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Abstract

It is important to be able to evaluate information security systems
involving humans. We propose an approach in which we consider the
system as a cryptographic protocol, and users are modeled as ordinary
players. To model the fact that users make mistakes that affect security,
we introduce protocol variants that model mistakes or combinations of
mistakes. By analysing the base protocol and its variants, and at the
same time considering how likely each variant is, we get a reasonable
estimate of the real security of the system.

Our work takes the form of a case study of four Norwegian federated
identity systems, as well as two proposals for improved systems. The four
systems span a good mix of various types of federated identity systems.

1 Introduction

Modern cryptographic theory is a success. The discipline of provable security
allows skilled practitioners to design efficient protocols that achieve many im-
portant security goals under reasonable heuristics or well-studied mathematical
conjectures.

Modern cryptographic protocol analysis has many tools that seem useful in
today’s information security world. For instance, just as modern home comput-
ers are taken over by malware and servers are broken into and used for further
attacks, cryptographic researchers have always assumed that some players in a
cryptographic protocol can be controlled by the adversary.

Cryptographic theory typically deals with a system of interactive Turing
machines, where some machines cooperate to achieve some security goal, while
the remaining machines try to frustrate that goal. Even though many crypto-
graphic textbooks talk about Alice and Bob, humans are usually not considered
as actually executing protocols. Indeed, most cryptographic protocols involve
computations that are practically infeasible for humans.

The interactive Turing machine is a nice abstraction for a computer program,
and as such it is very useful for analysing systems of computers employing cryp-
tographic protocols. Frameworks such as universal composability [3] incorporate
humans driving cryptographic protocols into an environment, which is modelled
as a single interactive Turing machine.
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One vital component for internet security is the TLS protocol, which is a
descendant of the SSL protocol invented to facilitate electronic commerce on
the internet. TLS is widely considered to be reasonably secure1.

However, it is well-known that many information security systems using
TLS fail. One reason is that TLS assumes a public key infrastructure. For
various technical, historical and societal reasons, that public key infrastructure
sometimes asks the human driving the computer whether or not to accept certain
data. Deciding if that data should be accepted is conceptually simple, but in
practice very difficult, even for cryptographers familiar with the technical issues.
The end result is that a human mistake can essentially turn off security.

The example of TLS shows that humans are much more involved in run-
ning many cryptographic protocols, than merely providing input and using the
output. The fact that cryptographic software was hard to use correctly was ob-
served a long time ago and forcefully documented [11]. It has also been observed
that adversaries can use this fact to cause users to make mistakes [9] that affect
security.

We believe that if the cryptographic toolbox is to be successfully applied to
real-world security, humans must be modelled as part of the system. Involving
humans in cryptographic protocols is a hard problem. There are several ex-
amples [1, 8] where a voter following the instructions for an electronic voting
system is modelled as executing a very simple program, but such analysis is not
sufficient.

There is a need for new methods of analysis and new knowledge of user
behaviour. The approach of Ellison [4] is in many ways a promising approach,
and has lead to positive work [10] where the theory helps design better protocols.

Our contribution In this work, we are interested in tools for evaluating the
real security of a cryptographic protocol involving humans. We consider the
case of federated identity systems, where a shared electronic identity is used to
login to many web sites.

Our approach begins by modelling a diligent user carefully following the
instructions for correct use of the federated identity system. This gives us a
base cryptographic protocol with one human player. Then we consider how the
user may make a mistake. Note that we do not consider all possible mistakes,
only those that under normal operation will not prevent logging in: regular
users will quickly learn how to avoid other mistakes.

Once this analysis is complete, we create a number of variants of the user’s
program, one for each possible mistake or combination of mistakes. We anal-
yse the security of each variant separately, determining exactly what security
properties it has. Once this is done, we consider the likelihood of a random user
choosing a given variant. Combining these pieces of data results in a clear idea
of the effective security of a given federated identity system.

1TLS was not designed using modern cryptographic techniques. Consequently, improve-
ments to old attacks and new corner cases are regularly discovered.
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We illustrate this approach with a case study based on four Norwegian fed-
erated identity systems, as well as two conjectured systems that would be easy
to deploy in Norway. We have chosen the Norwegian systems first of all because
they are easy for us to study in practice. They also represent a nice mix of
various approaches, and they all claim to provide proper security, and are used
for real-world applications like internet banking, access to medical records and
electronic voting. While we could have studied other widespread international
systems deployed by various corporations, especially in conjunction with social
networks, and other government systems, such systems would add little to the
mix we already have.

For our protocols, it seems to be easy to determine the possible mistakes
and their combinations, so finding a complete set of variants is easy. Analysing
the security of the variants separately is fairly routine cryptography, and we do
not include the detailed analysis (a brief analysis is included in the appendices).

The most problematic issue with our case study is estimating the likelihood
of choosing variants, because we do not have reliable data. In this work, we have
made certain estimates that we believe are reasonable, but these are conjectures
only, they are not based on data.

To illustrate applications of our results, we consider two Norwegian applica-
tions relying on federated identity systems, internet banking and a web site for
personal medical information. We show how the security analysis of the feder-
ated identity system can be used to estimate the risk posed by the application.

We stress that the owners of the systems and applications studied are or
should be aware of our results. The main point of this paper is not the results
themselves, but the techniques used to derive these results.

Future work The information security folklore contains a lot of information
about what people do wrong, and there are even some studies about how people
make mistakes. But there is little systematic work that can provide data for
the various likelihoods our analysis needs. We need real experiments with real
people.

Federated identity systems are an interesting case study, but other types of
protocols should be studied. One example is electronic voting protocols, attacks
against which have already been discussed above [9].

Our approach in this case study considers only honest users and honest
infrastructures. Studying dishonest relying parties and infrastructures is also
interesting, and for other types of protocols, dishonest users could be important.

We have also restricted our analysis to what is essentially passive attacks.
The adversary is trying an attack strategy and hoping that the user makes
the required mistakes. If the mistakes are common, this strategy works well.
However, if some mistake is less common, the attacker may actively try to
cause the mistake. One example is providing forged on-screen guidance. Many
users will have learned that on-screen instructions are often more accurate than
instructions recalled from memory or printed manuals. The likelihood that they
follow forged on-screen guidance may therefore be large. Studying active attacks
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is an important future topic.
We have not considered the fact that these likelihoods are not static values.

