
Protecting PUF Error Correction
by Codeword Masking

Dominik Merli1, Frederic Stumpf1, Georg Sigl2

1 Fraunhofer Research Institution for Applied and Integrated Security (AISEC)
Munich, Germany

{dominik.merli,frederic.stumpf}@aisec.fraunhofer.de

2 Institute for Security in Information Technology
Technische Universität München, Munich, Germany

sigl@tum.de

Abstract. One of the main applications of Physical Unclonable Func-
tions (PUFs) is unique key generation. While the advantages of PUF-
based key extraction and embedding have been shown in several papers,
physical attacks on it have gained only little interest until now. In this
work, we demonstrate the feasibility of a differential power analysis at-
tack on the error correction module of a secure sketch. This attack can
also be applied to code-offset fuzzy extractors because they build upon
secure sketches. We propose a codeword masking scheme to protect key
generation algorithms used for PUFs. Our proposed countermeasure en-
ables masking of linear Error-Correcting Codes (ECCs) without impact
on their error correction capabilities while keeping the overhead low.
This is achieved by random masking codewords, which can be efficiently
generated by the ECC’s encoding function. Further, it allows to consis-
tently protect the PUF-based key generation process and can provide
the masked key and its mask to a subsequent crypto module which im-
plements masking as well. We demonstrate the practical protection of
our codeword masking scheme by attacking a masked secure sketch im-
plementation. We emphasize that, besides protecting code-offset algo-
rithms, the proposed masking scheme can also be applied to index-based
syndrome coding and other security-critical error correction modules.

Keywords: Physical Unclonable Functions, Error-Correcting Codes,
Masking, Secure Sketch, Fuzzy Extractor, Differential Power Analysis

1 Introduction

Physical Unclonable Functions (PUFs) exploit unique information gen-
erated by sub-micron manufacturing variations of mainly, but not only,
silicon devices. They have increasingly gained interest in academia as well
as industry since they provide promising security features for low-cost de-
vices, such as Radio Frequency Identification (RFID) tags [5], but also
for high-security products like smartcards [7].

2 D. Merli, F. Stumpf, G. Sigl

Until now, key generation as a basis for conventional cryptographic al-
gorithms is the dominating practical application. There, a cryptographic
key is bound to or generated from noisy measurements of physical proper-
ties like ring oscillators’ frequencies [24] or SRAM cells’ start-up values [9].

One of the most popular key generation algorithms is the code-offset
fuzzy extractor proposed by Dodis et al. [6], which is based on code-offset
secure sketches [6]. Secure sketches as well as fuzzy extractors usually uti-
lize linear Error-Correcting Codes (ECCs) to achieve reliability, because
raw PUF measurements naturally involve a certain amount of noise. Dur-
ing an enrollment phase, they generate helper consisting of a code-offset
between the secret PUF bits and an ECC codeword. This helper data is
later used for reliable reconstruction of the initial key. Since this recon-
struction phase is performed, when devices are out in the field, physical
attacks, e.g. power analysis [15,19], have to be considered for the security
of PUF-based devices.

In this contribution, we show that code-offset secure sketches, the
basic building block of code-offset fuzzy extractors, can be attacked by
correlation-based DPA because of leakage originating from the error cor-
rection module. Applying standard masking is not possible for ECCs be-
cause, thereby, they would loose their error correction capabilities. There-
fore, we propose a codeword masking scheme to still be able to protect
linear ECCs against DPA and show how to apply it to code-offset con-
structions. The effectiveness of the proposed masking scheme is evaluated
by a correlation-based DPA attack on the error correction of a protected
secure sketch design on an FPGA. Further, we generalize the threat of
DPA based on helper data manipulations to other PUF key generation
algorithms and give an overview of the range of applications where our
codeword masking scheme can improve protection.

The paper is organized as follows. In Section 2, we give an overview of
related work. Section 3 shows the exploitation of ECC side-channel leak-
age of a secure sketch implementation. In Section 4, we propose codeword
masking, show how to apply it to code-offset architectures and evaluate its
effectiveness. Section 5 give a broader view on where codeword masking
can be applied, followed by a conclusion in Section 6.

