
– An extended abstract of this paper appears in the proceedings of AFRICACRYPT 2014. –

Trapdoor Privacy in Asymmetric Searchable
Encryption Schemes

Afonso Arriaga1, Qiang Tang1, and Peter Ryan1

SnT, University of Luxembourg
6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg
{afonso.delerue,qiang.tang,peter.ryan}@uni.lu

Abstract. Asymmetric searchable encryption allows searches to be carried over cipher-
texts, through delegation, and by means of trapdoors issued by the owner of the data.
Public Key Encryption with Keyword Search (PEKS) is a primitive with such functional-
ity that provides delegation of exact-match searches. As it is important that ciphertexts
preserve data privacy, it is also important that trapdoors do not expose the user’s search
criteria. The difficulty of formalizing a security model for trapdoor privacy lies in the
verification functionality, which gives the adversary the power of verifying if a trapdoor
encodes a particular keyword. In this paper, we provide a broader view on what can
be achieved regarding trapdoor privacy in asymmetric searchable encryption schemes,
and bridge the gap between previous definitions, which give limited privacy guarantees
in practice against search patterns. We propose the notion of Strong Search Pattern
Privacy for PEKS and construct a scheme that achieves this security notion.

Keywords: Asymmetric Searchable Encryption, PEKS, Trapdoor Privacy, Anonymous
IBE, Function Privacy, Predicate Privacy, Search Pattern Privacy, Key Unlinkability.

1 Introduction

As cloud services become increasingly popular, security concerns arise from exposing the user’s
data to third-party service providers. Encryption can be used to protect the user’s data privacy,
but usability is sacrificed if not even the most basic operations, such as searching over the user’s
data, can be delegated to the service provider. In the public key setting, Boneh et al. [6] were
the first to propose a primitive to tackle this problem. They called it Public Key Encryption
with Keyword Search (PEKS), a primitive that provides delegation of exact-match searches
over ciphertexts. A typical scenario where this primitive can bring great benefits to users (and
consequently to service providers wishing to increase their customer base as well) is that of any
email system.

Suppose user Alice stores her emails in the servers of some email service provider, so that
she can access them from either her laptop or her smartphone. Alice does not trust the service
provider or fears that government agencies may require the service provider to hand over all
her data. Using standard public key encryption, any user with Alice’s public key can send
her encrypted emails that only she can decrypt. For Alice to find a particular email later on,
the sender could also attach to the email some searchable ciphertexts, produced from a PEKS
scheme, with keywords that Alice might use when searching for this email. These ciphertexts are
searchable upon delegation, meaning that only Alice can authorize the email service provider to
search on her behalf by issuing a trapdoor that encodes Alice’s search criteria (e.g. ciphertexts
that encrypt the keyword “project xx123 - meeting”), generated from her own secret key. The
service provider searches through all Alice’s emails for those containing searchable ciphertexts
that match the issued trapdoor, and returns to her only those with a positive match.

Many efforts have been put in asymmetric searchable encryption in general, as surveyed
in [16], most towards more efficient PEKS schemes (or relying on weaker assumptions) or
towards primitives with more flexible search queries, such as conjunctive, disjunctive, subset
and inner product types of queries. Until recently [14, 9, 10], the concern was always to preserve
data privacy in the ciphertexts and no attention was paid to possible information leakage from
the trapdoors. In fact, some schemes, as the statistically consistent scheme proposed in [1],

include the keyword itself in the trapdoor. In this paper we focus on defining trapdoor privacy
for PEKS and constructing a scheme that provably stands up to the definition. Nevertheless,
the definition can easily be extended to asymmetric searchable encryption in general [13].

The difficulty of formalizing a security model for trapdoor privacy lies in the verification
functionality of PEKS, which in the public key setting depends on the trapdoor itself and ci-
phertexts created from publicly known parameters. This provides to any adversary the power to
verify if a trapdoor encodes a particular keyword. (The adversary encrypts the chosen keyword
under the public key associated with the trapdoor; if the ciphertext matches the trapdoor then
the trapdoor encodes the chosen keyword.) Therefore, an offline dictionary attack can always
be launched, putting aside the possibility of formalizing the security notion of trapdoor privacy
as a traditional choose-then-guess indistinguishability game in the public-key setting - although
possible in the symmetric setting [15]. In many cases, the keywords encoded in trapdoors are
sufficiently unpredictable for a dictionary attack to be infeasible. So, defining the right notion
of trapdoor privacy is crucial to guarantee that the user’s privacy is fully protected.

1.1 Related work

Abdalla et al. [1], by extending the results left implicit in [6], proposed a general black-box
transformation from Anonymous Identity-Based Encryption (IBE) to PEKS, where the result-
ing PEKS scheme is secure in the traditional ciphertext indistinguishability sense. Identities
and their secret keys in the original IBE scheme map to keywords and trapdoors in result-
ing PEKS scheme, respectively. The anonymity requirement informally states that ciphertexts
leak no information regarding the identity of the recipient, leading to the commonly desired
keyword-privacy guarantees over ciphertexts in PEKS. The standard notion of ciphertext indis-
tinguishability in IBE leads to Computational Consistency in the resulting PEKS scheme, which
informally means that it is hard for computationally bounded adversaries to find two distinct
keywords such that the trapdoors for the first keyword positively match the ciphertexts of the
second keyword. (Note that if keywords are hashed before used in the scheme, inconsistency
happens at least every time H(w1) = H(w2), where w1 6= w2.) We refer the reader to Section 2
for precise details on this transformation and to [1] for formal proofs.

This (black-box) transformation allows us to define a “dual” security notion for IBE that
will lead to the desired trapdoor privacy notion in PEKS, and motivates the construction of
IBE schemes that can provably satisfy it. This approach was also followed by [14, 9, 10], which,
to the best of our knowledge, are the only works to address the concerns on trapdoor privacy
in asymmetric searchable encryption.

Two distinct scenarios have to be considered to model trapdoor privacy. One in the presence
of ciphertexts that positively match the trapdoors, and the other in the absence of such cipher-
texts. Consider a toy example where the service provider possesses one ciphertext that belongs
to Alice and two trapdoors that Alice issued for searches to be performed on her behalf. The
service provider executes the test-search and one of the following cases occurs:

(a) Both trapdoors positively match the stored ciphertext, in which case the trapdoors encode
the same keyword.

(b) Only one of the trapdoors match the ciphertext, in which case the trapdoors encode different
keywords.

(c) None of the trapdoors positively match the stored ciphertext.

From cases (a) and (b), we can see that, in the presence of ciphertexts that match the
trapdoors, an equality relation between the keywords encoded under the trapdoors can be
determined trivially. In such cases, the notion of trapdoor privacy focus on revealing as little
information as possible on the keywords themselves1. Recently, Boneh et al. [9] put forward two
formal definitions of different strengths for IBE, inspired by the security definition given for
Deterministic Encryption in [3]: Function Privacy and Enhanced Function Privacy. The latter

1 Note that some information is inevitably leaked because of the verification functionality, e.g. if the
trapdoor does not match a ciphertext which encrypts a particular known keyword, then the trapdoor
does not encode this keyword.

2

leads to a security notion in PEKS (after the black-box transformation in [1]), which addresses
this scenario.

Case (c) covers the scenario where trapdoors do not match any ciphertext. It is in Al-
ice’s best interest to hide her search pattern from the service provider. If the search pattern
is revealed, the attacker could concentrate its resources on breaking the privacy of trapdoors
encoding the most frequent keywords, which a priori are the most relevant to Alice. This is-
sue is particularly important for PEKS due to the possibility of launching dictionary attacks.
Nishioka [14] proposed a model denoted Search Pattern Privacy, which partially addresses this
scenario. However, the model limits the distinguishing game to two trapdoors, which provides
insufficient privacy guarantees in practice, considering that an actual attacker may have access
to a much larger number of (possibly related) trapdoors. As we show in Section 4, and con-
trarily to intuition, the so-called hybrid argument does not apply here, unless trapdoors can be
efficiently re-randomized. Also, after the transformation from IBE to PEKS, Function Privacy
leads to a security definition that provides limited privacy guarantees against search patterns,
since the resulting model prevents the adversary from being challenged with trapdoors encoding
the same keyword.

1.2 Our contributions

In this paper, we provide a broader view on what can be achieved regarding trapdoor privacy
in asymmetric searchable encryption, and bridge the gap between currently existent definitions.
In more detail, our contributions are the following:

– We formulate the “dual” notion of Search Pattern Privacy, which we call Weak Key Unlink-
ability for IBE. If an IBE scheme is provably secure in the Weak Key Unlinkability model,
the PEKS scheme resulting from the black-box transformation in [1] has Search Pattern
Privacy. We then show that Search Pattern Privacy, as defined in [14], is insufficient in prac-
tice. We do so by constructing a new Anonymous IBE scheme with Weak Key Unlinkability,
based on the Anonymous IBE scheme by Boyen and Waters [12]. Applying the black-box
transformation to this scheme therefore results in a PEKS scheme with Search Pattern Pri-
vacy. However, we show that the resulting scheme fails to hide search patterns when more
than two trapdoors have been issued. (Of independent interest, the new Anonymous IBE
scheme is more efficient than that in [12], and eliminates the selective-ID constraint, but
the security proofs rely on random oracles.)

– We propose a new security model, strictly stronger than Weak Key Unlinkability, which
we call Strong Key Unlinkability for IBE. The model allows the adversary to be challenged
with multiple secret keys, which leads to a new notion that we refer to as Strong Search
Pattern Privacy for PEKS, in which the adversary is allowed to be challenged with multiple
trapdoors, instead of just two.

– We compare the different notions of security and show that Key Unlinkability and Function
Privacy are independent security notions. We provide counter-examples to show that Strong
Key Unlinkability does not imply Function Privacy, neither does Enhanced Function Privacy
implies Weak Key Unlinkability.

– We introduce a new hardness assumption for composite order groups. We call this assump-
tion the Composite Decisional Diffie-Hellman (CDDH) and show that it is weaker than the
Composite 3-party Diffie-Hellman (C3DH) assumption made in [11] by Boneh and Waters.
Assuming CDDH is intractable, we extend our new IBE scheme to groups of composite
order, and prove that the scheme now satisfies Strong Key Unlinkability security.