In reality, they will vary with time and with user. For instance, if an attack is
attempted and fails, that will typically make a user adhere more closely to the
protocol for some time, increasing the likelihood of the user selecting the base
variant or variants with few mistakes. If widespread attacks are detected, the
same effect should occur.

The analysis done in this work is very informal. We will need to formalize
these arguments. One approach is to adapt the ideas from universal composabil-
ity: the security defined by the ideal functionalities would have to be adapted
to take into account the various mistakes user might make. For instance, when
told to establish a secure channel with some party, the ideal functionality may
first flip a biased coin. If the result is heads, the user gets the usual security.
If it is tails, the ideal adversary is allowed to compromise the channel. We can
also allow different users to have different biases, and the bias may vary with
time.

2 Federated Identity Systems

An electronic identity is a method for convincing a remote computer that you
are indeed who you claim to be. One example of an electronic identity is a
username and a secret shared by the remote computer and you. There are many
cryptographic protocols that allow the user to convince the remote computer
that he knows the password. If the password really is secret, it can (depending
not only on the quality of the cryptographic protocol) logically follow that the
user is who he claims to be.

Note that identification is usually used to establish a session with the remote
computer, logging in. The main security goal of an electronic identity system is
therefore that of a establishing a secure channel :

Suppose the remote computer accepts that a given user has estab-
lished a session. If the user’s computer is honest, the session estab-
lished is between the remote computer and the user’s honest com-
puter.

Note that we assume that if the user’s computer is compromised, the attacker
can get access to the remote computer through the established session, so the
question of security is moot.

A federated identity system is a system that enables a single electronic iden-
tity to be used to login with many separate remote computers, or relying parties.
Now, however, it is not enough to establish a secure channel, the system must
also ensure that the secure channel is established with the intended relying
party, correct intention:

Suppose the relying party accepts that a given user has established
a session. Then either the user intended to establish a session with
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Secure channel; correct intention

Secure channel; correct intention under PC

Secure channel under LN; correct intention

No secure channel; correct intention

Secure channel and correction intention under LN

No security

Figure 1: Colour coding of security claims: No security claim against stronger
attackers holds for the protocol. A natural partial order amongst the security
claims is indicated. Assumptions: PC – the user’s computer is honest, but the
local network may be corrupt; LN – the local network is honest, but relying
parties may be compromised.

that relying party, or the user’s computer is honest and a secure
channel has been established.

It is certainly possible to ensure correct intention, while not ensuring a se-
cure channel. Vice versa, it may also be possible for a user to be tricked into
connecting his honest computer to a relying party he did not intend to connect
to. This will be a problem if the user later injects sensitive information into the
secure channel, information intended for some other relying party. While this
is a real problem, we shall not consider it in this paper, and therefore this shall
not be considered a breach of security.

There are many forms of attackers against identification systems. The weak-
est attack is that of impersonating or compromising some relying party in the
hope of stealing sufficient information to be able to establish a session with
some other relying party or the impersonated relying party. Impersonating a
relying party is usually known as a phishing attack. These attacks are techni-
cally very easy to execute, and we may assume that these are always available
to an attacker, even against well-protected users.

A stronger attacker is one that has access to the user’s local network or oth-
erwise gain access to the computer’s communications2. Communications that
are not cryptographically protected may be interfered with. This is technically
a more difficult attack to pull off.

The strongest attacker we consider is one that has compromised the user’s
computer. As discussed above, this renders the goal of establishing a secure
channel moot, but correct intention is still possible to ensure, if a trusted display
is available.

Note that a user, in addition to his computer, may have several other devices
available during login. Examples include a mobile phone, smart cards and one-

2One possibility would be DNS poisoning attacks.
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time code generators. Some devices may be connected to the user’s computer
(e.g. smart cards), while others will not be (e.g. one-time code generators).

We shall assume that, while a computer may be compromised, the user’s
other devices may not be compromised. For many devices, this is a reasonable
assumption. Indeed, smart cards are designed to resist attacks.

Unfortunately, for mobile phones the assumption is debatable at best. For
many simple mobile phones, the assumption is probably valid. So-called smart
phones, on the other hand, are often connected to the user’s computer, and
it seems unreasonable to believe that a compromised computer cannot also
compromise the phone. Since mobile phones are increasingly being used for
authentication purposes, such attacks will become more likely in the near future.
When this happens, one of the assumptions underlying the case studies in this
paper will be at least partially incorrect.

3 Case studies

We begin with a case study of four federated electronic identity systems widely
deployed in Norway. We should first remark that three of the four systems are
secret, in the sense that the owners of the systems do not want independent
researchers looking at them. The documentation for the fourth system may in
some sense be public, but only in a form that is too hard to extract a protocol
from.

This means that we do not know (or cannot publish) the exact cryptographic
protocol in use in these systems. However, what is publicly available (or in-
ferrable from public sources or by interacting with the systems themselves) is
the interaction between the user and the system. This is the part of the system
that we are interested in studying, and we have sufficient information for our
analysis to apply as qualified below.

For the technical analysis of the protocols, we have invented reasonable and
fairly obvious approximations for the non-public parts. These protocols are
given in the appendices. Since every attack we use apply to the real protocols
(they depend only on public information about the protocols), the protocols we
analyse are at least as secure as the real protocols.

However, there is reason to suspect that not every protocol is as secure
as our corresponding invented protocol. Therefore, our results should only be
considered upper bounds on the security of the systems, not correct estimates.

We visualize our results as a collection of coloured circles, each circle rep-
resenting a variant. A circle’s colour describes the security achieved by the
variant, coded according to Figure 1. The area of each circle is an estimate of
how likely the variant each. We believe that this visual presentation is both
easy to understand and gives an intuitive way to compare different systems.

For our passive analysis, there is a natural partial order on the variants: a
“smaller” variant involves more mistakes than a “larger” variant. This partial
order satisfies a natural requirement, namely that a “smaller” variant cannot
achieve a stronger security goal than a “larger” variant, because making more
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mistakes should not improve security. The edges between the circles indicate
this partial order.

