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1 Introduction

TLS is the mostly widely used cryptographic protocol for secure communications on the Internet. The
main purpose of TLS is to provide end-to-end security against an active, man-in-the-middle attacker.
Originally deployed (as SSL) in web browsers for https connections, TLS is now used as a general
purpose provider of secure communications to all kinds of applications: e-commerce transactions, virtual
private networks (VPN), Android and iOS mobile apps [25, 26], as well as related procotols like DTLS
[39, 46]. In short, TLS is one of the most important real-world deployments of cryptography that we
have.

TLS in a nutshell. We begin with an informal high-level overview of the TLS protocol; a more
detailed treatment is given in Section 2 and Appendix A. The TLS protocol is executed between a
client and a server. It has two main constituents: the Handshake Protocol, which is responsible for key
establishment and authentication; and the Record Protocol, which provides a secure channel for handling
the delivery of data. The Handshake Protocol establishes the application keys, which are in turn used to
encrypt application data in the Record Protocol. The TLS specification offers multiple options for key
establishment mechanisms in the Handshake Protocol and for symmetric key encryption schemes in the
Record Protocol. The most common configuration, to which we refer as TLS-RSA, relies on RSA PKCS
#1v1.5 encryption in the Handshake Protocol. Other configurations include TLS-DH and TLS-DHE,
which rely on Diffie-Hellman key exchange (the first uses a static server’s DH key and an ephemeral
client’s key while in the latter both parties contribute ephemeral DH keys). All these configurations
provide server authentication, with optional client authentication in settings where clients possess public
keys as well.

Prior work on TLS. In view of its importance, TLS has long been the subject of intense research
analysis, including, in chronological order, [50, 14, 45, 37, 32, 49, 20, 34, 5, 40, 29, 6, 41, 23, 44, 11,
2, 31, 38, 24, 16, 3, 12, 4]. The main, twin thrusts of this research have been to establish to what extent
the TLS Handshake Protocol and the TLS Record Protocol are secure, for the respective tasks of key
establishment and authentication and for providing a secure channel for delivery of data.

We now have a fairly complete understanding of the underlying cryptography for the Record
Protocol, as studied in the works of Krawczyk [37] as well as Paterson, Ristenpart and Shrimpton [44].
These works demonstrated that, when carefully implemented to avoid timing and other attacks like
those in [49, 20, 3], the stream-cipher and CBC encryption modes in the TLS Record Layer achieve the
security notion of authenticated encryption; in fact, [44] puts forth and achieves a strengthening there-of,
known as stateful, length-hiding authenticated encryption (sLHAE).

On the other hand, a complete analysis of the TLS Handshake Protocol remains elusive. A main
obstacle is that the design of TLS violates the basic cryptographic principles of key indistinguishability
and separation of key exchange and secure channels. This arises because the TLS Record Protocol
overlaps with the TLS Handshake Protocol, and the application key is used to encrypt the last two
messages of the Handshake Protocol (known as the Finished messages). As such, the TLS Handshake
Protocol is deemed insecure by the existing security models for key exchange, initiated in the work of
Bellare and Rogaway [9].

Several prior works [41, 32] circumvented this issue by analyzing variants of the TLS protocol
(e.g. with a different message ordering, unencrypted Finished messages, or RSA-OAEP encryption).
In particular, Morrissey, Smart and Warinschi [41] analyze the “Truncated TLS Handshake Protocol”,
where the Finished messages are not encrypted by the application key. An important feature of [41]
is the modularity of the approach. This conceptually simplifies the protocol and the security proofs, and
points the way forward for subsequent analysis. However, the end result applies to truncated TLS and
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not to the real protocol. In addition, Morrissey et al. [41] model TLS-RSA under the assumption that
RSA encryption is replaced with CCA-secure encryption which is provably false for RSA PKCS #1v1.5
encryption as used in TLS-RSA. The modularity theme from [41] is developed further in recent work
by Brzuska et al. [16], who analyze the TLS protocol using a game-based framework that is designed
to enable compositional results to be be proved, but their analysis of TLS-RSA assumes IND-CCA
security for the RSA encryption, which, again, is known not to hold. Thus, unfortunately, given the high
sensitivity of key exchange protocols in general (and TLS in particular) to small details, these results tell
us little about TLS as used in practice.

In recent work, Jager et al. [31] put forth a new security notion — Authenticated and Confidential
Channel Establishment (ACCE) security — which captures the desired security guarantees when the
TLS Handshake and Record Protocols are used in tandem. (This circumvents the barrier pertaining to the
separation of key exchange and secure channels.) In addition, they showed that the cryptographic core of
the TLS-DHE protocol when both server and client authentication are applied satisfies ACCE security.
Informally, this means the TLS Record Protocol when used with TLS-DHE as the Handshake Protocol
constitutes a secure channel and guarantees authentication and privacy for data delivery between the
server and the client. While this work constitutes a significant step forward in terms of realistic modeling
and analysis of TLS, the TLS-DHE protocol is (currently) seldom used in practice, and client-side
authentication via signatures is very rarely done.

Additional literature on analyzing the TLS Handshake Protocol include works on symbolic models,
e.g. [45, 29, 11] and on security analysis of a TLS implementation via type-checking [12]. Works on
simulation-based definitions and designs for key agreement and secure channel protocols include [48,
18, 19].

TLS-RSA. As noted earlier, the most commonly deployed mode of TLS, namely TLS-RSA, uses RSA
PKCS #1v1.5 encryption [33]. In 1998, Bleichenbacher discovered a devastating man-in-the-middle
attack on SSL, the predecessor of TLS. Specifically, Bleichenbacher presented a chosen-ciphertext
attack on RSA PKCS #1v1.5 encryption [14], which in turn allows a man-in-the-middle adversary
against SSL to recover the pre-master secret and thence the application keys. In fact, the attack only
requires a ciphertext validity oracle. TLS, the successor to SSL, incorporates an ad hoc fix to thwart
Bleichenbacher’s attack: decryption failures are hidden from the adversary, including via some defences
against timing attacks, thereby removing access to the ciphertext validity oracle.

For over a decade, the TLS Handshake Protocol (and in particular TLS-RSA) has largely resisted
attacks; however, that in itself does not rule out the possibility of an attack being discovered in future.
The folklore belief is that TLS-RSA is secure if we replace RSA PKCS #1v1.5 with RSA-OAEP or any
other CCA-secure encryption scheme; unfortunately, only RSA PKCS #1v1.5 is standardised in TLS
and used in practice. This begs the question:

Is TLS-RSA with RSA PKCS #1v1.5 encryption ACCE secure?

A partial answer to the above question was provided in the work of Jonsson and Kaliski Jr. [32]: they
showed that RSA PKCS #1v1.5 encryption when augmented with the unencrypted TLS client Finished
message is CCA-secure. However, their analysis was not extended to either the TLS Handshake Protocol
or the full TLS protocol; furthermore, in TLS the client Finished message is actually encrypted with
the application key. We stress that RSA PKCS #1v1.5 encryption when augmented with the encrypted
TLS client Finished message is not even a CPA-secure key-encapsulation mechanism (KEM), for the
same reason that the TLS Handshake Protocol violates key indistinguishability.

Proving security of TLS-RSA and beyond. We provide an affirmative answer to the above question,
namely, we provide the first proof of security for the unmodified TLS-RSA protocol with RSA PKCS
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#1v1.5 encryption in the commonly deployed setting of server-only authentication. More generally, we
provide a systematic and modular analysis of the different modes of TLS, which include TLS-RSA, TLS-
DH and TLS-DHE, in both the common setting of server-only authentication as well as with combined
client and server authentication. We also validate the folklore belief that TLS Handshake with RSA
replaced with any CCA-secure public-key encryption scheme (e.g., RSA-OAEP) is secure. We refer to
such an instantiation as TLS-CCA. Following Jager et al. [31], we focus on the cryptographic core of
TLS (see Appendix A for a discussion of what we omit). We concentrate on achieving ACCE security
with appropriate modifications to handle server-only authentication (in which case we speak of SACCE
security). We next present an overview of our framework, summarized in Figure 1.

1.1 Systematic Analysis of All TLS Handshake Modes

Our framework. We build an abstraction of the TLS Handshake Protocol via a generic representation
using a key-encapsulation mechanism (KEM) (see Figure 2). Each of the TLS modes is then fully defined
via a specific instantiation of the KEM. The goal is to find sufficient conditions on the KEM so that any
instantiation satisfying these conditions immediately leads to a secure protocol in the sense of ACCE
security (as discussed above). This approach has its roots in the work of Jonsson and Kaliski [32] that
studied the underlying KEM in TLS-RSA.

We formalize this statement using the existing notion of constrained CCA (CCCA) security,
introduced by Hofheinz and Kiltz [30] in the context of hybrid encryption. In the CCCA security
game, the adversary is provided with a “constrained decryption oracle” that takes as input a pair (C, T )
where C is a ciphertext and T is some auxiliary information; the oracle returns the decryption K of
C if C is different from the challenge ciphertext and (K,T ) satisfies some specified predicate, and ⊥
otherwise. In particular, if the oracle returns ⊥, the adversary does not learn whether it is because K
is ⊥ or because (K,T ) fails to satisfy the predicate. In our framework, we consider CCCA security
where T is an encrypted TLS client Finished message, and the predicate enforces validity of T .
Now, if the constrained decryption oracle returns ⊥ on query (C, T ), the adversary does not learn
whether it is because C is an invalid ciphertext or because T is an invalid Finished message – this
precisely captures the intention of the TLS fix for thwarting Bleichenbacher’s attack! We note that
the challenge ciphertext in the CCCA security experiment is not accompanied by the corresponding
Finished message; this asymmetry between the challenge ciphertext and the oracle queries allows us
to bypass the key indistinguishability barrier in TLS.

ACCE Security from CCCA Security. Our first result says that if the key encapsulation mechanism
in the TLS Handshake Protocol satisfies CCCA security and the encryption scheme used in the TLS
Record Protocol is sLHAE-secure, then TLS is ACCE secure, in the server-only authentication setting.
We stress that this result is in the standard model. Importantly, the CCCA security game is conceptually
and technically much simpler to analyze than the whole TLS protocol, as we do not have to worry about
multiple sessions, nonces, or the multiple message flows in the full protocol.

To establish ACCE security, we need to achieve security against a (concurrent) man-in-the-middle
adversary communicating with multiple honest clients and multiple honest servers. Roughly speaking,
we will rely on the constrained decryption oracle in CCCA security to simulate the honest servers. The
main technical difficulty in establishing this result arises when a man-in-the-middle adversary plays a
relaying strategy between an honest server and client and then mauls the client’s encrypted Finished

message. Here, we cannot rely on the constrained decryption oracle to simulate the honest server’s
response because the adversary is using the challenge ciphertext. Moreover, we cannot immediately
appeal to the non-malleability of the sLHAE-secure scheme used to encrypt the Finished message
since the protocol messages leak information about the application key. To solve this problem, we exploit
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Fig. 1. Summary of our results.

the fact that the CCCA security game provides us with a real-or-random key K∗, which we may use to
decrypt and verify the client’s encrypted Finished message for this specific adversarial strategy. We
stress that this techical difficulty goes away if the client’s Finished message is unencrypted, because
the prior transcript uniquely determines an accepting Finished message.

CCCA Security in the TLS Handshake. Our second set of results says that the key encapsulation
mechanisms underlying the TLS-RSA, TLS-CCA, TLS-DH, and TLS-DHE variants of the TLS
Handshake Protocol all satisfy CCCA security. Combined with our first result, this yields ACCE security
of TLS-RSA, TLS-CCA, TLS-DH and TLS-DHE (see Figure 1). We proceed to outline each of these
results:

– TLS-RSA. The proof of CCCA security of TLS-RSA KEM uses the same assumptions and similar
techniques to those in [32]. We require that RSA PKCS #1v1.5 encryption is OW-PCA-secure (one-
way against plaintext checking attacks), and the result is in the random oracle model. In turn, the
latter can be proved under a variant of the RSA assumption introduced in [32] and discussed below.

– TLS-CCA. This refers to TLS in the setting where the KEM is CCA-secure, e.g. when RSA PKCS
#1v1.5 in TLS-RSA is replaced with RSA-OAEP. Here, we can obtain a result in the standard model.
In the proof, we have to address a technical subtlety similar to the one mentioned above for the
reduction from CCCA to ACCE security. Here, we exploit the security of a pseudorandom function
where an encryption of the seed is given to the adversary.

– TLS-DH and TLS-DHE. For TLS-DH and TLS-DHE, the underlying KEMs are variants of the
ElGamal encryption scheme. In the TLS-DH case, we establish the KEM’s CCCA security (in
the standard model) under a variant of the PRF-ODH assumption that was introduced in [31] for
analyzing TLS-DHE. For TLS-DHE, the original PRF-ODH assumption from [31] suffices for our
analysis. As an alternative, we also prove the CCCA of these KEMs under the Strong DH assumption
in the random oracle model.

ACCE Security of TLS with Mutual Authentication. We extend the above results, developed for
the case of server-only authentication, to the case of mutual authentication, namely, when the client
authenticates itself via a digital signature. We show that also in this setting, CCCA security of the
underlying KEM implies ACCE security with both server and client authentication. The extension is
relatively straightforward (a positive feature!) requiring minor changes to the server-authentication-only
proofs of server authentication and channel security, and the addition of a client authentication proof.
The resultant analysis is generic and independent of the different underlying KEM instantiations, thus

6



it directly applies to TLS-RSA, TLS-CCA, TLS-DH and TLS-DHE (demonstrating the power of our
modular analysis).