2 Related Work

There exists some related work about ECCs causing vulnerabilities in
security critical systems. In 2009, Dai and Wang [4] presented a study
on side-channels of ECCs used in reliability enhancing techniques for

Protecting PUF Error Correction by Codeword Masking 3

memories. Also, side-channel attacks on the McEliece public key cryp-
tosystem [23,21] exploit leakage of ECC implementations. We show that
side-channel leakage of ECCs in PUF-based key generation algorithms
have to be considered as realistic threat.

Until now, only a few publications deal with side-channel analysis of
secure sketches and fuzzy extractors. Karakoyunlu et al. [13] presented
two attacks on software implementations of Reed-Solomon codes [17] and
Bose-Chaudhuri-Hocquenghem (BCH) codes [17]. The authors claimed
that standard software implementations of these codes show data depen-
dent leakage, which can be attacked by SPA. Further, they proposed a
differential template attack, where they built templates for every possible
input symbol by varying the helper data. Then, a set of distinguished
templates is chosen for the analysis of the device under attack. The work
of Schuster [22] and Merli et al. [20] showed that the Toeplitz hashing [16],
which is part of previously proposed efficient fuzzy extractor implementa-
tions, can be broken by SPA. They also theoretically explain the possibil-
ity to exploit side-channel information generated by the code-offset XOR
upon helper data manipulations. We practically demonstrate the feasibil-
ity of DPA attacks on code-offset constructions and, in contrast to earlier
attack papers, propose a countermeasure to protect secure sketches and
fuzzy extractors against SPA and first-order DPA attacks.

3 Attacking the Error Correction of a Secure Sketch

Since its introduction in 1996 [14], side-channel analysis of cryptosystems
has been an important topic for embedded security. One of the most
powerful tools to attack software and hardware implementations of cryp-
tographic algorithms is DPA [15,19]. In this section, we demonstrate the
applicability of correlation-based DPA to a code-offset secure sketch. The
shown vulnerability of the ECC implementation also holds for code-offset
fuzzy extractors because they are only extensions of secure sketches.

3.1 Code-Offset Secure Sketch

One of the basic key generation algorithms is a secure sketch [6] based
on a code-offset construction. In the following, we use it to embed and
reconstruct a secret key into random PUF reponse bits.

During an enrollment phase, an external key k is encoded to a code-
word c of a code C: c = encodeC(k). Then, the public helper data (the
sketch) w = c⊕r is calculated as the code-offset between c and the initial

4 D. Merli, F. Stumpf, G. Sigl

PUF response vector r. During the reconstruction phase, the Rec module,
as shown in Figure 1, is used to reliably generate the embedded key in
the field and, therefore, is a potential attack target.

PUF Response

Helper Data

Secret Key

internal / secret

external / public

r'

w

c' k
decodeC

Fig. 1. Reconstruction module of a code-offset secure sketch

The key reconstruction of a code-offset secure sketch consists of the
code-offset resolution of r′, a noisy variant of the initial PUF response r,
and helper data w and the decoding function decodeC of code C:

Rec(r′,w) = decodeC(r′ ⊕w) = k (1)

3.2 Helper Data Manipulation

Differential side-channel attacks require the manipulation of one of the
function’s inputs to generate changing intermediate (power) values. Since
r′ is determined by the unique PUF properties, manipulation of helper
data w is the only way to achieve this. In the case of code-offset construc-
tions, the manipulation of a single bit of w directly flips one input bit of
the analyzed function decodeC(r′ ⊕w), which is a desirable property for
an attacker.

It is legit to assume deterministic write access to the helper data string
for many embedded security applications because helper data is usually
stored in external non-volatile memory, which, actually, is a profitable
advantage of PUFs. However, if the helper data is located in a memory
hard to manipulate, as it might be the case for smartcards, then this
renders DPA on PUF key generation impossible or at least extremely
time consuming.

