard signatures and a strong extractor, in the selective auxiliary input model [19].

We review the selective auxiliary input model for fully leakage-resilient signatures in Ap-
pendix B.

5.1 Construction

Let Π ′ = (KeyGen′, Sign′, Verify′) be an EUF-CMA secure standard signatures where the
signing randomness is in {0, 1}m

′

, Ext : {0, 1}l1 × {0, 1}l2 → {0, 1}m
′

is a strong extractor
with ǫ-hard-to-invert auxiliary inputs leakage, then construct an sAI-EUF-CMA secure fully
leakage-resilient signatures (with respect to family Hpk−σ−ow(ǫ)) Π as follows.

1. KeyGen(1λ): It picks r uniformly random from {0, 1}l1 and x0 uniformly random from
{0, 1}l2 . Then, it computes y0 = Ext(r, x0). It runs (pk, sk) ← KeyGen′(1λ; y0). Then, we
set the public key PK = (pk, r) and the secret key SK = sk.

2. Sign(SK,M): It picks x uniformly random from {0, 1}l2 . Then, it computes y = Ext(r, x).
The signature is σ = Sign′(sk,M ; y).

Encryption Schemes with Post-Challenge Auxiliary Inputs 15

3. Verify(PK,M, σ): It returns Verify′(pk,M, σ).

Theorem 6. If Π ′ is an EUF-CMA secure signature and Ext is a strong extractor with ǫ-
hard-to-invert auxiliary inputs leakage, then Π is sAI-EUF-CMA secure fully leakage-resilient
signatures with respect to family Hpk−σ−ow(ǫ).

The proof is given in Appendix C.

5.2 Comparison

We compare the our proposed scheme with existing leakage-resilient signatures in Table 1,
based on the size of secret key used. For the schemes secure in auxiliary input models, the
class of leakage function allowed is related to the key size ℓ (as well as other parameters in the
concrete scheme). The verification time of our scheme is the same as the verification time of
the underlying signature scheme, which is usually O(1) exponentiation or pairing operations.
Our proposed scheme is more efficient than the existing fully leakage-resilient signatures (i.e.
allow leakage of the randomness) in many aspects, as shown in Table 1.

Scheme
Size of Computation Time of Types of Leakage

pk sk σ KeyGen Sign Verify Randomness Model

[13] O(1) ℓ bits O(ℓ) UOWHF hash O(ℓ) exp O(ℓ) exp × bounded leakage of
Scheme 1 of ℓ bits ℓ− ℓǫ bits, for any ǫ > 0

[9] O(1) O(ℓ) O(ℓ) O(ℓ) exp O(ℓ) exp O(ℓ) pairing × continual leakage of
ℓ log p− λ bits

[13] O(ℓ) O(ℓ) O(ℓ) O(ℓ) UOWHF O(1) evaluation O(ℓ) UOWHF
√

t-time signatures,

Scheme 2 hash of injective map hash bounded leakage of Θ(ℓ/t) bits

[5] O(1) O(ℓ) O(ℓ) O(ℓ) pairing O(ℓ) exp O(ℓ) pairing
√

bounded leakage of

ℓ log p− 2|GT | − ω(log λ) bits

[11] O(1) O(ℓ) O(ℓ) O(ℓ) pairing O(ℓ) exp O(ℓ) pairing × auxiliary input model
of EU-CMMA [5]

[19] O(1) O(ℓ) O(ℓ) O(ℓ) pairing O(ℓ) exp O(ℓ) pairing
√

selective auxiliary input

model of EUF-CMA

This O(1) ℓ-bits O(1) dot product dot product of O(1) exp
√

selective auxiliary input

paper of ℓ-bit vectors of ℓ-bit vectors or pairing model of EUF-CMA
Table 1. Comparison of leakage-resilient signatures, using the instantiation proposed in the original paper,
with security parameter λ. The size are counted as the number of group elements, unless otherwise specified.
Denote ℓ as the number of group element of sk in each scheme, and p as the order of the group. For auxiliary
input models, ℓ affects the class of hard-to-invert function. The verification time of our scheme is the same as
the underlying signature scheme, which is usually some O(1) exponentiation or pairing.

6 Conclusion

In this paper, we solved the open problem of allowing leakage from both the secret key owner
and the encryptor, and allowing leakage after seeing the challenge ciphertext. Specifically, we
proposed the post-challenge auxiliary input model to capture these leakages. We showed that
the post-challenge auxiliary inputs secure PKE (and IBE) can be constructed from auxiliary
inputs secure PKE (and IBE) and strong extractors with auxiliary inputs. We extend the
generic transformation of CCA security in [7] in the leakage-resilient setting, using strong
one-time signature and strong extractors with auxiliary inputs. Finally, we give a new and
simple generic construction of fully leakage-resilient signatures with selective auxiliary inputs.