1.2 Summary of Results

As a result of the above methodology we obtain proofs of ACCE security for the TLS handshake
protocol for all of the above TLS modes, both in the common setting of server-only authentication
as well as with mutual authentication. These results are depicted in Figure 1 and are enumerated here
with the assumptions used in each case. In all cases we assume a secure PRF and the TLS Record
Protocol encryption implemented with an sLHAE encryption scheme. For the case of ACCE security
with mutual authentication a secure client signature is also assumed. Certificates for both servers and
clients are assumed to be provided by a minimally trusted CA that faithfully checks identities before
issuing certificates. No other checks from the CA (such as proofs of possession, uniqueness of public
keys, etc.) are assumed.

TLS-RSA. We obtain the first proof of security of TLS-RSA as deployed in practice, with RSA PKCS
#1v1.5 and server-only authentication, in the random oracle model and under the assumption that RSA
PKCS #1v1.5 is OW-PCA secure. The latter assumption, formalized in Section 5, states that inverting the
encryption function is hard even given an oracle that on input a plaintext-ciphertext pair (K,ψ) checks
whether the decryption of ψ equals K (for K ̸=⊥). The OW-PCA security of RSA PKCS #1v1.5 can be
proven under an RSA-like assumption, known as “partial-domain RSA with decision oracle”, introduced
by Jonsson and Kaliski in [32] and which we present in Section 5.2. We refer to [32] for a discussion on
why this assumption is reasonable for typical parameters used in TLS; to the best of our knowledge no
weakness in this assumption has been discovered since its introduction in [32]. When clients authenticate
in TLS-RSA using digital signatures then full ACCE (i.e. with mutual authentication) is proven assuming
a secure signature scheme. We stress that TLS-RSA is the only TLS mode whose proof is in the random
oracle model; we prove all other modes in the standard model.

TLS-CCA. We prove that when instantiated with a CCA-secure public-key encryption scheme (instead
of RSA PKCS #1v1.5), TLS is ACCE secure in the standard model. While no such schemes are currently
standardised for TLS, this result confirms the intuition that IND-CCA security is the “right” target for the
public key encryption scheme used in TLS. It also means that, should the current RSA-based encryption
scheme used in TLS ever be replaced by a CCA-secure one, then our analysis will immediately provide
strong security guarantees for the protocol.

TLS-DH and TLS-DHE. We prove ACCE security (with and without client authentication) of TLS-DH
in the standard model under the PRF-ODH assumption introduced in [31].4 The PRF-ODH assumption
rules out some potential related-key attacks on the Kdf function that would render the protocol insecure.
In Appendix C we show this assumption to be provably necessary for the security of TLS-DH, showing
attacks on the protocol with PRFs for which the assumption does not hold. We note that we can also
prove TLS-DH in the random oracle model under the Strong DH assumption. Finally, we obtain security
for TLS-DHE as a corollary of our results for TLS-DH security, under the PRF-ODH assumption as well
as secure signatures for servers (and clients in the case of mutual authentication). Note that our results
for TLS-DHE do not encompass forward security, but this is guaranteed by the results of [31].

Discussion. In Section 9 we provide an extensive discussion of the implications of our work for TLS,
and what it may teach us about secure protocol design more generally.

4 The assumption is a variant of the ODH assumption from [1] where the oracle is implemented via a PRF rather than by
a hash function. In the proof of TLS-DH we require security against multiple oracle queries while for TLS-DHE a single
query suffices, as was the case in [31].
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Concurrent work. In an independent and concurrent work, Kohlar, Schäge and Schwenk [35]
established similar results on ACCE and SACCE security of TLS-DH and TLS-CCA in the standard
model; their underlying cryptographic assumptions are somewhat different as they make stronger
assumptions on the certificate authority. We stress that they do not analyze TLS-RSA (they use “TLS-
RSA” to refer to TLS-CCA), nor do they provide a unifying framework.

2 The TLS Handshake Protocol with Server-Only Authentication

In this section, we present our model of the TLS Handshake Protocol when no client authentication takes
place. As noted in the introduction, this includes TLS-RSA, the most common usage of the TLS protocol.
The parties to the protocol are a client C and a server S. Each maintains an internal state variable ST and
Λ ∈ {∅, acc, rej}. The protocol makes use of a number of cryptographic components: a key derivation
function (KDF) Kdf, a pseudorandom function PRF, a stateful authenticated encryption with associated
data (AEAD) scheme stE = (stE.Gen, stE.Init, stE.Enc, stE.Dec), and a KEM (KeyGen,FC ,FS). The
protocol is shown schematically in Figure 2. We also describe below how the keys established by this
protocol are subsequently used by the TLS Record Protocol.

The model is derived from the current TLS specification [22], and we believe that our model captures
the cryptographic core of TLS. It has a comparable level of accuracy to the model of TLS-DHE used
in [31]. We highlight several salient properties of our model, and defer a detailed justification and
discussion to Appendix A:

– We assume that the ciphersuites, KDF, PRF, and the stateful AEAD scheme are fixed once and for
all. We do not model ciphersuite negotiation/renegotiation, nor session resumption. In particular,
this means that, while our treatment covers multiple ciphersuites (such as those based on RSA key
transport and various Diffie-Hellman (DH) ciphersuites) in a modular fashion, our analysis currently
does not treat the case where different protocols runs may negotiate different ciphersuites. This
requires the application of a suitable composability framework that is beyond the immediate scope
of this paper.

– In the case of TLS-RSA, (KeyGen,FC ,FS) represents the algorithms of the RSA PKCS#1v1.5
encryption scheme (c.f. Section 5.2). The specifics of this encoding were analysed in detail in
[14, 32]. For this mode, we assume that the outcome of processing CRES at the server end is
completely hidden from the adversary. Such an assumption is necessary; otherwise, TLS-RSA is
susceptible to Bleichenbacher’s attack [14]. Formally, we model this by treating CRES∥CFIN as a
monolithic message in the proof of security.

– Our generic description includes the TLS-DH mode, where the server has a certificate on a static
DH key PKS and DH key exchange is used to establish PMS. Here (CRES, PMS) ← FC(PKS)

denotes the client’s computation of an ephemeral DH value (CRES) and the pre-master secret (PMS);
PMS ← FS(SKS , CRES) denotes the corresponding computation on the server side. In this situation,
we may alternatively think of (KeyGen,FC ,FS) as being the algorithms of a Diffie-Hellman
(or Elgamal-type) KEM based on public key PKS . See Section 7. Specifically, with appropriate
choices of Diffie-Hellman groups, our analysis covers the DH DSS, DH RSA, ECDH ECDSA, and
ECDH RSA key exchange methods from [22, 13]; here the suffix DSS/RSA/ECDSA has no meaning
since the server does not sign in this mode.

– By suitably extending CERTS to include the server’s signature on its choice of ephemeral DH value,
our description captures the TLS-DHE mode, where now PKS is a signature verification key and PMS

is the result of a DH key exchange based on the ephemeral values chosen by client and server. This
then covers the DHE DSS, DHE RSA, ECDHE ECDSA, and ECDHE RSA key exchange methods
from [22, 13], where the suffix DSS/RSA/ECDSA refers to the signature scheme used by the server.
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Fig. 2. Basic Generic TLS Handshake Protocol Parameterized by (KeyGen,FC ,FS)

– Our description also captures TLS-CCA, where (KeyGen,FC ,FS) represents the algorithms of an
IND-CCA-secure encryption scheme, such as RSA-OAEP. We note that no such encryption scheme
is currently standardised for use in TLS. However, a proof of security for TLS in this case emerges
cleanly from our framework and it may serve to encourage the use of CCA-secure encryption
algorithms in future TLS deployments.

– For notational simplicity, we use the same symbol λ to denote the security parameter, as well as the
bit length of PMS,MS, CKEY and SKEY.

TLS Record Protocol. A party that concludes the TLS Handshake protocol successfully continues
to use the application key AKEY = CKEY∥SKEY in the TLS Record Protocol. Specifically, the client
uses CKEY to encrypt messages to the server, and the server uses the same key CKEY to decrypt these
messages. Similarly, the server uses SKEY to encrypt messages to the client, and the client uses the
same key SKEY to decrypt these messages. As noted above, the client and server Finished messages
are already encrypted in this way. As in [31], we model the TLS Record Protocol via a stateful AEAD
scheme stE which we will assume to be sLHAE-secure. For further details, see Appendix A where we
provide more specific details on the TLS specification (especially for TLS-RSA) and Appendix B.1
where we describe sLHAE-security.

3 Authenticated and Confidential Channel Establishment (ACCE)

We begin with the definition of authenticated and confidential channel establishment (ACCE) from
[31, 9]. We will describe the syntax for a general ACCE protocol but for security, we consider
a specialization to the setting where only the server is authenticated – we call this server-only
authenticated and confidential channel establishment (SACCE).

9



ACCE protocols. An ACCE protocol is a protocol executed between two parties, a client and a server.
In the original description [31], an ACCE protocol has two distinct phases, called the ‘pre-accept’ phase
and the ‘post-accept’ phase, corresponding to whether a party has accepted a session key in a particular
session or not. We dispense with this distinction (though it is still expressed in our security model by
making the queries that are available to the adversary depend on an oracle’s acceptance state). The
parties in the protocol first compute as the session key an application key AKEY. Then, encrypted and
authenticated data is transmitted using a symmetric encryption scheme with the application key AKEY.
More specifically, AKEY is parsed as CKEY||SKEY, the client uses CKEY in a stateful AEAD scheme stE
to send data to the server, and the server uses SKEY in stE to protect data sent to the client. Henceforth,
we will only refer to application keys and not to session keys. Parties also maintain internal state Λ, and
clients keep an additional PEER variable. We assume that an ACCE protocol is such that, when a party
reaches the state Λ = acc, it has already computed an application key AKEY and executed stE.Init. TLS
meets this requirement.

3.1 Execution environment

Protocol entities. Following [31, 9], we consider a set of parties P = S ∪ C, where S and C are
disjoint and each party P ∈ P is a (potential) protocol participant. Here, S and C denote the sets of
honest servers and clients, respectively. In addition, each P ∈ S (the servers) has a unique5 key pair
(PKP , SKP ), an identity IDP ∈ {0, 1}λ along with a certificate CERTP := (IDP , PKP )CA signed by a
certification authority CA. We also assume that all the parties in S have distinct identities. (See more
below about assumptions on CA and the treatment of honest vs. corrupted parties.)

Session oracles. To model several sequential and parallel executions of the protocols and sessions,
each party P maintains a collection of oracles {πP1 , πP2 , . . .}. The oracle πPi models party P executing
a single instance of a protocol in “session” i. We stress that the session numbers i are just an artefact
of our security model – they are designed to provide a means for the adversary to deliver messages to
different sessions at different parties. In particular, the protocols and oracles need not even be “aware”
of what their session numbers are (i.e. those numbers need not form part of the state).

Each oracle πPi maintains as internal state a set of variables comprising:

– Λ ∈ {∅, acc, rej};
– AKEY = CKEY∥SKEY ∈ {0, 1}2λ, where {0, 1}2λ is the application key space of the protocol;6

– if P ∈ C, then it has an additional PEER variable to denote the intended partner (only client oracles
have the PEER variable because only servers have identities);

– if P ∈ S , then πPi also knows the party identity IDP .

The internal state of each oracle is initialized to (Λ, AKEY, PEER) = (∅, ∅, ∅), where ∅ denotes undefined.

Adversarial queries. The adversary interacts with the oracles via the following queries:

Send(πPi ,m): the adversary uses this query to send a message m to oracle πPi ; the oracle will respond
with an outgoing message according to the protocol specification and its internal state. If πPi has
reached state Λ = acc, then it replies with ⊥. When the attacker asks the first Send-query to an

5 Public key uniqueness is not fundamental but it simplifies presentation in some cases, e.g., when considering reduction to
selective security.

6 Here and throughout, we refer to application keys rather than the more usual session keys.
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oracle πCi where C ∈ C, the oracle checks whether m is a special “Initiate client session” symbol⊤,
and if so, responds with the first protocol message (which will be a fresh client nonce). The variables
Λ, AKEY are also set according to the protocol specification.

Reveal(πPi ): the oracle πPi responds with the contents of the application key AKEY. Note that this query
can be issued to πPi before it has reached state Λ = acc.

Encrypt(πPi , ℓ, H,m0,m1): if πPi has not reached stateΛ = acc, this oracle returns⊥. Otherwise, prior
to reaching state acc, πPi has (by assumption) computed AKEY and run the stE.Init algorithm of a
stateful AEAD scheme stE = (stE.Gen, stE.Init, stE.Enc, stE.Dec) to define states STe, STd specific
to the oracle πPi ; the game also samples a random bit bPi at this point, parses AKEY as CKEY∥SKEY,
and adds the 5-tuple (STe, STd, b

P
i , CKEY, SKEY) to the oracle state ST. Now, when receiving the

Encrypt query, the message mbPi
is encrypted along with header data H using algorithm stE.Enc and

key K = CKEY (if P ∈ C) or key K = SKEY (if P ∈ S) to form a ciphertext of length ℓ, and to
update the encryption state STe. The resulting ciphertext is returned to the adversary. For details, see
Figure 3.

Decrypt(πPi , H, c): this query is intended to allow the adversary to decrypt ciphertexts that would be
processed by the communication partner of the oracle πPi (a server S if P ∈ C, and a client C if
P ∈ S). If πPi has not reached state Λ = acc, the oracle returns ⊥. Otherwise, when bPi = 0, the
response is always ⊥; when bPi = 1, this query involves the decryption of H and c using algorithm
stE.Dec and the appropriate key K obtained from ST at the oracle: if P ∈ C, this will be CKEY,
and if P ∈ S , then it will be SKEY. The resulting message (or failure symbol ⊥) is returned if the
query is “out-of-sync”. For details, see Figure 3. Notice the similarity with Figure 6 defining sLHAE
security for symmetric encryption. Essentially, the combination of Encrypt and Decrypt oracles in
this ACCE game gives the adversary the same capabilities for multiple pairs of interacting parties
that an adversary has in the sLHAE game for a single key. In particular, the “out-of-sync” condition
(i.e. when phase← 1) is set in the same way as in Figure 6, in order to capture both header integrity
and ciphertext integrity.