In order to apply correlation-based DPA to the error correction of
a code-offset secure sketch, first, an intermediate value of decodeC() has

Protecting PUF Error Correction by Codeword Masking 5

to be chosen as an attack point3. Then, power traces t1, ..., tW with T
samples have to be collected for W different helper data input vectors
w1, ...,wW resulting in a W × T trace matrix T. Based on the chosen
power model, for each of the R possible PUF response vectors r1, ..., rR,
hypothetical intermediate values for each helper data vector w1, ...,wW

have to be calculated and stored as a W×R hypothesis matrix H. Finally,
the correlation between the T sample columns of T and each of the R
PUF response hypothesis columns of H has to be computed [19] to obtain
a R×T correlation matrix M. The maximum correlation value in M gives
the trace sample and the best correlating PUF bit vector hypothesis. This
PUF bit vector represents the extracted secret which, together with the
original helper data w, can be used to calculate the embedded key k.

For practical attacks, the noise contained in r′ now and then changes
bits of the ECC decoder input of a secure sketch, which makes the DPA
inaccurate. Therefore, PUF noise generally leads to an increased number
of required power traces.

3.3 DPA on Secure Sketch FPGA Implementation

Our secure sketch implementation used for the following DPA attack is
shown in Figure 2. The decoding module incorporates a concatenation of
an (n=7, k=1, t=3) repetition code and an (n=127, k=64, t=10) BCH
code. Concatenated codes have been shown to achieve strong and efficient
error correction implementations for PUF key generation [1,18]. We chose
this combination to achieve a BCH code output error probability of less
than 10−6 [1].

We embedded a 128-bit key into 1778 PUF response bits, which re-
sults in 1778 bits of helper data. Our implementation has two 7-bit input
interfaces for chunks of PUF response bits and helper data bits. The
code-offset XOR and the repetition decoding are implemented in combi-
national logic, which yields a decoded 1-bit output for each 7-bit helper
data input word. After each repetition decoding, the output bit is shifted
into the BCH decoder [11], which bit-serially decodes 127 input bits to a
stable 64-bit word. This procedure is performed twice to obtain a 128-bit
key.

We did not use a real PUF implementation, but provide PUF response
bits as well as helper data from a preloaded circular buffer. This is impor-
tant to obtain DPA results which are not influenced by a PUF’s specific
noise characteristics.
3 Note that we assume that an attacker knows the function decodeC() or has deter-

mined its characteristics by reverse engineering.

6 D. Merli, F. Stumpf, G. Sigl

PUF Response
(7-bit words)

Helper Data
(7-bit words)

Repetition Decoder
(n=7,k=1,t=3)

Secret Key

internal

external

BCH Decoder
(n=127,k=64,t=10)

r'

w

c' k

Attack Point

(128-bit)

1x127x

2x

Fig. 2. Secure sketch implementation under test

We chose the output of the repetition code decoder, as shown in Fig-
ure 2 which is stored in the input register of the BCH decoder, as the
intermediate value to attack. One reason therefore is the simple calcula-
tion of a repetition code decoding compared to the calculation of inter-
mediate values of a BCH code. The second reason is that all codeword
inputs of the 7-to-1 repetition decoder can be covered by manipulating
the 7-bit helper data chunks, which leads to W = 128 traces per repeti-
tion codeword. We used a Hamming distance model hypothesis between
two succeeding repetition code output bits to estimate the hypothetical
power consumption under W = 128 different helper data manipulations
and R = 128 possible PUF response bit vectors. For the first decoded bit,
the preceding register value is assumed to be zero after reset.

We synthesized our design for a Xilinx XC3S200 FPGA and analyzed
its power consumption over a 10 Ohm shunt resistor with a differen-
tial probe connected to a digital storage oscilloscope. We recorded 128
traces per repetition codeword for every possible manipulation of the 7-
bit helper data input. We focused our analysis on the first four cycles
after each helper data word was provided to the key reconstruction, be-
cause the repetition decoding happens directly afterwards. Afterwards,
we correlated the hypothetical power values with the measured traces.
For all following hypothesis correlation figures, we only depicted positive
correlations because the linearity property of the analyzed circuit leads to
the fact that inverted PUF inputs show a ’mirrored’ negative correlation,
which does not provide further information.

