
New Constructions and Applications of Trapdoor DDH Groups?

Yannick Seurin

ANSSI, Paris, France
yannick.seurin@m4x.org

Abstract. Trapdoor Decisional Diffie-Hellman (TDDH) groups, introduced by Dent and Galbraith (ANTS
2006), are groups where the DDH problem is hard, unless one is in possession of a secret trapdoor which
enables solving it efficiently. Despite their intuitively appealing properties, they have found up to now very
few cryptographic applications. Moreover, among the two constructions of such groups proposed by Dent
and Galbraith, only a single one based on hidden pairings remains unbroken. In this paper, we extend the set
of trapdoor DDH groups by giving a construction based on composite residuosity. We also introduce a more
restrictive variant of these groups that we name static trapdoor DDH groups, where the trapdoor only enables
to solve the DDH problem with respect to a fixed pair (G, Gx) of group elements. We give two constructions
for such groups whose security relies respectively on the RSA and the factoring assumptions. Then, we
show that static trapdoor DDH groups yield elementary constructions of convertible undeniable signature
schemes allowing delegatable verification. Using our constructions of static trapdoor DDH groups from the
RSA or the factoring assumption, we obtain slightly simpler variants of the undeniable signature schemes of
respectively Gennaro, Rabin, and Krawczyk (J. Cryptology, 2000) and Galbraith and Mao (CT-RSA 2003).
These new schemes are conceptually more satisfying since they can strictly be viewed as instantiations, in an
adequate group, of the original undeniable signature scheme of Chaum and van Antwerpen (CRYPTO ’89).

Keywords: trapdoor DDH group, hidden pairing, signed quadratic residues, convertible undeniable
signature scheme

1 Introduction

1.1 The CDH and DDH Problems

Given a group G and an element G ∈ G of large order, the Computational Diffie-Hellman (CDH)
problem is to compute Gxy, given Gx and Gy for random integers x, y. The Decisional Diffie-Hellman
(DDH) problem is to distinguish the two distributions (Gx, Gy, Gxy) and (Gx, Gy, Gz) for random and
independent integers x, y, z. Usually, when considering the status of various groups with respect to the
CDH and DDH problems, one of the following two cases arises: either the CDH and DDH problems are
both presumably hard (this is the case for example for subgroups of large prime order of Z∗p, p prime),
or the group is a so-called gap group: the CDH problem is (presumably) hard while the DDH problem
is universally easy (i.e. easy given only the description of the group law, which seems to be the minimal
publicly available information to obtain useful applications). The latter case typically arises in certain
elliptic curve groups equipped with bilinear pairings [MOV93, FMR99], and has given rise to many
important applications in cryptography [Jou00, BF01, BLS04].

1.2 Trapdoor DDH Groups

Trapdoor DDH groups (TDDH groups for short), introduced by Dent and Galbraith [DG06], lie some-
where between the above two cases. These are groups where the DDH problem is hard, except if one
possesses a trapdoor for solving it efficiently. Dent and Galbraith gave two candidates for such groups
based on the concept of hidden pairings, one in elliptic curves over the ring ZN , where N is hard to
factor, and the other one based on Frey’s idea of disguising an elliptic curve [Fre98]. Subsequently, the

? An abridged version appears at PKC 2013. This is the full version.

second proposal was broken by Morales [Mor08]. Since the DDH problem is the basis of so many cryp-
tosystems [Bon98], the concept of trapdoor DDH groups is very attractive. Indeed, it should enable to
control more precisely who is able to solve the DDH problem in a system. This may help in situations
where there is a conflict between security, which requires a group where the DDH problem is hard, and
some interesting additional functionalities that could be achieved thanks to an algorithm for solving
the DDH problem. One example that comes to mind is threshold ElGamal encryption. In threshold
ElGamal encryption [DF89], given a secret/public key pair (x,X = Gx), each decryption server is given
a share xi of the secret key, to which is associated a “partial” public key Gxi . In order to decrypt a
ciphertext (R, Y) = (Gr,MXr), each server participating to decryption must compute a decryption
share Si = Rxi . Hence, checking whether a decryption share from a server is correct or not amounts
to deciding whether (Xi, R, Si) is a DDH tuple or not. Yet IND-CPA-security of ElGamal encryption
is equivalent to the hardness of the DDH problem in the underlying group G [TY98]. Hence, there
seems to be no other choice than using a group where the DDH problem is hard, thereby condemning
other participants to be unable to distinguish correct decryption shares from incorrect ones. We do not
claim that TDDH groups are the best way to solve this problem (this can be more easily achieved by
having each server provide a non-interactive zero-knowledge proof that his decryption share is correctly
computed), and this example only serves to argue that sometimes, one may want that only some autho-
rized party be able to solve the DDH problem. Despite these considerations, TDDH groups have found
up to now very few cryptographic applications. In their original paper, Dent and Galbraith gave only
one example, namely an identification scheme. To the best of our knowledge, the only previous paper
proposing a non-trivial application of TDDH groups (namely the construction of statistically hiding
sets, a variant of zero-knowledge sets) is due to Prabhakaran and Xue [PX09].

1.3 Contributions of this Work

The contributions of this paper can be summarized as follows. First, at a conceptual level, we refine the
definition of TDDH groups of Dent and Galbraith by requiring that the CDH problem remain hard even
given the trapdoor for solving the DDH problem. This was not made explicit in the formalization by
Dent and Galbraith, yet we think that this is probably a key feature for many interesting applications,
such as undeniable signatures for example. We also broaden the set of constructions of trapdoor DDH
groups. We propose a new construction based on composite residuosity in Z∗N2 (similar considerations
have been made by [BCP03], albeit not in the formalism of TDDH groups), and identify under which
hardness assumptions this group satisfies our definition. A drawback of this construction is that it
lacks what we call perfect soundness, meaning that the algorithm solving the DDH problem with the
trapdoor can sometimes err and declare valid a non-DH tuple.

Then, we introduce a variant of trapdoor DDH groups that we name static trapdoor DDH groups.
Their definition is very similar to the one of trapdoor DDH groups, except that the trapdoor for solving
the DDH problem is now dedicated to a specific pair of group elements (G,Gx), hence the name static.
We then show that such groups can be easily constructed from the RSA and the factoring problems.
This concept abstracts some of the ideas underlying the work of Hofheinz and Kiltz [HK09], who showed
that the Strong Diffie-Hellman (SDH) problem (i.e. solving the CDH problem given access to a static
DDH oracle) is hard in the so-called group of signed quadratic residues under the factoring assumption.

Finally, we describe a very natural application of (static or not) TDDH groups to convertible
undeniable signature schemes. Namely, the construction we propose is exactly the original undeniable
signature scheme proposed by Chaum and van Antwerpen [CvA89] (for which deciding the validity of
a signature is equivalent to solving the DDH problem), but in a TDDH group rather than simply a
group where the DDH problem is hard. The trapdoor for solving the DDH problem can then be used to
universally convert or delegate verification of signatures. Once instantiated with our proposals of static
TDDH groups based on the RSA or the factoring problems, we obtain schemes similar to previous RSA-
based undeniable signature schemes due to Gennaro, Rabin, and Krawczyk [GRK00] and Galbraith and

2

Mao [GM03]. However, these new schemes are conceptually simpler and easier to analyze. Moreover,
since they are strict instantiations of the Chaum and van Antwerpen scheme, their confirmation and
disavowal protocols can use classical proofs of equality or inequality of discrete logarithms, which are
simpler and more efficient than what was proposed previously for the schemes of [GRK00, GM03].

1.4 Open Problems

Two key features of TDDH groups are perfect soundness (the property that the algorithm for solving
the DDH problem with the trapdoor perfectly distinguishes DH tuples from non-DH tuples), and
the possibility to securely hash into the group (see discussion in Section 2.3). However, none of the
two candidates for TDDH groups (the hidden pairing based proposal of [DG06], and our proposal in
Section 3.2) fulfills both requirements. We think that providing a plausible candidate possessing both
properties is the key to enable powerful applications of TDDH groups.1 A related open problem is
whether there exists a (plausible construction of a) TDDH group with publicly known (ideally prime)
order, since they are usually simpler to use in cryptography.

1.5 Organization

In Section 2 we give some basic definitions and introduce some of the tools we will need in the remainder
of the paper. In Section 3, we define trapdoor DDH groups, and give a construction based on composite
residuosity. In Section 4, we introduce static trapdoor DDH groups, and give two constructions based
on respectively the RSA and the factoring assumptions. Finally, in Section 5, we show how to obtain
convertible undeniable signature schemes from static TDDH groups, and discuss their instantiation
with the constructions described previously.

2 Preliminaries

2.1 Notation and Definitions

The set of integers i such that a ≤ i ≤ b will be denoted [a; b]. The security parameter will be denoted
k. A function f of the security parameter is said negligible if for any c > 0, f(k) ≤ 1/kc for sufficiently
large k. When S is a non-empty finite set, we write s←$ S to mean that a value is sampled uniformly
at random from S and assigned to s. By z ← AO1,O2,...(x, y, . . .) we denote the operation of running the
(possibly probabilistic) algorithm A on inputs x, y, . . . with access to oracles O1,O2, . . . (possibly none),
and letting z be the output. PPT will stand for probabilistic polynomial-time. Given two Interactive
Turing Machines P and V, we denote w ← 〈P(x),V(y)〉(z) to mean that the output of the interaction
of P with private input x and V with private input y on common input z is w.