Finally, as we noted in the introduction, TLS is considered reasonably secure
until you consider the PKI issues. Some modern browsers have made it much
more difficult for users to make mistakes, but incorrectly issued certificates
remain a problem. This means that all of the systems we discuss are in some
sense vulnerable to flaws in the TLS PKI. We shall ignore these problems and
assume that our users deal correctly with any TLS issues.

3.1 BankID

The BankID system is an electronic identification system jointly developed by
Norwegian banks and used as the primary login method for Norwegian internet
banks. The BankID system has also been offered to other web sites to serve as
a login system, and is used by a government identity portal. It is therefore a
proper federated identity system.

The system owners consider the system secret. They do not want indepen-
dent researchers to look at it. However, since the client part of the system
is implemented as a Java applet, it is fairly easy to decipher this part of the
system, which reveals most of the system architecture. Some years ago, two
independent studies of the system were done, and a number of issues with the
system were found [5, 6, 7]. Since then, the cryptographic protocol has been
modified3, but the interaction with the user is essentially unchanged.

The system is based upon passwords and one-time codes. The one-time codes
are usually generated by a special device or by software running on a mobile
phone. The relying party places a special Java applet on its login page. The
user enter his credentials into the applet, which contacts a central infrastructure
to verify the credentials. If they verify correctly, the user’s web browser is
redirected to the relying party’s landing page.

The user role of the BankID protocol and its variants are given in Figure 2.
The user side of the protocol is derived from the instructions given by the official
BankID web site.

Except for the Java applet, this system is basically about entering your
internet banking password on any web page. The Java applet does complicate
the analysis slightly, but as we shall see, it does not significantly affect the
security of the system.

Analysis The BankID Java applet is signed and requires full privileges on the
computer it is running on. This means that the Java browser plugin will display
a security dialog asking the user to grant or deny access.

The BankID instructions imply that this dialog authenticates the Java applet
appearing on the web page, saying that unless the security dialog appears and
the applet is signed by the banks, the user should not enter his credentials.

3The implementation may change again in the near future, replacing the Java applet by
JavaScript code. The analysis in this paper will be essentially unchanged.
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Base
1. If there is no Java security dialog, stop.

2. If the Java applet is not the BankID applet, stop.

3. Enter username.

4. Generate one-time code.

5. Enter one-time code.

6. Enter password.

Variants It is hard to verify that the correct Java applet is running. We
model mistakes in this step as if Step 2 is ignored.
Likewise, it is hard to notice that the Java security dialog did not appear.
In sum, we get three variants, the base protocol and two variants

Variant Step 2 Step 1
Base × ×

1 − ×
2 − −

Figure 2: The BankID protocol variants.

V0

V1

V2

Figure 3: BankID variant security summary.
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The Java security dialog allows a user to decide if an applet should be given
access to the system or not. It is not intended to authenticate any part of a
web page before entering sensitive information into it. And indeed, the Java
security dialog is easily forged by a phishing site.

This means that even if the user is verifying the content of the dialog, the
information he verifies may be forged, and therefore, the verification may be
useless.

We conclude that even if both checks are performed as correctly as is reason-
ably possible, this protocol does not provide a defence against phishing attacks.
It has no security.

We note that even if the Java security dialog was not easily forged, it is hard
to decide if the password entry field on the screen belongs to the Java applet
that caused the Java security dialog.

The two variants merely make phishing attacks slightly easier. Though we
note that Variant 1 is somewhat dangerous, as the user grants an unverified
Java applet full access to his computer. If a suitable applet can be found, this
is a nice way to compromise the user’s computer.

We expect that the majority of users will actually use Variant 2. If there is
no Java security dialog, they will proceed, but if there is a Java security dialog,
the user will allow any Java applet access.

This analysis is summarized in Figure 3.

3.2 BankID p̊a Mobil

BankID p̊a Mobil is an electronic identification system jointly developed by
Norwegian banks. It is distinct from the above mentioned BankID system. The
system is not public, and there is no reason to believe that the cryptographic
protocol in use is as secure as the one given in the appendices.

The system uses software and keys installed on the SIM card inside the
user’s phone. The software communicates with a central infrastructure through
special SMS messages, and with the user through the SIM toolkit system.

The relying party asks the user for his username and forwards this to the
banks’ central infrastructure. The infrastructure sends a nonce to the relying
party, which displays it on the web page. The infrastructure also sends the same
nonce and the relying party’s name to the phone, which shows it to the user.

The user checks that phone displays the name of the relying party, and that
the relying party and the phone both display the same nonce. If this holds, the
user accepts by pressing a button. The phone informs the infrastructure that
the user has accepted. The infrastructure then informs the relying party, which
accepts the user as logged in.

Strictly speaking, after the user has accepted by pressing a button on the
phone, the user must enter a password. In our model, this password has no
effect. We shall therefore ignore this password.

Analysis The user interface presents the two pieces of information to be veri-
fied above an easy-to-press ok button. The nonce is displayed (at least on some
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Base

1. Enter username.

2. Verify that the relying party’s name displayed by the phone is correct.

3. Verify that the nonce displayed on the phone matches the nonce dis-
played on the computer.

4. Click ok on the phone.

Variants It is easy to forget to verify the relying party’s name displayed
by the phone, and it may be hard to correctly verify the name (Step 2). It
is easy to forget to verify that the nonces match (Step 3).

Variant Step 2 Step 3
Base × ×

1 − ×
2 × −
3 − −

Figure 4: The BankID p̊a Mobil protocol variants.

V3

V0

V1 V2

Figure 5: BankID p̊a Mobil variant security summary.
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phones) in a larger font than the relying party’s name.
It is very easy for the user’s thumb to press the ok button before the user’s

mind has even considered the information displayed, thereby making both mis-
takes.

The visual presentation will tend to emphasize verification of the nonce
(which is also displayed prominently on the computer screen). It is reasonable
to assume that this will tend to reduce cognitive effort spent on verifying the
relying party’s name.