In Figure 3, the maximum correlation for all 7-bit PUF hypothesis
are shown. The values were generated with only 128 measured traces
without any preprocessing. The estimated significance bound [19] for 128

Protecting PUF Error Correction by Codeword Masking 7

0.0

0.2

0.4

0.6

0.8

1.0

0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 7F

Repet it ion Decoder Output Correlat ion

PUF Response Vector

C
o

rr
e

la
ti

o
n

Fig. 3. Maximum correlation of repetition decoder output

traces is approx. 4/
√

128 = 0.35. Therefore, we are confident that our
attack worked correctly, since the results show a correlation of 0.52 for
the correct PUF bits (0x43) and leave all other hypothesis below or only
slightly above the significance bound (0.38, in the best case).

For a full attack on all 1778 PUF bits of our implementation, an at-
tacker would have to perform the described analysis for all 254 repetition
code decoder runs, which results in a minimum of 254 × 128 = 32 512
traces to record and analyze.

4 Codeword Masking

A popular method to prevent DPA attacks is masking input values of an
algorithm with random masks [3,8,19] to destroy the dependency of inter-
mediate and input values. However, this is not possible for ECCs because
a random mask would be regarded as a random error vector introducing
(additional) errors to the original codeword. Therefore, trivial masking
cannot be applied without loosing the ECC’s essential error correction
properties.

In this section, we propose a codeword masking scheme which can be
applied to linear ECCs without having an impact on their error correction
capabilities and therefore not influencing the functionality of the original
application, e.g. PUF key generation. We do not focus on non-linear ECCs
because, in the vast majority of cases, PUF key generation is based on
linear ECCs. We first explain the principle of codeword masking, show

8 D. Merli, F. Stumpf, G. Sigl

how to apply it to a secure sketch architecture and then demonstrate its
practical protection.

The linearity property [17] of the functions encodeC and decodeC of a
linear code C defines, that the sum (XOR) of two codewords of C always
results in another codeword of C. This also holds for concatenations of
linear codes and represents the basis for our codeword masking scheme.
We propose to mask an original codeword c of C by XORing it with the
codeword mask cm, where cm is a random codeword of C. The result
of this boolean masking can still be decoded by decodeC to cancel bit
errors, if present. Decoding cm leaves the random bit vector m, which
corresponds to the ’raw’ mask. This mask can then be used to demask
the decoded result by XORing:

decodeC(c⊕ cm) = decodeC(c)⊕ decodeC(cm) = decodeC(c)⊕m (2)

The relation between the original input codeword and the processed
intermediate values is broken by this method while preserving the ECCs
error correction features. Therefore, we propose it to protect linear ECCs
from DPA attacks like the one shown in Section 3.

Looking at the overhead of codeword masking, the straight forward
approach would be duplicating the decoding module. However, we pro-
pose to generate a random mask m (used for demasking) and encode
it to obtain cm. Thereby, only the encoding function encodeC has to be
implemented, which has a significantly lower implementation complexity
than the decoding function decodeC [17]. Further, the encoding function
is also required for the enrollment phase, which means that it might be
implemented anyway and can be reused for masking purposes resulting
in almost no overhead.

4.1 Secure Sketch Protection

The application of the proposed technique to secure sketches is shown in
Figure 4. There, the helper data w is masked by the masking codeword
cm = encodeC(m) of a random mask m. The resulting ECC decoder
input can be decoded to k⊕m, which results in the generated key k after
demasking with the raw mask m.

For a practical evaluation, we extended the secure sketch implemen-
tation described in Section 3 by the codeword masking scheme shown in
Figure 4. In detail, we added a 128-bit mask register (same size as key),
which is first encoded by the BCH code encoder and then by the rep-
etition code encoder. We preloaded the mask register with random bits

Protecting PUF Error Correction by Codeword Masking 9

PUF Response

Helper Data

decodeC Secret Key

internal / secret

external / public

Random MaskencodeC

r'

w

w cm cm m

c' cm k m k

(ECC-dataword-sized)

Fig. 4. Masked secure sketch (Rec)

0.0

0.2

0.4

0.6

0.8

1.0

0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 7F

Repet it ion Decoder Output Correlat ion

PUF Response Vector

C
o

rr
e

la
ti

o
n

(a) 128 traces (1st dataset)