Given an integer N , the multiplicative group of integers modulo N is denoted Z∗N . This group
has order φ(N) where φ(·) is the Euler function and exponent λ(N) where λ(·) is the Carmichael
function. We denote JN the subgroup of Z∗N of all elements x ∈ Z∗N with Jacobi symbol

(
x
N

)
= 1. This

subgroup has index 2 and order φ(N)/2 in Z∗N . Moreover it is efficiently recognizable even without
the factorization of N since the Jacobi symbol is efficiently computable given only N . We also denote
QRN the subgroup of quadratic residues of Z∗N . This subgroup is widely believed not to be efficiently
recognizable when N is composite and its factorization is unknown (this is the Quadratic Residuosity
assumption). We call a prime number p such that (p− 1)/2 is prime a safe prime.

In all the following, given a group G, we use the notation [G] to denote a description of the group,
i.e. an efficient algorithm for computing the group operation. This notation always implies that G is
efficiently recognizable. We assume that it is always possible to derive from the description of the group

1 Our examples of static TDDH groups do fulfill both requirement, however non-static TDDH groups would allow more
flexibility in cryptographic applications.

3

a negligibly close upper bound on the order |G| of the group (in some cases the exact order may be
efficiently computable), and we use the notation |G|+ to denote this upper bound.2 Given an element
G ∈ G, we denote ord(G) its order, 〈G〉 the group generated by G, DlogG(X) the discrete logarithm
in base G of an element X ∈ 〈G〉, and CDHG(X,Y) = GDlogG(X)DlogG(Y). We also denote DHG ⊂ 〈G〉3
the set of Diffie-Hellman (DH) tuples with respect to G:

DHG = {(Gx, Gy, Gxy), x, y ∈ [0; ord(G)− 1]} .

A group generator Gen is a PPT algorithm which on input a security parameter 1k, outputs a tuple
([G], G, γ) where [G] is the description of a group G, G ∈ G is an element of order 2Θ(k), and γ is some
arbitrary side information. We say that the CDH problem is hard for Gen if for any PPT adversary A,
the following probability is negligible:

Pr
[
([G], G, γ)← Gen(1k), (X,Y)←$ 〈G〉2, Z ← A([G], G, γ;X,Y) : Z = CDHG(X,Y)

]
.

We say that the DDH problem is hard for Gen if for any PPT adversary A, the following advantage is
negligible:

∣∣∣Pr
[
([G], G, γ)← Gen(1k), (X,Y)←$ 〈G〉2, Z ← CDHG(X,Y) : 1← A([G], G, γ;X,Y, Z)

]
−

Pr
[
([G], G, γ)← Gen(1k), (X,Y, Z)←$ 〈G〉3 : 1← A([G], G, γ;X,Y, Z)

] ∣∣∣ .
2.2 Proofs of Equality and Inequality of Discrete Logarithms

Protocols for proving, given (G,X, Y, Z) ∈ G, the equality of discrete logarithms (EDL) DlogG(X) =
DlogY (Z) or the inequality of discrete logarithms (IDL) constitute (among many other applications) the
heart of respectively the confirmation and disavowal protocols for many undeniable signature schemes,
and have therefore been the subject of many works. They vary depending on the exact kind of zero-
knowledge property one wants to achieve. The basic honest-verifier zero-knowledge (HVZK) proof of
EDL is due to Chaum and Pedersen [CP92], while the simplest HVZK proof of IDL is due to Camenish
and Shoup [CS03a]. These protocols are usually described for ambient groups G with publicly known
prime order, in which case recognizing 〈G〉 is trivial, so that these protocols are actually proofs that a
tuple (X,Y, Z) ∈ G3 is in DHG or not. They can be adapted to the case where the order of the ambient
group is composite and secret using well-known techniques [Gir90, Gir91], with the caveat that if 〈G〉
is not efficiently recognizable, the verifier must be promised that X,Y, Z ∈ 〈G〉 since these proofs do
not in general ensure membership of X,Y, Z in 〈G〉 with negligible soundness.3 Stated differently, if G′
is a cyclic and efficiently recognizable subgroup of G (e.g. G = Z∗N and G′ = JN when JN is cyclic),
these protocols are actually proofs that a tuple (X,Y, Z) ∈ G′ is a DH tuple with respect to G or
not, assuming that the verifier is guaranteed that G is indeed a generator of G′ (which may not be
efficiently checkable). The HVZK protocols for EDL and IDL are described in Appendix A. They can
be strengthen to achieve various notions of zero-knowledge (against cheating verifiers) using known
techniques [GSV98, CDM00, Dam00, Gen04] that we do not discuss in this paper.

The HVZK proofs of EDL and IDL can be made non-interactive in the Random Oracle Model using
the Fiat-Shamir transformation [FS86], i.e. by having the prover compute the challenge (first message
from the verifier) by itself by applying a hash function to the commitment (first message from the
prover). Note that these proofs then become universally convincing.

2 E.g. when G = Z∗p for some prime number p, |G|+ = p− 1, while when G = Z∗N , where the factorization of N is secret,
|G|+ = N .

3 The soundness of the Schnorr protocol [Sch91], seen as a proof of membership in 〈G〉, is 1/`, where ` is the smallest
prime factor of the order of the ambient group G.

4

2.3 Hashing into Groups

For many applications (and in particular for undeniable signatures based on the Chaum and van
Antwerpen scheme [CvA89]), it is required to securely hash into the subgroup 〈G〉 specified by the group
generator Gen. Assuming the existence of good hash functions H from {0, 1}∗ into the ambient group
G (which in turn can quite often be securely constructed from hash functions Hk : {0, 1}∗ → {0, 1}k),
there might or might not exist good constructions based on H for this. Whether a construction is
good or not can be analyzed in the indifferentiability framework of Maurer et al. [MRH04, BCI+10],
modeling Hk as a random oracle. In general, when 〈G〉 is an efficiently recognizable and sufficiently
dense subset of G, defining H′(x) = H(x‖i) for the smallest i ≥ 0 (encoded on sufficiently many bits)
such that H(x‖i) ∈ 〈G〉 can be shown to be indifferentiable from a random oracle from {0, 1}∗ into
〈G〉. More efficient constructions may exist depending on the specific case (see Sections 4.2 and 4.3).
However, when the subgroup 〈G〉 is not (known to be) efficiently recognizable, there is in general no
secure way to hash into it. In particular, the construction H′(x) = GHk(x) will almost surely ruin the
security of any scheme based on the discrete logarithm and related problems since this construction
reveals the discrete logarithm in base G of its outputs.4 In the sequel, we discuss, when they exist, good
constructions of hash functions into each TDDH group we consider.

3 Trapdoor DDH Groups

We start by defining trapdoor DDH groups. Our definition is a refinement of the one of Dent and
Galbraith [DG06] in that we explicitly require that the CDH problem remain hard even given the
trapdoor τ enabling to solve the DDH problem.

3.1 Definition

Definition 1. A trapdoor DDH group T DDH is a pair of algorithms (Gen, Solve) with the following
properties. The trapdoor DDH group generator algorithm Gen is a PPT algorithm which takes as input
a security parameter 1k and outputs a tuple ([G], G, τ) where [G] is the description of a group G, G ∈ G
is a group element of order 2Θ(k), and τ is a trapdoor information, such that:

i) hardness of DDH without the trapdoor: the DDH problem is hard for the group generator Gen′ which
outputs only ([G], G);

ii) hardness of CDH with the trapdoor: the CDH problem is hard for Gen.

Solve is a deterministic polynomial-time algorithm which takes as input ([G], G, τ) and a tuple (X,Y, Z) ∈
G3, either accepts (outputs 1) or rejects (outputs 0), and satisfies the following:

iii) completeness: for all ([G], G, τ) possibly output by Gen, Solve always accepts on input a DH tuple
(X,Y, Z) ∈ DHG;

iv) soundness: for any PPT adversary A, the following probability is negligible:

Pr
[
([G], G, τ)← Gen(1k), (X,Y)←$ 〈G〉2, Z ← A([G], G;X,Y) :

1← Solve([G], G, τ ;X,Y, Z) ∧ (X,Y, Z) /∈ DHG
]
.

We say that T DDH has perfect soundness when Solve always rejects on input a non-DH tuple (X,Y, Z),
so that the above probability is zero.

4 When the discrete logarithm is hard in 〈G〉, it can be shown that this construction is not indifferentiable from a random
oracle from {0, 1}∗ to 〈G〉.

5

Note that the soundness condition implies in particular that Solve, on input a uniformly random tuple
(X,Y, Z) ∈ G3, accepts only with negligible probability. We silently assumed in the above definition
that Solve is always run with a correctly generated trapdoor. This is safe for all examples presented
below since there is an efficient way, given ([G], G, τ), to check whether the trapdoor is correct. We
assume that Solve outputs a special symbol ⊥ when this is not the case. We recall the original proposal
of a TDDH group based on hidden pairings by Dent and Galbraith [DG06] in Appendix B.

3.2 A TDDH Group Based on Composite Residuosity

In this section, we describe a TDDH group T DDHBCP based on the group of quadratic residues mod-
ulo N2, where N is an RSA modulus. This group was first considered by Bresson, Catalano, and
Pointcheval [BCP03], who noticed that when the factorization of N is publicly available, this consti-
tutes a gap group, i.e. a group where the CDH problem is hard and the DDH problem is easy. Here,
we show that it constitutes in fact a TDDH group when the factorization of N is kept secret and used
as the trapdoor.