16 Tsz Hon Yuen, Ye Zhang, and Siu Ming Yiu

References

1. A. Akavia, S. Goldwasser, and V. Vaikuntanathan. Simultaneous hardcore bits and cryptography against
memory attacks. In O. Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 474–495. Springer, 2009.

2. G. Argyros and A. Kiayias. I forgot your password: randomness attacks against php applications. In
USENIX, Security’12, page 6. USENIX Association, 2012.

3. M. Bellare, Z. Brakerski, M. Naor, T. Ristenpart, G. Segev, H. Shacham, and S. Yilek. Hedged public-key
encryption: How to protect against bad randomness. In M. Matsui, editor, ASIACRYPT, volume 5912 of
LNCS, pages 232–249. Springer, 2009.

4. N. Bitansky, R. Canetti, and S. Halevi. Leakage-tolerant interactive protocols. In R. Cramer, editor, TCC
2012, volume 7194 of LNCS, pages 266–284. Springer, 2012.

5. E. Boyle, G. Segev, and D. Wichs. Fully leakage-resilient signatures. In K. G. Paterson, editor, EURO-

CRYPT 2011, volume 6632 of LNCS, pages 89–108. Springer, 2011.

6. Z. Brakerski, Y. T. Kalai, J. Katz, and V. Vaikuntanathan. Overcoming the hole in the bucket: Public-
key cryptography resilient to continual memory leakage. In FOCS 2010, pages 501–510. IEEE Computer
Society, 2010.

7. R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based encryption. In C. Cachin
and J. Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 207–222. Springer, 2004.

8. Y. Dodis, S. Goldwasser, Y. T. Kalai, C. Peikert, and V. Vaikuntanathan. Public-key encryption schemes
with auxiliary inputs. In D. Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages 361–381. Springer,
2010.

9. Y. Dodis, K. Haralambiev, A. López-Alt, and D. Wichs. Cryptography against continuous memory attacks.
In FOCS 2010, pages 511–520. IEEE Computer Society, 2010.

10. Y. Dodis, Y. T. Kalai, and S. Lovett. On cryptography with auxiliary input. In M. Mitzenmacher, editor,
STOC 2009, pages 621–630. ACM, 2009.

11. S. Faust, C. Hazay, J. B. Nielsen, P. S. Nordholt, and A. Zottarel. Signature schemes secure against hard-
to-invert leakage. In X. Wang and K. Sako, editors, ASIACRYPT, volume 7658 of LNCS, pages 98–115.
Springer, 2012.

12. S. Halevi and H. Lin. After-the-fact leakage in public-key encryption. In Y. Ishai, editor, TCC 2011,
volume 6597 of LNCS, pages 107–124. Springer, 2011.

13. J. Katz and V. Vaikuntanathan. Signature schemes with bounded leakage resilience. In M. Matsui, editor,
ASIACRYPT 2009, volume 5912 of LNCS, pages 703–720. Springer, 2009.

14. A. K. Lenstra, J. P. Hughes, M. Augier, J. W. Bos, T. Kleinjung, and C. Wachter. Public keys. In
R. Safavi-Naini and R. Canetti, editors, CRYPTO, volume 7417 of LNCS, pages 626–642. Springer, 2012.

15. K. Michaelis, C. Meyer, and J. Schwenk. Randomly failed! the state of randomness in current java
implementations. In E. Dawson, editor, CT-RSA 2013, volume 7779 of LNCS, pages 129–144. Springer,
2013.

16. H. Namiki, K. Tanaka, and K. Yasunaga. Randomness leakage in the kem/dem framework. In X. Boyen
and X. Chen, editors, ProvSec, volume 6980 of LNCS, pages 309–323. Springer, 2011.

17. M. Naor and G. Segev. Public-key cryptosystems resilient to key leakage. In S. Halevi, editor, CRYPTO

2009, volume 5677 of LNCS, pages 18–35. Springer, 2009.

18. T. H. Yuen, S. S. M. Chow, Y. Zhang, and S. M. Yiu. Identity-based encryption resilient to continual
auxiliary leakage. In D. Pointcheval and T. Johansson, editors, EUROCRYPT, volume 7237 of LNCS,
pages 117–134. Springer, 2012.

19. T. H. Yuen, S. M. Yiu, and L. C. K. Hui. Fully leakage-resilient signatures with auxiliary inputs. In
W. Susilo, Y. Mu, and J. Seberry, editors, ACISP 2012, volume 7372 of LNCS, pages 294–307. Springer,
2012.