0.0

0.2

0.4

0.6

0.8

1.0

0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 7F

Repet it ion Decoder Output Correlat ion

PUF Response Vector

C
o

rr
e

la
ti

o
n

(b) 128 traces (2nd dataset)

0.0

0.2

0.4

0.6

0.8

1.0

0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 7F

Repet it ion Decoder Output Correlat ion

PUF Response Vector

C
o

rr
e

la
ti

o
n

(c) 128 traces (3rd dataset)

0.0

0.2

0.4

0.6

0.8

1.0

0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 7F

Repet it ion Decoder Output Correlat ion

PUF Response Vector

C
o

rr
e

la
ti

o
n

(d) 6400 traces

Fig. 5. Maximum correlation of masked repetition decoder output

10 D. Merli, F. Stumpf, G. Sigl

before each analysis run. The overhead in this proof-of-concept FPGA
design sums up to 20% more slices, 45% more registers and 22% more
look-up tables, which is mainly determined by the additional registers for
the raw and the encoded codeword mask, but also by the additional BCH
encoder. We regard these results as rather efficient, because the overhead
is significantly below numbers for AES, where masked FPGA implemen-
tations are reported to have around 60% slice overhead [12]. Also, the
overhead can be reduced even more, if the existing BCH encoder of the
enrollment module is used for masking purposes.

We performed the same correlation-based first-order DPA attack on
the repetition decoder output as described in Section 3 to practically
evaluate the codeword masking countermeasure.

Figures 5(a), 5(b) and 5(c) show results for attacks on three different
sets of 128 traces covering all 128 possible helper data manipulations.
They exhibit significant correlations, but neither for the correct PUF
response vector (0x43), nor for the same value at all. An attack based on
6400 traces (50 repetitions of the 128 helper data manipulations) leads to
the correlations shown in Figure 5(d). Although 6400 traces do not sound
like a high number for DPA, note that this attack only targets 7 of 1778
bits and, if successful, already a total of 254 × 6400 = 1 625 600 traces
would be required for a complete attack. However, also with 6400 traces,
the correct PUF value is not distinguishable. We blame the clearly visible
patterns of significant correlations on the linearity of the repetition code
implementation, but do not see them as a weakness of codeword masking
because they do not reveal the secret PUF bits. This demonstrates the
protective capabilities of the proposed masking scheme for PUF error
correction against first-order DPA attacks. Higher-order attacks might
be a threat to it, but were out-of-scope for this work.

5 Wider Scope for Codeword Masking

This section widens the scope of codeword masking to fuzzy extractors
and non-code-offset key generation. Also, it can be applied to any other
application of linear ECCs.

5.1 Code-Offset Fuzzy Extractors

A secure sketch has to be extended to a fuzzy extractor including a ran-
domness extractor Ext to obtain a full-entropy key k, if a PUF’s output
is not completely random.

Protecting PUF Error Correction by Codeword Masking 11

For code-offset fuzzy extractors, the secret key k is not encoded to
codeword c, but extracted from PUF response r by a randomness ex-
tractor Ext. The codeword c is chosen at random and only serves for
code-offset error correction. During the reproduction procedure Rep, see
Figure 6, the noisy codeword c′ = r′ ⊕w is corrected to c = correctC(c′)
and then again XORed with the helper data w to obtain the initial PUF
response vector r = c⊕w.

PUF Response

Helper Data

correctC Secret Key

internal / secret

external / public

Ext

r'

w

c' c r k

Fig. 6. Code-offset fuzzy extractor (Rep)

Since the error correction of the code-offset fuzzy extractor architec-
ture is very similar to the one of a secure sketch, it is vulnerable to the
same attack as shown in Section 3. Additionally, the second processing of
helper data w allows to manipulate intermediate values of the extractor
module Ext and, thereby, to mount extractor DPA attacks based on helper
data manipulations. The double influence of helper data w is shown in
the formal equation of a code-offset fuzzy extractor’s reproduction phase:

Rep(r′,w) = Ext(correctC(r′ ⊕w)⊕w) = k (3)

In previously proposed fuzzy extractor implementations [1,18], Toeplitz
hashing [16] is chosen as an efficient randomness extractor. In this linear
hash algorithm, the state of a Linear Feedback Shift Register (LFSR) is
XORed into an accumulator if the input bit is 1. Otherwise, the LFSR
will only be shifted without XORing. In the end, the hash value is a linear
combination of LFSR states, selected by the input data.