We first recall some basic facts about the group of quadratic residues modulo N2, where N is an
RSA modulus. Let p, q be two safe primes where p = 2p′ + 1 and q = 2q′ + 1 (p′ and q′ primes), and
N = pq. The group QRN2 of quadratic residues modulo N2 is a cyclic group of order m = Np′q′. We
define the notion of partial discrete logarithm.

Definition 2 (Partial Discrete Logarithm). Given a generator G of QRN2, the partial discrete
logarithm of a group element X ∈ QRN2 is defined as PDlogG(X) = DlogG(X) mod N .

Computing the partial discrete logarithm is believed to be hard without the factorization of N .5 How-
ever, it can be efficiently computed given the prime factors of N (or simply λ(N)) as follows [Pai99]:

1. input: N , λ(N), generator G of QRN2 and X ∈ QRN2 ; output: PDlogG(X)
2. for integers u ∈ [0;N2 − 1] such that u = 1 mod N , define the function (having integer values)
L(u) = (u− 1)/N

3. return
L(Xλ(N) mod N2)
L(Gλ(N) mod N2)

mod N .

We now formally describe the TDDH group T DDHBCP. On input the security parameter 1k, GenBCP
selects two k-bit safe primes p = 2p′ + 1 and q = 2q′ + 1, sets N = pq, selects a random generator
G of QRN2 , and outputs ([Z∗N2], G, τ = (p, q)). The SolveBCP algorithm works as follows: on input
a tuple (X,Y, Z) ∈ (Z∗N2)3 (as well as the trapdoor τ = (p, q)), it checks whether X,Y, Z ∈ QRN2 ,
computes x′ = PDlogG(X), y′ = PDlogG(Y), and z′ = PDlogG(Z) as described above, and checks
whether z′ = x′y′ mod N . It accepts if this holds and rejects otherwise. The security of this TDDH
group relies on a “partial” version of the CDH problem, defined as follows.

Definition 3 (Partial CDH Problem). We say that the Partial CDH problem is hard if for any
PPT algorithm A, the following probability is negligible:

Pr[([Z∗N2], G, τ)← GenBCP(1k), (X,Y)←$ 〈G〉2, Z ← A([Z∗N2], G;X,Y) :
DlogG(Z) ≡ DlogG(X)DlogG(Y) mod N] .

Theorem 1. Assuming that the DDH problem (without the factorization of N), the CDH problem (with
the factorization of N), and the Partial CDH problem (without the factorization of N) are hard for
QRN2, T DDHBCP is a trapdoor DDH group.

5 As noted by Paillier [Pai99] and in [BCP03], the Partial Discrete Logarithm problem can be shown equivalent to the
Composite Residuosity Class problem in the particular case considered here.

6

Proof. We prove that properties i) to iv) of Definition 1 are satisfied. Properties i) and ii) follow
directly from the assumptions that respectively the DDH (without the factorization of N) and the
CDH (with the factorization of N) problems are hard in QRN2 . Property iii) is straightforward to
verify by definition of SolveBCP. Finally, property iv) follows from the hardness of the Partial CDH
problem. ut

Note that this TDDH group does not have perfect soundness. In particular, on input a random tuple
(X,Y, Z) ∈ (QRN2)3, there is a negligible probability that SolveBCP accepts and yet (X,Y, Z) /∈ DHG
(this probability can easily be seen to be O(1/N) [BCP03]). Moreover, given the trapdoor τ = (p, q),
and two random elements (X,Y) ∈ (QRN2)2, it is easy to generate Z such that (X,Y, Z) /∈ DHG and
yet SolveBCP accepts on input (X,Y, Z): simply compute x′ = PDlogG(X) and y′ = PDlogG(Y) and
output Gx′y′ mod N . Alternatively, given two random elements (X,Y) ∈ (QRN2)2 and Z = CDHG(X,Y),
it is easy to compute Z ′ 6= Z such that SolveBCP accepts on input (X,Y, Z ′): simply compute Z ′ = ZUN

for some random U ∈ QRN2 . This may be of concern in some applications, especially for undeniable
signature schemes where Solve is typically used to check the validity of signatures (see Section 5).6

Hashing into QRN2. The Quadratic Residuosity assumption states that no efficient algorithm can
recognize elements of QRN2 . Hence, it seems hard to securely hash into QRN2 . In particular, using a
hash function H : {0, 1}∗ → ZN2 and squaring its output is inadequate in many settings since this
reveals a square root of the output of the resulting hash function H′ = H2 mod N2. However, it might
be possible to use the group of signed quadratic residues QR+

N2 = JN2/{−1, 1} as in Section 4.3 in order
to obtain an efficiently recognizable group with similar trapdoor DDH properties as QRN2 . Since the
lack of perfect soundness of this TDDH group restricts the range of its applications, we do not pursue
this possibility further.

4 Static Trapdoor DDH Groups

In this section, we define and construct static trapdoor DDH groups. They are similar to trapdoor DDH
groups as defined in Section 3, except that the trapdoor only allows to solve the DDH problem with
respect to a specific pair of group elements (G,Gx).

4.1 Definition
Definition 4. A static trapdoor DDH group ST DDH is a tuple of algorithms (Gen, Samp, Solve) with
the following properties. The static trapdoor DDH group generator algorithm Gen is a PPT algorithm
which takes as input a security parameter 1k and outputs a tuple ([G], G, τ) where [G] is the description
of a group G, G ∈ G is a group element of order 2Θ(k), and τ is a (master) trapdoor information, such
that:
i) hardness of DDH without the trapdoor: the DDH problem is hard for the group generator Gen′ which

outputs only ([G], G).

Samp is a PPT algorithm which on input ([G], G, τ), samples uniformly at random a group element
X ←$ 〈G〉, and outputs7 (X,x, τx) where x = DlogG(X) and τx is a (static) trapdoor information, such
that:
ii) hardness of CDH with the static trapdoor: for any PPT algorithm A, the following probability is

negligible:

Pr
[
([G], G, τ)← Gen(1k), (X,x, τx)← Samp([G], G, τ), Y ←$ 〈G〉,

Z ← A([G], G;X,Y ; τx) : Z = CDHG(X,Y)
]
.

6 We note however that imperfect soundness is not a problem for the identification scheme outlined in [DG06].
7 We stress that in typical applications, x is retained by an authorized user and is never made available to the adversary.

7

Solve is a deterministic polynomial-time algorithm which takes as input ([G], G), a tuple (X,Y, Z) ∈
〈G〉 ×G2, and the trapdoor τx for X, either accepts (outputs 1) or rejects (outputs 0), and satisfies the
following:
iii) completeness: for all ([G], G, τ) and (X,x, τx) possibly output by Gen and Samp, and any (Y,Z) ∈ G2,

Solve always accepts when (X,Y, Z) ∈ DHG;
iv) soundness: for any PPT adversary A, the following probability is negligible:

Pr
[
([G], G, τ)← Gen(1k), (X,x, τx)← Samp([G], G, τ), Y ←$ 〈G〉,

Z ← A([G], G;X,Y) : 1← Solve([G], G;X,Y, Z; τx) ∧ (X,Y, Z) /∈ DHG
]
.

We say that ST DDH has perfect soundness when Solve always rejects on input a non-DH tuple
(X,Y, Z), so that the above probability is zero.

Again, we silently assumed that Solve is always run with the correct trapdoor τx because in all examples
below this can be checked efficiently. In the remainder of this section, we propose two constructions of
static TDDH groups based respectively on the RSA problem and the factoring problem.

4.2 A Construction Based on the RSA Problem
We first show how a static TDDH group can be obtained from the RSA problem. Let N = pq be an RSA
modulus. When (p− 1)/2 and (q − 1)/2 are coprime, then the subgroup JN of Z∗N is cyclic. Moreover,
when p and q are distinct safe primes, the DDH problem is widely believed to be hard in JN [Bon98]. We
define the static TDDH group ST DDHRSA as follows. On input 1k, the group generator GenRSA selects
two k-bit safe primes p = 2p′+1 and q = 2q′+1, defines N = pq andm = (p−1)(q−1)/2 = 2p′q′, selects
a generator G of JN , and outputs ([JN], G, τ = m). The SampRSA algorithm, on input ([JN], G,m), draws
a random x←$ Z∗m, computes X = Gx, τx = 1/x mod m, and outputs (X,x, τx) (note that we slightly
deviate from Definition 4 here since X is not uniformly random in 〈G〉, but the statistical distance is
negligible). Algorithm SolveRSA, on input ([JN], G;X,Y, Z; τx), first checks that X,Y, Z ∈ JN , that the
trapdoor is correct by verifying whether Xτx = G (it outputs ⊥ if this does not hold), and outputs 1
iff Zτx = Y .

Definition 5. We say that the RSA problem is hard for JN if for any PPT adversary A, the following
probability is negligible:

Pr
[
([JN], G,m)← GenRSA(1k), e←$ Z∗m, Y ←$ JN , Z ← A([JN], Y, e) : Ze = Y

]
.

Theorem 2. Assuming that the DDH problem and the RSA problem are hard in JN (for N the product
of two distinct safe primes), ST DDHRSA is a static TDDH group with perfect soundness.