Remark 1 (on Encrypt and Decrypt queries). Note that in the TLS specification, H is constrained to
contain certain values by the Record Protocol (see Appendix A for details). We do not require our
adversary to respect these constraints; in this sense we give the adversary more freedom to interact with
the protocol than he has in reality. Note also that our formulation only returns a single error message
⊥ to the adversary. While the model could be extended to include multiple error messages (see for
example [15]), if TLS’s symmetric portion is implemented such that it has multiple, distinguishable
error messages, then it is likely to be insecure. This is demonstrated by attacks in [20, 2, 3]. So
assuming a single error message seems appropriate when modelling TLS, even if the attacks show that
it is difficult to achieve in practice. Finally, we note that in the real TLS protocol, the functionality
represented by the Decrypt oracle would not always be immediately available to the adversary, since
the real entity performing the decryption may not yet have completed the Handshake and established
suitable application keys. Thus our model grants the adversary slightly more power than it would have
in reality.

Honest vs corrupted parties. An honest party P is one that follows the prescribed protocol and whose
secrets are not accessible to the adversary except via Reveal and Test queries. We follow the convention
that an oracle πPi always corresponds to an honest party P ; similarly, the set P = S ∪C refers to honest
parties. A corrupted party is one whose actions are controlled by the adversary. The private and public
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Encrypt(πP
i , ℓ, H,m0,m1):

u← u+ 1

(c0, ST0
e)←R stE.Enc(K, ℓ, H,m0, STe)

(c1, ST1
e)←R stE.Enc(K, ℓ, H,m1, STe)

If c0i =⊥ or c1i =⊥ then return ⊥
Set cu = cb

P
i , Hu = H and STe = ST

bPi
e

Ret cu

Decrypt(πP
i , H, c):

If bPi = 0 then Ret ⊥
v ← v + 1

(m, STd)← stE.Dec(K, H, c, STd)

If v > u or c ̸= cv or H ̸= Hv then phase← 1

If phase = 1 then Ret m
Ret ⊥

Fig. 3. The Encrypt and Decrypt oracles in the ACCE security game.

keys of corrupted parties are chosen by the adversary; for instance, it may register the key of an honest
party under a corrupted party name. On the other hand, we do not allow the adversary to register a key
under the identity of an honest party. In addition, our model considers non-adaptive corruptions, that is,
the set of honest parties is determined at the onset of the security game and these remain uncorrupted for
the whole game. The attacker can, however, create as many corrupted parties as it desires with any public
keys of its choice. In the context of TLS, adaptive corruptions are only relevant when modeling forward
secrecy and therefore do not apply to the modes analyzed here (with the exception of TLS-DHE with
its ephemeral exponents). Thus, for simplicity and clarity of presentation we omit the forward secrecy
extensions to the model and refer the reader to [31] for such a treatment in the TLS-DHE case.

Certificate authority. We assume that there is a single certificate authority (CA), which uses a secure
signature scheme casig and whose public key is distributed to all the clients. For each S ∈ S with public
key PKS , the CA signs the pair (IDS , PKS) to provide a certificate CERTS := (IDS , PKS)CA. We also
allow the adversary access to the CA to register any number of parties, not in the set S , with any public
keys of the adversary’s choice. This modeling of the CA captures the requirement that CA checks for
parties’ identities before issuing a certificate but checks nothing about the value or form of the public
key itself (i.e., no structural or uniqueness tests, or proofs of possessions, are assumed). Assuming a
unique CA is for simplicity only – having multiple CAs with their correct public keys distributed to all
honest parties works as well.

Matching conversations. We consider a definition of matching conversation which is specific to TLS
(and differs from the one in [31]):

Definition 1 (Matching conversations). We say that πPi has a matching conversation with πP
′

j if

– either P ∈ C and P ′ ∈ S , or P ∈ S and P ′ ∈ C; and
– πPi accepts; and
– the transcripts at both πPi and πP

′
j begin with the same three messages (CREQ, SRES, CRES).

Remark 2. Defining matching conversations as above means that we may treat (CREQ, SRES, CRES) as
a post-specified session identifer. Observe that these three messages uniquely determine the parties’
nonces and server’s identity as well as the key PMS which in turn determines the application key.
In addition, these three messages determine the client’s Finished message, as well as the server’s
Finished message if the server reaches the accept state.

3.2 Correctness and Security

Correctness. For every honest C ∈ C and S ∈ S , if two sessions πCi , πSj have matching conversations
with each other (and thus both oracles reach the accept state), then we require that they output same
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application key AKEY and πCi has its PEER variable set to IDS . We also require that the encryption
scheme stE used to model the secure channel is correct.

SACCE Security. Security of an ACCE protocol with server-only authentication (SACCE) is defined
by requiring that (i) the protocol provides server authentication (but with no guarantee of client
authentication7), and that (ii) the subsequent use of the application keys in the stateful AEAD scheme
stE provides stateful Length Hiding Authenticated Encryption (sLHAE), as per [44] and Appendix B.1.
Informally, consider an adversary that tries to break the privacy and/or authenticity of client data in the
TLS Record Protocol. Roughly speaking, the first condition says that the only way to get a client to start
transmitting data in the Record Protocol is to play a relaying strategy with some honest server (leading
to a matching conversation). The second says that if the adversary plays a relaying strategy between an
honest server-client pair, then that pair of parties would have established a secure channel in the Record
Protocol.

The formal definition is captured in terms of a game played between the adversary A and a
challenger. This game is obtained by adapting [31, Definition 7] to our setting. At the beginning
of the game, the challenger generates the long-term key-pair (PKS , SKS) along with the certificate
CERTS := (IDS , PKS)CA for all S ∈ S and gives all the certificates to A as input. Now the adversary
issues a sequence of queries defined before. The challenger answers all queries to πCi by running the
honest client protocol, and all queries to πSj by running the honest server protocol using the key SKS .
The challenger will also provide certificates along with signatures to the adversary for any identities
outside the set {IDS : S ∈ S}.

Advantage measures. We associate to an adversary A against an ACCE protocol Π two advantage
measures:

– (server authentication, i.e. client accepts⇒ matching conversations.)
Advsacce−sa

Π (A) is the probability that whenA terminates, there is a (honest) client C and oracle πCi
that reaches an accept state with honest PEER = IDS , but there is no unique oracle πSj for which πCi
has had a matching conversation with πSj .

– (channel security.)
Advsacce−ae

Π (A) is defined to be p − 1/2, where p is the probability that A outputs (P, i, b′) such
that b′ = bPi where bPi is set during the Encrypt(πPi , . . .) query and we define b′ to be ⊥ unless the
following conditions hold:

1. πPi reaches an accept state;

2. πPi is not the subject of a Reveal query; and if there is an oracle πP
′

j with which πPi has a
matching conversation then πP

′
j is not the subject of a Reveal query either.

3. P ∈ C.

The second condition serves to ensure thatAwill not win via the “trivial attack” in which it learns the
application key via a Reveal query against πPi or a matching πP

′
j . The third condition is specific to

the SACCE setting and it means that we only consider Decrypt queries issued against an (accepting)
session at an honest client. Because of the lack of client authentication in this model, there is no
guarantee of security for a session πSj at a server, unless there is an honest client session πCi that has
a matching conversation with πSj . In the latter case, one can assume (without loss of generality) that
the Decrypt query is issued against πCi .

7 We extend the model with client authentication in Section 8.
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Definition 2 (SACCE-secure). We say that an ACCE protocol Π is SACCE-secure if Π satisfies
correctness, and for all PPT adversaries A, both Advsacce−sa

Π (A) and Advsacce−ae
Π (A) are a negligible

function of the security parameter λ.

3.3 Selective Security

We introduce the notion of selective SACCE security that helps to simplify our proofs.

Selective server authentication. We require that at the beginning of the security game, the adversary
“commits” to (C∗, S∗, i∗) and they must correspond to (C, S, i) in the definition of Advsacce−sa

Π (A).

Selective channel security. We require that at the beginning of the security game for Advsacce−ae
Π (A),

the adversary “commits” to (C∗, S∗, i∗, j∗) where (C∗, i∗) correspond (P, i) in the definition of
Advsacce−ae

Π (A) and S∗, j∗ are such that πC
∗

i∗ has a matching conversation with πS
∗

j∗ (the existence
of such matching πS

∗
j∗ will follow from the proof of server authentication that will precede the proof

of channel security).

We use Advs−sacce−sa
Π (A),Advs−sacce−ae

Π (A) to denote the respective advantage measures in the
selective setting.

Lemma 1. For any adversary A, there exists an adversary B such that

Advsacce−sa
Π (A) ≤ dmax · |S| · |C| · Advs−sacce−sa

Π (B)
Advsacce−ae

Π (A) ≤ dmax · |S| · |C| · (dmax · Advs−sacce−ae
Π (B) + Advs−sacce−sa

Π (B))

where dmax is an upper bound on the number of sessions invoked by A at any party. Moreover, the
running time of B is roughly that of A.

In particular, if both Advs−sacce−sa
Π (B) and Advs−sacce−ae

Π (B) are negligible, then both Advsacce−sa
Π (A)

and Advsacce−ae
Π (A) are negligible.

Proof (sketch). The proof follows via a standard reduction, where B simulates A as follows:

– B picks C∗ ←R C and S∗ ←R S in advance; with probability (|C| · |S|)−1, they match the (C, S)

chosen by A.
– Next, B matches the public key of S∗ to that of the single server, and generates key pairs for all

remaining servers so that it may simulate all of these servers.
– B proceeds to pick i∗ ←R [dmax]

– For channel security, B also picks j∗ ←R [dmax], with the extra Advs−sacce−ae
Π (B) term to account

for the probability that C∗
i accepts without any matching conversation to some πSj .

The claim follows readily. ⊓⊔

It follows readily from the Lemma that an ACCE protocol Π is SACCE-secure if Π satisfies
correctness and for all PPT adversaries A, both Advs−sacce−sa

Π (A) and Advs−sacce−ae
Π (A) are a

negligible function of the security parameter λ.

Important simplifications and conventions. In our proofs we will assume the existence of a single
honest client and a single honest server, which correspond to C∗ and S∗ in the selective experiment.
This simplification is without loss of generality since we may simply simulate all clients and servers

14



different from C∗ and S∗. To further simplify notation we will refer to these honest parties as C and
S (rather than C∗, S∗). Thus, the only oracles we need to consider are of the form πCi and πSj for
i, j ∈ [dmax].

4 From CCCA KEM Security to SACCE Security of TLS

In this section we state and prove the following theorem which is our core intermediate result for proving
ACCE security of all TLS modes. It uses the notion of CCCA security and the definition of the TLS KEM
tlskem introduced below in Sections 4.1 and 4.2, respectively.

Theorem 1. If tlskem is IND-CCCA secure, casig is an existentially unforgeable signature scheme and
stE is sLHAE-secure then TLS is SACCE-secure.

The IND-CCCA security of the KEMs arising from all TLS modes (and hence the SACCE security
of these modes) is shown in the subsequent sections.

4.1 IND-CCCA Security

We consider a variant of IND-CCCA security from [30]:

Definition 3 (IND-CCCA). For a stateful adversaryA, an LKEM lkem and a predicate pred, we define
the advantage function

Advind−ccca
lkem,pred(A) := Pr


b = b′ :

(PK, SK)← KeyGen(1λ);

L∗ ← ACDec(SK,·,·,·)(PK);

(C∗,K∗)← Enc(PK, L∗);

K0 := K∗;K1 ←R {0, 1}λ; b←R {0, 1};
b′ ← ACDec(SK,·,·,·)(C∗,Kb)


− 1

2

with the restriction that A only queries CDec on (L,C) ̸= (L∗, C∗) after getting the challenge
ciphertext, and where the “constrained” decryption oracle CDec is given by:

CDec(SK, L, C, T ) :

K ←R Dec(SK, L, C)

if K =⊥ or pred(K,T ) = 0 then return ⊥
else return K

A LKEM lkem is said to be IND-CCCA-secure if for all PPT adversariesA, the advantage Advind−ccca
lkem,pred(A)

is a negligible function in λ.

Remark 3 (comparison with [30]). We point out the differences between our formulation and that in
[30]. First, we consider a setting with labels. Second, in [30], the predicate is specified by the adversary
via a circuit. Here, we consider a fixed predicate that takes an additional input T . To capture the prior
formulation, the predicate would be circuit evaluation and T would be a circuit. Third, by fixing the
predicate, we avoid having to explicitly consider plaintext uncertainty.
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4.2 The TLS Labeled KEM

Following [32], we describe a labeled KEM which is extracted from the TLS protocol. Unlike [32] which
stopped at analyzing (labeled) CCA-security of the ensuing scheme for the RSA mode of TLS, we show
how to derive SACCE security of TLS (for any mode) based on the IND-CCCA security of the labeled
KEM. We then prove this IND-CCCA property to hold for the KEMs arising in various TLS modes,
namely TLS-RSA, TLS-CCA, TLS-DH, and TLS-DHE. In Figure 4 we rewrite the TLS protocol from
Figure 2 in terms of tlskem.