– We show that an easy and natural transformation from Strong Key Unlinkability to a
more generalized definition of Key Unlinkability, where the adversary is allowed to choose
a joint probability distribution from which identities are sampled (instead of being sam-
pled uniformly at random from the identity space), exists, as long as the joint probability
distribution does not depend on the public parameters of the scheme.

1.3 Structure of the paper

In the following section we recall some background on bilinear groups of prime order and
composite order, introduce the new CDDH assumption, and show that this assumption is weaker

3

than the well-established C3DH assumption. We also define consistency and standard security
notions for IBE and PEKS, and describe the black-box transformation from Anonymous IBE
to PEKS. In Section 3, we recall Nishioka’s Search Pattern Privacy model for PEKS, and
introduce a strictly stronger model: Strong Search Pattern Privacy. We also formulate the
“dual” properties for IBE - Weak Key Unlinkability and Strong Key Unlinkability - which lead
to Search Pattern Privacy and Strong Search Pattern Privacy for PEKS, respectively, after the
black-box transformation from IBE to PEKS. In Section 4, we construct a new Anonymous IBE
scheme and prove it secure in the Weak Key Unlinkability model. We then present a concrete
attack to show that the scheme does not satisfy the notion of Strong Key Unlinkability. Finally,
we extend the newly introduced scheme to groups of composite order, and prove that the scheme
is now secure in the Strong Key Unlinkability model. We end by some concluding remarks and
point out possible directions for future work, in Section 5.

2 Preliminaries

Notation. We write a ← b to denote the algorithmic action of assigning the value of b to
the variable a. We use ⊥/∈ {0, 1}? to denote a special failure symbol. If S is a set, we write
a←$ S for sampling a from S uniformly at random. If X is a joint probability distribution
with L random variables, we write (x1, ..., xL)←$ X for sampling (x1, ..., xL) from X. If A is
a probabilistic algorithm we write a←$ A(i1, i2, . . . , in) for the action of running A on inputs
i1, i2, . . . , in with random coins, and assigning the result to a. If a is a variable, |a| denotes the
length in bits of its representation. We denote by a||b the concatenation of variables a and b,
represented as bit-strings.

Games. In this paper we use the code-based game-playing language [4]. Each game has an
Initialize and a Finalize procedure. It also has specifications of procedures to respond to an
adversary’s various queries. A game is run with an adversary A as follows. First Initialize runs
and its outputs are passed to A. Then A runs and its oracle queries are answered by the
procedures of the game. When A terminates, its output is passed to Finalize, which returns the
outcome of the game. In each game, we restrict attention to legitimate adversaries, which is
defined specifically for each game. We use lists as data structures to keep relevant state in the
games. The empty list is represented by empty square brackets []. We denote by list ← a : list
the action of appending element a to the head of list. To access the value stored in index i of
list and assign it to a, we write a← list[i]. To denote the number of elements in list, we use |list|.
Unless stated otherwise, lists are initialized empty and variables are first assigned with ⊥.

2.1 Bilinear groups

We first revise pairings over prime-order groups and the associated Decision Bilinear Diffie-
Hellman (DBDH) and Decision Linear (DLIN) assumptions [7, 5]. We then revise pairings over
composite-order groups [8], introduce the new Composite Decision Diffie-Hellman (CDDH)
assumption, and show that this assumption is weaker than the well-established Composite 3-
party Diffie-Hellman (C3DH) assumption made in [11].

Bilinear groups of prime order

Definition 1. A prime-order bilinear group generator is an algorithm GP that takes as input
a security parameter λ and outputs a description Γ = (p,G,GT, e, g) where:

– G and GT are groups of order p with efficiently-computable group laws, where p is a λ-bit
prime.

– g is a generator of G.
– e is an efficiently-computable bilinear pairing e : G x G → GT, i.e., a map satisfying the

following properties:
• Bilinearity: ∀a, b ∈ Zp, e(ga, gb) = e(g, g)ab;
• Non-degeneracy: e(g, g) 6= 1.

4

Definition 2. Let Γ = (p,G,GT, e, g) be the description output by GP(λ). We say the DBDH
assumption holds for description Γ if, for every PPT adversary A, the following definition of
advantage is negligible in λ.

AdvDBDH
Γ,A := 2 · Pr[DBDH⇒ True]− 1,

where game DBDH is described in Fig. 1.

procedure Initialize(λ):

Γ ←$ GP(λ)
(p,G,GT, e, g)← Γ
z1 ←$ Zp

z2 ←$ Zp

z3 ←$ Zp

Z←$ GT

bit←$ {0, 1}
if bit = 0 return (Γ, gz1 , gz2 , gz3 , e(g, g)z1z2z3)
else return (Γ, gz1 , gz2 , gz3 , Z)

procedure Finalize(bit′):

if bit = bit′ return True
else return False

Fig. 1. Game DBDH.

procedure Initialize(λ):

Γ ←$ GP(λ)
(p,G,GT, e, g)← Γ
z1 ←$ Zp

z2 ←$ Zp

z3 ←$ Zp

z4 ←$ Zp

Z←$ GT

bit←$ {0, 1}
if bit = 0 return (Γ, gz1 , gz2 , gz1z3 , gz2z4 , gz3+z4)
else return (Γ, gz1 , gz2 , gz1z3 , gz2z4 , Z)

procedure Finalize(bit′):

if bit = bit′ return True
else return False

Fig. 2. Game DLIN.

Definition 3. Let Γ = (p,G,GT, e, g) be the description output by GP(λ). We say the DLIN
assumption holds for description Γ if, for every PPT adversary A, the following definition of
advantage is negligible in λ.

AdvDLIN
Γ,A := 2 · Pr[DLIN⇒ True]− 1,

where game DLIN is described in Fig. 2.

Bilinear groups of composite order

Definition 4. A composite-order bilinear group generator is an algorithm GC that takes as
input a security parameter λ and outputs a description Γ = (p, q,G,GT, e, g) where:

– G and GT are groups of order n = pq, where p and q are independent λ-bit primes, with
efficiently computable group laws.

– g is a generator of G.
– e is an efficiently-computable bilinear pairing e : G x G → GT, i.e., a map satisfying the

following properties:

• Bilinearity: ∀a, b ∈ Zn, e(ga, gb) = e(g, g)ab;
• Non-degeneracy: e(g, g) 6= 1.

Subgroups Gp ⊂ G and Gq ⊂ G of order p and order q can be generated respectively by gp = gq

and gq = gp. We recall some important facts regarding these groups:

– G = Gp x Gq

– e(gp, gq) = e(gq, gp) = e(g, g)n = 1
– e(gp, (gp)

a · (gq)b) = e(gp, (gp)
a) · e(gp, (gq)

b) = e(gp, gp)
a

Definition 5. Let Γ = (p, q,G,GT, e, g) be the description output by GC(λ) and Γ ′ = (n,G,GT,
e, g), where n← pq. We say the C3DH assumption holds for description Γ ′ if, for every PPT
adversary A, the following definition of advantage is negligible in λ.

AdvC3DH
Γ ′,A := 2 · Pr[C3DH⇒ True]− 1,

where game C3DH is described in Fig. 3.

5

Definition 6. Let Γ = (p, q,G,GT, e, g) be the description output by GC(λ) and Γ ′ = (n,G,GT,
e, g), where n← pq. We say the CDDH assumption holds for description Γ ′ if, for every PPT
adversary A, the following definition of advantage is negligible in λ.

AdvCDDH
Γ ′,A := 2 · Pr[CDDH⇒ True]− 1,

where game CDDH is described in Fig. 4.

procedure Initialize(λ):

(p, q,G,GT, e, g)←$ GC(λ)
n← pq; gp ← gq; gq ← gp

Γ ′ ← (n,G,GT, e, g)
X1 ←$ Gq; X2 ←$ Gq; X3 ←$ Gq

a←$ Zn; b←$ Zn; c←$ Zn; R←$ G
bit←$ {0, 1}
if bit = 0 return

... (Γ ′, gp, gq, (gp)
a, (gp)

b,X1(gp)
ab,X2(gp)

abc,X3(gp)
c)

else return

... (Γ ′, gp, gq, (gp)
a, (gp)

b,X1(gp)
ab,X2(gp)

abc,R)

procedure Finalize(bit′):

if bit = bit′ return True
else return False

Fig. 3. Game C3DH.

procedure Initialize(λ):

(p, q,G,GT, e, g)←$ GC(λ)
n← pq; gp ← gq; gq ← gp

Γ ′ ← (n,G,GT, e, g)
X1 ←$ Gq; X2 ←$ Gq; X3 ←$ Gq

a←$ Zn; b←$ Zn; R←$ G
bit←$ {0, 1}
if bit = 0 return

... (Γ ′, gp, gq,X1(gp)
a,X2(gp)

b,X3(gp)
ab)

else return

... (Γ ′, gp, gq,X1(gp)
a,X2(gp)

b,R)

procedure Finalize(bit′):

if bit = bit′ return True
else return False

Fig. 4. Game CDDH.

In game C3DH, adversary is given a tuple (Γ ′, gp, gq, (gp)
a, (gp)

b,X1(gp)
ab,X2(gp)

abc,Z) and
has to decide whether Z = X3(gp)

c, for some X3 ∈ Gq. For convenience, we rewrite this as
(Γ ′, gp, gq, (gp)

a, (gp)
b,X1(gp)

ab,Y, X3(gp)
c), where Y is either X2(gp)

abc or random in G. Now,
notice that (Γ ′, gp, gq, X1(gp)

ab,X3(gp)
c,Y) is a CDDH tuple. Therefore, CDDH is a weaker

assumption than C3DH.

2.2 Anonymous Identity-Based Encryption

Identity-Based Encryption (IBE) was first introduced by Boneh and Franklin [7]. For conve-
nience, and following the same approach as in [12], we provide real-or-random definitions for
semantic security and anonymity, instead of the more usual (but asymptotically equivalent)
left-or-right indistinguishability games2.

An IBE scheme Π = (Setup,Extract,Enc,Dec) is specified by four polynomial-time algorithms
associated with a message space M and an identity space I.

– Setup(λ): On input the security parameter λ, this algorithm returns a master secret key
msk and public parameters pp.