With the proposed codeword masking scheme, it is possible to con-
sistently mask such fuzzy extractor architectures. The application to the
error correction module is identical as for secure sketches, but then the
masked PUF response r⊕cm is fed into the Toeplitz hashing TH as shown
in Figure 7. The encoded mask is also processed by the Toeplitz hashing.
This leads to a hashed masking codeword TH(cm) which represents the

12 D. Merli, F. Stumpf, G. Sigl

correct mask for the masked key TH(r ⊕ cm) because of the linearity
property of Toeplitz hashing:

TH(r⊕ cm) = TH(r)⊕ TH(cm) = k⊕ TH(cm) (4)

PUF Response

Helper Data

correctC Masked Key

internal / secret

external / public

Random MaskencodeC
(ECC-dataword-sized)

Toeplitz Hash

Toeplitz Hash

r'

w

m

cm

w cm

c' cm c cm r cm TH(r cm)

TH(cm)
Mask

Fig. 7. Masked code-offset fuzzy extractor (Rep)

The resulting pair of masked key and corresponding mask can be used
to resolve the masking, if required, but can also be provided to the sub-
sequent crypto module leading to a consistently masked code-offset fuzzy
extractor from the first helper data input to the finally cryptographic algo-
rithm. Note that implementing such an architecture also protects devices
from the SPA attacks on fuzzy extractors shown in related work [13,22,20]

5.2 Robust Sketches and Robust Fuzzy Extractors

In 2005, Boyen et al. [2] explained that an active adversary can gain infor-
mation about the user’s biometric (or PUF) by maliciously manipulating
the communication between a server (implementing a fuzzy extractor)
and the user. As a solution, they proposed robust sketches and robust
fuzzy extractors. However, we explain that these constructions do not
protect against physical attackers.

The proposed robust constructions use a hash function H to generate a
hash value h = H(k,w) which is stored along with helper data w. During
each reconstruction, a (maybe manipulated) secret key k̂ is generated as
in a standard secure sketch or fuzzy extractor, but before using k̂, the
hash value ĥ = H(k̂, ŵ) is compared to the previously generated value h.

Protecting PUF Error Correction by Codeword Masking 13

If the hash values match, ŵ was not manipulated and k̂ = k, otherwise,
k̂ will be discarded.

While this construction is secure for remote scenarios, we want to
stress that it does not hold for a physical attacker, who is able to ob-
serve side-channel leakage. The reason for that is, that the operations of
standard secure sketches and fuzzy extractors, which cause exploitable
side-channel leakage, still need to be performed before a decision can be
made if the helper data was manipulated or not. Therefore, observing
side-channels enables an attacker to extract information about interme-
diate results, even before a robust sketch or a robust fuzzy extractor
detects the manipulation.

5.3 Masking Other PUF Key Generation Algorithms

The main part of this contribution is based on code-offset algorithms,
however, we want to emphasize that the demonstrated DPA attack as
well as the proposed codeword masking are also applicable to other PUF
key generation algorithms, e.g., Index-Based Syndrome coding (IBS) [25]
and its extension Complementary IBS (C-IBS) [10].

IBS stores indices of reliable PUF output bits as helper data, which
is used to select the most reliable bits during reconstruction. C-IBS ad-
ditionally stores indices of reliable bits with complementary value to in-
crease reliability. Both constructions are usually supported by an ECC
implementation to achieve lower residual error probabilities.

Regarding DPA attacks, there is a slight difference compared to code-
offset algorithms. While flipping a bit in code-offset helper data directly
leads to a flipped bit of the ECC input data, for IBS, an attacker has
to guess (from a small number of choices) a valid index of an inverted
PUF bit to achieve the necessary bit flip. For C-IBS, an attacker has an
easy job again, since exchanging original and complementary indices in
the helper data deterministically causes a bit flip.