LKEMs from TLS. Given a generic TLS protocol parameterized by (KeyGen,FC ,FS) (see Fig. 2)
along with cryptographic components Kdf and PRF, we consider the LKEM tlskem with algo-
rithms (tls.Gen, tls.Enc, tls.Dec), in which tls.Gen(1λ) is the same as KeyGen and the algorithms
tls.Enc, tls.Dec are as below.

tls.Enc(PK, η∥CERTS):
(CRES, PMS)← FC(PK);
MS := Kdf(PMS, η);
UCFIN := PRF(MS, 1∥η∥CERTS∥CRES);
AKEY := PRF(MS, 0∥η);
USFIN :=PRF(MS, 2∥η∥CERTS∥CRES∥UCFIN);
output (CRES, AKEY∥USFIN∥UCFIN).

tls.Dec(SK, η∥CERTS , CRES):
PMS ← FS(SK, CRES);
if PMS =⊥, set PMS ←R {0, 1}λ;
MS := Kdf(PMS, η);
UCFIN := PRF(MS, 1∥η∥CERTS∥CRES);
AKEY := PRF(MS, 0∥η);
USFIN := PRF(MS, 2∥η∥CERTS∥CRES∥UCFIN);
output AKEY∥USFIN∥UCFIN.

In order to consider CCCA security we augment tlskem with the following predicate.

tls.Pred(AKEY∥USFIN∥UCFIN, CFIN):
(STS

e , STS
d )← stE.Init(1λ);

check if UCFIN = stE.Dec(CKEY, HC , CFIN, STS
d ).

Remark 4 (simplifying assumption for IND-CCCA security). When proving IND-CCCA security for the
TLS LKEMs, we make an additional simplifying assumption that all the queries (L,C) the adversary
A makes to CDec before receiving the challenge ciphertext C∗ satisfy C ̸= C∗ (and thus (L,C) ̸=
(L∗, C∗)). Observe that the distribution of the ciphertext CRES in the TLS LKEM depends only on PK

and is independent of the choice of L∗, so we can formalize this assumption by having the challenger
sample a randomC∗ at the beginning of the security experiment, and modify CDec to output⊥whenever
C equals C∗ for queries before receiving the challenge ciphertext.

We may justify this assumption as follows: by one-way’ness of FC , the probability that a random C∗

equals C is negligible, and we can take a union bound over the queries; this incurs a negligible additive
loss in the security proof. When invoking IND-CCCA security in the SACCE proofs in Lemmas 3 and 5,
we can avoid a union bound over the queries due to the uniqueness of server nonces (so that at most one
CDec query matches L∗). Moreover, the CRES for the concrete TLS LKEMs have Ω(λ) bits of entropy,
so the simplifying assumption only incurs an additive 2−Ω(λ) security loss.

Remark 5 (KEM key). Note that if were to define the KEM key as MS instead of AKEY∥USFIN∥UCFIN,
then the scheme derived from TLS-RSA would be insecure. We incorporate USFIN into the KEM key so
that we may simulate the honest server’s Finished messages in the proof of security, and we incorporate
UCFIN into the KEM key so that tls.Pred can verify the validity of the encrypted client Finished
message.
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Remark 6 (client authentication). In the setting with client authentication in Section 8, we consider the
same LKEM except we replace CERTS with CERTS∥CERTC throughout.

Remark 7 (randomizing PMS). The second step in tls.Dec “if PMS =⊥, set PMS ←R {0, 1}λ” is
important to mask decryption failures in the presence of a timing channel and thereby preventing
Bleichenbacher-style attacks; from a functionality perspective, it only leads to a negligible difference
from immediately outputting ⊥ if PMS =⊥.

4.3 SACCE Security: Proof of Theorem 1

We proceed to prove Theorem 1, as presented at the beginning of this section.

Correctness. If both parties πCi and πSj agree on the prefix CREQ∥SRES∥CRES, then they must agree on
PMS (by correctness of (KeyGen,FC ,FS) as a KEM). This means they also agree on MS, η and AKEY.
In addition, if both parties accept, then they output the same AKEY. Moreover, since both parties agree
on SRES and thus both CERTS and IDS , C will output PEER = IDS . This holds even if the adversary
makes Reveal queries and mauls the Finished messages.

High-level overview of SACCE security proof. The high-level idea for establishing server authentica-
tion and channel security is the same, and both rely on IND-CCCA security crucially. Let i∗ denote the
target client session in the selective SACCE game. We will embed the challenge ciphertext in the IND-
CCCA security experiment sent by πCi∗ , while using the restricted decryption oracle to simulate all the
server responses. We will rely on IND-CCCA security to argue that the ciphertext sent by πCi∗ protects
the privacy of AKEY∥USFIN; the privacy of AKEY gives us channel security, whereas the unpredictability
of USFIN gives us server authentication. Moreover, AKEY∥USFIN as computed by πCi∗ is “independent”
of that in the other sessions. Note that IND-CCCA guarantees independence whenever the labels are
different, and in TLS, the labels contains both the server’s certificate and the server nonce. Roughly
speaking, for server authentication, independence between sessions of different servers is guaranteed
by the fact that the adversary cannot forge a certificate for an honest server, while for channel security,
independence across the honest server sessions is guaranteed by the fact that all the nonces in these
sessions are distinct with high probability. Once we switch AKEY∗∥USFIN∗ as computed by the honest
client πCi∗ to a random value, we may rely on sLHAE security of stE to achieve channel security.

Server authentication. We begin with server authentication:

Lemma 2 (s-sacce-sa). For any adversary A, there exists adversaries A1,B such that

Advs−sacce−sa
Π (A) ≤ Advsigcasig(A1) + Advind−ccca

tlskem,tls.Pred(B) + (d2max + 1) · 2−λ

Moreover, the running times of A1,B are roughly that of A.

In this proof, we rely on the assumptions we make about the certificate authority (see Section 3.1),
in particular, that it uses a secure signature scheme and that the adversary cannot register a public key
of its choice for an honest server (otherwise, it can trivially break server authentication). At a high
level, the proof proceeds as follows: we rely on IND-CCCA security to replace (AKEY, USFIN, UCFIN)

computed by the target client session πCi∗ from real to random, upon which server authentication follows
immediately from statistical unpredictability of a truly random USFIN.
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..

CREQ := ηC

.

SRES := ηS∥CERTS

.

CT := CRES∥HC∥CFIN

.

1. ηC ←R {0, 1}λ

.

1. abort if verification of CERTS fails

2. PEER := IDS

3. L := CREQ∥SRES

4. (CRES, AKEY∥USFIN∥UCFIN)←
tls.Enc(PKS , L);

5. (STC
e , STC

d )← stE.Init(1λ)

6. CFIN ←
stE.Enc(CKEY, ℓC , HC , UCFIN, STC

e )

.

1. check if
stE.Dec(SKEY, HS , SFIN, STC

d ) = USFIN.

2. if fail, set Λ := rej and abort.

3. otherwise, set Λ := acc.

.

1. ηS ←R {0, 1}λ

2. CERTS = {IDS , PKS}CA

.

1. L := CREQ∥SRES

2. AKEY∥USFIN∥UCFIN ←
tls.Dec(SKS , L, CRES)

3. if tls.Pred(AKEY∥USFIN∥UCFIN, CFIN) = 0,
set Λ := rej and abort.

4. SFIN ← stE.Enc(SKEY, ℓS , HS , USFIN, STS
e )

.

HS , SFIN

.

Server SKS

.

Client

Fig. 4. Basic Generic TLS Handshake Protocol Parameterized by tlskem = (tls.Gen, tls.Enc, tls.Dec)

Proof. Let i∗ denote the target session in the selective SACCE game, and IDS , PKS denote the identity
and public key of the honest server S. We use CREQ∗, SRES∗, CT∗, SFIN∗ to denote the messages sent or
received by πCi∗ . We proceed via a series of games. We use Adv0,Adv1, . . . to denote the advantage of
the adversary A in Games 0, 1, etc.

Game 0. Real experiment.

Game 1. The challenger proceeds as before, but it aborts if any of the following holds:

– (ID∗
S , PK∗

S) ̸= (IDS , PKS); or
– the transcript at any server oracle πSj begins with (CREQ∗, SRES∗, CRES∗);
– if the server nonces are not all distinct.

We claim that the first and second aborts do not affect the advantage of the adversary (unless the
adversary manages to forge the CA’s signature on on (ID∗

S , PK∗
S), an event with probability bounded

by Advsigcasig(A1)), and the third happens with probability d2max · 2−λ, so

Adv0 ≤ Adv1 + Advsigcasig(A1) + d2max · 2−λ

We consider each of the first two abort conditions separately:

– For the first condition, observe that if (ID∗
S , PK∗

S) ̸= (IDS , PKS), then either

• ID∗
S ̸= IDS , and thus PEER ̸= IDS and the adversary also aborts in Game 0; or

• CERT∗
S fails verification and the adversary also aborts in Game 0; or

• ID∗
S = IDS , PK∗

S ̸= PKS and CERT∗
S passes verification, in which case we have a signature

forgery since the CA will not sign (IDS , PK∗
S).

– For the second, suppose the transcript at some server oracle πSj begins with (CREQ∗, SRES∗, CRES∗).
We consider two cases:
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• If πCi∗ eventually reaches accept state, then it has a matching conversation to πSj ; moreover,
since the server nonces are distinct, πSj is a unique oracle for which πCi∗ has a matching
conversation, so A would not win in Game 0.

• If πCi∗ does not reach accept state, then A would not win in Game 0 either.

Game 2. The challenger proceeds as before, but replaces the (AKEY, USFIN, UCFIN) computed by πCi∗
with a random (ÃKEY, ŨSFIN, ŨCFIN)←R {0, 1}4λ. That is,

– parse ÃKEY as C̃KEY∥S̃KEY;
– πCi∗ computes CT∗ := CRES∗∥H∗

C∥CFIN∗ at πCi∗ by first computing CRES∗, and then using C̃KEY

to encrypt ŨCFIN.
– πCi∗ decrypts H∗

S∥SFIN∗ using S̃KEY and checks equality with ŨSFIN.
– the challenger responds to Reveal(πCi∗) with ÃKEY.

By IND-CCCA security of tlskem, we have (as shown below in Lemma 3):

Adv1 ≤ Adv2 + Advind−ccca
tlskem,tls.Pred(B)

Now, we have Adv2 ≤ 2−λ, because ŨSFIN is truly random from the perspective ofA. Putting everything
together, we obtain the bound on Advs−sacce−sa

Π (A) as claimed. ⊓⊔

Lemma 3 (ccca in s-acce-sa). There exists an adversary B such that

Adv1 ≤ Adv2 + Advind−ccca
tlskem,tls.Pred(B)

Proof. We construct an adversary B for the IND-CCCA security game of tlskem, such that if the
challenge bit b is 0, B simulates Game 1, and if b equals 1, B simulates Game 2. (We neglect all the
scenarios where the challenger aborts in Game 1.) As before, we use CREQ∗, SRES∗, CT∗, USFIN∗ to
denote the messages sent or received by πCi∗ , and we use (CRES∗, ÃKEY∥ŨSFIN∥ŨCFIN) to denote the
challenge ciphertext and KEM key in the IND-CCCA experiment.

– B uses PK from the IND-CCCA security game as PKS . B also gets IDS and prepares CERTS by
simulating the CA.

– B simulates πCi∗ as follows:

• pick CREQ∗ := η∗C ←R {0, 1}λ;
• when A sends SRES∗ := (η∗S , CERT∗

S) to πCi∗ , do the following:

1. abort if (ID∗
S , PK∗

S) ̸= (IDS , PKS);

2. send L∗ := CREQ∗∥SRES∗ to the challenger in the IND-CCCA security game;8

3. parse the response as (CRES∗, ÃKEY∥ŨSFIN∥ŨCFIN) and parse ÃKEY as C̃KEY∥S̃KEY;

4. use C̃KEY to encrypt ŨCFIN to obtain H∗
C∥CFIN∗ and send CT∗ := CRES∗∥H∗

C∥CFIN∗ toA as
the response from πCi∗ ;

• πCi∗ decrypts H∗
S∥SFIN∗ using S̃KEY and checks equality with ŨSFIN;

• the challenger responds to Reveal(πCi∗) with ÃKEY.

8 An earlier version of this paper incorrectly asserts that L∗ ̸= L holds for all prior decryption queries (L,C). The following
example from [36] shows that this assertion is false: (i) A initiates a handshake with πC

i∗ to get CREQ∗, (ii) sends CREQ∗

to some πS
j to get SRES∗, (iii) sends a random CT to πS

j , and (iv) sends SRES∗ to πC
i∗ . As such, we had to strengthen the

security requirements for IND-CCCA; in addition, we note that our earlier proofs of IND-CCCA security already yield this
stronger guarantee.
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Observe if the challenge bit b in the IND-CCCA security game is 0, then ŨSFIN∥ÃKEY is computed
as in Game 1, and if b is 1, then ŨSFIN∥ÃKEY is truly random as in Game 2.

– B simulates all πCi for i ̸= i∗ as in Game 1. This means B can answer any Reveal query for πCi too.
– B simulates πSj for all j as follows: compute SRES as in Game 1; on input CT := CRES∥HC∥CFIN,

set L := CREQ∥SRES and compute AKEY∥USFIN as follows:

• if B has not sent L∗ in the IND-CCCA security game (that is, A has not sent SRES∗ to πCi∗),
query CDec(SK, ·) on input (L, CT) to obtain AKEY∥USFIN;

• if B has sent L∗ in the IND-CCCA security game and (L, CRES) ̸= (L∗, CRES∗), then query
CDec(SK, ·) on input (L, CT) to obtain AKEY∥USFIN;

• if B has sent L∗ in the IND-CCCA security game and (L, CRES) = (L∗, CRES∗), then we may
simply abort as in Game 1 since the transcript at πSj begins with (CREQ∗, SRES∗, CRES∗).