– Extract(pp,msk, id): On input public parameters pp, a master secret key msk and an identity
id ∈ I, this algorithm outputs a secret key sk.

– Enc(pp,m, id): On input public parameters pp, a message m ∈ M and an identity id ∈ I,
this algorithm outputs a ciphertext c.

– Dec(pp, c, sk): On input public parameters pp, a ciphertext c and a secret key sk, this
algorithm outputs either a message m or a failure symbol ⊥.

The correctness of an IBE scheme requires that decryption reverses encryption, i.e., for any
λ ∈ N, any (msk, pp)←$ Setup(λ), any id ∈ I, any m ∈M, we have that Dec(pp,Enc(pp,m, id),
Extract(pp, msk, id)) = m.

Definition 7. An IBE scheme Π is semantically secure if, for every legitimate PPT adversary
A, the following definition of advantage is negligible in λ

AdvIBE-IND-CPA
Π,A (λ) := 2 · Pr[IBE-IND-CPA⇒ True]− 1,

where game IBE-IND-CPA is described in Fig. 5.

2 There is a simple reduction that loses a factor of 2 in tightness from real-or-random to left-or-right
definitions.

6

procedure Initialize(λ):

(msk, pp)←$ Setup(λ)
bit←$ {0, 1}
return pp

procedure Real-or-Random(id?,m0):

if id? ∈ list return ⊥
m1 ←$ {x ∈ M : |x| = |m0| ∧ x 6= m0}
c←$ Enc(pp,mbit, id

?)
return c

procedure Extract(id):

if id = id? return ⊥
sk←$ Extract(pp,msk, id)
list← id : list
return sk

procedure Finalize(bit′):

return (bit = bit′)

Fig. 5. Game IBE-IND-CPA. Adversary is legitimate if it only calls Real-or-Random once.

Definition 8. An IBE scheme Π is anonymous if, for every legitimate PPT adversary A, the
following definition of advantage is negligible in λ

AdvIBE-ANO
Π,A (λ) := 2 · Pr[IBE-ANO⇒ True]− 1,

where game IBE-ANO is described in Fig. 6.

procedure Initialize(λ):

(msk, pp)←$ Setup(λ)
bit←$ {0, 1}
return pp

procedure Real-or-Random(id0,m
?):

if id0 ∈ list return ⊥
id1 ←$ {x ∈ I : x /∈ list ∧ x 6= id0}
c←$ Enc(pp,m?, idbit)
return c

procedure Extract(id):

if id = id0 ∨ id = id1 return ⊥
sk←$ Extract(pp,msk, id)
list← id : list
return sk

procedure Finalize(bit′):

return (bit = bit′)

Fig. 6. Game IBE-ANO. Adversary is legitimate if it only calls Real-or-Random once.

2.3 Public Key Encryption with Keyword Search

Public Key Encryption with Keyword Search (PEKS) [6] is a form of Asymmetric Searchable
Encryption with exact-match searches. The standard notion of security for keyword privacy in
ciphertexts is semantic security, which ensures that any partial information on the keyword
cannot be feasibly determined from the ciphertext, unless a trapdoor for that keyword is avail-
able. The notion of computational consistency is taken from [1]. It guarantees that the primitive
fulfills its function. We use the alternative (but asymptotically equivalent) real-or-random def-
initions.

A PEKS scheme E = (KeyGen,PEKS,Trapdoor,Test) is specified by four polynomial-time algo-
rithms associated with a keyword space W.

– KeyGen(λ): On input the security parameter λ, this algorithm returns a private/public key
pair (sk, pk).

– PEKS(pk,w): On input a public key pk and a keyword w ∈ W, this algorithm produces a
searchable ciphertext c.

– Trapdoor(pk, sk,w): On input a public key pk, a secret key sk and a keyword w ∈ W, this
algorithm outputs a trapdoor tp for w.

– Test(pk, c, tp): On input a public key pk, a searchable ciphertext c and a trapdoor tp, this
algorithm outputs either True or False.

Definition 9. A PEKS scheme E is computationally consistent if, for every legitimate PPT
adversary A, the following definition of advantage is negligible in λ

AdvPEKS-CONSIST
E,A (λ) := 2 · Pr[PEKS-CONSIST⇒ True]− 1,

where game PEKS-CONSIST is described in Fig. 7.

Definition 10. A PEKS scheme E is semantically secure if, for every legitimate PPT adversary
A, the following definition of advantage is negligible in λ

AdvPEKS-IND-CPA
E,A (λ) := 2 · Pr[PEKS-IND-CPA⇒ True]− 1,

where game PEKS-IND-CPA is described in Fig. 8.

7

procedure Initialize(λ):

(sk, pk)←$ KeyGen(λ)
return pk

procedure Finalize(w0,w1):

c←$ PEKS(pk,w0)
tp←$ Trapdoor(pk, sk,w1)
return Test(pk, c, tp) ∧ (w0 6= w1)

Fig. 7. Game PEKS-CONSIST.

procedure Initialize(λ):

(sk, pk)←$ KeyGen(λ)
bit←$ {0, 1}
return pk

procedure Real-or-Random(w0):

if w0 ∈ list return ⊥
w1 ←$ {x ∈ W : x /∈ list ∧ x 6= w0}
c←$ PEKS(pk,wbit)
return c

procedure Trapdoor(w):

if w = w0 ∨ w = w1

... return ⊥
tp←$ Trapdoor(pk, sk,w)
list← w : list
return tp

procedure Finalize(bit′):

return (bit = bit′)

Fig. 8. Game PEKS-IND-CPA. Adversary is legitimate if it
only calls Real-or-Random once.

2.4 From anonymous IBE to PEKS: a black-box transformation

A semantically secure and computationally consistent PEKS scheme E = (KeyGen,PEKS,Trapdoor,
Test) can be constructed from an anonymous and semantically secure IBE scheme Π = (Setup,
Extract,Enc,Dec), by applying the black-box transformation given by Abdalla et al. in [1]. For
completeness, we describe the transformation bellow.

– KeyGen(λ): (msk, pp)←$ Setup(λ); (sk, pk)← (msk, pp); return (sk, pk).
– PEKS(pk,w): id← w; m←$M; ĉ←$ Enc(pk,m, id); c← (m, ĉ); return c.
– Trapdoor(pk, sk,w): id← w; skid ←$ Extract(pk, sk, id); tpw ← skid; return tpw.
– Test(pk, c, tpw): (m, ĉ)← c; skid ← tpw; m̂← Dec(pk, ĉ, skid); if m = m̂ then return True else

return False.

Note that the keyword space W of the derived PEKS scheme is the identity space I of the
original IBE scheme.

3 Security Definitions

In this section, we recall Nishioka’s Search Pattern Privacy model for PEKS [14]. We then
strengthen the model to better reflect real attack scenarios, by allowing the adversary to be
challenged with multiple trapdoors, instead of just two. We denote this model by Strong Search
Pattern Privacy. We also formulate the “dual” properties for IBE, Weak Key Unlinkability
and Strong Key Unlinkability, which lead to Search Pattern Privacy and Strong Search Pattern
Privacy for PEKS, respectively, after the black-box transformation from IBE to PEKS described
in Section 2. We compare the new notions of security introduced here with those introduced by
Boneh, Raghunathan and Segev in [9], and show that they are independent. Finally, we show
that an easy and natural transformation from Strong Key Unlinkability to a more generalized
definition, where the adversary is allowed to choose a joint probability distribution from which
identities are sampled (instead of being sampled uniformly at random from the identity space),
exists, as long as the adversary’s choice does not depend on the public parameters of the scheme.

3.1 Search Pattern Privacy for PEKS

In Search Pattern Privacy model from [14], the adversary receives two trapdoors and is asked
to determine whether the two trapdoors encode the same or different keywords, which are
uniformly sampled from the keyword space to ensure that these are sufficiently unpredictable
and avoid brute force attacks3.

Definition 11. A PEKS scheme E, associated with a non-polynomial size keyword space W,
has (Weak) Search Pattern Privacy if, for every legitimate PPT adversary A, the following
definition of advantage is negligible in λ

AdvWEAK-SSP
E,A (λ) := 2 · Pr[WEAK-SSP(λ)⇒ True]− 1,

where game WEAK-SSP is described in Fig. 9.

3 The size of the keyword space is require to be at least ω(log λ), where λ is the security parameter of
the scheme, to guarantee security in an asymptotic sense.

8

Given that Search Pattern Privacy model is not enough to guarantee that any search pattern is
completely hidden from an attacker, we propose a strictly stronger model denoted Strong Search
Pattern Privacy. In this new model, the adversary chooses two lists list0 and list1, of the same
length L, and receives as a challenge a list of L trapdoors. Both list0 and list1 contain bit-strings
from {0, 1}?. The challenger samples keywords to generate the trapdoors as a random oracle:
for each unique identifier, a keyword is uniformly sampled from the keyword space. Thereby,
the adversary is allowed to choose two search patterns, by defining equality relations between
the encoded keywords, and receives trapdoors according to the pattern of either list0 or list1.
Finally, the adversary is asked to determine if the trapdoors were generated according to pattern
in list0 or list1.

Remark. If the adversary chooses to be challenged on list0 = [0, 0] and list1 = [0, 1] it is actually
playing Game WEAK-SSP.

Definition 12. A PEKS scheme E, associated with a non-polynomial size keyword space W,
has Strong Search Pattern Privacy if, for every legitimate PPT adversary A, the following
definition of advantage is negligible in λ

AdvSTRONG-SSP
E,A (λ) := 2 · Pr[STRONG-SSP(λ)⇒ True]− 1,

where game STRONG-SSP is described in Fig. 10.

procedure Initialize(λ):

(sk, pk)←$ KeyGen(λ)
bit←$ {0, 1}
w0 ←$ W
w1 ←$ W
tp0 ←$ Trapdoor(pk, sk,w0)
tp1 ←$ Trapdoor(pk, sk,wbit)
return (pk, tp0, tp1)

procedure Trapdoor(w):

tp←$ Trapdoor(pk, sk,w)
return tp

procedure Finalize(bit′):

return (bit = bit′)

Fig. 9. Game WEAK-SSP [14].

procedure Initialize(λ):

(sk, pk)←$ KeyGen(λ)
bit←$ {0, 1}
listw ← []
listtp ← []
return pk

procedure Trapdoor(w):

tp←$ Trapdoor(sk,w)
return tp

procedure Finalize(bit′):

return (bit = bit′)

procedure Challenge(list0, list1):

L← |list0|
for i in {0..L}
... get w for listbit[i] from listw
... if w =⊥
... ... w←$ W
... ... listw ← (listbit[i],w) : listw
... listtp[i]←$ Trapdoor(pk, sk,w)
return listtp

Fig. 10. Game STRONG-SSP. Adversary is legitimate if it
only calls Challenge once with |list0| = |list1|.