Note that even if the user correctly verifies both the relying party’s name
and the nonce, there is no guarantee that the user’s web browser is showing
the relying party’s web site. Therefore, this system does not establish a secure
channel, not even when the local network is secure.

If the user correctly verifies the relying party’s name, we know that the user
intended to login with the relying party. Therefore, we have established correct
intention.

The above analysis may suggest that the nonce verification is completely
useless. This is not the case. There are certain specific attacks, especially when
the local network is compromised, that nonce verification will stop. Unfortu-
nately, as described above, there are also attacks that nonce verification does
not stop.

This analysis is summarized in Figure 5.

3.3 Smart Card System

There are two widely deployed smart card4 systems in Norway, and only one
is directed at consumers. While the relevant software governing the system
is widely distributed both to users and relying parties, the functioning of the
system is still claimed to be secret. We know that the system is not more secure
than the generic smart card system that we describe and analyse below. In
other words, the following analysis is only an upper bound on the security of
the deployed system.

The generic smart card system does not use client side authentication in TLS
to prove possession of the client secret key. Instead, a secure TLS channel is
established with the relying party, after which a signed Java applet is responsible
for facilitating a conversation between the smart card and the relying party. This
conversation essentially authenticates the already established TLS channel.

When the user wants to login, he inserts the smart card into a smart card
reader, and the computer software does the rest. Usually, a smart card requires
a password before it will do anything with its secret key. In our model, this
password has no security effect, since we assume that the user has full control
over the smart card. We shall therefore ignore the password.

Analysis In principle the user must verify that the Java applet is the correct
applet. Otherwise, potentially, a phishing attack using a suitable Java applet

4One system is not using smart cards, but USB tokens. This is not important.
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Base

1. When asked to insert smart card, insert smart card.

2. Click to log in.

Variants While smart card support costs suggest that users make mistakes
when using smart cards, these mistakes do not have any effect on security.
Instead, their effect is on functionality and is user-observable.

Figure 6: A generic smart card system.

V0

Figure 7: Smart card security summary.

could compromise the user’s computer and subsequently jeopardise the proto-
col. However, every browser allows the user to mark certain sources as trusted
for Java applets. The intention is that the user does this once, then never
again. This might give the user some protection against malicious Java applets.
Therefore, we ignore such attacks.

If the computer is honest, the analysis in the appendices shows that the
protocol establishes a secure channel, even if the local network is compromised.
This also establishes correct intention by default.

We note that if the user’s computer is compromised, there is no security.
This brief analysis is summarized in Figure 7.
We note that under a stronger notion of correct intention, a generic smart

card system may or may not provide some protection when the user’s computer
is honest.

3.4 MinID

MinID is the Norwegian government’s light-weight login system. Its origins are
in a system used to authenticate online tax returns, and certain parts of the
system are still run by the tax authorities. The system is based on a password
strengthened by one-time codes sent via SMS to the user’s mobile phone5.

The user clicks a MinID login button on the relying party’s web site. This

5It is also possible to use the MinID system with a list of one-time codes printed on paper.
We do not consider this system
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directs the user’s web browser to a dedicated MinID login page. There the
user enters his username and password. The MinID system sends a one-time
code along with the relying party’s name to the user’s phone via SMS. The user
enters the one-time code into the MinID login page, after which the user’s web
browser is redirected to the relying party’s landing page.

The MinID protocol and its variants are given in Figure 8. We note that
none of the three security mechanisms detailed are mentioned in the system’s
user’s guide.

Analysis Browsers usually display some indication that TLS is being used.
Research suggests that users may misinterpret these browser security indicators.
It seems reasonable to assume that it is easy to forget to check for TLS or
mistakenly believe that TLS is turned on when it is not turned on.

Even though modern browsers have made address verification much easier by
emphasizing the host name part of the URL, it is still reasonable to believe that
users may either forget to verify the address or mistakenly accept an incorrect
address.

Finally, while the wording in the SMS message is suboptimal, it is fairly easy
to notice if the relying party’s name is incorrect, since the user has to look at the
phone to read the one-time code. Unfortunately, since the relying party’s name
is nearly always correct, experienced users of the system will be able to read
only the required part of the SMS message, namely the one-time code, without
reading the rest of the message. We must therefore expect that a rather large
fraction of users will not notice if the relying party’s name is incorrect.

Note that a more dynamic modelling would be more realistic. It is not the
case that a fraction of the user population always get this check wrong, while
the remaining users always get it right. You must expect that some users will
usually get it right, while others will usually fail. However, the aggregate result
should still be reasonable.

If the user correctly verifies the relying party’s name, the protocol ensures
correct intention against any attacker.

If the user correctly verifies the address and the local network is not compro-
mised, we know that the user gives his username, password and one-time code
to the correct web site. Therefore, the protocol establishes a secure channel as
long as the local network is honest.

If the user correctly verifies the address and that TLS is turned on, and
the user’s computer is honest, then we know that the user gives his username,
password and one-time code to the correct web site. Therefore, the protocol
establishes a secure channel even if the local network is compromised.

If the user does not verify that TLS is turned on and the local network is
compromised, then the adversary could impersonate the MinID login page. In
this case, no secure channel would be established, but if the user verified the
relying party’s name, correct intention would still be established.

This analysis is summarized in Figure 9.
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Base protocol
1. Click the MinID login button.

2. If the next page is not secure, stop.

3. If the next page does not have the address minid.difi.no, stop.

4. Enter username and password.

5. Wait for SMS with one-time code and the name of the relying party.

6. If the name of the relying party is incorrect, stop.

7. Enter one-time code.

Variants It is easy to forget to verify that TLS is used (Step 2). Likewise,
it is easy to forget to verify the address, and it is hard to verify the address
correctly (Step 3). It is easy to forget to verify the relying party’s name in
the SMS message, and it may be hard to correctly verify the name (Step 6).

Variant Step 2 Step 3 Step 6
Base × × ×

1 − × ×
2 × − ×
3 × × −
4 − − ×
5 − × −
6 × − −
7 − − −

Figure 8: The MinID protocol variants.

V0

V1 V2 V3

V4
V5

V6

V7

Figure 9: MinID variant security summary.