Note that B learns AKEY, so it can answer any Reveal query for πSj too.

The claim follows readily. ⊓⊔

Channel security. We complete the proof by establishing channel security:

Lemma 4 (s-sacce-ae). For any adversary A, there exists adversaries B,A2 and A3 such that

Advs−sacce−ae
Π (A) ≤ Advind−ccca

tlskem,tls.Pred(B) + Advlh-st-ae
stE (A2) + Advlh-st-ae

stE (A3) + dmax · 2−λ

where dmax is an upper bound on the number of sessions invoked by A at any party. Moreover, the
running times of B,A2 and A3 are roughly that of A.

At a high level, the proof proceeds as follows: we rely on IND-CCCA security to replace
(AKEY, USFIN, UCFIN) computed by the target client session πCi∗ from real to random, upon which
channel security follows from sLHAE security with a truly random AKEY. The most delicate step in
whole SACCE security proof lies in the transition from Game 1 to Game 2 in this lemma, where we
switch (AKEY, USFIN, UCFIN) from real to random, so that we may exploit non-malleability of stE to
rule out malleability attacks on CFIN.

Proof. Let i∗ and j∗ denote the target sessions in the selective SACCE game, and IDS , PKS denote
the identity and public key of the honest server S. We use CREQ∗, SRES∗, CT∗, SFIN∗ to denote the
messages sent or received by πCi∗ . Note that the matching requirement in channel security stipulates that
the transcripts at both πCi∗ and πSj∗ must begin with the same (CREQ∗, SRES∗, CRES∗). We proceed via a
series of games. We use Adv0,Adv1, . . . to denote the advantage of the adversary A in Games 0, 1, etc.

Game 0. Real experiment. Henceforth, we neglect the cases where b′ (as output by A) is ⊥.

Game 1. The challenger in this game proceeds as before, but it aborts if any of the following holds:

– any server nonce for j ̸= j∗ matches that for πSj∗ ; or
– the transcript at server oracle πSj∗ does not begin with (CREQ∗, SRES∗, CRES∗).

Thus,
Adv0 ≤ Adv1 − dmax · 2−λ

In particular, if the challenger does not abort, then πCi∗ has a unique matching conversation with πSj∗ .

Game 2. The challenger proceeds as before, except it replaces (AKEY, USFIN, UCFIN) computed by πCi∗
with a random (ÃKEY, ŨSFIN, ŨCFIN)←R {0, 1}4λ. Specifically:
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– parse ÃKEY as C̃KEY∥S̃KEY;
– πCi∗ computes CT∗ as follows:

1. generate CRES∗ using tls.Enc as in Game 1;

2. compute H∗
C∥CFIN∗ by encrypting ŨCFIN with C̃KEY;

3. set CT∗ := CRES∗∥H∗
C∥CFIN∗ as in Game 1.

– πSj∗ computes the server Finished message on input CT := CRES∥HC∥CFIN as follows:

1. if CT = CT∗: sets Λ := acc and responds with the encryption of ŨSFIN under S̃KEY;

2. if CRES = CRES∗ but HC∥CFIN ̸= H∗
C∥CFIN∗: if decrypting HC∥CFIN with C̃KEY yields

ŨCFIN, setsΛ := acc and responds with the encryption of ŨSFIN under S̃KEY, and otherwise,
sets Γ := rej and aborts;

3. if CRES ̸= CRES∗: aborts as in Game 1.

– πCi∗ verifies H∗
S∥SFIN∗ it receives from A by decrypting with S̃KEY and checking equality with

ŨSFIN, and aborts if verification fails.
– answer Encrypt(πCi∗ , . . .) and Decrypt(πCi∗ , . . .) queries using C̃KEY.
– answer Encrypt(πSj∗ , . . .) and Decrypt(πSj∗ , . . .) queries using S̃KEY.

By IND-CCCA security of tlskem, we have (as shown below in Lemma 5):

Adv1 ≤ Adv2 + Advind−ccca
tlskem,tls.Pred(B)

Game 3. The challenger proceeds as before, except we modify πSj∗ as follows:

– πSj∗ computes the server Finished message on input CT := CRES∥HC∥CFIN as follows:

1. if CT = CT∗: sets Λ := acc and responds with the encryption of ŨSFIN under S̃KEY as in
Game 2;

2. if CRES = CRES∗ but HC∥CFIN ̸= H∗
C∥CFIN∗: sets Γ := rej and abort (this is the only

difference from Game 2);

3. if CRES ̸= CRES∗: aborts as in Game 2.

It is straight-forward to construct A2 so that

Adv2 ≤ Adv3 + Advlh-st-ae
stE (A2)

We use the fact that in Game 2, the key material C̃KEY used by πCi∗ and πSj∗ is chosen uniformly at
random. Specifically, A2 is given access to an encryption oracle Enc and a decryption oracle Dec

where the key corresponds to C̃KEY, and proceeds as follows:

– simulates all oracles different from πCi∗ and πSj∗ as in Game 2;

– simulates all messages up to CRES∗ between πCi∗ and πSj∗ and the computation of ŨCFIN as in
Game 2;

– picks S̃KEY ←R {0, 1}λ and ŨSFIN ←R {0, 1}λ as in Game 2;
– simulates πCi∗’s encryption of (H∗

C , ŨCFIN) by querying Enc on input (H∗
C , ŨCFIN, ŨCFIN);

– simulates πSj∗’s decryption of HC∥CFIN (where HC∥CFIN ̸= H∗
C∥CFIN∗) by querying Dec on

input (HC , CFIN);
– forwards all subsequent Encrypt(πCi∗ , ·) queries to Enc;
– forwards all subsequent Decrypt(πCi∗ , ·) queries to Dec.
– answers all subsequent Encrypt(πSj∗ , ·) and Decrypt(πSj∗ , ·) queries using S̃KEY.
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Let b denote the challenge bit in the sLHAE security experiment. Then, when b = 1, we simulate
Game 2, and when b = 0, we simulate Game 3.

Now, we obtain an upper bound on Adv3, by using the fact that in Game 3, the key material C̃KEY∥S̃KEY

used by πCi∗ and πSj∗ is chosen uniformly at random. That is, we can construct A3 (as in Game 6 of [31,
Lemma 5]) so that

Adv3 ≤ 1/2 + Advlh-st-ae
stE (A3)

Specifically, A3 is given access to an encryption oracle Enc and a decryption oracle Dec where the
challenge bit b correponds to bCi∗ and the key corresponds to C̃KEY, and proceeds as follows:

– simulates all oracles different from πCi∗ and πSj∗ as in Game 3;

– simulates all messages up to CRES∗ between πCi∗ and πSj∗ and the computation of ŨCFIN as in Game
3;

– picks S̃KEY ←R {0, 1}λ and ŨSFIN ←R {0, 1}λ as in Game 3;
– simulates πCi∗’s encryption of (H∗

C , ŨCFIN) by querying Enc on input (H∗
C , ŨCFIN, ŨCFIN);

– forwards all subsequent Encrypt(πCi∗ , ·) queries to Enc;
– forwards all subsequent Decrypt(πCi∗ , ·) queries to Dec.
– answers all subsequent Encrypt(πSj∗ , ·) and Decrypt(πSj∗ , ·) queries using S̃KEY.

Putting everything together, we obtain the bound on Advs−sacce−ae
Π (A) as claimed. ⊓⊔

Lemma 5 (ccca in s-sacce-ae). There exists an adversary B such that

Adv1 ≤ Adv2 + Advind−ccca
tlskem,tls.Pred(B)

Proof. We construct an adversary B for the IND-CCCA security game of tr.tlskem, such that if the
challenge bit b is 0, B simulates Game 1, and if b equals 1, B simulates Game 2. (We neglect all the
scenarios where the challenger aborts in Game 1.) As before, we use CREQ∗, SRES∗, CT∗, SFIN∗ to denote
the messages sent or received by πCi∗ , and we use (CRES∗, ÃKEY∥ŨSFIN∥ŨCFIN) to denote the challenge
ciphertext and KEM key in the IND-CCCA experiment.

– B uses PK from the IND-CCCA security game as PKS . B also gets IDS and prepares CERTS by
simulating the CA.

– B simulates πCi∗ and πSj∗ using ÃKEY∥ŨSFIN in Game 2 as follows:

• πCi∗ computes CT∗ as follows:

1. send L∗ := CREQ∗∥SRES∗ to the challenger in the IND-CCCA security game;

2. obtain (CRES∗, ÃKEY∥ŨSFIN∥ŨCFIN) from the challenger in the IND-CCCA experiment;

3. parse ÃKEY as C̃KEY∥S̃KEY;

4. compute H∗
C∥CFIN∗ by encrypting ŨCFIN with C̃KEY;

5. set CT∗ := CRES∗∥H∗
C∥CFIN∗ in Game 1.

• πSj∗ computes the server Finished message on input CT := CRES∥HC∥CFIN as follows:

1. if CRES = CRES∗, then πSj∗ decrypts HC∥CFIN with C̃KEY, checks equality with ŨCFIN,
and if equal, sets Λ := acc and responds with the encryption of ŨSFIN under S̃KEY and
otherwise, sets Γ := rej and abort;

2. if CRES ̸= CRES∗, then abort as in Game 1.
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We need to verify that if b = 0, then πSj∗ is behaving exactly as in Game 1. The case CRES ̸=
CRES∗ is trivial, so we focus on CRES = CRES∗. Let AKEY, UCFIN, USFIN denote the values
computed by an honest πSj∗ on input CT in Game 1. Now, CREQ∥SRES∥CRES completely de-
termines an accepting AKEY, UCFIN, USFIN. Since CREQ∥SRES∥CRES = CREQ∗∥SRES∗∥CRES∗

and b = 0, we have that if CT is accepting, then

(AKEY, UCFIN, USFIN) = (ÃKEY, ŨCFIN, ŨSFIN)

Therefore, we may decrypt with ÃKEY, check equality with ŨCFIN, and if equality holds, respond
with ŨSFIN.

• πCi∗ verifies H∗
S∥SFIN∗ it receives from A by decrypting with S̃KEY and checking equality with

ŨSFIN, and aborts if verification fails.
• answer Encrypt(πCi∗ , . . .) and Decrypt(πCi∗ , . . .) queries using C̃KEY.
• answer Encrypt(πSj∗ , . . .) and Decrypt(πSj∗ , . . .) queries using S̃KEY.

– B simulates all πCi for i ̸= i∗ as in Game 1.
– B simulates πSj for all j ̸= j∗ as follows: compute ηS as in Game 1; and on input CT, compute AKEY

and USFIN as follows:

• query CDec(SK, ·) on input (CRES∥SRES, CT), and use the response as AKEY∥USFIN (this is a
valid query by uniqueness of η∗S).

Note that B can compute AKEY, so it can answer any Reveal query for πSj too.

The claim follows readily. ⊓⊔

5 TLS-RSA: Instantiations from OW-PCA

Here, we show that if the underlying KEM (KeyGen,FC ,FS) is OW-PCA secure, then the tlskem

scheme in Section 4.2 is IND-CCCA-secure in the random oracle model. Hence, by Theorem 1, the
corresponding TLS scheme is SACCE-secure. In Section 5.2 we apply this result to show the security of
TLS-RSA.

OW-PCA for KEM [43]. For a stateful adversaryA and a KEM kem with algorithms (KeyGen,Enc,Dec),
we define the advantage function

Advow−pca
kem (A) := Pr

K ′ = K∗ :

(PK, SK)← KeyGen(1λ);

(ψ∗,K∗)← Enc(PK);

K ′ ← APCA(SK,·,·)(PK, ψ∗)


where PCA(SK, ·, ·) is the oracle that takes as input (K,ψ) with K ̸= ⊥ and outputs 1 if Dec(SK, ψ) =

K and 0 otherwise. An encryption scheme is said to be one-way against plaintext checking attacks
(OW-PCA) if for all PPT adversaries A, the advantage Advow−pca

kem (A) is a negligible function in λ.

5.1 IND-CCCA from OW-PCA

The following lemma is similar to that in [32, Theorem 3], with some significant differences: (i) the
KEM key in [32, Theorem 3] is AKEY and the ciphertext is CRES∥UCFIN, whereas our KEM key is
AKEY∥USFIN∥UCFIN and the ciphertext is simply CRES; (ii) [32] models PRF (referred to as hs and hz
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therein) also as a random oracle; (iii) [32] proves (labeled) IND-CCA security and does not consider
encryption of UCFIN.

Lemma 6 (IND-CCCA from OW-PCA). If (KeyGen,FC ,FS) is OW-PCA secure, PRF is a pseudoran-
dom function, and we model Kdf() as a random oracle, then the LKEM tlskem with predicate tls.Pred

(in Section 4.2) is IND-CCCA secure in the random oracle model (c.f. Section 4.1). That is, for any
adversary A that makes at most Q decryption queries, there exists adversaries A1,A2,A4 such that

Advind−ccca
lkem,pred(A) ≤ Q · (AdvprfPRF(A1) + 2−λ) + Advow−pca

kem (A2) + AdvprfPRF(A4).

Moreover, the running times of A1,A2,A4 are roughly that of A.