Remark. Nishioka [14] also proposed the notion of IND-PKP security, where two trapdoors
for either the same or different keywords, but generated under different secret keys, are given
to the adversary as a challenge. This notion may be relevant in specific multi-user scenarios,
however is out of the scope of our work.

3.2 Key Unlinkability for IBE

Similar to the requirements for keyword space in PEKS Search Pattern Privacy models, Key
Unlinkability models for IBE require that the size of the identity space is at least ω(log λ), where
λ is the security parameter of the scheme.

Definition 13. An IBE scheme Π, associated with a non-polynomial size identity space I, has
Weak Key Unlinkability if, for every legitimate PPT adversary A, the following definition of
advantage is negligible in λ

AdvWEAK-KEY-UNLINK
Π,A (λ) := 2 · Pr[WEAK-KEY-UNLINK(λ)⇒ True]− 1,

where game WEAK-KEY-UNLINK is described in Fig. 11.

Definition 14. An IBE scheme Π, associated with a non-polynomial size identity space I, has
Strong Key Unlinkability if, for every legitimate PPT adversary A, the following definition of
advantage is negligible in λ

AdvSTRONG-KEY-UNLINK
Π,A (λ) := 2 · Pr[STRONG-KEY-UNLINK(λ)⇒ True]− 1,

where game STRONG-KEY-UNLINK is described in Fig. 12.

9

procedure Initialize(λ):

(msk, pp)←$ Setup(λ)
bit←$ {0, 1}
id0 ←$ I
id1 ←$ I
sk0 ←$ Extract(pp,msk, id0)
sk1 ←$ Extract(pp,msk, idbit)
return (pp, sk0, sk1)

procedure Extract(id):

skid ←$ Extract(pp,msk, id)
return skid

procedure Finalize(bit′):

return (bit = bit′)

Fig. 11. Game WEAK-KEY-UNLINK.

procedure Initialize(λ):

(msk, pp)←$ Setup(λ)
bit←$ {0, 1}
listid ← []
listsk ← []
return pp

procedure Extract(id):

sk←$ Extract(pp,msk, id)
return tp

procedure Finalize(bit′):

return (bit = bit′)

procedure Challenge(list0, list1):

L← |list0|
for i in {1..L}
... get id for listbit[i] from listid
... if id =⊥
... ... id←$ I
... ... listid ← (listbit[i], id) : listid
... listsk[i]←$ Extract(pp,msk, id)
return listsk

Fig. 12. Game STRONG-KEY-UNLINK. Adversary is legit-
imate if it only calls Challenge once with |list0| = |list1|.

Weak Key Unlinkability and Strong Key Unlinkability lead to Search Pattern Privacy and Strong
Search Pattern Privacy for PEKS, respectively, after the black-box transformation from IBE to
PEKS described in Section 2. Proofs follow directly from the transformation and are omitted
here.

Lemma 1. An IBE scheme Π with Weak Key Unlinkability leads to a PEKS scheme E with
(Weak) Search Pattern Privacy, after the black-box transformation from IBE to PEKS proposed
in [1].

Lemma 2. An IBE scheme Π with Strong Key Unlinkability leads to a PEKS scheme E with
Strong Search Pattern Privacy, after the black-box transformation from IBE to PEKS proposed
in [1].

3.3 Function Privacy for IBE: an independent security notion

Recently, Boneh, Raghunathan and Segev [9] put forward two security notions, of different
strength, for IBE, inspired by the security definition given for deterministic encryption in [3]:
Function Privacy and Enhanced Function Privacy. These notions ask that “decryption keys
reveal essentially no information on their corresponding identities, beyond the absolute mini-
mum necessary”. In both definitions, the adversary is first given the public parameters and then
interacts with a Real-or-Random function privacy oracle, which takes as input an adversarially-
chosen joint probability distribution – represented as a circuit – for random variables X1,X2, ...,XL

defined over the identity space I, and outputs L secret keys either for identities sampled from
the given joint probability distribution or for independent and uniformly distributed identities
over I.

An adversary is legitimate if, for every i ∈ {1..L} and every x1, ..., xi ∈ I, it holds that:
H∞(Xi|X1=x1, ...,Xi−1=xi−1

) = − log(max Pr[Xi = xi|X1=x1,...,Xi−1=xi−1
]) ≥ ω(log λ). Put differently,

the chosen joint probability distribution for (X1, ...,XL) has to be such that every random vari-
able Xi is sufficiently unpredictable, even if every random variable Xj<i has been fixed. To discard
exhaustive searches, a conditional min-entropy H∞(Xi|X1=x1,...,Xi−1

) of at least ω(log λ) bits is
required4. The Enhanced model provides the adversary with an extra function-privacy encryp-
tion oracle capable of encrypting adversarially-chosen messages under the identities sampled by
Real-or-Random oracle. Formal definitions can be found in [9].

We first remark that Key Unlinkability and Function Privacy security models are essentially
different in the way the challenger samples ids: in the former ids are sampled uniformly from the
id space, whereas in the latter model ids may be sampled from an adversarial-chosen joint prob-
ability distribution, with (possibly) non-uniform random variables, but also high min-entropy
requirements. In the following subsections we provide counterexamples to show that Function
Privacy (both Non-enhanced and Enhanced) and Key Unlinkability (both Weak and Strong) are

4 The minimal unpredictability requirement of ω(log λ) bits has only been achieve later in [10]. Schemes
in [9] have only been proven secure for highly unpredictable identities with min-entropy of λ+ω(log λ).

10

independent security notions. Meaningful counterexamples follow. For a quick overview, Fig-
ure 13 states the relations between Weak Key Unlinkability, Strong Key Unlinkability, Function
Privacy and Enhanced Function Privacy security notions.

Enhanced Function Privacy

Weak Key Unlinkability

Function Privacy

Strong Key Unlinkability

Fig. 13. Relations between Key Unlinkability and Function Privacy security notions.

We stress that even Enhanced Function Privacy fails to capture the security guarantees of
Weak Key Unlinkability. In practice, transforming an anonymous IBE with Enhanced Function
Privacy to PEKS (according to the transformation described in Section 2) results in no guar-
antee that the service provider will not be able to find search patterns in the users’ trapdoors.

Enhanced Function Privacy 6=⇒Weak Key Unlinkability. Consider F : {0, 1}λ x I →
{0, 1}λ to be a secure PRF. We denote by f ←$ F the operation: k←$ {0, 1}λ; f ← F (k, ·). Let
Π = (Setup,Extract,Enc,Dec) be an enhanced function-private IBE. From Π we can construct
Π ′, where Π ′ is still enhanced function-private but definitely not weak key-unlinkable. We do
so by simply modifying the extraction algorithm and appending to each secret key the result
of a PRF on id. More precisely, Π ′ = (Setup′,Extract′,Enc′,Dec′) is constructed as follows:

– Setup′(λ) : (msk, pp)←$ Setup(λ); f ←$ F ; return ((msk, f), pp).
– Extract′(msk, id) : sk←$ Extract(msk, id); sk′ ← (sk, f(id)); return sk′.
– Enc′(pp,m, id) : c←$ Enc(pp,m, id); return c.
– Dec′(pp, c, id, sk′) : (sk, y)← sk′; m← Dec(pp, c, id, sk); return m.

Informally, since f is unknown to the adversary, the adversary cannot choose distributions
depending on f . Furthermore, F is a secure PRF, so no information on id can be acquired.
Therefore, Π ′ is still an enhanced function-private IBE. But, because f is deterministic, it is
trivial to identify with overwhelming probability if two keys have been extracted from the same
identity.

Strong Key Unlinkability 6=⇒ Function Privacy. Again, we show this by counterexam-
ple. Let Π = (Setup,Extract,Enc,Dec) be a strong key-unlinkable IBE associated with id space
I = {0, 1}2λ. We build Π ′ = (Setup′,Extract′,Enc′,Dec′) based on Π as follows:

– Setup′(λ) : (msk, pp)←$ Setup(λ); return (msk, pp).
– Extract′(msk, id) : sk←$ Extract(msk, id); if id ∈ {0, 1}λ0λ then sk′ ← (sk||0) else sk′ ←

(sk||1); return sk′.
– Enc′(pp,m, id) : c←$ Enc(pp,m, id) return c.
– Dec′(pp, c, id, sk′) : (sk||b)← sk′;m← Dec(pp, c, id, sk); return m.

In our counterexample scheme Π ′, we put a mark in keys for identities whose last λ bits are
0, by appending a 0 to the key (otherwise, 1 is appended). Since the subset containing these
identities – let us call it U – is much smaller than the identity space I, identities uniformly
sampled from I are very unlikely to be in U , and thus to possess the mark. In fact, this

only happens with probability Pr = 2λ

22λ
= 1

2λ
, which is a negligible function in the security

parameter λ. Strong Key Unlinkability is therefore preserved in Π ′. However, U is big enough
so that the unpredictability of an id uniformly sampled from U is high. By choosing to be
challenged on a random variable X that selects any element in U with probability 1

2λ
and any

element in {x ∈ I : x /∈ U} with zero probability, an adversary could trivially win the function-
privacy game, with overwhelming probability, just by looking into the key’s mark. Also notice
that the condition H∞(X) > ω(log λ) is satisfied. Generically, we can conclude that a strong
key-unlinkable scheme is not necessarily function-private secure.