In order to protect the error correction module of IBS and C-IBS
implementations, we propose to apply random codeword mask to PUF
bits selected by IBS/C-IBS before processing them by ECCs. Afterwards,
the masked key can be demasked or forwarded to the subsequent crypto
module.

6 Conclusion

We showed that vulnerabilities of error correction modules used in PUF-
based key generation can be exploited by DPA and experimentally demon-

14 D. Merli, F. Stumpf, G. Sigl

strated its feasibility on power traces of a secure sketch implementation.
In order to protect PUF-based key generation, we proposed a codeword
masking scheme based on random codewords, which maintains an ECC’s
full error correction capability. We verified our approach by attacking a
masked secure sketch implementation. Further, we showed how codeword
masking can be used to consistently mask fuzzy extractors from the first
code-offset to the point where a crypto module uses the generated key.

Our results show that the proposed masking scheme is an impor-
tant step towards side-channel attack resistance of PUF key generation
algorithms. Besides code-offset-based key generation, also other key em-
bedding algorithms like IBS and C-IBS can benefit from protecting their
ECC implementations by codeword masking. Even non-PUF applications,
such as, reliable memories or the McEliece cryptosystem, can use code-
word masking as a valuable countermeasure against shown side-channel
vulnerabilities of their ECC implementations.

Acknowledgements

The authors would like to thank Johann Heyszl, Benedikt Heinz, Dieter
Schuster, Matthias Hiller and Marc Stöttinger for helpful discussions.

References

1. C. Bösch, J. Guajardo, A.-R. Sadeghi, J. Shokrollahi, and P. Tuyls. Efficient
helper data key extractor on FPGAs. In CHES ’08: Proceedings of the 10th In-
ternational Workshop on Cryptographic Hardware and Embedded Systems, pages
181–197, Berlin, Heidelberg, 2008. Springer-Verlag.

2. X. Boyen, Y. Dodis, J. Katz, R. Ostrovsky, and A. Smith. Secure remote au-
thentication using biometric data. In R. Cramer, editor, Advances in Cryptology
EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages
561–561. Springer Berlin / Heidelberg, 2005.

3. S. Chari, C. Jutla, J. Rao, and P. Rohatgi. Towards sound approaches to counteract
power-analysis attacks. In M. Wiener, editor, Advances in Cryptology - CRYPTO’
99, volume 1666 of Lecture Notes in Computer Science, pages 791–791. Springer
Berlin / Heidelberg, 1999.

4. J. Dai and L. Wang. A study of side-channel effects in reliability-enhancing tech-
niques. In Proceedings of the 2009 24th IEEE International Symposium on Defect
and Fault Tolerance in VLSI Systems, DFT ’09, pages 236–244, Washington, DC,
USA, 2009. IEEE Computer Society.

5. S. Devadas, E. Suh, S. Paral, R. Sowell, T. Ziola, and V. Khandelwal. Design and
implementation of PUF-based ”unclonable” RFID ICs for anti-counterfeiting and
security applications. In RFID, 2008 IEEE International Conference on, pages
58–64, 2008.

Protecting PUF Error Correction by Codeword Masking 15

6. Y. Dodis, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate strong keys
from biometrics and other noisy data. In C. Cachin and J. Camenisch, editors,
Advances in Cryptology - EUROCRYPT 2004, volume 3027 of Lecture Notes in
Computer Science, pages 523–540. Springer Berlin / Heidelberg, 2004.

7. T. Esbach, W. Fumy, O. Kulikovska, D. Merli, D. Schuster, and F. Stumpf. A new
security architecture for smartcards utilizing PUFs. In Proceedings of the 14th
Information Security Solutions Europe Conference (ISSE’12). Vieweg+Teubner
Verlag, 2012.

8. L. Goubin and J. Patarin. DES and differential power analysis the ”duplication”
method. In . Ko and C. Paar, editors, Cryptographic Hardware and Embedded Sys-
tems, volume 1717 of Lecture Notes in Computer Science, pages 728–728. Springer
Berlin / Heidelberg, 1999.