Proof. We show that properties i) to iv) of Definition 4 hold. Property i) holds by assumption that DDH
is hard for JN . We now prove property ii). Assume that there is an adversary A breaking property ii).
We construct a reduction R that solves the RSA problem as follows. The reduction is given the product
N = pq of two safe primes, a random e coprime with m = (p − 1)(q − 1)/2, and a random challenge
Y ∈ JN of which it must compute the e-th root. The reduction draws a random X ←$ JN . With
overwhelming probability, X is a generator of JN since p and q are safe primes. The reduction defines
G = Xe, and runs A on input ([JN], G;X,Y ; e). The statistical distance between inputs (G,X, Y)
in the simulated experiment and in the real CDH experiment defining property ii) is negligible (the
difference coming from cases where X does not generate JN). Moreover, e is the correct trapdoor for
X since G = Xe implies e = 1/x mod m, where x = DlogG(X). Hence, A returns the correct value
Z = CDHG(X,Y) with probability negligibly close to its advantage, in which case Z = Y x, which implies
Ze = Y , so that Z is indeed the e-th root of Y . The running time of R is similar to the one of A and its
success probability is negligibly close to the one of A. Property iii) is clear, and ST DDHRSA has perfect
soundness since by definition of SampRSA, x is coprime to m so that Zτx = Y ⇔ Zxτx = Y x ⇔ Z = Y x.

ut

8

Hashing into JN . Hashing into JN can be done easily as follows. Let H be a hash function into ZN
(which can be easily constructed from a hash function into {0, 1}k). Let a ∈ Z∗N be a fixed integer
such that

(
a
N

)
= −1. Neglecting the cases where H(x) /∈ Z∗N , define H′(x) = H(x) if

(
H(x)
N

)
= 1 and

H′(x) = aH(x) mod N if
(
H(x)
N

)
= −1. When H is modeled as a random oracle, this construction can

easily be shown indifferentiable from a random oracle into JN .

4.3 A Construction Based on Signed Quadratic Residues

In this section, we describe a static TDDH group based on signed quadratic residues, whose usefulness
for cryptography was first noticed by Hofheinz and Kiltz [HK09]. This can be seen as a variant of
ST DDHRSA described above, whose security relies on the factoring problem rather than the RSA
problem. We first give some definitions.

Definition 6. Let N be an odd positive integer such that −1 ∈ JN . We denote J+
N the quotient group

JN/{−1, 1}. We identify J+
N with the set JN ∩ [1; (N − 1)/2] equipped with the group operation ◦ defined

as a ◦ b = |ab mod N |, where |x mod N | is defined as the absolute value of x mod N when representing
elements of ZN as integers in [−(N − 1)/2; (N − 1)/2].

To be completely rigorous, the mapping which to an element {−x, x} ∈ J+
N associates |x| is a group

isomorphism between J+
N and (JN ∩ [1, (N − 1)/2], ◦).

Let N = pq be a Blum integer (i.e. p and q are two primes such that p ≡ q ≡ 3 mod 4). Then
−1 ∈ JN so that we can define J+

N , which in this particular case is named the group of signed quadratic
residues and denoted QR+

N .8 Its order is φ(N)/4 = (p − 1)(q − 1)/4. The most interesting points to
notice about this group is that it is efficiently recognizable (since it is isomorphic to JN ∩ [1; (N−1)/2]),
and that the squaring operation is one-to-one so that any x ∈ QR+

N has a unique square root in QR+
N

(more precisely, for any x ∈ QR+
N , either x or −x mod N is a quadratic residue mod N , and exactly

one corresponding square root is in QR+
N). Moreover, when (p− 1)/2 and (q − 1)/2 are coprime, then

JN is cyclic and so is QR+
N . See [HK09] for proofs of these basic facts.

In the following, we restrict ourselves for simplicity to the special case where N is the product of two
distinct safe primes. This implies that N is a Blum integer, and that (p−1)/2 and (q−1)/2 are coprime
so that QR+

N is cyclic. Moreover, a uniformly random element of QR+
N is a generator with overwhelming

probability since the number of generators of QR+
N is φ((p− 1)(q − 1)/4) = (p− 3)(q − 3)/4.

Let G be a generator of QR+
N , and denote m = |QR+

N | = (p − 1)(q − 1)/4. Let x ∈ [0;m − 1] and
X = Gx. To build a trapdoor enabling to solve the static DDH problem for (G,X), we use the following
idea: the trapdoor will be t = 2x ± m (computed over Z), i.e. the value 2x masked with the group
order m. Since computing the group order m is as hard as factoring N , t does not reveal x. Now, given
a group element Y = Gy ∈ G, t enables computing Y t = G2xy = CDHG(X,Y)2. This enables testing
whether an element Z is a correct solution to the static CDH problem (in other words to solve the
static DDH problem) by simply checking whether Z2 = Y t. However, as we will see, the static CDH
problem remains as hard as computing square roots in QR+

N , which in turn is equivalent to factoring
N . For what follows, we will also make the assumption that the DDH problem is hard in QR+

N . The
DDH problem in QR+

N can easily shown to be equivalent to the DDH problem in JN , which as already
pointed out is widely believed to be hard when N is the product of two distinct safe primes [Bon98].

We now formally define the static TDDH group ST DDHSQR. For ease of exposition, given an odd
integer m, we define the function ξ from [0;m− 1] to {1, 3, 5, . . . , 2m− 3, 2m− 1} as:{

ξ(x) = 2x+m if x ∈ [0; (m− 1)/2]
ξ(x) = 2x−m if x ∈ [(m+ 1)/2;m− 1] .

8 We warn that QR+
N is not equal to QRN /{−1, 1} for the good reason that −1 /∈ QRN when N is a Blum integer.

9

ξ(x) is the unique odd integer t ∈ [1; 2m− 1] such that t = 2x±m.
On input the security parameter 1k, GenSQR selects two k-bit safe primes p = 2p′+1 and q = 2q′+1,

sets N = pq,m = p′q′, selects a generator G of the group of signed quadratic residues QR+
N , and outputs

([QR+
N], G,m). Algorithm SampSQR, on input ([QR+

N], G,m), selects a random x ∈ [0;m−1], setsX = Gx,
τx = ξ(x), and outputs (X,x, τx). The algorithm SolveSQR, on input ([QR+

N], G;X,Y, Z; τx), first checks
that the trapdoor is correct by verifying whether Gτx = X2 (it outputs ⊥ if this does not hold), and
outputs 1 iff Y τx = Z2. We now formally prove that this constitutes a static TDDH group under
appropriate assumptions (the proof of property ii) is reminiscent of the one of Theorem 3.2 in [HK09]).

Theorem 3. Under the factoring assumption (for the product of safe primes) and the DDH assumption
for QR+

N , ST DDHSQR is a static TDDH group with perfect soundness.

Proof. We show that properties i) to iv) of Definition 4 hold. Property i) holds by assumption that
DDH is hard in QR+

N . We now show that property ii) holds under the factoring assumption (for
the product of two safe primes). For this, we assume that there exists an adversary A solving the
static CDH problem given the static trapdoor, and derive a reduction R that solves the factoring
problem. The reduction is given a challenge N = pq which is the product of two safe primes. Denote
(Z∗N)+ = Z∗N ∩ [1; (N − 1)/2]. The reduction chooses a uniformly random u ←$ (Z∗N)+ \ QR+

N , and
sets H = |u2 mod N |. Note that H ∈ QR+

N , and generates QR+
N with overwhelming probability. It

also chooses random integers a, b ∈ [0; (N − 1)/4] and sets G = H2, X = HGa, and Y = HGb.
Finally, it computes t = 2a + 1 and runs A on input ([QR+

N], G;X,Y ; t). The statistical distance
between inputs (G,X, Y) in a real CDH experiment and in the simulated experiment is negligible (the
difference coming from cases where H does not generate QR+

N and the statistical distance between
uniformly drawing in [0; (N − 1)/4] and [0;m− 1]). Moreover, by definition of X and Y , we have that
the discrete logarithms x = DlogG(X) and y = DlogG(Y) of these two elements are implicitly set as
x = a + 1/2 mod m and y = b + 1/2 mod m, where m = |QR+

N | = (p − 1)(q − 1)/4. Since m is odd,
1/2 = (m+1)/2 mod m, so that when a ∈ [0; (m−3)/2], we have x = a+(m+1)/2 (over the integers),
whereas when a ∈ [(m− 1)/2,m− 1], we have x = a− (m− 1)/2 (over the integers). In both cases, we
see that t = 2a + 1 is the unique integer in [1; 2m − 1] such that t = 2x ±m, so that we always have
t = ξ(x). Note that we neglected the case where a ∈ [m + 1; (N − 1)/4] but this happens only with
negligible probability.

By the previous analysis, we have that A returns the correct value Z = CDHG(X,Y) with probability
negligibly close to its advantage. In such a case, we have:

Z = Gxy = G(a+1/2)(b+1/2) mod m = H2ab+a+b+1/2 mod m ,

and consequently, defining V = ZG−2ab−a−b = H1/2 mod m, R has obtained a square root V of H. Since
this square root is in QR+

N , it is necessarily different from u ∈ (Z∗N)+ \QR+
N and −u ∈ [−(N − 1)/2; 1].