11

3.4 Adversarially-chosen joint probability distributions of keywords

In security game Strong Key Unlinkability [Fig. 12], identities are sampled uniformly at random
from the identity space, as opposed to from a (possibly non-uniform) adversarially-chosen joint
probability distribution. The latter approach was used by Boneh et al. [9] to form the challenge
in Function Privacy security models. In most real-world applications of PEKS, keywords are
not chosen uniformly from the keyword space. Therefore, it is important to discuss the choice
of our model and the impact of generalizing it to deal with adversarially-chosen distributions.

The full version of [9] proposes a generic method for transforming any IBE scheme into an
IBE scheme which achieves a weaker form of Enhanced Function Privacy, where the adversary
is not allowed to choose a joint probability distribution (from which identities are sampled for
the challenge) that depends on the public parameters of the scheme. In fact, the challenger only
provides the public parameters after the joint probability distribution is fixed by the adversary.
This relaxation results in a definition denoted Non-Adaptive Enhanced Function Privacy.

Adopting the same strategy as [9, 3], we strengthen our model by allowing the adversary to
choose a joint probability distribution from which identities are sampled, instead of lists defining
equality relations between identities. The environment of the game becomes exactly that of
Non-Enhanced Function Privacy defined in [9] (and described here, in Subsection 3.3), but the
unpredictability requirements on what constitutes a legitimate joint probability distribution
X = {X1, ...,XL} are relaxed to H∞(Xi) ≥ ω(log λ), for every i ∈ {1..L}. Public parameters can
be provided before or after the adversary fixes X, resulting in two models of different strengths.
We refer to the model where the adversary fixes a joint probability distribution (with possibly
non-uniform random variables) from which the challenger samples the identities after (resp.
before) receiving the public parameters as Adaptive (resp. Non-Adaptive) Key Unlinkability.

Definition 15. An IBE scheme Π, associated with a non-polynomial size identity space I,
has Non-Adaptive Key Unlinkability if, for every legitimate PPT adversary A, the following
definition of advantage is negligible in λ

AdvKEY-UNLINK
Π,Anonadaptive

(λ) := 2 · Pr[KEY-UNLINK(λ,mode = “non-adaptive”)⇒ True]− 1,

where game KEY-UNLINK is described in Fig. 14.

Definition 16. An IBE scheme Π, associated with a non-polynomial size identity space I, has
Adaptive Key Unlinkability if, for every legitimate PPT adversary A, the following definition
of advantage is negligible in λ

AdvKEY-UNLINK
Π,Aadaptive

(λ) := 2 · Pr[KEY-UNLINK(λ,mode = “adaptive”)⇒ True]− 1,

where game KEY-UNLINK is described in Fig. 14.

procedure Initialize(λ,mode):

(msk, pp)←$ Setup(λ)
bit←$ {0, 1}
list← []
if mode = “adaptive” return pp

procedure Extract(id):

sk←$ Extract(pp,msk, id)
return tp

procedure Challenge(X = {X1, ...,XL}):
if bit = 0
... (id1, ..., idL)←$ X
if bit = 1
... (id1, ..., idL)←$ IL
for i ∈ {1..L}
... list[i]←$ Extract(pp,msk, idi)
return (list, pp)

procedure Finalize(bit′):

return (bit = bit′)

Fig. 14. Game KEY-UNLINK. X = {X1, ...,XL} is a joint probability distribution with L random vari-
ables defined over the identity space I. Adversary is legitimate if H∞(Xi) ≥ ω(log λ), for every i ∈ {1..L}.

Remark. The joint probability distribution X = {X1,X2} such that Pr[X2 = x1] = 1 is legit-
imate for Adaptive (and Non-Adaptive) Key Unlinkability, as long as H∞(X1) ≥ ω(log λ). In
particular, if X1 is a uniform random variable in I, then the game becomes that of Weak Key
Unlinkability [Fig. 11]. However, as expected, X is not a legitimate joint probability distribution
for Function Privacy (Enhanced or Non-Enhanced, Adaptive or Non-Adaptive).

12

From Strong Key Unlinkability to Non-Adaptive Key Unlinkability. We now show
that there is an easy and natural transformation from Strong Key Unlinkability to Non-Adaptive
Key Unlinkability. Let Π = (Setup,Extract,Enc,Dec) be an IBE scheme, associated with mes-
sage space M and identity space I, and let H : I ′ → I be a family of hash functions. We
construct an IBE scheme Π ′ = (Setup′,Extract′,Enc′,Dec′), associated with message space M
and identity space I ′, as follows:

– Setup′(λ) : (msk, pp)←$ Setup(λ); H←$ H; return (msk, (pp,H)).
– Extract′(msk, id′) : id← H(id′); sk←$ Extract(msk, id); return sk.
– Enc′((pp,H),m, id′) : id← H(id′); c←$ Enc(pp,m, id); return c.
– Dec′((pp,H), c, id, sk′) : id← H(id′); m← Dec(pp, c, id, sk); return m.

Lemma 3. If |I ′| ≥ |I| ≥ 2ω(log λ) and IBE scheme Π has Strong Key Unlinkability, then IBE
scheme Π ′ has Non-Adaptive Key Unlinkability, in the random oracle model.

Proof. Let A be a legitimate adversary against Non-Adaptive Key Unlinkability, and let X =
{X1, ...,XL} be the joint probability distribution that A chooses for the challenge. We recall
that a legitimate adversary is required to choose X such that ∀ Xi ∈ X,H∞(Xi) ≥ ω(log λ),
where λ is the security parameter of Π. Game0 is the original Non-Adaptive Key Unlinka-
bility game described above, instantiated with IBE scheme Π ′. In Game1, H is modeled as
a random oracle. (id′1, ..., id

′
L)←$ {X1, ...,XL} forms a list of bit-strings. A simulator S could

construct the challenge of Game1 by setting list0 = (id′1, ..., id
′
L)←$ {X1, ...,XL} and list1 with L

different bit-strings, and querying the challenge procedure of STRONG-KEY-UNLINKΠ,S with
(list0,list1). The result is a well-formed tuple of L secret keys, and A’s final guess can be for-
ward to STRONG-KEY-UNLINKΠ,S . Simulator S perfectly mimics the environment of Game1,
unless A queries the hash value of any id′i , in which case the simulation aborts. However,
this event only happens negligible probability. Therefore, we have that AdvKEY-UNLINK

Π′,Anonadaptive
(λ) ≤

AdvSTRONG-KEY-UNLINK
Π,S (λ) + q·L

2ω(log λ) , where q is the number of queries A asks to the random
oracle. ut

Remark. Our proof does not hold for adaptive adversaries since simulator S cannot rely on
the challenge returned by game STRONG-KEY-UNLINKΠ,S to construct a correct challenge for
A if the joint probability distribution X that A chooses makes restrictions based on the output
of hash function H, e.g., suppose that A chooses X = {X1}, where X1 is the random variable
that uniformly samples from the set of all identities whose H-value ends with bit 0. Notice that
X1 is a polynomially samplable distribution - we could simply sample identities uniformly from
I and discard those whose H-value does not end with bit 0.

Most IBE schemes, including the one introduced in this paper later on, only make use of the
hash value of identities (instead of the identities themselves). Thus, the simplicity of Strong Key
Unlinkability does not come at the expense of the model’s security meaning. From a theoretical
point of view, it seems interesting (but we leave it as future work) to investigate the construction
of IBE schemes that achieve Key Unlinkability against adaptive adversaries. In practice, for what
concerns PEKS, it seems reasonable to assume that keywords will not depend on the public
parameters of the scheme, and, in particular, on the values output by the hash function.

4 From Weak to Strong Key Unlinkability

A scheme with Weak Key Unlinkability. We construct a new anonymous IBE scheme
with Weak Key Unlinkability, based on the anonymous IBE scheme of Boyen and Waters [12].
Our scheme relies on a bilinear group description Γ of prime order. To eliminate the selective-ID
constraint, we replace identities with their hash values and model the hash function as a random
oracle. Furthermore, we simplify the resulted scheme by removing two group elements from the
public parameters and from private keys, and obtain the final scheme in Fig. 15. Compared
with the original scheme, our scheme also saves two exponentiations in the key-extraction and

13

encryption algorithms, and saves two pairing computations in the decryption algorithm. Our
scheme preserves anonymity and semantic security properties, provided that the hash function
H, selected from a family of hash functions H : I → G, is modeled as a random oracle. Added
to this, the scheme also has the Weak Key Unlinkability property.

Setup(λ):

Γ ←$ GP(λ)
(p,G,GT, e, g)← Γ
w, t1, t2 ←$ Z3

p

Ω ← e(g, g)t1t2w

v1 ← gt1

v2 ← gt2

H←$ H : I → G
pp← (Γ,Ω, v1, v2,H)
msk← (w, t1, t2)
return (msk, pp)

Extract(pp,msk, id):

r←$ Zp

(w, t1, t2)← msk
(Γ,Ω, v1, v2,H)← pp
(p,G,GT, e, g)← Γ
h← H(id)
d0 ← grt1t2

d1 ← g−wt2 · h−rt2
d2 ← g−wt1 · h−rt1
skid ← (d0, d1, d2)
return skid

Enc(pp,m, id):

s, s1 ←$ Z2
p

(Γ,Ω, v1, v2,H)← pp
(p,G,GT, e, g)← Γ
h← H(id)
ĉ← Ωsm
c0 ← hs

c1 ← v
s−s1
1

c2 ← v
s1
2

c← (ĉ, c0, c1, c2)
return c

Dec(pp, c, id, skid):

(Γ,Ω, v1, v2,H)← pp
(p,G,GT, e, g)← Γ
(d0, d1, d2)← skid
(ĉ, c0, c1, c2)← c
e0 ← e(c0, d0)
e1 ← e(c1, d1)
e2 ← e(c2, d2)
m← ĉ · e0 · e1 · e2
return m

Fig. 15. Anonymous IBE scheme Π with Weak Key Unlinkability.

Theorem 1 (Appendix A). IBE scheme Π [Fig. 15] is semantically secure [Definition 7],
in the random oracle model, assuming DBDH is intractable [Definition 2].

Theorem 2 (Appendix B). IBE scheme Π [Fig. 15] is anonymous [Definition 8], in the
random oracle model, assuming DBDH and DLIN are intractable [Definitions 2 and 3].