A Security Model for Identity-Based Encryption

We define post-challenge auxiliary inputs game for identity-based encryption against chosen
plaintext attack. An identity-based encryption scheme Π consists of four PPT algorithms:

– Setup(1λ): On input the security parameter λ, output a master public key mpk and a
master secret key msk. Denote the message space asM and the identity space as I.

Encryption Schemes with Post-Challenge Auxiliary Inputs 17

– Extract(msk, ID): On input msk and an identity ID ∈ I, output the identity-based secret
key skID.

– Enc(mpk, ID,M): On input mpk, ID ∈ I and a message M ∈ M, output a ciphertext C.

– Dec(skID, C): On input skID and C, output the message M or ⊥ for invalid ciphertext.

We require Dec(skID, Enc(mpk, ID,M)) = M for all M ∈ M, ID ∈ I, (mpk,msk)← Setup(1λ)
and skID ← Extract(msk, ID).

We are now ready to give the formal definition of the model below. LetΠ = (Setup,Extract,
Enc,Dec) be an identity-based encryption scheme. The security against post-challenge auxil-
iary inputs and adaptive chosen-identity, chosen-plaintext attacks is defined as the following
game pAI-ID-CPA, with respect to the security parameter λ.

1. The adversary A submits a set of leakage functions F0 to the challenger C with m := |F0|
is polynomial in λ.

2. C runs (mpk,msk)← Setup(1λ) and outputs mpk to A. C also samples the randomness of
encryption r′ ← {0, 1}∗.

3. A may adaptively query the (pre-challenge) leakage oracles:

– LOs(fi) with fi. LOs(fi) returns fi(msk,mpk) to A.

4. A submits its challenge identity ID∗ ∈ I along with two messages m0,m1 ∈ M of the
same length to C. C samples b← {0, 1}. It returns C∗ ← Enc(mpk, ID∗,mb; r

′) to A.

5. A may adaptively query the (post-challenge) leakage oracle

– LOr(f
′
i) with f ′

i ∈ F0. LOr(f
′
i) returns f

′
i(r

′) to A.

– EO(ID) for ID 6= ID∗ ∈ I. The extraction oracle returns skID ← Extract(msk, ID).

6. A outputs its guess b′ ∈ {0, 1}. The advantage ofA isAdvpAI−ID−CPA
A (Π) = |Pr[b = b′]−1

2 |.

Note that in the pre-challenge leakage stage, Amay choose fi(·,mpk) to encode Extract(·, ID)
to query the pre-challenge leakage oracle LOs. Recall that we do not restrict fi to be in F0.
Therefore to provide an explicit extraction oracle is superfluous.

Similar to the model for PKE, we define the families (Fs,F0) for the leakage functions
asked in the oracles.

Definition 3. We say that Π is pAI-ID-CPA secure with respect to the families (Fs,F0) if
the advantage of any PPT adversary A in the above game is negligible.

Similar to the standard security models for IBE, we can define CCA security if the adver-
sary can ask the decryption oracle for arbitrary ciphertext except the challenge ciphertext.
We can also define the selective identity (sID) model, where the adversary has to submit ID∗

in step 1 of the security game.

B Selective Auxiliary Input Model for Unforgeability

We first review the selective auxiliary input model for fully leakage-resilient signatures [19],
which is similar to our post-challenge auxiliary input model for encryption. We consider the
following existential unforgeability game against chosen message attacks (EUF-CMA) for
signatures, together with the leakage-resilient with selective auxiliary inputs [19].

Let Π = (KeyGens, Sign, Verify) be a signature scheme. The existential unforgeability
against selective auxiliary inputs and adaptive chosen-message attacks is defined in the fol-
lowing game (sAI-EUF-CMA) in the security parameter λ.

18 Tsz Hon Yuen, Ye Zhang, and Siu Ming Yiu

1. Select. Denote F as the space of leakage functions. A submits a set of leakage functions
F0 ⊂ F to the challenger C.

2. Setup. C samples rsig1 ← {0, 1}
∗ and runs (vk, sks)← KeyGens(1

λ; rsig1). C gives vk to A.

3. Query. Each of following oracles can be queried by A:

– Signing Oracle SO(m): On input a message m in the message space, it samples rsig
2
←

{0, 1}∗ and returns the signature σ ← Sign(sk,m; rsig
2
).

– Leak Oracle LO(fi): On input a polynomial-time computable function fi ∈ F0, denote
R as all past randomness used, including rsig

1
and different rsig

2
used in signing oracles.

It returns fi(R)7.

4. Output. A returns a message-signature pair (m∗, σ∗). A wins the game if Verify(vk,m∗,
σ∗) = 1 and m∗ was not the asked to SO. The advantage of A is AdvsAI−EUF−CMA

A (Π) =
Pr[A wins].