14



4 Theory studies

We now consider the following question:

How to maximise security given the already deployed infrastructure?

Our goal is to give as many users as possible as much security as possible. We
also want to give users willing to make an extra effort more security.

Since a smart card infrastructure is already deployed, we may consider sys-
tems based on smart cards. However, we cannot only consider such systems,
since many modern devices cannot handle smart cards.

These schemes are meant for the general population. We cannot assume
that users in general are especially skilled, that they undergo training or that
they install software.

However, some fraction of users will be willing to do extra work or change
their habits to get extra security. One thing that many people are able to do is to
have their web browser remember web site addresses, so-called bookmarks, and
support for bookmarks is universal. Many web browsers now also have support
for easy-to-install add-on software, so-called browser extensions. Unfortunately,
an extension written for one browser will not work on a different browser, which
means that deploying extensions may be expensive and complicated.

To summarize, any proposed system must work with the software installed
by default on modern computers, that is, a reasonably modern web browser.
Motivated users will certainly be able to add bookmarks to their browser, and
some will also be willing to add browser extensions. We may also use an existing
smart card infrastructure.

4.1 Improved MinID

We first consider a protocol that is fairly close to the MinID system, but tries
to allow users to protect themselves against phishing and local network attacks.
The idea used is not new, see for instance Adida’s BeamAuth [2] or bookmarkid.
net.

First, we insert one extra step into the MinID protocol:

3b. Click the “Start login” button.

This extra step is needed for communication between the relying party and the
infrastructure6.

The improved protocol departs from the MinID protocol when the “Start
login” button appears. Instead of clicking the button, the user invokes a previ-
ously stored bookmark that takes the web browser to the username/password
entry page. Invoking a bookmark will tend to destroy session information, but
this can be preserved using so-called cookies.

The resulting protocol is shown in Figure 10.

6To communication across the bookmark invocation, we use cookies. This extra step is
needed because some browsers prohibit so-called third-party cookies. While cookies could be
set while the username/password entry form is displayed, that will encourage the user into
making mistakes.
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Base

1. Click the MinID login button.

2. Use the “Improved MinID” bookmark.

3. Enter username and password.

4. Wait for SMS with one-time code and the name of the relying party
name.

5. If the name of the relying party is incorrect, stop.

6. Enter one-time code.

Variants Unless carefully trained, it is easy to click the “Start login” but-
ton instead of using the bookmark, turning Step 2 into

2. Click the “Start login” button.

It seems unlikely that a bookmark user will notice if TLS is not used or if
the address is incorrect.
It is easy to forget to verify the relying party’s name in the SMS message,
and it may be hard to correctly verify the name (Step 5).

Variant Step 2 Step 5

Base × ×
1 × −
2 − ×
3 − −

Figure 10: Improved MinID protocol.

V0

V1 V2

V3

Figure 11: Improved MinID summary.
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Analysis If the user correctly verifies the relying party’s name, the protocol
ensures correct intention against any attacker.

If the user correctly uses the bookmark and the computer is honest, we know
that the user gives his username, password and one-time code to the correct
web site. Therefore, the protocol ensures a secure channel in the presence of a
compromised local network.

If the user does not invoke the bookmark, the protocol does not ensure a
secure channel. If the user also fails to verify the relying party’s name, the
protocol does not ensure correct intention.

These results are summarized in Figure 11.

Discussion Using the bookmark ensures that TLS is turned on and that the
address of the username and password entry page is correct. Compared to the
MinID protocol, we have replaced two verifications by one action. Unfortu-
nately, it is still easy to make a mistake and click the “Start login” instead of
using the bookmark.

It is possible to allow the user to train himself to avoid clicking the “Start
login” button. By checking referrer headers, the identification system can detect
if the user arrived at the login page by using a bookmark or clicking the “Start
login” button. The user can ask the identification system either to delay login
if the “Start login” button was clicked, or even to refuse login, forcing the user
to go back and use the bookmark. We conjecture that a user exposed to such
“pain” will quickly learn to avoid the “Start login” button. Note that such
measures will have no effect in the event of an attack.

A somewhat more complicated option (which may not be available on all
web browsers on all devices) is to install a browser extension that recognizes
the web page with the “Start login” button and simply removes it. The user
will quickly forget that the “Start login” button was ever there. It is not clear
which approach will best train the user to defend against phishing attacks.

Of course, if we consider browser extensions, we may as well construct an
extension that recognizes the MinID login button on the relying party’s web
page, and offers a login button as part of the browser chrome. This could
significantly increase security, since the scope for mistakes will be even smaller,
but unfortunately, not every browser supports browser extensions, and they
are typically not portable between browsers. However, relatively modest effort
could provide a significant increase in security.

4.2 Improved Smart Card System

The generic smart card system discussed in Section 3.3 can be improved by
adding better verification of the relying party’s name. This can be done by
passing a one-time code to the user’s phone along with the relying party’s name.

The protocol first proceeds as the generic smart card protocol in Section 3.3.
After the smart card authentication is complete, the relying party passes its chal-
lenge together with the user’s signature to an infrastructure. The infrastructure
sends an SMS message to the user’s phone with the relying party’s name and

17



a one-time code. The user gives the one-time code to the relying party, which
passes it on to the infrastructure. The infrastructure then replies with its own
signature on the user’s signature, after which the relying party accepts.

The user’s part of this protocol is detailed in Figure 12.

Analysis If the computer is honest, the analysis in Section 3.3 still applies.
This means that the protocol establishes a secure channel, and therefore also
correct intention by default.

If the user correctly verifies the relying party’s name given, the protocol
ensures correct intention against any attacker.

The result is summarized in Figure 13.

5 Application To Risk Analysis

In the following, we use a simple and naive model of risk as the sum over all
possible attacks of the consequence of an attack multiplied by the probability of
that attack happening (where sum and multiply may not be ordinary addition
and multiplication).

Naively and as a rough approximation, the probability of a given attack
happening can be taken as the product of the probability that an attempted
attack succeeds and the probability that someone at some point in time wants
to attempt the attack. Unfortunately, the latter term is often impossible to
estimate, but 1 may be a reasonable approximation. In other words, unless we
have good reason not to, we shall usually approximate the probability of an
attack happening by how likely it is that an attempted attack succeeds.