Theorem 3 (Appendix C). IBE scheme Π [Fig. 15] has the Weak Key Unlinkability property
[Definition 13], in the random oracle model, assuming DLIN is intractable [Definition 3].

Weak Key Unlinkability 6=⇒ Strong Key Unlinkability. Standard real-or-random
definitions for public-key encryption model the encryption of a single plaintext. These definitions
are equivalent (with some loss in tightness) to those allowing an adversary to acquire multiple
encryptions, which can be shown by applying the hybrid argument from [2]. One might be
tempted to think that the same hybrid argument also applies to Weak Key Unlinkability model.
However, this argument does not apply, since we can show that an adversary can still easily
distinguish patterns when more than two keys are issued with scheme Π [Fig. 15].

Suppose that an adversary is asked to distinguished between tuples of the form (Extract(id0),
Extract(id0),Extract(id0)), where the three secret keys are extracted from the same id, from
those of the form (Extract(id0),Extract(id0),Extract(id1)), where the third key is extracted from
an independent id, for uniformly sampled id0 and id1 ∈ I. Let (sk0, sk1, sk2) be the tuple the
adversary receives, and for which it has to decide its form. We further expand ski to (di0, di1, di2)
according to our scheme. If the keys were generated honestly, i.e. by following the algorithm
Extract as described in Fig. 15, the adversary simply has to check if

e(
d10
d00

,
d21
d01

)
?
= e(

d00
d20

,
d01
d11

)

to determine the form of the tuple with overwhelming probability. If the result from the equality
is true, then the three secret keys are very likely to have been extracted for the same id5. If the
result is false, then the tuple is definitely of the form (Extract(id0),Extract(id0),Extract(id1)).

5 Collisions in the hash function H may lead to misleading results but only occur with negligible
probability.

14

For completeness, we show this by expanding and simplifying the above expression.

e(
d10
d00

,
d21
d01

) = e(
d00
d20

,
d01
d11

)⇔

e(
gr1t1t2

gr0t1t2
,
g−wt2 · h−r2t22

g−wt2 · h−r0t20

) = e(
gr0t1t2

gr2t1t2
,
g−wt2 · h−r0t20

g−wt2 · h−r1t21

)⇔

e(
gr1t1t2

gr0t1t2
,
h−r2t22

h−r0t20

) = e(
gr0t1t2

gr2t1t2
,
h−r0t20

h−r1t20

)⇔

e(g(r1−r0), hr00 · h
−r2
2)t1(t2)

2

= e(g(r0−r2), h(r1−r0)0)t1(t2)
2

⇔

e(g, hr00 · h
−r2
2) = e(g, h

(r0−r2)
0)⇔

h2 = h0

It is now clear that IBE scheme Π [Fig. 15] fails to achieve the Strong Key Unlinkability prop-
erty.

A scheme with Strong Key Unlinkability. We extend Π to groups of composite order and
obtain Π ′ [Fig. 16]. The extension is very simple: let all the parameters in the original scheme
be from the subgroup Gp (generated by gp) and randomize each element of the extracted secret
key by a random element from the subgroup Gq (generated by gq). Note that the message space
is GT.

Setup(1λ):

(p, q,G,GT, e, g)←$ GC(λ)
n← pq; gp ← gq; gq ← gp

Γ ← (n,G,GT, e, g, gp, gq)
w, t1, t2 ←$ Zn

Ω ← e(gp, gp)
t1t2w

v1 ← g
t1
p

v2 ← g
t2
p

H←$ H : I → Gp

pp← (Γ,Ω, v1, v2,H)
msk← (w, t1, t2)
return (msk, pp)

Extract(pp,msk, id):

(w, t1, t2)← msk
(Γ,Ω, v1, v2,H)← pp
(n,G,GT, e, g, gp, gq)← Γ
r←$ Zn

x0, x1, x2 ←$ Gq

h← H(id)

d0 ← x0 · g
rt1t2
p

d1 ← x1 · g
−wt2
p · h−rt2

d2 ← x2 · g
−wt1
p · h−rt1

sk← (d0, d1, d2)
return sk

Enc(pp,m, id):

(Γ,Ω, v1, v2,H)← pp
(n,G,GT, e, g, gp, gq)← Γ
s, s1 ←$ Zn

h← H(id)
ĉ← Ωsm
c0 ← hs

c1 ← v
s−s1
1

c2 ← v
s1
2

c← (ĉ, c0, c1, c2)
return c

Dec(pp, c, id, skid):

(Γ,Ω, v1, v2,H)← pp
(n,G,GT, e, g, gp, gq)← Γ
(d0, d1, d2)← skid
(ĉ, c0, c1, c2)← c
e0 ← e(c0, d0)
e1 ← e(c1, d1)
e2 ← e(c2, d2)
m← ĉ · e0 · e1 · e2
return m

Fig. 16. Anonymous IBE scheme Π ′ with Strong Key Unlinkability.

The decryption algorithm remains correct, since

e0 = e(hs, x0 · grt1t2p) = e(hs, grt1t2p)

e1 = e(vs−s11 , x1 · g−wt2p · h−rt2) = e(vs−s11 , g−wt2p · h−rt2)

e2 = e(vs12 , x2 · g−wt1p · h−rt1) = e(vs12 , g
−wt1
p · h−rt1)

Also, semantic security and anonymity properties are not affected, assuming DBDH and DLIN
hold in Gp. We only need to prove that Π ′ possesses the Strong Key Unlinkability property.

Theorem 4 (Appendix D). IBE scheme Π ′ [Fig. 16] has Strong Key Unlinkability [Defini-
tion 14], assuming CDDH is intractable [Definition 5].

15

5 Conclusions and Future Directions

Our work shows that two distinct scenarios have to be considered to model trapdoor privacy:
one in the presence of ciphertexts that match trapdoors, and the other in the absence of such
ciphertexts. The notion of Strong Search Pattern Privacy we introduced here addresses privacy
concerns up to the point where ciphertexts matching the issued trapdoors become available,
after which, search patterns can no longer be hidden from an attacker. Previous models provide
limited privacy guarantees against search patterns. Of theoretical interest, it remains an open
problem to prove if our scheme Π ′ [Fig. 16] (or any other) can achieve security according
to the generalized definition of Adaptive Key Unlinkability. The overarching goal would be
to construct an Anonymous IBE scheme which satisfies both Adaptive Key Unlinkability and
Enhanced Function Privacy, simultaneously.

Acknowledgements. The present project is supported by the National Research Fund, Lux-
embourg.

16

References

1. Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja Lange, John
Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia Shi. Searchable encryption revisited: Con-
sistency properties, relation to anonymous ibe, and extensions. Journal of Cryptology, 21(3):350–
391, 2008.

2. Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption in a multi-user
setting: Security proofs and improvements. In Advances in Cryptology – EUROCRYPT 2000,
volume 1807 of LNCS, pages 259–274. Springer, 2000.

3. Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic and efficiently searchable
encryption. In Advances in Cryptology – CRYPTO 2007, volume 4622 of LNCS, pages 535–552.
Springer, 2007.

4. Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-
based game-playing proofs. In Advances in Cryptology – EUROCRYPT 2006, volume 4004 of
LNCS, pages 409–426. Springer, 2006.

5. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Advances in Cryptology
– CRYPTO 2004, volume 3152 of LNCS, pages 41–55. Springer, 2004.

6. Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key encryp-
tion with keyword search. In Advances in Cryptology – EUROCRYPT 2004, volume 3027 of LNCS,
pages 506–522. Springer, 2004.

7. Dan Boneh and Matt Franklin. Identity-based encryption from the weil pairing. In Advances in
Cryptology – CRYPTO 2001, volume 2139 of LNCS, pages 213–229. Springer, 2001.

8. Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on ciphertexts. In Theory
of Cryptography Conference – TCC 2005, volume 3378 of LNCS, pages 325–341. Springer, 2005.

9. Dan Boneh, Ananth Raghunathan, and Gil Segev. Function-private identity-based encryption:
Hiding the function in functional encryption. In Advances in Cryptology – CRYPTO 2013, volume
8043 of LNCS, pages 461–478. Springer, 2013.

10. Dan Boneh, Ananth Raghunathan, and Gil Segev. Function-private subspace-membership encryp-
tion and its applications. In Advances in Cryptology – ASIACRYPT 2013, volume 8269 of LNCS,
pages 255–275. Springer, 2013.

11. Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted data. In Theory
of Cryptography Conference – TCC 2007, volume 4392 of LNCS, pages 535–554. Springer, 2007.

12. Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based encryption (without ran-
dom oracles). In Advances in Cryptology – CRYPTO 2006, volume 4117 of LNCS, pages 290–307.
Springer, 2006.

13. Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In Advances in Cryptology – EUROCRYPT 2008,
volume 4965 of LNCS, pages 146–162. Springer, 2008.

14. Mototsugu Nishioka. Perfect keyword privacy in PEKS systems. In Provable Security – ProvSec
2012, volume 7496 of LNCS, pages 175–192. Springer, 2012.

15. Emily Shen, Elaine Shi, and Brent Waters. Predicate privacy in encryption systems. In Theory of
Cryptography – TCC 2009, volume 5444 of LNCS, pages 457–473. Springer, 2009.

16. Qiang Tang. Theory and Practice of Cryptography Solutions for Secure Information Systems,
chapter Search in Encrypted Data: Theoretical Models and Practical Applications, pages 84–108.
IGI, 2013.

A Proof of Theorem 1

Game0 is game IBE-IND-CPAΠ,A [Fig. 5], where A is any legitimate PPT adversary. In Game1,
we set ĉ←$ GT instead of computing its value. We now show that the existence of A that can
successfully distinguish between Game0 and Game1 contradicts the DBDH assumption. More
precisely, we construct a simulator S0 [Fig. 17] that interpolates between Game0 and Game1 by
playing game DBDHΓ,S0 [Fig. 1]. The hash function H is modeled as a random oracle and we
assume, without loss of generality, that A always asks for the hash value of id before querying id
to oracles Extract and Real-or-Random. Furthermore, for simplicity of exposition, we assume
thatA places exactly q queries, where q is bounded by some polynomial in the security parameter
λ, since A is required to run in polynomial-time. Simulator S0 randomly tries to guess which
query i ∈ {0, q−1} contains the id on which adversary A asks to be challenged. When i is not
successfully guessed, S0 simply aborts. But when it is, which happens with probability 1

q , S0

17

perfectly simulates Game0 if Z is of the form e(g, g)z1z2z3 , and perfectly simulates Game1 if Z is
just a random element in GT. Notice that this implies w = z1z2 and s = z3.