We begin with a high-level overview of the proof. The main challenge lies in simulating the
CDec oracle without knowing SK. Let (η∗∥CERT∗

S , CRES∗) denote the challenge ciphertext and let
(η∥CERTS , CRES, CFIN) denote a query to the CDec oracle. Let PMS and PMS∗ denote FS(SK, CRES)

and FS(SK, CRES∗) respectively. Recall that the adversary also gets either K0 or K1 where K0 is the
real key and K1 is a random key. We proceed via a case analysis:

– if the adversary has queried Kdf() at (PMS, η), then we can easily answer the decryption query;
– if PMS =⊥, then we output ⊥.
– if the adversary has not queried Kdf() at (PMS, η) and (PMS, η) ̸= (PMS∗, η∗), then Kdf(PMS, η) is

statistically random from the adversary’s view-point and the adversary will not be able to provide a
consistent CFIN (and therefore we can always output ⊥ for such queries);

– if (PMS, η) = (PMS∗, η∗), then we consider two sub-cases (note that it is possible that PMS = PMS∗

while CRES ̸= CRES∗). If the adversary has queried Kdf() at (PMS, η), then it breaks one-wayness.
If it has not, we cannot argue as before that Kdf(PMS, η) is statistically random from the adversary’s
view-point Kdf(PMS, η) = Kdf(PMS∗, η∗); this is because K0 leaks information about MS∗ :=

Kdf(PMS∗, η∗). Nonetheless, we can still invoke pseudo-randomness of PRF(MS∗, ·) to argue that
the adversary will not be able to provide a consistent CFIN.

Note that by observing the Kdf() oracle queries and using the PCA() oracle, we can identify queries that
fall into first or the last cases, but we cannot distinguish between queries in the second and third case.
Fortunately, we can provide the same answer ⊥ for queries in both the second and third case.

Proof. We proceed via a series of games. We start with Game 0, where the challenger proceeds as in
the real IND-CCCA game (i.e, K0 is a real key and K1 is a random key) and end up with a game where
both K0 and K1 are chosen uniformly at random. We use Adv0,Adv1, . . . to denote the advantage of
the adversary A in Games 0, 1, etc. Let PMS∗, CRES∗,MS∗, . . . denote the values used to compute the
challenge ciphertext in the IND-CCCA experiment. We assume that the adversary A makes at most Q
queries to the decryption oracle.

Game 0. Real experiment.

Game 1. For i = 1, 2, . . . , Q, we simulate the response to the i’th decryption query (η∥CERTS , CRES, CFIN)

to CDec(SK, ·, ·, ·) as follows:

1. abort if (η∥CERTS , CRES) equals (L∗, CRES∗) as in Game 0 (see Remark 4 for additional
simplifying assumption about the queries made by A);

2. examine the prefix PMS′ of each query (PMS′, η′) to Kdf() and check whether FS(SK, CRES)

equals PMS′ querying (PMS′, CRES) to PCA(SK, ·) oracle. If we find a match, then we know PMS

and can simulate the decryption oracle perfectly. If we do not find a match, respond with ⊥.
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We claim that there exists an adversary A1 whose running time is roughly that of A, such that

Adv0 ≤ Adv1 +Q · (AdvprfPRF(A1) + 2−λ)

Note that A1 will run KeyGen to generate (PK, SK) and use its knowledge of SK to simulate the
PCA(SK, ·) oracle. It suffices to show that for each i, if we do not find a match (upon which
we respond with ⊥), then we simulate the i’th decryption query correctly except with probability
AdvprfPRF(A1) + 2−λ. Roughly speaking, the reason is that UCFIN is statistically unpredictable from
the view-point of A. Fix a query (η∥CERTS , CRES, CFIN) to CDec. We write PMS := FS(SK, CRES)

and MS := Kdf(PMS, η) (where in MS, we use a random PMS if PMS =⊥) and proceed via a case
analysis:

– (PMS, η) = (PMS∗, η∗): here, MS = MS∗, and the real key K0 gives away information9 about

PRF(MS, 0∥η),PRF(MS, 1∥L∗∥CRES∗),PRF(MS, 2∥L∗∥CRES∗∥UCFIN∗).

By pseudorandomness of PRF(MS, ·), the value PRF(MS, 1∥L∥CRES) remains unpredictable
from the view-point of A, since (L∥CRES) ̸= (L∗∥CRES∗). Therefore, A guesses UCFIN

correctly with negligible probability. Formally, A1 will decrypt the HC∥CFIN provided by A
using PRF(MS, 0∥η) and use the decrypted value as its guess for UCFIN.

– PMS =⊥ or (PMS, η) ̸= (PMS∗, η∗): here, MS = Kdf(PMS, η) is truly random from the view-
point of A.10 Now, by pseudo-randomness, we may replace PRF(MS, ·) with a truly random
function (we also use the same random function for all subsequent decryption queries with the
same (PMS, η)). At this point, note thatA guesses UCFIN correctly with probability at most 2−λ.
Formally, A1 will also decrypt the HC∥CFIN provided by A using PRF(MS, 0∥η) and use the
decrypted value as its guess for UCFIN.

Game 2. We examine the prefix of each query (PMS′, ·) to Kdf() and check whether FS(SK, CRES∗)

equals PMS′ by querying (PMS′, CRES∗) to PCA(SK, ·) oracle. We abort if we find such a match. We
claim that there exists an adversary A2 whose running time is roughly that of A, such that

Adv1 ≤ Adv2 + Advow−pca
kem (A2)

The reduction is straight-forward, since in Game 1, we answer all decryption oracles using only the
PCA(SK, ·, ·) oracle. More precisely,A2 embeds the challenge in the Advow−pca

kem security game into
CRES∗.

Game 3. We replace MS∗ := Kdf(PMS∗, η∗) with MS∗ ←R {0, 1}λ in the computation of UCFIN∗, AKEY∗

and USFIN∗ for K0. We claim that
Adv2 = Adv3

This is because in Game 2, we abort whenever the adversary queries Kdf() on prefix PMS∗.
Therefore, if we do not abort, then Kdf(PMS∗, η∗) must be truly random from the view-point of
the adversary.

Game 4. We replace PRF(MS∗, ·) with a truly random function. It follows immediately from pseudo-
randomness, that there exists an adversary A4 whose running time is roughly that of A, such that

Adv3 ≤ Adv4 + AdvprfPRF(A4)

9 Here, we exploit the fact that we defined the KEM key in tlskem to be AKEY∥USFIN∥UCFIN and not PMS or MS.
10 Note that if tls.Dec simply outputs⊥ when PMS =⊥, then CDec will also output⊥, and the case PMS =⊥ follows trivially.
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Observe that in Game 4, the three values UCFIN∗, AKEY∗, USFIN∗ are independent and uniformly random
strings. That is, K0 := AKEY∗∥USFIN∗∥UCFIN∗ has the uniform distribution, which is the same as that
of K1. Therefore, the view of the adversary is statistically independent of the challenge bit b. Therefore,
Adv4 = 0. The claim follows readily. ⊓⊔

5.2 Implications for TLS-RSA

TLS-RSA KEM. The definition of the TLS-RSA KEM follows from the RSA PKCS #1v1.5 standard
[33] adopted in TLS. Building on [32] we abstract the specification with parameters λ0 = Θ(λ), λ1 =

Θ(λ) with λ0 ≤ λ1 − 88 as follows:

– KeyGen(1λ) is standard RSA key generation that outputs (PK, SK) := ((N, e), d) where de = 1

(mod ϕ(N)) and N has λ1 bits, where we assume that λ1 is a multiple of 8.
– FC(PK = (N, e)): selects λ0-bit K at random, picks a padding P ←R {0, 1}λ1−λ0−24 at random

(subject to none of the bytes of P being 00), sets x := 00∥02∥P∥00∥K (where 00, 02 are byte
encodings), sets ψ := xe (mod N), and outputs (ψ,K).

– FS(SK = d, ψ): attempts to parse ψd (mod N) as a byte sequence of the form 00∥02∥P∥00∥K
where P contains no zero bytes and K has exactly λ0 bits. The procedure then outputs K if the
parsing is successful (and ⊥ if the parsing fails).

Here, the condition that λ0 ≤ λ1−88 ensures that the random padding P has at least 8 bytes, as required
by the standard [33]. We also assume in our description that KEM decapsulation involves performing a
strict set of parsing checks.

The assumption that RSA PKCS #1v1.5 is OW-PCA is justified in [32, Theorem 1] via a reduction to
an RSA-like assumption, known as “partial-domain RSA with decision oracle”. The latter, given in [32,
Section 2.3], asserts that the RSA permutation is one-way, even given an oracle that is parameterized by
λ0 < λ1, takes as input (x0, y), and reports whether the first λ0 bits of yd mod N equals x0 or not. A
close examination of the proof of [32, Theorem 1] shows that the theorem holds no matter what set of
parsing checks are carried out during decapsulation (so long as the decapsulation algorithm is correct).
This is convenient because, as recent work [7] has shown, there is a good deal of variation in how the
required parsing is done in different PKCS #1v1.5 implementations.11

In TLS-RSA, λ0 is fixed to 384, reflecting the fixed size of PMS (at 48 bytes) in the TLS specification,
while λ1 (the bit-size of N ) is typically 1024 or 2048 in TLS deployments. Jonsson and Kaliski in [32]
discuss at some length why the above assumption is reasonable for typical parameters λ0, λ1 used in
practice. While seemingly strong, it seems hard to avoid using an assumption of this type given the many
known weaknesses in RSA-PKCS#1 v1.5. We are not aware of any further significant work studying this
assumption. In particular, in spite of the importance of the widely-deployed PKCS #1v1.5 scheme and
its use in TLS, to the best of our knowledge no weaknesses on the assumption have been reported since
its introduction in [32] over 10 years ago.

The security of TLS-RSA follows from Theorem 1 and Lemma 6:

Theorem 2. Under the following assumptions:

– RSA PKCS #1v1.5 is OW-PCA;
– PRF is a secure pseudorandom function;

11 This property of the proof would also allow us to incorporate into our analysis the additional check from the TLS
specification that the leading 2 bytes of r should be an encoding of the TLS protocol version as sent by the client, at
the cost of reducing λ0, the bit-size of r, by 16. However, we omit this fine detail.

26



– stE is a sLHAE encryption scheme,

the TLS-RSA Protocol is a secure SACCE protocol in the random oracle model.

6 TLS-CCA: Instantiations from IND-CCA

Here, we show that if the underlying KEM (KeyGen,FC ,FS) is IND-CCA-secure, then the tlskem

scheme in Section 4.2 is IND-CCCA-secure. Hence, by Theorem 1, the corresponding TLS scheme
TLS-CCA is SACCE-secure. Note that the IND-CCA requirement is stronger than OW-PCA security,
but unlike the results in Section 5, we do not rely on random oracles here.

IND-CCA security for KEMs [21]. For a stateful adversary A and a KEM (KeyGen,Enc,Dec), we
define the advantage function

Advind−cca
kem (A) := Pr

b = b′ :

(PK, SK)← KeyGen(1λ);

(ψ∗,K∗)← Enc(PK);

K0 := K∗;K1 ←R {0, 1}λ; b←R {0, 1};
b′ ← ADec(SK,·)(ψ∗,Kb)

− 1

2

with the restriction that the adversary only queries the oracle on ψ ̸= ψ∗. A KEM is said to be
indistinguishable against chosen ciphertext attacks (IND-CCA) if for all PPT adversaries A, the
advantage Advind−cca

kem (A) is a negligible function in λ.

6.1 IND-CCCA from IND-CCA

Lemma 7 (IND-CCCA from IND-CCA). If (KeyGen,FC ,FS) is IND-CCA secure and PRF and Kdf

are pseudorandom functions, then the LKEM tlskem is IND-CCCA secure. That is, for any adversary A
that makes at most Q decryption queries, there exists adversaries A1,A2 such that

Advind−ccca
tlskem,tls.Pred(A) ≤ Advind−cca

kem (A1) + AdvprfKdf(A2) + AdvprfPRF(A3) +Q · 2−λ

Moreover, the running times of A1,A2 are roughly that of A.

We begin with a high-level overview of the proof. Let (η∗∥CERT∗
S , CRES∗) denote the challenge

ciphertext and let (η∥CERTS , CRES, CFIN) denote a query to the CDec oracle. Recall that the adversary
also gets either K0 or K1 where K0 is the real key and K1 is a random key. We proceed via a case
analysis:

– if CRES∗ ̸= CRES, then we can easily answer the decryption oracle using the decryption oracle for
the underlying IND-CCA scheme;

– if CRES∗ = CRES, then we want to exploit pseudorandomness of Kdf(PMS∗, ·) to argue that the
adversary cannot provide a consistent CFIN, where PMS∗ := FS(SK, CRES∗). This step requires
some care because CRES∗ leaks information about the seed PMS∗.

Proof. We proceed via a series of games. We start with Game 0, where the challenger proceeds as in
the real IND-CCCA game (i.e, K0 is a real key and K1 is a random key) and end up with a game where
both K0 and K1 are chosen uniformly at random. We use Adv0,Adv1, . . . to denote the advantage of
the adversary A in Games 0, 1, etc. Let PMS∗, CRES∗,MS∗, . . . denote the values used to compute the
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challenge ciphertext in the IND-CCCA experiment. We assume that the adversary A makes at most Q
queries to the decryption oracle.

Game 0. Real experiment.

Game 1. Replace PMS∗ with PMS∗ ←R {0, 1}λ. That is, for i = 1, 2, . . . , Q, we simulate the response
to the i’th decryption query (η∥CERTS , CRES, CFIN) to CDec as follows:

1. abort if (η∥CERTS , CRES) equals (η∗∥CERT∗
S , CRES∗) as in Game 0 (see Remark 4 for additional

simplifying assumption about the queries made by A);
2. if CRES ̸= CRES∗, query the decryption oracle FS(SK, ·) on input CRES to compute PMS and

proceed as in Game 0.
3. if CRES = CRES∗ and (η, CERTS) ̸= (η∗, CERT∗

S), proceed as in Game 0 using Kdf(PMS∗, ·).
It is straight-forward to construct an adversary A1 whose running time is roughly that of A, such
that

Adv0 ≤ Adv1 + Advind−cca
kem (A1)

Game 2. Replace MS∗ with MS∗ ←R {0, 1}λ. It follows immediately from pseudorandomness of
Kdf(PMS∗, ·), that there exists an adversary A2 whose running time is roughly that of A, such that

Adv1 ≤ Adv2 + AdvprfKdf(A2)

Note that A2 will run KeyGen to generate (PK, SK) and use its knowledge of SK to simulate the
Dec(SK, ·) oracle.