Hence, gcd(u − V,N) yields a factor of N . The running time of R is similar to the one of A and its
success probability is negligibly close to the one of A. Finally, property iii) is clear, and ST DDHSQR
has perfect soundness (i.e. SolveSQR accepts iff it is run on input (X,Y, Z) ∈ DHG) since the squaring
operation is one-to-one, so that given X = Gx and Y = Gy, Z = Gxy iff Z2 = G2xy = Y t. ut

Hashing into QR+
N . Hashing into QR+

N can be done similarly to the method described for JN . Let
H : {0, 1}∗ → [0; (N − 1)/2] be a hash function, and a ∈ Z∗N ∩ [1; (N − 1/2)] be a fixed integer such
that

(
a
N

)
= −1. Neglecting the cases where H(x) /∈ Z∗N , define:

H′(x) =

H(x) if
(
H(x)
N

)
= 1

|aH(x) mod N | if
(
H(x)
N

)
= −1

Modeling H as a random oracle, then H′ can be shown indifferentiable from a random oracle into QR+
N .

Choosing two safe primes such that p ≡ 3 mod 8 and q ≡ 7 mod 8, then one can always choose a = 2.

10

4.4 Relation to the Strong Diffie-Hellman Problem
We note that in a static TDDH group with perfect soundness, the Strong Diffie-Hellman (SDH) prob-
lem [ABR01] is always hard.9 The SDH problem is to compute CDHG(X,Y) given X,Y ∈ 〈G〉, and being
granted access to a static DDH oracle which on input (Y ′, Z ′) ∈ G2 outputs 1 iff (X,Y ′, Z ′) ∈ DHG.
Clearly, an adversary A breaking the SDH problem can be turned into an adversary B breaking prop-
erty ii) of the static TDDH group (B can answer queries of A to the static DDH oracle thanks to the
trapdoor τx it is given as input). Applying this observation to ST DDHSQR, we recover Theorem 3.2
of [HK09] which states that SDH is hard in QR+

N under the factoring assumption. Hence, the concept
of static TDDH group allows to cast the result of [HK09] in a more general framework. In particular,
Theorem 2 directly implies that under the RSA assumption, the SDH problem is hard in JN , which
complements the result of [HK09].10 As an immediate consequence of the results of [ABR01, CS03b],
we obtain that Hybrid ElGamal encryption over JN is IND-CCA2-secure in the ROM under the RSA
assumption.

5 Convertible Undeniable Signatures

5.1 Background on Undeniable Signatures
In this section, we show how TDDH groups can be used to build simple and natural undeniable
signature schemes with attractive properties such as universal convertibility and delegation. Unde-
niable signatures, introduced by Chaum and van Antwerpen [CvA89], are signatures that cannot
be universally verified: confirmation (or disavowal) of a signature requires the cooperation of the
signer (however a signer cannot deny the validity of a correct signature, hence the name undeniable).
Later, Boyar et al. [BCDP90] proposed the refined notion of convertible undeniable signature (CUS)
scheme, where a mechanism allows the signer to selectively or globally transform undeniable signa-
tures into self-authenticating signatures. The particular scheme proposed in [BCDP90] was later broken
in [MPH96]. Subsequently, schemes based on usual signatures such as ElGamal [DP96], Schnorr [MS97],
and RSA [GRK00, GMP02, GM03] were proposed.

We first recall the basic Chaum and van Antwerpen undeniable signature scheme [CvA89] (in its
Full Domain Hash version [OP01, OKH05]). Let G be a group, G′ be a cyclic and efficiently recognizable
subgroup of G, G be a (certified) generator of G′, and H : {0, 1}∗ → G′ be a hash function (modeled as
a random oracle in security proofs). Assume the DDH problem is hard for G′. The secret and public keys
of a user are x ∈ Z|G′|+ and X = Gx respectively. To sign a message µ ∈ {0, 1}∗, the signer computes
M = H(µ) ∈ G′, and S = Mx. The signature is S. A signature S on µ is valid iff (X,H(µ), S) is a
valid DH tuple (with respect to G). Since we assumed that the DDH problem is hard, checking the
validity of a signature cannot be done without knowledge of x.11 Hence, the signer must cooperate
with the verifier in order to confirm or disavow a purported signature. The confirmation protocol is
a proof that (X,H(µ), S) ∈ DHG (i.e. a proof of EDL since G is guaranteed to be a generator of
G′), whereas the disavowal protocol is a proof that (X,H(µ), S) /∈ DHG (i.e. a proof of IDL). The
security of this scheme (depending on which type of EDL and IDL proofs are used) has been studied
in [OP01, KH05, OKH05, KF08].

The idea to allow efficient universal conversion of signatures is simply to use a Chaum and van
Antwerpen undeniable signature with a (static or not) TDDH group, and to use the trapdoor to
delegate the ability to verify undeniable signatures and to universally convert them. In the following,
we describe the construction using static TDDH groups since the instantiations using constructions of
Sections 4.2 and 4.3 are particularly interesting.

9 More precisely, the SDH problem is hard for the group generator which only outputs ([G], G).
10 Note that, by inspection of the proof of property ii), this result holds in fact for all RSA moduli N such that JN is

cyclic, not only the product of safe primes.
11 When the DDH problem is easy in G′, signatures can be universally verified. For example, using bilinear groups (where

a pairing can be used to solve the DDH problem), one obtains the Boneh-Lynn-Shacham signature scheme [BLS04].

11

5.2 Construction of a CUS scheme from a Static TDDH Group

Let ST DDH = (Gen, Samp, Solve) be a static TDDH group with perfect soundness. For this part, we
assume that Gen outputs a tuple ([G], G, τ) such that G is cyclic and efficiently recognizable, and G is
a generator of G. This assumption is satisfied by ST DDHRSA and ST DDHSQR. Note that there is not
necessarily an efficient way to check that G is indeed a generator; we come back on this issue later. We
construct a CUS scheme CUS as follows (see Appendix C for a more formal description). To construct
his public/secret key pair, the signer runs Gen(1k) to obtain ([G], G, τ) and then Samp([G], G, τ) to
obtain (X,x, τx). It also selects a hash function H : {0, 1}∗ → G. The public key of the signer is
pk = ([G], G,X,H) and its secret key is sk = (x, τx). To sign a message µ ∈ {0, 1}∗, the signer
computes M = H(µ), and S = Mx. The signature is S. The signer can confirm or disavow a signature
by running a proof of EDL or IDL respectively with the verifier. To individually convert a signature,
the signer produces a NIZK proof of EDL (using an independent hash function HFS to apply the
Fiat-Shamir transform). To universally convert signatures, the signer releases τx as universal receipt.
A signature S for message µ can then be verified by running Solve([G], G;X,H(µ), S; τx).

Informally, the two main security properties of a CUS scheme (beside soundness of the confirmation
and disavowal protocols) are (see Appendix C.2 for details):

– security against existential forgery under chosen-message attacks (EF-CMA-security): any PPT
attacker, given the receipt for universal verification τx, and with access to a signing oracle, can forge a
new signature with only negligible probability (note that access to confirmation or disavowal oracles
is unnecessary here since the adversary is given the universal receipt τx for checking signatures);

– invisibility under chosen-message attacks (INV-CMA-security): any PPT adversary can distinguish
a valid signature for a message of its choice from a string sampled uniformly at random from the
signature space with only negligible probability. The adversary is granted access to the signing
oracle, the confirmation and disavowal protocols, and the individual signature conversion oracle
(with the restriction that they cannot be queried on the challenge message).

We stress that formalizing the invisibility notion is quite subtle (many variations appear in the liter-
ature [CvHP91, DP96, CM00, GM03]), and that the exact property that is achieved is dependent on
the nature of the confirmation and disavowal protocols [OKH05, KF08].

Theorem 4. When instantiated with a static TDDH group with perfect soundness, and when the confir-
mation and disavowal protocols are zero-knowledge, the CUS scheme described above is EF-CMA-secure
and INV-CMA-secure in the ROM (for H and HFS).

Proof. We first show EF-CMA-security. Assume there is an adversary A breaking EF-CMA-security
of the scheme. We build a reduction R that breaks property ii) of the static TDDH group ST DDH.
Let qh be an upper bound on the number of queries to H made by A. The reduction is given as input
([G], G;X,Y ; τx). It runs A on input pk = ([G], G,X,H) and ρu = τx. It simulates the random oracle
H as usual in security proofs for Full Domain Hash, namely it guesses which oracle query will be used
by A to forge a signature, and uses Y as answer to this query. Other answers to random oracle queries
are computed as Gα for known values α, which enable the reduction to simulate the signing oracle by
computing the signatures as Xα. When the guess for the forgery was right, the reduction obtains a
signature S which is exactly Y x = CDHG(X,Y). The success probability of the reduction is therefore
Advef−cma

CUS,A (k)/qh. Details are standard and therefore omitted.
The proof for invisibility is exactly the same as the proof of Theorem 7 of [OKH05] (the sole

difference is that here we have to simulate the individual conversion oracle but as usual this can be
done without knowing DlogG(X) using the zero-knowledge simulator). ut

Delegation. The ability to verify (confirm or disavow) and convert (either individually or univer-
sally) signatures can easily be delegated to a semi-trusted party by simply giving him the trapdoor

12

τx. Since the CDH problem remains hard even with the trapdoor, the third party cannot forge signa-
tures on behalf of the signer. It can however prove in zero-knowledge whether a signature is valid or
invalid (since it knows the witness τx for this). We avoid using the term designated confirmer signa-
tures [Cha94] here since this usually refers to schemes (mostly following the “encryption of a signature”
paradigm [Oka94, CM00]) where the signer can create designated confirmer undeniable signatures with-
out having beforehand to transmit some secret information to the confirmer (in our case the trapdoor
τx).