Denote the number of leak oracle queries as qℓ and denote σ as the signing oracle outputs.
We usually consider F0 as a family of one-way function Hpk−σ−ow:

– Let Hpk−σ−ow(ǫ) be the class of all polynomial-time computable functions h : {0, 1}|R| →
{0, 1}∗, such that given vk, σ and {fi(R)}i∈[1,qℓ], (for (rsig1 , rsig2) that is randomly gener-
ated), no PPT algorithm can find sks with probability greater than ǫ.

Definition 4. The fully leakage-resilient signature scheme Π is unforgeable against selective
auxiliary inputs and adaptive chosen-message attacks (sAI-EUF-CMA) with respect to the
family Hpk−σ−ow(ǫ) if the advantage of any PPT adversary A in the above game is negligible.

C Proof of Theorem 6

Proof. Let Game0 be the sAI-EUF-CMA security game with Π scheme. Denote the number
of signing oracle queries and leak oracle queries as qs and q respectively. For i ∈ [1, qs], define
Gamei is the same as Game0 except that for the last i-th signing oracle queries, we replace
y = Ext(r, x) with y′ which is chosen uniformly at random in {0, 1}m

′

.

Let AdvGamei
A (Π) be the advantage that the adversary A wins in Gamei with Π scheme.

Now, we need to show for any PPT adversary A and for i ∈ [1, qs]:

|Adv
Gamei−1

A (Π)−Adv
Gamei
A (Π)| ≤ neg(λ).

Assume that there exists an adversary A such that |AdvGamei−1
A (Π) − Adv

Gamei
A (Π)| ≥ ǫA

which is non-negligible.

The simulator S is given (r, f1(x
∗), f2(x

∗), . . . , fq(x
∗), T) where T is either T0 = 〈r, x

∗〉 or
T1 = u which is a random number as in Definition 2. Given f1(x

∗), . . . , fq(x
∗), no PPT adver-

sary can recover x∗ with probability greater than ǫ by the definition of Hpk−σ−ow(ǫ). Then, the
simulator picks x0 uniformly random from {0, 1}l2 and generates (pk, sk)← KeyGen′(1λ;Ext(r,
x0)). It sets SK = sk and gives the adversary PK = (pk, r). The simulator can answer pre-
challenge leakage oracle as it has PK and SK.

7 We follow the fully security model in [5, 19] that only leaking the randomness in the KeyGens, but not the
secret key itself. As stated in [5], we do not need to explicitly add sks to R, since sks is a deterministic
function of the initial randomness KeyGens(1

λ; rsig
1
) and rsig

1
∈ R. Therefore the leakage of sks is implied

by the leakage of R.

Encryption Schemes with Post-Challenge Auxiliary Inputs 19

For the first (qs − i)-th signing oracle queries, S picks x uniformly random from {0, 1}l2 .
Then, it computes y = Ext(r, x). S returns the signature σ = Sign′(sk,M ; y) and stores
the randomness x. For the (qs − i + 1)-th signing oracle query, S returns the signature σ =
Sign′(sk,M ;T) and (implicitly) sets the randomness as x∗. For the remaining signing oracle
queries, S picks some random number x ∈ {0, 1}l2 , u ∈ {0, 1}m

′

, returns the signature σ =
Sign′(sk,M ;u) and stores the randomness x. Note that if T = 〈r, x∗〉, S simulates Gamei−1.
Otherwise, S simulates Gamei.

For the leak oracle queries, the only signing randomness not known by S is x∗. However,
the leakage of x∗ can be simulated by f1(x

∗), f2(x
∗), . . . , fq(x

∗) since (f1, . . . , fq) ∈ F0.
Therefore, upon Definition 2, no PPT adversary can distinguish Gamei−1 from Gamei

with non-negligible probability.
Let Gamekg be the same as Gameqs except that in the KeyGen phase we replace y0 =

Ext(r, x0) with y′0 which is chosen uniformly at random in {0, 1}m
′

. Similar to above, we can
show that

|Adv
Gameqs
A (Π)−Adv

Gamekg
A (Π)| ≤ neg(λ).

The leakage fi on this randomness x0 can be simulated by fi(x0) given by the challenger of
Ext, if fi is ǫ-hard-to-invert. Leakage on all other randomness are known to the simulator.

Finally, we want to show that

Adv
Gamekg
A (Π) = neg(λ).

We note that since all the leaked randomness is independent with the real randomness used,
the leakage will not help the adversary. Gamekg is the same as the EUF-CMA game with Π ′.

As Π is based on Π ′ which is EUF-CMA secure, we have that Adv
Gamekg
A (Π) is negligible. ⊓⊔