Let id? be the id chosen by A for the challenge. Random function H is consistently computed:
if queried twice on the same id, the same result is returned. When S0 successfully completes its
simulation, the function is set to (gz1)x for every id but id?, and to gx in this particular case,
where x is a random value sampled from Zp.

Challenge is well formed, as well as secret keys for random exponents r′ = r−z2
x , where x here

is the value used to compute the hash of the corresponding id and r is sampled from Zp. For
completeness, we present the equalities between the original expressions and those computed
by the simulator6.

d0 = gr
′t1t2 = g

r−z2
x t1t2 = g

rt1t2
x · g

−z2t1t2
x = g

rt1t2
x · Z

−t1t2
x

2

d1 = g−wt2 · h−r′t2 = g−z1z2t2 · [(gz1)x]−
r−z2

x t2 = Z−rt21

d2 = g−wt1 · h−r′t1 = g−z1z2t1 · [(gz1)x]−
r−z2

x t1 = Z−rt11

ĉ = Ωs ·m = [e(g, g)t1t2w]s ·m = [e(g, g)t1t2z1z2]z3 ·m = Zt1t2 ·m
c0 = hs = (gx)z3 = Zx

3

c1 = vs−s11 = (gt1)z3−s1 = (Z3 · g−s1)t1

c2 = vs12

In Game1, the challenge ciphertext does not depend on mbit. Therefore, we conclude that
AdvIBE-IND-CPA

Π,A (λ) = 1
q ·AdvDBDH

Γ,S0 . ut

procedure Initialize(λ):

(Z1, Z2, Z3, Z)← DBDH.Initialize
t1, t2 ←$ Z2

p

Ω ← e(Z1, Z2)
t1t2

v1 ← gt1

v2 ← gt2

pp← (Ω, v1, v2)
listID ← [], listH ← []
id? ← null, i←$ {0, q−1}
return pp

procedure Finalize(bit):
return

procedure H(id):

get x for id from listH
if x ==⊥
..... x←$ Zp

..... listH ← (id, x) : listH
if id is in listH[i] then h← gx else h← Zx

1
return h

procedure Extract(id):

if id == id? return ⊥
if id is in listH[i] abort
get x for id from listH
r←$ Zp

d0 ← g
rt1t2

x · Z
−t1t2

x
2

d1 ← Z
−rt2
1

d2 ← Z
−rt1
1

skid ← (d0, d1, d2)
listID ← id : listID
return skid

procedure Real-or-Random(id?,m):

if id? ∈ listID return ⊥
if id? is not in listH[i] abort

s1 ←$ Zp

get x for id? from listH

ĉ← Zt1t2 · m
c0 ← Zx

3

c1 ← Z
t1
3 · g

−t1s1

c2 ← v
s1
2

c← (ĉ, c0, c1, c2)
return c

Fig. 17. Simulator S0 interpolates between Game0 and Game1 by playing game DBDHΓ,S0 .

B Proof of Theorem 2

By applying the reduction of Theorem 1, we start with Game1, which sets ĉ←$ GT. In Game2,
instead of computing its value, we set c1 ←$ G. For A to successfully distinguish between Game1
and Game2, the DLIN assumption would have to be tractable. Formally, we show this by con-
structing a simulator S1 [Fig. 18] that interpolates between Game1 and Game2 by playing game
DLINΓ,S1 [Fig. 2]. As in Theorem 1, the hash function H is modeled as a random oracle. With-
out loss of generality, we assume that A places exactly q queries and always asks for the hash
value of id before querying id to Extract and Real-or-Random. Employing the same strategy as
before, simulator S1 randomly tries to guess which query i ∈ {0, q−1} contains the id on which

6 For ĉ we used the case where Z = e(g, g)z1z2z3 , which corresponds to the simulation of Game0.

18

A asks to be challenged. When i is successfully guessed, which happens with probability 1
q , S1

perfectly simulates Game1 if Z is of the form gz3+z4 , and perfectly simulates Game2 otherwise.
This implies that t1 = z1 and t2 = z2. Random function H is set to (gz2)x for every id but
the id chosen for the challenge, which is set to gx, where x is a random value sampled from
Zp. Challenge is well formed, as well as secret keys for random exponents r′ = r

z2
, where r is

sampled from Zp. Finally, notice that s = z3 + z4 and s1 = z4, and that t1, t2, r′, s and s1 are
uniformly distributed over Zp, as they should be. For completeness, we present the equalities
between the original expressions and those computed by the simulator7.

d0 = gr
′t1t2 = g

r
z2

z1z2 = (gz1)r = Zr
1

d1 = g−wt2 · h−r′t2 = g−wz2 · [(gz2)x]−
r
z2

z2 = Z−w2 · Z
−xr
2 = Z−w−xr2

d2 = g−wt1 · h−r′t1 = g−wz1 · [(gz2)x]−
r
z2

z1 = Z−w1 · Z
−xr
1 = Z−w−xr1

c0 = hs = (gx)z3+z4 = Zx

c1 = vs−s11 = (gz1)(z3+z4)−z4 = Z13

c2 = vs12 = (gz2)z4 = Z24

In Game2, the challenge ciphertext does not depend on the receiver’s identity. Therefore, we
have that AdvIBE-ANO

Π,A (λ) = 1
q ·AdvDBDH

Γ,S0 + 1
q ·AdvDLIN

Γ,S1 , which concludes our proof. ut

procedure Initialize(λ):

(Z1, Z2, Z13, Z24, Z)← DLIN.Initialize
w←$ Zp

Ω ← e(Z1, Z2)
w

v1 ← Z1

v2 ← Z2

pp← (Ω, v1, v2)
listID ← [], listH ← []
id? ← null, i←$ {0, q−1}
return pp

procedure Finalize(bit):
return

procedure H(id):

get x for id from listH
if x ==⊥
..... x←$ Zp

..... listH ← (id, x) : listH
if id is in listH[i] then h← gx else h← Zx

2
return h

procedure Extract(id):

if id == id? return ⊥
if id is in listH[i] abort
get x for id from listH
r←$ Zp

d0 ← Zr
1

d1 ← Z−w−xr2

d2 ← Z−w−xr1

skid ← (d0, d1, d2)
listID ← id : listID
return skid

procedure Real-or-Random(id?,m):

if id? ∈ listID return ⊥
if id? is not in listH[i] abort

get x for id? from listH

ĉ←$ GT

c0 ← Zx

c1 ← Z13

c2 ← Z24

c← (ĉ, c0, c1, c2)
return c

Fig. 18. Simulator S1 interpolates between Game1 and Game2 by playing game DLINΓ,S1 .

C Proof of Theorem 3

Let A be any legitimate PPT adversary in game WEAK-KEY-UNLINKΠ,A [Fig. 11]. By building
a simulator S2 [Fig. 19] that plays game DLINΓ,S2 [Fig. 2] and simulates game WEAK-KEY-UNLINKΠ,A
in such a way that A’s guess can be forward to game DLINΓ,S2 , we upper-bound the adversary’s
advantage to the hardness of deciding on an instance of this problem.

The master secret key is set as following: t1 = z1, t2 = z1 ·a for random a ∈ Zp, and w = z3·b
z1

for random b ∈ Zp. Although the values of t1, t2 and w are unknown to S2, the corresponding
public parameters can still be consistently computed:

Ω = e(g, g)t1t2w = e(g, g)z1z1a
z3·b
z1 = e(Z13, g)ab

v1 = gt1 = Z1

v2 = gt2 = (Z1)a

7 For c0 we used the case where Z = gz3+z4 , which corresponds to the simulation of Game1.

19

The hash function H is modeled as a random oracle and set to (gz1)x · g−
1
y , for random

x, y ∈ Z2
p. We assume, without loss of generality, that A always asks for the hash value of id

before querying id to oracle Extract. Whenever asked to extract a private key on some id, we
set r = w · y, where y is the value used to compute the hash of that particular id. Note that
this still makes r uniformly distributed over Zp and independent of h and w. Given this, private
keys can be extracted as follows:

d0 = grt1t2 = gwyt1t2 = g
z3·b
z1

yz1z1a = (Z13)aby

d1 = g−wt2 · h−rt2 = g−wt2 · [(gz1)x · g−
1
y]−wyt2 = g−z1xwyt2 = g−z1x

z3·b
z1

yz1a = (Z13)−abxy

d2 = g−wt1 · h−rt1 = g−wt1 · [(gz1)x · g−
1
y]−wyt1 = g−z1xwyt1 = g−z1x

z3·b
z1

yz1 = (Z13)−bxy

Finally, to complete the simulation, we extract two private keys to challenge A, such that
these private keys are for the same id if S2 received a valid DLIN tuple, and for different ids
otherwise. Let sk? = (d?0, d

?
1, d

?
2) and sk◦ = (d◦0, d

◦
1, d
◦
2) be the challenge keys. We set h = gz1z4 ,

r? = b
(z1)2

and r◦ = z2+b
(z1)2

. Note that h is uniformly distributed over G, and r? and r◦ are uni-

formily distributed over Zp, independent of each other and of w. For completeness, we present
the equalities between the original expressions and those computed by the simulator:

d?0 = gr
?t1t2 = g

b
(z1)2

z1z1a
= gab

d?1 = g−wt2 · h−r?t2 = g−
z3b
z1

z1a · (gz1z4)
− b

(z1)2
z1a

= (g−ab)z3 · (g−ab)z4 = Z−ab

d?1 = g−wt1 · h−r?t1 = g−
z3b
z1

z1 · (gz1z4)
− b

(z1)2
z1

= (g−b)z3 · (g−b)z4 = Z−b

d◦0 = gr
◦t1t2 = g

z2+b

(z1)2
z1z1·a

= gz2·a+ab = (Z2)a · gab

d◦1 = g−wt2 · h−r◦t2 = g−
z3b
z1

z1a · (gz1z4)
− z2+b

(z1)2
z1a

= (g−ab)(z3+z4) · (gz2z4)−a = Z−ab · (Z24)−a

d◦2 = g−wt1 · h−r◦t1 = g−
z3b
z1

z1 · (gz1z4)
− z2+b

(z1)2
z1

= (g−b)(z3+z4) · (gz2z4)−1 = Z−b · (Z24)−1

Therefore, we have that AdvWEAK-KEY-UNLINK
Π,A (λ) = AdvDLIN

Γ,S2 , which concludes our proof. ut

procedure Initialize(λ):