Instantiation with ST DDHRSA and ST DDHSQR. The CUS scheme described above can be in-
stantiated with the two static TDDH groups described in Sections 4.2 and 4.3. The schemes obtained
this way are similar respectively to the scheme of Gennaro, Rabin, and Krawczyk [GRK00] and Gal-
braith and Mao [GM03], with important distinctions though. Both schemes work over Z∗N , but without
explicitly restricting in which subgroup. As a consequence, they cannot be exactly seen as an instan-
tiation of the Chaum and van Antwerpen scheme, and specific confirmation and disavowal protocols
were therefore proposed for them (see also [GMP02]). On the contrary, our schemes are strict instan-
tiations of the Chaum and van Antwerpen scheme, and in particular the confirmation and disavowal
protocols can use zero-knowledge proofs of EDL and IDL derived from the HVZK protocols described
in Appendix A. This is conceptually simpler and more efficient (especially for the disavowal protocol).

Certifying signers public keys. Correct key generation is of primary importance in factoring-based
undeniable signatures, since a cheating signer may generate its secret/public key in a different way
than the one expected by verifiers, which may enable him to confirm invalid signatures or disavow valid
ones (see [GMP02]). Hence, the signer, when registering his public key, must prove to the certification
authority (CA) that it was generated according to the specification of the static TDDH group generator.
We now discuss this issue with respect to ST DDHRSA and ST DDHSQR. For both schemes, the signer
must first prove to the CA that its modulus N is the product of two safe primes. A zero-knowledge
protocol for this was proposed by Camenish and Michels [CM99]. Though expensive, this protocol must
be run only once at key registration time. Then, the signer must prove that G is indeed a generator of
either JN or QR+

N . The situation is slightly different in the two cases. Denote N = pq with p = 2p′ + 1
and q = 2q′ + 1. When p and q are safe primes, then an integer g ∈ Z∗N such that g2 6= 1 mod N and
gcd(g2 − 1, N) = 1 necessarily has order in {p′q′, 2p′q′} [GRK00, Lemma 1]. Hence, an ad-hoc solution
for ensuring that the element G provided by the signer is a generator of the intended group is as follows.
Restrict the scheme to moduli N such that N ≡ 1 mod 8 and fix g0 = 2 so that g0 ∈ JN . Since an
element g ∈ QR+

N generates QR+
N exactly when g has multiplicative order modulo N in {p′q′, 2p′q′},

we see by the previous remark that g0 is always a generator of QR+
N . Hence, when using ST DDHSQR,

we can impose to the signer to always use G = g0. Things are a bit more complicated when using
ST DDHRSA, since for an element g ∈ Z∗N with order in {p′q′, 2p′q′} to generate JN , one has to check
that it is a quadratic non-residue. What we propose for this is that the signer proves in zero-knowledge
to the CA whether g0 ∈ QRN or not [GMR89]. If it is in QRN , then the signer tries with g0 + 1, g0 + 2,
etc. until a quadratic non-residue in JN is found. The signer then has to use G = g0 + i for the smallest
i ≥ 0 such that g0 + i ∈ JN \QRN .

As a matter of fact, there seems to be no reason to instantiate the CUS scheme with ST DDHRSA
rather than ST DDHSQR since both schemes are almost identical, except that the key registration step
is simpler for ST DDHSQR.

Acknowledgments

The author is thankful to anonymous reviewers of PKC 2013 for helpful comments and suggestions.

13

References

[ABR01] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The Oracle Diffie-Hellman Assumptions and an Analysis
of DHIES. In David Naccache, editor, Topics in Cryptology - CT-RSA 2001, volume 2020 of Lecture Notes
in Computer Science, pages 143–158. Springer, 2001.

[BCDP90] Joan Boyar, David Chaum, Ivan Damgård, and Torben P. Pedersen. Convertible Undeniable Signatures.
In Alfred Menezes and Scott A. Vanstone, editors, Advances in Cryptology - CRYPTO ’90, volume 537 of
Lecture Notes in Computer Science, pages 189–205. Springer, 1990.

[BCI+10] Eric Brier, Jean-Sébastien Coron, Thomas Icart, David Madore, Hugues Randriam, and Mehdi Tibouchi.
Efficient Indifferentiable Hashing into Ordinary Elliptic Curves. In Tal Rabin, editor, Advances in Cryptology
- CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science, pages 237–254. Springer, 2010.

[BCP03] Emmanuel Bresson, Dario Catalano, and David Pointcheval. A Simple Public-Key Cryptosystem with a Dou-
ble Trapdoor Decryption Mechanism and Its Applications. In Chi-Sung Laih, editor, Advances in Cryptology
- ASIACRYPT 2003, volume 2894 of Lecture Notes in Computer Science, pages 37–54. Springer, 2003.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-Based Encryption from the Weil Pairing. In Joe Kilian,
editor, Advances in Cryptology - CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages
213–229. Springer, 2001.

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. Short Signatures from the Weil Pairing. Journal of Cryptology,
17(4):297–319, 2004.

[Bon98] Dan Boneh. The Decision Diffie-Hellman Problem. In Joe Buhler, editor, Algorithmic Number Theory
Symposium - ANTS ’98, volume 1423 of Lecture Notes in Computer Science, pages 48–63. Springer, 1998.

[CDM00] Ronald Cramer, Ivan Damgård, and Philip D. MacKenzie. Efficient Zero-Knowledge Proofs of Knowledge
Without Intractability Assumptions. In Hideki Imai and Yuliang Zheng, editors, Public Key Cryptography -
PKC 2000, volume 1751 of Lecture Notes in Computer Science, pages 354–373. Springer, 2000.

[Cha94] David Chaum. Designated Confirmer Signatures. In Alfredo De Santis, editor, Advances in Cryptology -
EUROCRYPT ’94, volume 950 of Lecture Notes in Computer Science, pages 86–91. Springer, 1994.

[CM99] Jan Camenisch and Markus Michels. Proving in Zero-Knowledge that a Number Is the Product of Two Safe
Primes. In Jacques Stern, editor, Advances in Cryptology - EUROCRYPT ’99, volume 1592 of Lecture Notes
in Computer Science, pages 107–122. Springer, 1999.

[CM00] Jan Camenisch and Markus Michels. Confirmer Signature Schemes Secure against Adaptive Adversaries.
In Bart Preneel, editor, Advances in Cryptology - EUROCRYPT 2000, volume 1807 of Lecture Notes in
Computer Science, pages 243–258. Springer, 2000.

[CP92] David Chaum and Torben P. Pedersen. Wallet Databases with Observers. In Ernest F. Brickell, editor,
Advances in Cryptology - CRYPTO ’92, volume 740 of Lecture Notes in Computer Science, pages 89–105.
Springer, 1992.

[CS03a] Jan Camenisch and Victor Shoup. Practical Verifiable Encryption and Decryption of Discrete Logarithms.
In Dan Boneh, editor, Advances in Cryptology - CRYPTO 2003, volume 2729 of Lecture Notes in Computer
Science, pages 126–144. Springer, 2003.

[CS03b] Ronald Cramer and Victor Shoup. Design and Analysis of Practical Public-Key Encryption Schemes Secure
against Adaptive Chosen Ciphertext Attack. SIAM Journal on Computing, 33(1):167–226, 2003.

[CvA89] David Chaum and Hans van Antwerpen. Undeniable Signatures. In Gilles Brassard, editor, Advances in
Cryptology - CRYPTO ’89, volume 435 of Lecture Notes in Computer Science, pages 212–216. Springer, 1989.

[CvHP91] David Chaum, Eugène van Heijst, and Birgit Pfitzmann. Cryptographically Strong Undeniable Signatures,
Unconditionally Secure for the Signer. In Joan Feigenbaum, editor, Advances in Cryptology - CRYPTO ’91,
volume 576 of Lecture Notes in Computer Science, pages 470–484. Springer, 1991.

[Dam00] Ivan Damgård. Efficient Concurrent Zero-Knowledge in the Auxiliary String Model. In Bart Preneel, editor,
Advances in Cryptology - EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages
418–430. Springer, 2000.

[DF89] Yvo Desmedt and Yair Frankel. Threshold Cryptosystems. In Gilles Brassard, editor, Advances in Cryptology
- CRYPTO ’89, volume 435 of Lecture Notes in Computer Science, pages 307–315. Springer, 1989.

[DG06] Alexander W. Dent and Steven D. Galbraith. Hidden Pairings and Trapdoor DDH Groups. In Florian
Hess, Sebastian Pauli, and Michael E. Pohst, editors, Algorithmic Number Theory Symposium - ANTS 2006,
volume 4076 of Lecture Notes in Computer Science, pages 436–451. Springer, 2006.

[DP96] Ivan Damgård and Torben P. Pedersen. New Convertible Undeniable Signature Schemes. In Ueli M. Maurer,
editor, Advances in Cryptology - EUROCRYPT ’96, volume 1070 of Lecture Notes in Computer Science,
pages 372–386. Springer, 1996.

[FMR99] Gerhard Frey, Michael Müller, and Hans-Georg Rück. The Tate pairing and the discrete logarithm applied
to elliptic curve cryptosystems. IEEE Transactions on Information Theory, 45(5):1717–1719, 1999.

[Fre98] Gerhard Frey. How to disguise an elliptic curve (Weil descent). Elliptic Curve Cryptography - ECC ’98,
1998. Available at http://cacr.uwaterloo.ca/conferences/1998/ecc98/frey.ps.