9. J. Guajardo, S. S. Kumar, G. J. Schrijen, and P. Tuyls. FPGA intrinsic PUFs
and their use for IP protection. In P. Paillier and I. Verbauwhede, editors, CHES,
volume 4727 of Lecture Notes in Computer Science, pages 63–80. Springer, 2007.

10. M. Hiller, D. Merli, F. Stumpf, and G. Sigl. Complementary IBS: Application spe-
cific error correction for PUFs. In Hardware-Oriented Security and Trust (HOST),
2012 IEEE International Symposium on, pages 1 –6, june 2012.

11. E. Jamro. The design of a vhdl based synthesis tool for bch codecs. Master’s
thesis, School of Engineering, The University of Huddersfield, Sep 1997.

12. N. Kamoun, L. Bossuet, and A. Ghazel. SRAM-FPGA implementation of masked
s-box based DPA countermeasure for AES. In Design and Test Workshop, 2008.
IDT 2008. 3rd International, pages 74–77, 2008.

13. D. Karakoyunlu and B. Sunar. Differential template attacks on PUF enabled
cryptographic devices. In Information Forensics and Security (WIFS), 2010 IEEE
International Workshop on, pages 1 –6, dec 2010.

14. P. C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems. In Proceedings of the 16th Annual International Cryptology Confer-
ence on Advances in Cryptology, CRYPTO ’96, pages 104–113, London, UK, 1996.
Springer-Verlag.

15. P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In M. J. Wiener,
editor, CRYPTO, volume 1666 of Lecture Notes in Computer Science, pages 388–
397. Springer, 1999.

16. H. Krawczyk. LFSR-based hashing and authentication. In CRYPTO ’94: Pro-
ceedings of the 14th Annual International Cryptology Conference on Advances in
Cryptology, pages 129–139, London, UK, 1994. Springer-Verlag.

17. S. Lin and D. J. Costello. Error Control Coding, Second Edition. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 2004.

18. R. Maes, P. Tuyls, and I. Verbauwhede. Low-overhead implementation of a soft
decision helper data algorithm for SRAM PUFs. In C. Clavier and K. Gaj, edi-
tors, CHES, volume 5747 of Lecture Notes in Computer Science, pages 332–347.
Springer, 2009.

19. S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing the
Secrets of Smart Cards (Advances in Information Security). Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2007.

20. D. Merli, D. Schuster, F. Stumpf, and G. Sigl. Side-channel analysis of PUFs
and fuzzy extractors. In 4th International Conference on Trust and Trustworthy
Computing (TRUST2011), Pittsburgh, PA, USA, June 2011. Springer.

21. H. Molter, M. Stöttinger, A. Shoufan, and F. Strenzke. A simple power analysis
attack on a McEliece cryptoprocessor. Journal of Cryptographic Engineering, 1:29–
36, 2011.

16 D. Merli, F. Stumpf, G. Sigl

22. D. Schuster. Side-channel analysis of physical unclonable functions (PUFs).
Diploma thesis, Technische Universität München, Dec. 2010.

23. F. Strenzke, E. Tews, H. Molter, R. Overbeck, and A. Shoufan. Side channels in the
McEliece PKC. In J. Buchmann and J. Ding, editors, Post-Quantum Cryptography,
volume 5299 of Lecture Notes in Computer Science, pages 216–229. Springer Berlin
/ Heidelberg, 2008.

24. G. E. Suh and S. Devadas. Physical unclonable functions for device authentication
and secret key generation. Design Automation Conference, 2007. DAC ’07. 44th
ACM/IEEE, pages 9–14, 2007.

25. M.-D. M. Yu and S. Devadas. Secure and robust error correction for physical
unclonable functions. IEEE Des. Test, 27(1):48–65, 2010.

	Protecting PUF Error Correction by Codeword Masking
	Introduction
	Related Work
	Attacking the Error Correction of a Secure Sketch
	Code-Offset Secure Sketch
	Helper Data Manipulation
	DPA on Secure Sketch FPGA Implementation

	Codeword Masking
	Secure Sketch Protection

	Wider Scope for Codeword Masking
	Code-Offset Fuzzy Extractors
	Robust Sketches and Robust Fuzzy Extractors
	Masking Other PUF Key Generation Algorithms

	Conclusion