How do we translate the results of the previous sections into likelihoods? It
seems reasonable that an attempted attack against a user of a system that is vul-
nerable to phishing attacks is highly likely to succeed, while an attempt against
a system that ensures correct intention against even compromised computers is
much less likely to succeed.

5.1 Internet banking

The obvious security goal of any internet banking application should be the
following:

For any transaction that is completed on behalf of some user, the
user intended that transaction to happen. If the user’s computer is
honest, the user’s account transcripts remain private.

First consider privacy. Note that the moment an adversary manages to log
into an internet bank as a given user, quite a lot of private information will leak.
However, one may consider this as of little consequence7.

7Some people would certainly consider their account transcripts very private and be em-
barrassed by any leak. However, when you consider the degree of protection given to account
transcripts by banks, they clearly consider privacy to be of little importance.
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Base

1. Insert the smart card.

2. Click to log in.

3. Wait for SMS with relying party name and one-time code.

4. If the relying party name in the SMS message is not correct, stop.

5. Enter the one-time code.

Variants It is easy to forget to verify the relying party’s name in the SMS
message. It may be hard to correctly verify the name (Step 4).

Variant Step 4

Base ×
1 −

Figure 12: An enhanced smart card system.

V0

V1

Figure 13: Enhanced smart card system summary.
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Second, consider transactions. The main point is that many transactions are
reversible, and even if transactions cannot be reversed (e.g. because the money
has left the banking system), they can be effectively reversed by reimbursing
the user. This leads to a loss for the bank and some inconvenience for the user.
We may consider this the cost of internet banking.

We therefore arrive at the following (more modest) security goal for the
internet banking application:

The total cost of internet banking should be small.

A typical internet bank has roughly speaking two security systems. The
first line of defence is the login system. Many internet banks also use some form
of transaction authorization, but in Norway, anyone who can breach the login
system can usually also breach the transaction authorization system.

The second system is not visible to the user, and is based on monitoring
the application. There are a number of signals that can be monitored. Some
examples are:

• When accepting a given user as logged in via a given computer, the internet
banking application can check if the computer has been used by the user for
internet banking before. The obvious technique is to check for a previously
set cookie. If the application has sufficient access to the user’s computer,
more complex methods can be used.

• If the internet banking application has sufficient access to the user’s com-
puter, it can inspect the computer, looking for signs of compromise.

• Network surveillance can reveal if a user’s computer is in communication
with so-called command and control servers used to control networks of
compromised computers. Internet banks obviously cannot do this, but
other organizations may share data with the banks.

• The internet banking application can measure the time between user ac-
tions, as well as other patterns in user interaction. Sufficiently crude
malware could have recognizable signatures.

• The banks can monitor patterns in transactions, not just for one user, but
for all users, and not just for one bank, but for many banks.

Few of these signals will be sufficient to prove that a transaction is fraudulent
(with high probability), but combinations of these signals may be sufficient to
detect almost all fraudulent transactions with a sufficiently low false alarm rate.
When the monitoring system detects a possibly fraudulent transaction, it is
usually easy to contact the user out-of-band and either cancel or reverse the
transaction.

Even if the system does not detect the fraudulent transaction, there is sig-
nificant likelihood that the user will detect it eventually. In this case, the trans-
action can often be reversed, and only if it cannot be reversed must the user be
reimbursed for his loss.
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Note that such a system is not sufficient to reach our modest security goal.
It may be unable to prevent old-fashioned vandalism, for instance when the
adversary inserts fraudulent transactions similar to the user’s real transactions.
If this affected sufficiently many users and transactions, the cost to the banks
could be significant.

The probability of someone wanting to steal money from internet banks is
obviously high. Likewise, we see that the probability of failure in the login
system is high (see Section 3.1 and Section 3.2 for a discussion of the login
systems used; the probability of failure could be significantly lower if the internet
banking login systems were not used as federated identity systems). However,
there are other security systems limiting the consequences of these failures.

And while there are vandalism-type attacks that may have more serious con-
sequences if they affect many users, one could fairly argue that the probability
of such an attack is lower, reducing risk.

Obviously, there are many more contributions to total risk in an internet
banking application, but the risk related to these two issues should dominate
the total risk.

To summarize, it seems reasonable to claim that the overall risk associated
with internet banking is low, and certainly low relative to the benefit derived
from internet banking.

5.2 Medical data

My Prescriptions, mineresepter.no, is a web site run by Norwegian health
authorities. It is part of a larger system for managing prescriptions, but we
only consider the web site mineresepter.no. Its only function is to show people
what prescriptions they have received in the past year. It is quite simple: log
in, and it shows you a list of prescriptions. Relatively few people use the web
site.

The security goal for such a web site is clear:

If mineresepter.no releases medical information about a user into
a channel, then the user intended to contact mineresepter.no and
the channel is the secure channel established by the user.

Unlike for internet banking, gentle probing suggests that there are few, if
any, secondary lines of defence. The login system seems to be the only significant
security system. That is, if the login system fails, application security also fails.
Obviously, application security can fail even if the login system does not fail, but
it seems reasonable that the probability that the login system fails will dominate
in any risk analysis.

Unlike account transcripts, there seems to be general agreement that medical
information should be kept private, and that any compromise is therefore very
serious.

Prior to 2012, login to the system required the use of a smart card system.
If the analysis in Section 3.3 applies, the smart card system is sufficiently secure
whenever the user’s computer is honest. Compromise will then only happen if
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the user’s computer is compromised. This probability might therefore be only
modest (except for skilled attackers with specific targets). However, because the
consequences of compromise are severe, the risk should probably be classified
as high.

If a system such as the one in Section 4.2 was used, we see that this would
probably reduce the probability of a successfull attack even further. While this
will reduce the overall risk, we might still want to classify the risk as high
because of the severe consequences.

Towards the end of 2012, the BankID system from Section 3.1 was added as
an alternative login system. Since BankID is highly insecure, the probability of
compromise of mineresepter.no is now high. The risk must then be classified
as very high.