[FS86] Amos Fiat and Adi Shamir. How to Prove Yourself: Practical Solutions to Identification and Signature
Problems. In Andrew M. Odlyzko, editor, Advances in Cryptology - CRYPTO ’86, volume 263 of Lecture
Notes in Computer Science, pages 186–194. Springer, 1986.

14

http://cacr.uwaterloo.ca/conferences/1998/ecc98/frey.ps

[Gen04] Rosario Gennaro. Multi-trapdoor Commitments and Their Applications to Proofs of Knowledge Secure
Under Concurrent Man-in-the-Middle Attacks. In Matthew K. Franklin, editor, Advances in Cryptology -
CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science, pages 220–236. Springer, 2004.

[Gir90] Marc Girault. An Identity-based Identification Scheme Based on Discrete Logarithms Modulo a Composite
Number. In Ivan Damgård, editor, Advances in Cryptology - EUROCRYPT ’90, volume 473 of Lecture Notes
in Computer Science, pages 481–486. Springer, 1990.

[Gir91] Marc Girault. Self-Certified Public Keys. In Donald W. Davies, editor, Advances in Cryptology - EURO-
CRYPT ’91, volume 547 of Lecture Notes in Computer Science, pages 490–497. Springer, 1991.

[GM03] Steven D. Galbraith and Wenbo Mao. Invisibility and Anonymity of Undeniable and Confirmer Signatures.
In Marc Joye, editor, Topics in Cryptology - CT-RSA 2003, volume 2612 of Lecture Notes in Computer
Science, pages 80–97. Springer, 2003.

[GMP02] Steven D. Galbraith, Wenbo Mao, and Kenneth G. Paterson. RSA-Based Undeniable Signatures for General
Moduli. In Bart Preneel, editor, Topics in Cryptology - CT-RSA 2002, volume 2271 of Lecture Notes in
Computer Science, pages 200–217. Springer, 2002.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The Knowledge Complexity of Interactive Proof Sys-
tems. SIAM Journal on Computing, 18(1):186–208, 1989.

[GRK00] Rosario Gennaro, Tal Rabin, and Hugo Krawczyk. RSA-Based Undeniable Signatures. Journal of Cryptology,
13(4):397–416, 2000.

[GSV98] Oded Goldreich, Amit Sahai, and Salil P. Vadhan. Honest-Verifier Statistical Zero-Knowledge Equals General
Statistical Zero-Knowledge. In Jeffrey Scott Vitter, editor, Symposium on the Theory of Computing - STOC
’98, pages 399–408. ACM, 1998.

[HK09] Dennis Hofheinz and Eike Kiltz. The Group of Signed Quadratic Residues and Applications. In Shai Halevi,
editor, Advances in Cryptology - CRYPTO 2009, volume 5677 of Lecture Notes in Computer Science, pages
637–653. Springer, 2009.

[Jou00] Antoine Joux. A One Round Protocol for Tripartite Diffie-Hellman. In Wieb Bosma, editor, Algorithmic
Number Theory Symposium - ANTS 2000, volume 1838 of Lecture Notes in Computer Science, pages 385–394.
Springer, 2000.

[KF08] Kaoru Kurosawa and Jun Furukawa. Universally Composable Undeniable Signature. In Ivan Damgård, edi-
tor, International Colloquium on Automata, Languages and Programming - ICALP 2008, Track C: Security
and Cryptography Foundations, volume 5126 of Lecture Notes in Computer Science, pages 524–535. Springer,
2008.

[KH05] Kaoru Kurosawa and Swee-Huay Heng. 3-Move Undeniable Signature Scheme. In Ronald Cramer, editor,
Advances in Cryptology - EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages
181–197. Springer, 2005.

[Mor08] David J. Mireles Morales. An attack on disguised elliptic curves. Journal of Mathematical Cryptology,
2(1):1–8, 2008. Available at http://eprint.iacr.org/2006/469.pdf.

[MOV93] Alfred Menezes, Tatsuaki Okamoto, and Scott A. Vanstone. Reducing elliptic curve logarithms to logarithms
in a finite field. IEEE Transactions on Information Theory, 39(5):1639–1646, 1993.

[MPH96] Markus Michels, Holger Petersen, and Patrick Horster. Breaking and Repairing a Convertible Undeniable
Signature Scheme. In Li Gong and Jacques Stearn, editors, ACM Conference on Computer and Communi-
cations Security - CCS ’96, pages 148–152. ACM, 1996.

[MRH04] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, Impossibility Results on Reduc-
tions, and Applications to the Random Oracle Methodology. In Moni Naor, editor, Theory of Cryptography
Conference- TCC 2004, volume 2951 of Lecture Notes in Computer Science, pages 21–39. Springer, 2004.

[MS97] Markus Michels and Markus Stadler. Efficient Convertible Undeniable Signature Schemes. In Selected Areas
in Cryptography - SAC ’97, pages 231–244, 1997.

[Oka94] Tatsuaki Okamoto. Designated Confirmer Signatures and Public-Key Encryption are Equivalent. In Yvo
Desmedt, editor, Advances in Cryptology - CRYPTO ’94, volume 839 of Lecture Notes in Computer Science,
pages 61–74. Springer, 1994.

[OKH05] Wakaha Ogata, Kaoru Kurosawa, and Swee-Huay Heng. The Security of the FDH Variant of Chaum’s
Undeniable Signature Scheme. In Serge Vaudenay, editor, Public Key Cryptography - PKC 2005, volume
3386 of Lecture Notes in Computer Science, pages 328–345. Springer, 2005.

[OP01] Tatsuaki Okamoto and David Pointcheval. The Gap-Problems: A New Class of Problems for the Security
of Cryptographic Schemes. In Kwangjo Kim, editor, Public Key Cryptography - PKC 2001, volume 1992 of
Lecture Notes in Computer Science, pages 104–118. Springer, 2001.

[Pai99] Pascal Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In Jacques
Stern, editor, Advances in Cryptology - EUROCRYPT ’99, volume 1592 of Lecture Notes in Computer
Science, pages 223–238. Springer, 1999.

[PX09] Manoj Prabhakaran and Rui Xue. Statistically Hiding Sets. In Marc Fischlin, editor, Topics in Cryptology
- CT-RSA 2009, volume 5473 of Lecture Notes in Computer Science, pages 100–116. Springer, 2009.

[Sch91] Claus-Peter Schnorr. Efficient Signature Generation by Smart Cards. Journal of Cryptology, 4(3):161–174,
1991.

15

http://eprint.iacr.org/2006/469.pdf

[TY98] Yiannis Tsiounis and Moti Yung. On the Security of ElGamal Based Encryption. In Hideki Imai and
Yuliang Zheng, editors, Public Key Cryptography - PKC ’98, volume 1431 of Lecture Notes in Computer
Science, pages 117–134. Springer, 1998.

A HVZK Proof of EDL and IDL in Groups of Unknown Order

In all the following, we let G denote the ambient group, G′ be a cyclic and efficiently recognizable
subgroup of G, and G be a certified generator of G′. We denote kG = dlog |G′|+e, and we interpret
strings in {0, 1}` as integers in [0; 2` − 1].

A.1 Proof of EDL

Common input: Security parameter k, ([G], G,X, Y, Z) where X,Y, Z ∈ G′
Prover private input: x = DlogG(X)

– Prover: draw a random r ← {0, 1}kG+2k, compute A = Gr and B = Y r, and send (A,B) to the
verifier

– Verifier: upon reception of (A,B), check that A,B ∈ G′, draw a random c ←$ {0, 1}k, and send c
to the prover

– Prover: check that c ∈ [0; 2k − 1], compute s = r + cx and send s to the verifier
– Verifier: Check that Gs = AXc and Y s = BZc, and accept iff both equalities hold

It can be checked that this proof system is sound, complete, and statistically HVZK.

A.2 Proof of IDL

Common input: Security parameter k, ([G], G,X, Y, Z) where X,Y, Z ∈ G′
Prover private input: x = DlogG(X)

– Prover: draw randomly t← {0, 1}k, r ← {0, 1}kG+3k, and r′ ← {0, 1}kG+2k, compute W = (Y x/Z)t,
A = Gr/Xr′ , and B = Y r/Zr

′ , and send (W,A,B) to the verifier
– Verifier: upon reception of (W,A,B), check that W,A,B ∈ G′ and W 6= 1, draw a random c ←$
{0, 1}k, and send c to the prover

– Prover: check that c ∈ [0; 2k−1], compute s = r+ctx and s′ = r′+ct, and send (s, s′) to the verifier
– Verifier: Check that Gs/Xs′ = A and Y s/Zs

′ = BW c, and accept iff both equalities hold

It can be checked that this proof system is sound, complete, and statistically HVZK.

B A TDDH Group Based on (Hidden) Pairings

This construction was proposed by Dent and Galbraith in their original paper [DG06]. Let N = p1p2
be the product of two primes such that p1 ≡ p2 ≡ 3 mod 4, and such that there are two large primes r1
and r2 such that r1|(p1 + 1) and r2|(p2 + 1). Let E : y2 = x3 + x be an elliptic curve over the ring ZN .
Then |E(ZN)| = (p1 + 1)(p2 + 1). Let P = (xP , yP) ∈ E(ZN) be a point of order r1r2. Then the group
generator outputs ([E(ZN)], P, τ) where the trapdoor is τ = (p1, p2, r1, r2). By the Chinese Remainder
Theorem, a tuple (X,Y, Z) ∈ E(ZN)3 is a DDH tuple iff the elements reduce modulo p1 and p2 to valid
DDH tuples in E(Fp1) and E(Fp2) respectively. Hence, to solve the DDH problem given τ , algorithm
Solve solves the DDH problem in each group E(Fpi) using the Weil or Tate pairing [MOV93, FMR99].
The resulting TDDH group has perfect soundness, and we conjecture that this TDDH group satisfies
Definition 1 (namely that CDH remains hard given the trapdoor). To the best of our knowledge, there
is no known secure way to hash into 〈P 〉.