Game 3. We replace PRF(MS∗, ·) with a truly random function R(·) in the computation of the
challenge ciphertext and challenge keys, as well as in responding to all decryption queries satisfying
CRES = CRES∗ and (η, CERTS) ̸= (η∗, CERT∗

S). It follows immediately from pseudorandomness of
PRF(MS∗, ·), that there exists an adversary A3 whose running time is roughly that of A, such that

Adv2 ≤ Adv3 + AdvprfPRF(A3)

As before, A3 will run KeyGen to generate (PK, SK) and use its knowledge of SK to simulate the
Dec(SK, ·) oracle.

Game 4. We modify the decryption oracle CDec in the previous game as follows: if CRES = CRES∗

and (η, CERTS) ̸= (η∗, CERT∗
S), always output ⊥; otherwise, proceed as in Game 3. We claim that

Adv3 ≤ Adv4 +Q · 2−λ

Whenever CRES = CRES∗ and (η, CERTS) ̸= (η∗, CERT∗
S), the value R(1∥η∥CERTS∥CRES∗) is

statistically random from the view-point of the adversary, so the probability that the adversary
provides a ciphertext query to CDec with a valid UCFIN is at most 2−λ.

Observe that in Game 4, the decryption queries reveal no information whatsoever about R(·). Therefore,
the three values

(UCFIN∗, AKEY∗, USFIN∗) := (R(1∥η∗∥CERT∗
S∥CRES∗),R(0∥η∗),R(2∥η∗∥CERT∗

S∥CRES∗∥UCFIN∗))

are independent and uniformly random strings from the view-point of the adversary. That is, K0 :=

AKEY∗∥USFIN∗∥UCFIN∗ has the uniform distribution, which is the same as that of K1. Therefore, the
view of the adversary is statistically independent of the challenge bit b. Therefore, Adv4 = 0. The claim
follows readily. ⊓⊔

28



7 TLS-DH: Instantiation from PRF-ODH

We prove the security of TLS-DH following our methodology: We show that the KEM (KeyGen,FC ,FS)

that instantiates this mode in accordance with our generic representation of TLS (Figure 2) induces a
labeled KEM, dh.tlskem, that is IND-CCCA secure. Then, by Theorem 1 we conclude that TLS-DH is
a secure SACCE protocol (in Section 8 we extend this to the case of mutual authentication). Finally, we
apply these results to TLS-DHE, namely, when both client and server provide ephemeral DH keys.

TLS-DH KEM. Let G = ⟨g⟩ be a cyclic group of prime order q generated by an element g. We define
the TLS-DH KEM (KeyGen,FC ,FS) via the following three algorithms.

– KeyGen(1λ): Set (PK, SK) := (gv, v), v ←R Zq, |q| = λ.
– FC(PK = gv): Set (ψ,K) := (gu, guv), u←R Zq.
– FS(SK = v, h): Check that h ∈ G, if yes, output hv, else output ⊥ (reject).

7.1 Security of TLS-DH in random oracle model

Before proving the security of TLS-DH in the standard model we observe that in the random oracle
model this security readily follows from Lemma 6 under the Strong Diffie-Hellman assumption.

Strong Diffie-Hellman assumption. The Strong DH assumption [1] asserts that computing guv given
(g, gv, gu) is hard on average, even given access to a verification oracle (g, gv, ·, ·) for DDH tuples.
In other words, CDH is hard given a DDH oracle. This immediately implies that the TLS-DH KEM
(KeyGen,FC ,FS) is OW-PCA. Note that the Strong DH assumption is weaker than (that is, implied by)
the Gap (Hashed) DH assumption; moreover, if the hash function is implemented via random oracle,
then the two assumptions are equivalent.

Lemma 8. Under the Strong-DH assumption in the groupG, if one models Kdf as a random oracle, the
TLS-DH KEM is OW-PCA, and therefore dh.tlskem (see below) is IND-CCCA and TLS-DH is a secure
SACCE protocol in the random oracle model.

7.2 Security of TLS-DH in the standard model

We show the security of TLS-DH in the standard model based on the PRF-ODH assumption on the
function Kdf. The assumption, which we present next, is an adaptation of the Oracle Diffie-Hellman
(ODH) assumption [1] to the PRF setting and was introduced in [31] for their proof of TLS-DHE. While
[31] argued about the difficulties of proving TLS-DHE without this assumption, we show that at least for
TLS-DH (with static server key, ephemeral client key, and no client authentication), the assumption is
provably necessary by constructing secure pseudorandom functions for which the PRF-ODH assumption
does not hold and with which TLS-DH violates ACCE security (see Appendix C).

The PRF-ODH Game. Let G = ⟨g⟩ be a cyclic group of order q generated by an element g. Let f be
a PRF family that accepts as keys elements from G and outputs strings of length λ. Given v ∈ Zq, we
define an oracle ODHv that acts on pairs (gu, α), where gu ∈ G and α is in the domain of f , and outputs
ODHv(g

u, α) = fguv(α). Next, we describe a PRF-ODH game between a challenger C and an attacker
A.
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– Challenger C chooses (v, gv) and gives gv to A.
– A presents queries to C of the form (h, α), which C answers by first checking that h ∈ G (if not, it

aborts) and then returning ODHv(h, α) = fhv(α).
Note: Since inputs to ODH are checked to be in G we will denote these inputs as gu even though A
does not have to know u.

– At some point A chooses a test value ᾱ to which C responds with a pair (gū, zb) where ū ←R Zq,
z0 = fgūv(ᾱ), z1 ←R {0, 1}λ, b←R {0, 1}.

– Attacker A keeps querying the ODH oracle via C except that it is not allowed to query the pair
(gū, ᾱ).

– At the end of its run, A outputs a bit b′.

We say that A wins the PRF-ODH game if b′ = b, and denote by Advodhf (A) its advantage.

PRF-ODH Assumption. We say that the PRF-ODH assumption holds for function f if for all efficient
PRF-ODH adversaries A, the advantage Advodhf (A) is negligible. We call f PRF-ODH secure.

Differences with the PRF-ODH assumption from [31]. The assumption introduced in [31] is a
specialization of the above assumption to the case of a single query from A (asked after C outputs
the challenge (gū, zb)). The reason for the milder assumption in [31] is that they only apply it to the
case of ephemeral DH where the attacker can make a single query to the oracle (this is also the case in
our analysis of TLS-DHE). For use with static DH, as in TLS-DH, one needs the general version with a
variable number of queries (as in the original ODH assumption from [1]). Another difference with the
use in [31] is that they do not allow queries which contain the value gū while we do as long as α ̸= ᾱ.
Finally, in the ephemeral case (single use exponents) there is no need to test group membership.

Lemma 9 (IND-CCCA from PRF-ODH). If Kdf is PRF-ODH secure and PRF is a pseudorandom
function, then the LKEM dh.tlskem is IND-CCCA secure. That is, for any adversary A that makes at
most Q decryption queries, there exists adversaries A1,A2 such that

Advind−ccca
tlskem,tls.Pred(A) ≤ AdvodhKdf(A1) + AdvprfPRF(A2) +Q · 2−λ

Moreover, the running times of A1,A2 are roughly that of A.

The proof is similar to that for Lemma 7: roughly speaking, the ODH oracle plays a role similar to the
decryption oracle in the IND-CCA security game. The main difference is that we use the ODH oracle to
handle CDec queries for (η, CRES) ̸= (η∗, CRES∗) whereas we use the IND-CCA decryption oracle to
handle queries CRES ̸= CRES∗.

Proof. We proceed via a series of games. We start with Game 0, where the challenger proceeds as in
the real IND-CCCA game (i.e, K0 is a real key and K1 is a random key) and end up with a game where
both K0 and K1 are chosen uniformly at random. We use Adv0,Adv1, . . . to denote the advantage of
the adversary A in Games 0, 1, etc. Let η∗, CERT∗

S , PMS∗, CRES∗,MS∗, . . . denote the values used to
compute the challenge ciphertext in the IND-CCCA experiment. We assume that the adversaryAmakes
at most Q queries to the decryption oracle.

Game 0. Real experiment.

Game 1. Replace MS∗ := Kdf(PMS∗, η∗) with MS∗ ←R {0, 1}λ. That is, for i = 1, 2, . . . , Q, we
simulate the response to the i’th decryption query (η∥CERTS , CRES, CFIN) to CDec as follows:
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1. abort if (η∥CERTS , CRES) equals (η∗∥CERT∗
S , CRES∗) as in Game 0 (see Remark 4 for additional

simplifying assumption about the queries made by A);

2. if (η, CRES) ̸= (η∗, CRES∗), query the ODH oracle on input (η, CRES) to compute MS and
proceed as in Game 0.

3. if (η, CRES) = (η∗, CRES∗) and CERTS ̸= CERT∗
S , proceed as in Game 0 using PRF(MS∗, ·).

It is straight-forward to construct an adversary A1 whose running time is roughly that of A, such
that

Adv0 ≤ Adv1 + AdvodhKdf(A1)

Game 2. We replace PRF(MS∗, ·) with a truly random function R(·) in the computation of the
challenge ciphertext and challenge keys, as well as in responding to all decryption queries satisfying
(η, CRES) = (η∗, CRES∗) and CERTS ̸= CERT∗

S . It follows immediately from pseudorandomness,
that there exists an adversary A2 whose running time is roughly that of A, such that

Adv1 ≤ Adv2 + AdvprfPRF(A2)

Game 3. We modify the decryption oracle CDec in the previous game as follows: if (η, CRES) =

(η∗, CRES∗) and CERTS ̸= CERT∗
S , always output ⊥; otherwise, proceed as in Game 2. We claim

that
Adv2 ≤ Adv3 +Q · 2−λ

Whenever (η, CRES) = (η∗, CRES∗) and CERTS ̸= CERT∗
S , the value R(1∥η∥CERTS∥CRES∗) is

statistically random from the view-point of the adversary, so the probability that the adversary
provides a ciphertext query with a valid UCFIN is at most 2−λ.

Observe that in Game 3, the decryption queries reveal no information whatsoever about R(·). Therefore,
the three values

(UCFIN∗, AKEY∗, USFIN∗) := (R(1∥η∗∥CERT∗
S∥CRES∗),R(0∥η∗),R(2∥η∗∥CERT∗

S∥CRES∗∥UCFIN∗))

are independent and uniformly random strings from the view-point of the adversary. That is, K0 :=

AKEY∗∥USFIN∗∥UCFIN∗ has the uniform distribution, which is the same as that of K1. Therefore, the
view of the adversary is statistically independent of the challenge bit b. Therefore, Adv3 = 0. The claim
follows readily. ⊓⊔

7.3 Application to SACCE security of TLS-DH and TLS-DHE

Combining Lemma 9 with Theorem 1 we obtain the following:

Theorem 3. Protocol TLS-DH obtained by instatiating the generic TLS protocol from Figure 2 with the
above defined TLS-DH KEM is a secure SACCE protocol provided Kdf is PRF-ODH, PRF is a secure
pseudorandom function, and stE is an sLHAE-secure encryption scheme.

Extension to TLS-DHE with server-signed ephemeral DH (and no client authentication). In this variant
of TLS-DH, the certified server’s public key corresponds to a signature algorithm and the DH value,
typically an ephemeral one, is signed by the server itself. All other details are exactly as in TLS-DH. The
security of this protocol follows from the analysis of TLS-DH by replacing CERTS = {IDS , PK = gv}CA

with CERTS = (CERTSIGS , sigS(g
v, . . .), gv), where CERTSIGS = {IDS , PKSIGS}CA, PKSIGS is a public

key of S for a signature scheme, and sigS is a signature produced by S under the corresponding signature
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..

CREQ := ηC

.

SRES := ηS∥CERTS

.

CERTC∥CT∥CSIG

.

1. ηC ←R {0, 1}λ

.

1. abort if verification of CERTS fails

2. PEER := IDS

3. L := CREQ∥SRES∥CERTC

4. (CRES, AKEY∥USFIN∥UCFIN)←
tls.Enc(PKS , L);

5. CSIG ←
sig(SKC ; CREQ, SRES, CERTC , CRES);

6. (STC
e , STC

d )← stE.Init(1λ)

7. CFIN ←
stE.Enc(CKEY, ℓC , HC , UCFIN, STC

e )

8. CT := CRES∥HC∥CFIN

.

1. check if
stE.Dec(CKEY, HS , SFIN, STC

d ) = USFIN.

2. if fail, set Λ := rej and abort.

3. otherwise, set Λ := acc.

.

1. ηS ←R {0, 1}λ

2. CERTS = {IDS , PKS}CA

.

1. abort if verification of CERTC or CSIG fails

2. L := CREQ∥SRES∥CERTC

3. AKEY∥USFIN∥UCFIN ←
tls.Dec(SKS , L, CRES)

4. if tls.Pred(AKEY∥USFIN∥UCFIN, CFIN) = 0,
set Λ := rej and abort.

5. SFIN ← stE.Enc(SKEY, ℓS , HS , USFIN, STS
e )

.

HS , SFIN

.

Server SKS

.