We found no effective method for opting out of the web site, so non-users of
the system have no sensible way to mitigate the risk they are exposed to.

While some people might derive some benefit from mineresepter.no, it
seems that a significant proportion of the population will not derive any real
benefits from this web site. In sum, mineresepter.no seems to be a web site
that exposes the Norwegian population to a significant risk without any corre-
sponding benefit.

We should also note that the Norwegian authorities have used a single-sign-
on solution to login to many public web sites, mineresepter.no included. This
means that using better login systems may not reduce the overall risk.
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Hole. A proof of concept attack against norwegian internet banking sys-
tems. In Gene Tsudik, editor, Financial Cryptography, volume 5143 of
Lecture Notes in Computer Science, pages 197–201. Springer, 2008.

[6] Yngve Espelid, Lars-Helge Netland, André N. Klingsheim, and Kjell Jørgen
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A Full Protocols

In this section, we give reasonable interpretations of the protocols involved in
the case studies from Section 3. While we cannot guarantee that the secret
protocols actually used in the case studies are as good as these protocols, it is
at least possible that the deployed systems can achieve the security claimed.

We do not provide protocols and analysis for the theory studies from Sec-
tion 4. For straight-forward implementations, these are very similar to the
protocols from Section 3. But in reality, any future password-based protocols
should have much stronger security. In particular, there should be some security
against corrupt infrastructures.

The protocols are described in terms of message sequence charts. Solid ar-
rows denote communication through TLS channels8, while double arrows denote
communication through channels that are assumed9 secure.

8Note that it is not possible to equate TLS channels with TLS sessions, since TLS sessions
may not be sufficiently persistent. Establishing and maintaining TLS channels is therefore
non-trivial. Typically, the server stores a random value in a cookie. This value (or rather,
information tied to the random value) must often be repeated in the requests sent to the web
server to ensure that the request originated with the correct channel.

9When considering the channel from infrastructures to mobile phones, this assumption
is clearly debatable. But still, for the time being, attacks against the mobile channel are
uncommon and unrealistic for many adversaries.
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Note that these protocols are abstractions of the real-world interaction. Be-
tween computers, the abstractions are close to the real-world action, but be-
tween humans and computers, the abstractions only indicate the corresponding
real-world interaction.

For instance: When the user’s computer displays a relying party’s web page,
the computer is giving the user a lot of information, and only some of it is rele-
vant to the protocol. One piece of information that is relevant for the protocol
is the name of the relying party. Typically, this is communicated to the user in
two ways: through the browser’s address bar and through the visual layout of
the web page itself.

Obviously, any web page can adopt any visual layout. Only the address bar
is a reliable signal. However, users often rely more on the visual layout than the
address bar, and this is one source of mistakes in common web protocols.

When describing protocol messages from a computer to a user, we adopt the
convention that in m | r, m denotes the (unreliable) information conveyed by
the web page visual layout, and r denotes the (reliable) information displayed
by the browser. Note that we only describe such information when it is required
by the protocol.

We should also note that our protocols will sometimes mention some party’s
name both in the reliable and the unreliable parts of the message. The reliable
signal will typically refer to an URL, which is only sometimes human-readable,
and often only vaguely related to the human-readable name from the unreliable
signal. This implies among other things that humans cannot reliably verify
URLs, unless they know the URL very well.

A.1 BankID

A plausible protocol for BankID is given in Figure 14. We note that in the real
protocol, the infrastructure stores one signing key per user and uses the user’s
key to sign the message, not its own. This does not have any real effect on
security, but it significantly complicates the implementation and its analysis.

As the attack in Figure 15 shows, the BankID protocol does not have
any security. We stress that this attack does not depend on the computer–
relying party–infrastructure part of the protocol. The attack exploits the user–
computer interaction only, which we know we have modeled correctly.

Weak Positive Results It is possible to find weak positive security results
for this protocol if we strengthen our assumptions. Suppose every relying party
is honest, and the user correctly verifies that his computer is communicating
with a relying party. Suppose also that the user’s computer is honest.

If the relying party accepts that the user has logged in, it knows that the
infrastructure has generated a signature of the required form. This means that
there is an infrastructure session agreeing with the relying party about the
challenge, the user’s identity and the relying party’s identity.

Since the infrastructure session will only generate the signature if it has seen
the correct password and one-time code, we know that the user has requested a
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U G P R I

login, R, chlogin, R

gen

otc

U, pw , otc U, pw , otc, R, ch

{U,R, ch}sk(I)

{U,R, ch}sk(I)

Figure 14: A protocol of equivalent functionality to the BankID protocol. The
participants are: a user U , a one-time code generator G, a computer P , a relying
party R and a central infrastructure I.

U G P R′ R I

login, R, chlogin, R′login, R′

gen

otc

U, pw , otc U, pw , otc U, pw , otc, R, ch

{U,R, ch}sk(I)

{U,R, ch}sk(I)

Figure 15: An attack by a corrupt relying party R′ (or some web site merely
impersonating a relying party). The attacker uses the stolen information to log
in with an honest relying party R.
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one-time code from the one-time code generator and given the one-time code and
his password to a computer. Since the user is only talking to honest computers,
and verifies that the computer is talking to an honest relying party, we know
that the infrastructure is talking to an honest computer, and that this honest
computer agrees with everyone about who the relying party is.

We conclude that under these strong assumptions, this protocol establishes
a secure channel and ensures correct intention. Obviously, the stronger assump-
tions are completely unrealistic for a federated identity system, which is what
BankID is today. However, BankID has its origins in the banking system. As
a federated identity system for the financial system only, it might have been
possible to justify the stronger assumptions. Of course, our variant analysis
would still show that the system is very brittle.

We should also stress that the exact BankID protocol is not public, so we
cannot guarantee that the real protocol achieves the same weak security as our
example protocol given in Figure 14.

A.2 BankID p̊a Mobil

A plausible protocol for BankID p̊a mobil is given in Figure 16. It is worth
noting that the user’s signing key is stored inside the mobile phone SIM card,
and that communication between the central infrastructure and the SIM card
happens via SMS messages that are given extra protection.