16

C Convertible Undeniable Signatures

C.1 Syntactic Definition

A Convertible Undeniable Signature (CUS for short) scheme CUS is specified by the following set of
algorithms and protocols:

– KeyGen(1k): A randomized algorithm which, on input the security parameter 1k, outputs a pub-
lic/secret key pair (pk, sk) for the signer.

– USign(pk, sk, µ): A potentially randomized algorithm which takes as input a public/secret key pair
(pk, sk) and a message µ ∈ {0, 1}∗, and returns an undeniable signature σ. Given a public/secret
key pair (pk, sk) and a message µ, we say that a signature σ is a valid signature for m under (pk, sk)
if σ is in the support of USign(pk, sk, µ), and invalid otherwise. When USign is deterministic, this
boils down to USign(pk, sk, µ) = σ. We implicitly assume that there is an efficient algorithm which
on input (pk, sk, µ, σ) decides whether σ is a valid signature for m under (pk, sk) (this is always the
case when USign is deterministic).

– Πcon = (Pcon,Vcon): The confirmation protocol which is run between the signer (with private input
sk) and a verifier, on common input (pk, µ, σ). At the end of the protocol, the verifier outputs either
valid (meaning that it considers the signature as valid) or ⊥ (meaning that it considers the validity
of the signature as undetermined).

– Πdis = (Pdis,Vdis): The disavowal protocol which is run between the signer (with private input sk)
and a verifier, on common input (pk, µ, σ). At the end of the protocol, the verifier outputs either
invalid (meaning that it considers the signature as invalid) or ⊥ (meaning that it considers the
validity of the signature as undetermined).

– IConvert(pk, sk, µ, σ): A potentially randomized algorithm which on input pk, sk, a message µ and
a signature σ, either outputs ⊥ if the signature is invalid, or an individual receipt ρi (enabling to
universally verify the signature) if σ is valid.

– IVer(pk, µ, σ, ρi): A deterministic algorithm which on input pk, a message/signature pair (µ, σ),
and a individual receipt ρi, either accepts (outputs 1) or rejects (outputs 0).

– UConvert(pk, sk): A potentially randomized algorithm which on input a public/secret key pair
(pk, sk), outputs a universal receipt ρu enabling to universally verify signatures created under
(pk, sk).

– UVer(pk, ρu, µ, σ): A deterministic algorithm which on input pk, a universal receipt ρu and a mes-
sage/signature pair (µ, σ), either accepts (outputs 1) or rejects (outputs 0).

Given a public/secret key pair (pk, sk), we define the oracle Check(pk,sk) as follows: it takes as input
a message µ and a signature σ. If σ is a valid signature for µ under pk, then it implements Pcon with
private input sk and common input (pk, µ, σ), and otherwise it implements Pdis (with the same inputs).

The scheme should satisfy the following correctness properties. For all (pk, sk) possibly output by
KeyGen, all messages µ ∈ {0, 1}∗, all valid signatures σ possibly output by USign(pk, sk, µ), and all
invalid signatures σ′ for µ, the following holds with probability 1:

– completeness of Πcon: valid← 〈Pcon(sk),Vcon〉(pk, µ, σ)
– completeness of Πdis: invalid← 〈Pdis(sk),Vdis〉(pk, µ, σ′)
– 1← IVer(pk, µ, σ, IConvert(pk, sk, µ, σ))
– 1← UVer(pk, UConvert(pk, sk), µ, σ)

C.2 Security Definitions

The security goals for a CUS scheme are as follows. We assume that a public key unambiguously defines
a finite signature space SigSp(pk).

17

– soundness of Πcon and Πdis: informally, a cheating signer shall not be able to prove an invalid
signature valid with Πcon, or an valid signature invalid with Πdis.

– unforgeability: Security against existential forgery under chosen-message attacks (EF-CMA-security)
is defined as follows. Let CUS be a CUS scheme and A be an adversary. We define the EF-CMA
advantage of A as:

Advef−cma
CUS,A (k) = Pr

[
Expef−cma

CUS,A (k) = 1
]
,

where the experiment is defined as:

Experiment Expef−cma
CUS,A (k):

(sk, pk)← KeyGen(1k)
ρu ← UConvert(pk, sk)
(µ∗, σ∗)← AO(pk, ρu)
if σ∗ is valid for µ∗ under (pk, sk) output 1 else output 0

and the oracle O is defined as USign(pk, sk, ·). The adversary is not allowed to return (µ∗, σ∗) such
that σ∗ was obtained by querying µ∗ to O.
A CUS scheme is said to be EF-CMA-secure if the advantage Advef−cma

CUS,A (k) is negligible for all
PPT adversaries A.

– invisibility: Invisibility under chosen message attacks (INV-CMA-security) is defined as follows.
Let CUS be a CUS scheme and A = (A1,A2) be a two-stage adversary. We define the INV-CMA
advantage of A as:

Advinv−cma
CUS,A (k) =

∣∣∣∣Pr
[
Expinv−cma

CUS,A (k) = 1
]
− 1

2

∣∣∣∣ ,
where the experiment is defined as:

Experiment Expinv−cma
CUS,A (k):

(sk, pk)← KeyGen(1k)
(µ∗, state)← AO1 (pk)
b←$ {0, 1}
if b = 0 set σ∗ = USign(pk, sk, µ∗) else set σ∗ ←$ SigSP(pk)
b′ ← AO2 (pk, state, σ∗)
if b = b′ output 1 else output 0

and O is the set of oracles {USign(pk, sk, ·), Check(pk,sk)(·, ·), IConvert(pk, sk, ·, ·)}. The adversary
is not allowed to query these oracles with input µ∗.
A CUS scheme is said to be INV-CMA-secure if the advantage Advinv−cma

CUS,A (k) is negligible for all
PPT adversaries A.

C.3 Construction from a Static TDDH Group

Let ST DDH = (Gen, Samp, Solve) be a static TDDH group with perfect soundness. For this part, we
assume that Gen outputs a tuple ([G], G, τ) such that G is cyclic and efficiently recognizable, and G is
a generator of G. We construct a CUS scheme CUS as follows.

– KeyGen(1k): run the static TDDH group generator Gen(1k) to obtain ([G], G, τ), and Samp([G], G, τ)
to obtain (X,x, τx). Select a hash function H : {0, 1}∗ → G. The public key of the signer is
pk = ([G], G,X,H) and its secret key is sk = (x, τx).

– USign(pk, sk, µ): To sign a message µ ∈ {0, 1}∗, the signer computes M = H(µ), and S = Mx. The
signature is S.

– Πcon: run a zero-knowledge variant of the protocol for proving EDL of Appendix A to prove that
(X,H(µ), S) ∈ DHG

18

– Πdis: run a zero-knowledge variant of the protocol for proving IDL of Appendix A to prove that
(X,H(µ), S) /∈ DHG

– IConvert(pk, sk, µ, σ): Given a public key pk = ([G], G,X,H), a secret key sk = (x, τx), a message
µ and a signature σ = S, check whether H(µ)x = S, and output ⊥ if this does not hold. Otherwise
compute and output a NIZK proof ρi that (X,H(µ), S) ∈ DHG (using a hash function HFS for the
Fiat-Shamir transform)

– IVer(pk, µ, σ, ρi): check that ρi is a valid NIZK proof that (X,H(µ), S) ∈ DHG
– UConvert(pk, sk): to universally convert undeniable signatures, the signer outputs the trapdoor τx

as the universal receipt ρu.
– UVer(pk, ρu, µ, σ): To verify a signature σ = S on a message µ ∈ {0, 1}∗ with the public key

pk = ([G], G,X,H) and the universal receipt ρu = τx, compute M = H(µ) and run algorithm
Solve([G], G;X,M,S; τx), and accept the signature as valid iff Solve accepts.

19

	 New Constructions and Applications of Trapdoor DDH Groups
	Introduction
	The CDH and DDH Problems
	Trapdoor DDH Groups
	Contributions of this Work
	Open Problems
	Organization

	Preliminaries
	Notation and Definitions
	Proofs of Equality and Inequality of Discrete Logarithms
	Hashing into Groups

	Trapdoor DDH Groups
	Definition
	A TDDH Group Based on Composite Residuosity
	Hashing into QRN2.

	Static Trapdoor DDH Groups
	Definition
	A Construction Based on the RSA Problem
	Hashing into JN.

	A Construction Based on Signed Quadratic Residues
	Hashing into QRN+.

	Relation to the Strong Diffie-Hellman Problem

	Convertible Undeniable Signatures
	Background on Undeniable Signatures
	Construction of a CUS scheme from a Static TDDH Group
	Delegation.
	Instantiation with STDDH-RSA and STDDH-SQR.
	Certifying signers public keys.

	HVZK Proof of EDL and IDL in Groups of Unknown Order
	Proof of EDL
	Proof of IDL

	A TDDH Group Based on (Hidden) Pairings
	Convertible Undeniable Signatures
	Syntactic Definition
	Security Definitions
	Construction from a Static TDDH Group