(Z1, Z2, Z13, Z24, Z)← DLIN.Initialize
a←$ Zp, b←$ Zp

listH ← []

Ω ← e(Z13, g)
ab

v1 ← Z1

v2 ← (Z1)
a

d?0 ← gab, d◦0 ← (Z2)
a · gab

d?1 ← Z−ab, d◦1 ← Z−ab · (Z24)
−a

d?1 ← Z−b, d◦2 ← Z−b · (Z24)
−1

sk0 ← (d?0 , d
?
2 , d

?
2)

sk1 ← (d◦0 , d
◦
2 , d
◦
2)

pp← (Ω, v1, v2)

return (pp, sk0, sk1)

procedure H(id):

get (x, y) for id from listH
if (x, y) ==⊥
..... x←$ Zp

..... y←$ Zp

..... listH ← (id, x, y) : listH

h← (gz1)x · g−
1
y

return h

procedure Extract(id):

get (x, y) for id from listH

d0 ← (Z13)
aby

d1 ← (Z13)
−abxy

d2 ← (Z13)
−bxy

skid ← (d0, d1, d2)
return skid

procedure Finalize(bit):

DLIN.Finalize(bit)

Fig. 19. Simulator S2 forwards A’s guess from game WEAK-KEY-UNLINKΠ,A to game DLINΓ,S2 .

D Proof of Theorem 4

First, let us show an important re-randomization property that scheme Π ′ possess and that
is relevant for the completion of this proof. From two keys honestly extracted from the same
identity, say sk0 = (d00, d01, d02) and sk1 = (d10, d11, d12), one can generate new valid keys for
that identity with fresh random coins, without the knowledge of any secret parameter. Con-
cretely, sk2 = (d20, d21, d22) can be generated as follows, with a random y ∈ Zn and random

20

R0,R1,R2 ∈ Gq:

d20 = R0 · (d10
d00

)y · d00 = [R0 · (x10)
y

(x00)(y−1)] · g[yr1−(y−1)r0]t1t2

d21 = R1 · (d11
d01

)y · d01 = [R1 · (x11)
y

(x01)(y−1)] · g−wt2 · h−[yr1−(y−1)r0]t2

d22 = R2 · (d12
d02

)y · d02 = [R2 · (x12)
y

(x02)(y−1)] · g−wt1 · h−[yr1−(y−1)r0]t1

Let A be any PPT adversary against STRONG-KEY-UNLINKΠ′,A [Fig. 12]. We now drasti-
cally simplify the security model, so that it looks like the one presented in Fig. 20, which we call
5-KEY-UNLINK. Using a hybrid argument and taking advantage of the re-randomization prop-
erty previously described, we show that the advantage of A against STRONG-KEY-UNLINKΠ′,A
is polynomially-bounded by the advantage of A against 5-KEY-UNLINK.

procedure Initialize(λ):

(msk, pp)←$ Setup(1λ)
bit←$ {0, 1}
id0 ←$ I
id1 ←$ I
sk0 ←$ Extract(pp,msk, id0)
sk1 ←$ Extract(pp,msk, id0)
sk2 ←$ Extract(pp,msk, idbit)
sk3 ←$ Extract(pp,msk, id1)
sk4 ←$ Extract(pp,msk, id1)
return (pp, sk0, sk1, sk2, sk3, sk4)

procedure Extract(id):

skid ←$ Extract(pp,msk, id)
return skid

procedure Finalize(bit′):

return (bit = bit′)

Fig. 20. 5-KEY-UNLINKΠ,A Game.

In STRONG-KEY-UNLINKΠ′,A, A submits two lists list0 and list1 of the same length, say
L, for the challenge. For this argument, we construct L + 1 lists. The first list is list0 and the
last list is list1. In between, we have L−1 intermediate lists that transition from list0 to list1,
one element at the time. The L−1 intermediate lists are constructed such that the first list
is list0, and for every i ∈ {1..L−1}, listi = listi−1, except for the element listi[i] which is taken
from list1[i]. Again, the last list is list1. The advantage A has in distinguishing list0 from list1
cannot be more than the sum of the advantages of distinguishing listi−1 from listi, for every

i ∈ {1..(L + 1)}. The probability of distinguishing listi−1 from listi cannot be more than that of
identifying the form of the tuple in model 5-KEY-UNLINK. More precisely, one can expand the
5-tuple (sk◦0, sk

◦
1, sk

◦
2, sk

◦
3, sk

◦
4) from 5-KEY-UNLINK into a L-tuple of keys that corresponds to

the requirements of either listi−1 or listi. Since the lists only (possibly) differ in position i, we
set ski of the L-tuple to sk◦2. Every other key is extracted from the extraction oracle of model
5-KEY-UNLINK or generated from (sk◦0, sk

◦
1) or (sk◦3, sk

◦
4) if the key is required to be extracted

from the identity in listi−1[i] or listi[i], respectively.

The model can be further simplified to that of Fig. 21, which we call 4-KEY-UNLINK. Again,
we make use of the so-called hybrid argument and the re-randomization property introduced
in the beginning of this proof that Π ′ possesses8, the difficulty of distinguishing a 5-tuple of
keys extracted from (id0, id0, id0, id1, id1) from those extracted from (id0, id0, id0, id0, id0), where
id0 and id1 are sampled from I, is equivalent to that of distinguishing a 4-tuple of keys that
were extracted from (id0, id0, id1, id1) from those extracted from (id0, id0, id0, id0), since the fifth
key the adversary could generate himself. This difficulty of distinguishing the 5-tuple of keys
extracted from (id0, id0, id1, id1, id1) from those extracted from (id0, id0, id0, id0, id0) is also the
same as distinguishing the key tuple in 4-KEY-UNLINK model. So, the advantage A has in
distinguishing the tuples in 5-KEY-UNLINK game cannot be more than twice the advantage A
has in distinguishing the tuples in 4-KEY-UNLINK.

8 From two keys honestly extracted for the same identity, we can generate a third one with random
coins.

21

procedure Initialize(λ):

(msk, pp)←$ Setup(1λ)
bit←$ {0, 1}
id0 ←$ I
id1 ←$ I
sk0 ←$ Extract(pp,msk, id0)
sk1 ←$ Extract(pp,msk, id0)
sk2 ←$ Extract(pp,msk, idbit)
sk3 ←$ Extract(pp,msk, idbit)
return (pp, sk0, sk1, sk2, sk3)

procedure Extract(id):

skid ←$ Extract(pp,msk, id)
return skid

procedure Finalize(bit′):

return (bit = bit′)

Fig. 21. 4-KEY-UNLINKΠ,A Game

procedure Initialize(λ):

(Γ,Za, Zb, Zab)← CDDH.Initialize(λ)
(n,G,GT, e, g, gp, gq)← Γ
w, t1, t2 ←$ Zn

Ω ← e(gp, gp)
t1t2w

v1 ← g
t1
p

v2 ← g
t2
p

msk← (w, t1, t2)
pp← (Γ,Ω, v1, v2)

r?0 ←$ Zn

x00
′, x01

′, x02
′ ←$ Zn; x00 ← g

x00
′

q ; x01 ← g
x01
′

q ; x02 ← g
x02
′

q

sk?0 ← (x00 · (gp)r
?
0 t1t2 , x01 · Z

−r?0 t2
a · (gp)−wt2 , x02 · Z

−r?0 t1
a · (gp)−wt1)

r?1 ←$ Zn

x10
′, x11

′, x12
′ ←$ Zn; x10 ← g

x10
′

q ; x11 ← g
x11
′

q ; x12 ← g
x12
′

q

sk?1 ← (x10 · (gp)r
?
1 t1t2 , x11 · Z

−r?1 t2
a · (gp)−wt2 , x12 · Z

−r?1 t1
a · (gp)−wt1)

x20
′, x21

′, x22
′ ←$ Zn; x20 ← g

x20
′

q ; x21 ← g
x21
′

q ; x22 ← g
x22
′

q

sk?2 ← (x20 · Z
t1t2
b , x21 · Z

−t2
ab · (gp)

−wt2 , x22 · Z
−t1
ab · (gp)

−wt1)

u←$ Zn

x30
′, x31

′, x32
′ ←$ Zn; x30 ← g

x30
′

q ; x31 ← g
x31
′

q ; x32 ← g
x32
′

q

sk?3 ← (x30 · Z
ut1t2
b , x31 · Z

−ut2
ab · (gp)−wt2 , x32 · Z

−ut1
ab · (gp)−wt1)

return (pp, sk?0 , sk
?
1 , sk

?
2 , sk

?
3)

procedure Extract(id):

skid ←$ Extract(pp,msk, id)
return skid

procedure Finalize(bit):

return CDDH.Finalize(bit)

Fig. 22. Simulator S3 forwards A’s guess from 4-KEY-ANOΠ′,A to game CDDH.

To complete the proof, we build a simulator S3 [Fig. 22] that by playing game CDDHΓ ′,S3
outputs four keys (sk?0, sk

?
1, sk

?
2, sk

?
3) such that the adversary’s guess in 4-KEY-UNLINKΠ′,A can

be forward to game CDDHΓ ′,S3 . We refer to key sk?i as the tuple (d?i0, d
?
i1, d

?
i2), associated with

h?i , the hashed-identity from which sk?i was extracted. If the simulator receives a well-formed
CDDH tuple, h?0 = h?1 = h?2 = h?3 is set to ga. Otherwise, h?0 = h?1 = ga and h?2 = h?3 with an
independent random value in Gp. We also set r?2 = b and r?3 = b ·u, for a random u ∈ Zn. Finally,

we have that AdvSTRONG-KEY-UNLINK
Π′,A (λ) ≤ 2L ·AdvCDDH

Γ ′,S3 , which concludes our proof. ut

22