As the attack in Figure 17 shows, the BankID p̊a mobil protocol does not
establish a secure channel. Again, this attack does not in any way depend on
the computer–relying party–infrastructure–mobile phone part of the protocol.
The attack exploits the user–computer–mobile phone interaction only, which we
know we have modeled correctly.

Weak Positive Results It is possible to find weak positive security results
for this protocol if we strengthen our assumptions. Suppose the user verifies
that the URL belongs to the relying party and that TLS is turned on.

Suppose the user only talks to honest computers. If the relying party accepts
that the user has logged in, it knows that the user’s phone has generated the
correct signature. Therefore, the phone has displayed the relying party’s name
and a nonce.

The user accepted the name and the nonce, which means that the user’s
computer has shown the user the nonce, and the user has verified that TLS is
turned on and the URL shown by the computer belongs to the relying party.

Since the nonce included in the phone’s signature matches the nonce seen by
the user on the computer, the computer’s session is indeed the relying party’s
session. This means that a secure channel has been established.

For a general federated identity system, such URL verification is unrealistic.
But for a very restricted set of relying parties, such as a small number of finan-
cial web sites, it might be possible to argue that URL verification is possible.
However, our variant analysis would still show that the system is very brittle.
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U T P R I

login, Rlogin, R

U U U,R, ch

nnn

R, ch,nR,n

ok {R, ch,n}sk(U)

{R, ch,n}sk(U)ok

Figure 16: A protocol of equivalent functionality to the BankID p̊a Mobil proto-
col. The participants are: a user U , a mobile phone T , a computer P , a relying
party R and a central infrastructure I.

U T P R′ R I

login, Rlogin, Rlogin, R

U U U U,R, ch

nnnn

R, ch,nR,n

ok {R, ch,n}sk(U)

{R, ch,n}sk(U)okok

Figure 17: An attack by a web site R′ impersonating an honest relying party
R. Correct intention is satisfied, but a secure channel has not been established.
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U CU P R

login, R, chlogin, R

ok

ch, R

U, {ch, R}sk(U) U, {ch, R}sk(U)

Figure 18: Smart card protocol. The players are: a user U , a smart card CU

belonging to U , a computer P and a relying party R.

U CU P R R′

login, R, chlogin, R

ok

login, R′, ch ′ch ′, R′

U, {ch ′, R′}sk(U) U, {ch ′, R′}sk(U)

ch, R

U, {ch, R}sk(U) U, {ch, R}sk(U)

Figure 19: A corrupt computer attacking the smart card protocol and surrep-
titiously logging in with a second relying party R′ while the user is logging in
with the intended relying party R.

A.3 Smart Card Protocol

The protocol is given in Figure 18. The general assumption is that a user’s
smart card is only allowed to talk to a computer if the user is talking to the
computer. Suppose further that the user only talks to honest computers.

If the relying party accepts that a user U has logged in, we know that the
user’s smart card has received the challenge and the relying party’s name. Since
the smart card must have talked to a computer, we know that it received the
challenge and the relying party’s name from an honest computer. Since the
computer is honest, it must have established a secure channel to the relying
party and received the challenge through that channel. Since the relying party
does not reuse challenges, the honest computer’s session agrees with the relying
party’s session.

This means that we have established a secure channel, and since the com-
puter is honest, correct intention by default.
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A.4 MinID Protocol

The protocol is given in Figure 20. Note that for the purposes of this analysis
we assume that one-time codes are unpredictable and do not repeat, that is,
they are equivalent to nonces. This is reasonable. Suppose the relying party
accepts that the user has logged in. First of all, there is a computer talking to
the relying party over a TLS channel.

Next, since the relying party verifies the signature, there must also be an
infrastructure session agreeing with the relying party about the challenge, the
user and the relying party. There is also a computer talking to the infrastructure.

Since the infrastructure receives the one-time code it sent to the user’s phone,
there must be a user executing the base protocol that has seen the SMS message
with the one-time code, which also contains the relying party’s name. This
establishes correct intention.

The user must be talking to a computer. If that computer is corrupt, we are
done. Assume therefore that the voter is talking to an honest computer. Since
the voter verifies the URL and that TLS is turned on, we know that the voter’s
honest computer has a session shared with the infrastructure.

We first argue that the computer session talking to the user is the same
as the computer session talking to the infrastructure. We know that the two
sessions agree on the one-time code. The infrastructure sends the one-time code
to the user’s phone, which only reveals it to the user, which in turn only passes it
on to the computer talking to the user. This computer learns the one-time code
from the user and immediately sends it on to the infrastructure. In sum, the
one-time code can only be known by one computer, and this honest computer
is talking to both the user and the infrastructure.

Next we argue that the computer session talking to the infrastructure is the
same as the computer session talking to the relying party. Observe that the two
computer sessions share the same signature. This means that they also agree
on the relying party’s name, the user’s name and the relying party’s challenge.
The properties of TLS channels ensures that for the computer session talking
to the relying party, the message specifying the challenge really came from the
relying party. The only way the challenge can leave that computer session is if
that session sends it to the infrastructure. The infrastructure will in turn never
disclose the challenge (except possibly as part of a signature sent through the
same TLS channel). This means that since the two computer sessions agree on
the challenge, they must be identical.

In conclusion, the honest computer has established a secure channel to the
relying party.
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U T P R I

login, R, chlogin, R

login login, R, ch

login, R, Ilogin, R, I | I,TLS

U, pw U, pw

otc, Rotc, R

otc otc

{U,R, ch}sk(I)

{U,R, ch}sk(I)

Figure 20: A protocol of equivalent functionality to the MinID protocol. The
participants are: the user U , his mobile phone T , his computer P , the relying
party R and the infrastructure I.

U T P R′ R I

login, R, chlogin, Rlogin, R

login login, R login, R, ch

login, R, Ilogin, R, Ilogin, R, I | R′,TLS

U, pw U, pw U, pw

otc, Rotc, R

otc otc otc

{U,R, ch}sk(I)

{U,R, ch}sk(I)

Figure 21: A phishing attack by a corrupt relying party R′ impersonating an
honest relying party R against a user of MinID, where the user forgets to verify
the URL (Variant 2).
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