Client SKC

Fig. 5. Basic Generic TLS Handshake Protocol with Client Authentication Parameterized by (tls.Gen, tls.Enc, tls.Dec)

key. In other words, instead of a single DH certificate, there is now a two-certificate chain12. Note that
in the TLS-DHE protocol, the signature by S includes elements other than gv, in particular the client’s
nonce which provides freshness to the signature. However, it follows from our analysis that, for SACCE
security, the freshness of the signature is not essential (although this property may be desirable for other
purposes). We note that [31] provided a specialized proof of TLS-DHE with client authentication. We
obtain a proof for that particular case in Section 8 (Corollary 1). However, while [31] show forward
security we do not include this (important) property in our general treatment as it is not achieved by any
of the other TLS modes.

8 The TLS Handshake Protocol with Mutual Authentication

Here we augment server-only authentication, the SACCE model, with client authentication to obtain
mutual authentication. In this setting the client possesses a signature key and uses it to authenticate to
the server. We sketch the adaptation of elements from the SACCE treatment to the client-authentication
case. We refer to this model as ACCE.

Protocol Changes. Client authentication augments TLS with two messages:

– Client Certificate [RFC 5246, Sec. 7.4.6], which we denote as CERTC = {IDC , PKC}CA where PKC

is a signature (verification) public key; we denote the corresponding signature key by SKC .
– Certificate Verify [RFC 5246, Sec. 7.4.8], which contains a signature ofC on (CREQ, SRES, CERTC , CRES);

we denote it as CSIG = sig(SKC ; CREQ, SRES, CERTC , CRES).

12 In this extension of the proof of TLS-DH to TLS-DHE, we use in an essential way the fact that in our model, hence in the
proof of TLS-DH, we do not require any validation of the public key by the CA (other than verification of identity). This
allows us to accommodate DH keys self-signed by the server (under the CA-certified server’s signature key).
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Thus, the TLS message sequence then becomes (CREQ, SRES, CERTC , CRES, CSIG, CFIN, SFIN) where
CERTC , CRES, CSIG, CFIN are all sent without any server message in-between. In addition, both CERTC

and CSIG are added to the prf input for the computation of UCFIN and USFIN. The schematic generic
TLS Handshake with mutual authentication is shown in Figure 5.

8.1 ACCE Security Definitions.

We sketch how to modify our SACCE model to obtain a security model suitable for mutually
authenticated ACCE protocols. The result is largely the same as the model of [31], except that we do not
treat forward security, and [31] does not allow arbitrary registration of corrupted parties.

Model Changes.

– There are multiple clients, each with an identity and a unique public key, and some may be corrupted
(though we keep our convention of selective security and a single honest client C).

– Accepted sessions at servers have a defined PEER value.
– We extend the assumption on the certification authority (CA) to client certificates.
– The definition of matching conversations changes only on the required identical transcript prefix:

from (CREQ, SRES, CRES) to (CREQ, SRES, CERTC , CRES).
– Correctness definition is augmented with “... and ΠS

j has its PEER variable set to IDC .”
– A Client Authentication requirement is added (this is completely analogous to the server authentica-

tion case):
Advacce−ca

Π (A) is the probability that when A terminates, there is a (honest) server S and oracle πSj
that reaches an accept state with honest PEER = IDC but there is no unique oracle πCi for which πSj
has had a matching conversation with πCi .

– The server authentication definition does not change, however, due to the change in matching session
definition, the requirement that a client has a matching conversation with a server S means that the
matching view of S needs to include CERTC (or IDC) in addition to (CREQ, SRES, CRES) (this will
impact the proof of server authentication).

– The channel security advantage Advacce−ae
Π (A) is defined exactly as in the SACCE case except that

the third condition P ∈ C is changed to P ∈ C and P ′ ∈ S or P ∈ S and P ′ ∈ C.

Changes to selective security for client authentication:

Selective server authentication. No change.

Selective client authentication. We require that at the beginning of the security game, the adversary
“commits” to (S∗, C∗, j∗) and they must correspond to (S,C, j) in the definition of Advacce−ca

Π (A).

Selective channel security. We require that at the beginning of the security game for Advacce−ae
Π (A),

the adversary “commits” to (C∗, S∗, i∗, j∗) where either

– (C∗, i∗) correspond to (P, i) in the definition of Advacce−ae
Π (A) and S∗, j∗ are such that πC

∗
i∗ has

a matching conversation with πS
∗

j∗ ; or

– (S∗, j∗) correspond to (P, i) in the definition of Advacce−ae
Π (A) and C∗, i∗ are such that πS

∗
j∗ has

a matching conversation with πC
∗

i∗ .
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In selective channel security, the existence of a matching conversation will follow from the proof of
server authentication and client authentication, respectively, that will precede the proof of channel
security.

We use Advs−acce−sa
Π (A),Advs−acce−ca

Π (A),Advs−acce−ae
Π (A) to denote the respective advantage

measures in the selective setting.

LKEM Changes. The LKEM from TLS stays exactly the same except that the label η∥CERTS is
replaced with η∥CERTS∥CERTC .

8.2 ACCE Security (with mutual authentication)

The following theorem extends Theorem 1 to the mutual authentication setting, namely, when client
authentication is added.

Theorem 4. If tlskem is IND-CCCA secure (as defined in Section 4.1), sig and casig are existentially
unforgeable signature schemes, and stE is sLHAE-secure (as defined in Appendix B.1), then TLS is
ACCE-secure (as defined in Section 8.1).

Corollary 1. TLS-RSA, TLS-CCA, TLS-DH and TLS-DHE are all ACCE secure under the assumptions
stated in Theorem 2, Lemma 7 and Theorem 3, respectively.

Server authentication. We begin with server authentication:

Lemma 10 (s-acce-sa). For any adversary A, there exists adversaries A1,B such that

Advs−acce−sa
Π (A) ≤ Advsigcasig(A1) + Advind−ccca

tlskem,tls.Pred(B) + (d2max + 1) · 2−λ

Moreover, the running times of A1,B are roughly that of A.

Proof (sketch). Similar to the proof of Lemma 2, with changes in the game sequence highlighted in
boxes.

Game 0. Real experiment.

Game 1. The challenger proceeds as before, but it aborts if any of the following holds:

– (ID∗
S , PK∗

S) ̸= (IDS , PKS); or
– the transcript at any server oracle πSj begins with (CREQ∗, SRES∗, CERT∗

C , CRES∗);
– if the server nonces are not all distinct.

We claim that the first two aborts do not affect the advantage of the adversary (unless the
adversary manages to forge the CA’s signature on (ID∗

S , PK∗
S), an event with probability bounded

by Advsigcasig(A1)), and the third happens with probability d2max · 2−λ, so

Adv0 ≤ Adv1 + Advsigcasig(A1) + d2max · 2−λ

Game 2. The challenger proceeds as before, but replaces the (AKEY, USFIN, UCFIN) computed by πCi∗
with a random (ÃKEY, ŨSFIN, ŨCFIN)←R {0, 1}4λ. That is,

– parse ÃKEY as C̃KEY∥S̃KEY;
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– πCi∗ computes CT∗ := CRES∗∥H∗
C∥CFIN∗ at πCi∗ by first computing CRES∗, and then using C̃KEY

to encrypt ŨCFIN.

– πCi∗ computes CERT∗
C and CSIG∗ as in the previous game.

– πCi∗ decrypts H∗
S∥SFIN∗ using S̃KEY and checks equality with ŨSFIN.

– the challenger responds to Reveal(πCi∗) with ÃKEY.

By IND-CCCA security of tlskem, we have (analogous to Lemma 3):

Adv1 ≤ Adv2 + Advind−ccca
tlskem,tls.Pred(B)

Now, we have Adv2 ≤ 2−λ, because ŨSFIN is truly random from the perspective ofA. Putting everything
together, we obtain the bound on Advs−acce−sa

Π (A) as claimed. ⊓⊔

Client authentication. We continue with client authentication:

Lemma 11 (s-acce-ca). For any adversary A, there exists adversaries A1,B such that

Advs−acce−ca
Π (A) ≤ Advsigcasig(A1) + Advsigsig(B) + d2max · 2−λ

Moreover, the running times of A1,B are roughly that of A.

Proof (sketch). Similar to the proof of Lemma 10. Let j∗ denote the target session in the selective
ACCE game, and IDC , PKC denote the identity and public key of the honest client C. We use
CREQ∗, SRES∗, CT∗, SFIN∗ to denote the messages sent or received by πSj∗ . We proceed via a series of
games. We use Adv0,Adv1, . . . to denote the advantage of the adversary A in Games 0, 1, etc.

Game 0. Real experiment.

Game 1. The challenger proceeds as before, but it aborts if any of the following holds:

– (ID∗
C , PK∗

C) ̸= (IDC , PKC); or
– the transcript at any client oracle πCi begins with (CREQ∗, SRES∗, CERT∗

C , CRES∗);
– if the client nonces are not all distinct.

We claim that the first two aborts do not affect the advantage of the adversary (unless the adversary
manages to forge the CA’s signature on on (ID∗

C , PK∗
C), an event with probability bounded by

Advsigcasig(A1)), and the third happens with probability d2max · 2−λ, so

Adv0 ≤ Adv1 + Advsigcasig(A1) + d2max · 2−λ

To bound Adv1, we rely on existential unforgeability of sig. That is, we construct B such that

Adv1 ≤ Advsigsig(B)

B uses the signing oracle for sig to produce CSIG as a signature for (CREQ, SRES, CERTC , CRES) ̸=
(CREQ∗, SRES∗, CERT∗

C , CRES∗) at all the client sessions, and where the forgery corresponds to a valid
signature on (CREQ∗, SRES∗, CERT∗

C , CRES∗). Putting everything together, we obtain the bound on
Advs−acce−ca

Π (A) as claimed. ⊓⊔
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Channel security. We complete the proof by establishing channel security:

Lemma 12 (s-acce-ae). For any adversary A, there exists adversaries B,A2 and A3 such that

Advs−acce−ae
Π (A) ≤ Advind−ccca

tlskem,tls.Pred(B) + Advlh-st-ae
stE (A2) + Advlh-st-ae

stE (A3) + dmax · 2−λ

where dmax is an upper bound on the number of sessions invoked by A at any party. Moreover, the
running times of B, cA2 and A3 are roughly that of A.

Proof (sketch). Similar to the proof of Lemma 4, with changes in the game sequence highlighted in
boxes.

Game 0. Real experiment with challenge bit b = 0. Henceforth, we neglect the cases where b′ is ⊥.

Game 1. The challenger in this game proceeds as before, but it aborts if any of the following holds:

– any server nonce for j ̸= j∗ matches that for πSj∗ ; or

– the transcript at server oracle πSj∗ does not begin with (CREQ∗, SRES∗, CERT∗
C , CRES∗).

Thus,
Adv0 ≤ Adv1 − dmax · 2−λ

Game 2. The challenger proceeds as before, except it replaces (AKEY, USFIN, UCFIN) computed by πCi∗
with a random (ÃKEY, ŨSFIN, ŨCFIN)←R {0, 1}4λ. Specifically:

– parse ÃKEY as C̃KEY∥S̃KEY;
– πCi∗ computes CT∗ as follows:

1. generate CRES∗ using tls.Enc as in Game 1;

2. compute H∗
C∥CFIN∗ by encrypting ŨCFIN with C̃KEY;

3. set CT∗ := CRES∗∥H∗
C∥CFIN∗ as in Game 1.

4. compute CERT∗
C and CSIG∗ as in the previous game.

– πSj∗ computes the server Finished message on input CT := CRES∥HC∥CFIN as follows:

1. if CT = CT∗: sets Λ := acc and responds with the encryption of ŨSFIN under S̃KEY;

2. if CRES = CRES∗ but HC∥CFIN ̸= H∗
C∥CFIN∗: if decrypting HC∥CFIN with C̃KEY yields

ŨCFIN, setsΛ := acc and responds with the encryption of ŨSFIN under S̃KEY, and otherwise,
sets Γ := rej and aborts;

3. if CRES ̸= CRES∗: aborts as in Game 1.

– πCi∗ verifies H∗
S∥SFIN∗ it receives from A by decrypting with S̃KEY and checking equality with

ŨSFIN, and aborts if verification fails.
– answer Encrypt(πCi∗ , . . .) and Decrypt(πCi∗ , . . .) queries using C̃KEY.
– answer Encrypt(πSj∗ , . . .) and Decrypt(πSj∗ , . . .) queries using S̃KEY.

By IND-CCCA security of tlskem, we have (analogous to Lemma 5):

Adv1 ≤ Adv2 + Advind−ccca
tlskem,tls.Pred(B)

Game 3. The challenger proceeds as before, except we modify πSj∗ as follows:

– πSj∗ computes the server Finished message on input CT := CRES∥HC∥CFIN as follows:
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1. if CT = CT∗, sets Λ := acc and responds with the encryption of ŨSFIN under S̃KEY as in
Game 2;

2. if CRES = CRES∗ but HC∥CFIN ̸= H∗
C∥CFIN∗, sets Γ := rej and abort (this is the only

difference from Game 2);

3. if CRES ̸= CRES∗, then abort as in Game 2.

It is straight-forward to construct A2 so that

Adv2 ≤ Adv3 + Advlh-st-ae
stE (A2)

Putting everything together, we obtain the bound on Advs−acce−ae
Π (A) as claimed. ⊓⊔

9 Conclusions and Discussion

Establishing the security of a central protocol like TLS is clearly a significant result. The fact that we
achieve this in a systematic way that covers the different TLS modes (TLS-RSA, TLS-DH, and TLS-
DHE, as well as the hypothetical TLS-CCA), has clear methodological advantages and may be seen
as indicating that the core design of the protocol is sound. Yet, we find it important to stress the many
shortcomings of the TLS protocol that would be best avoided in future secure channel protocol designs.

On the TLS design. A main weakness in the overall TLS design is the unfortunate interaction of the
TLS Handshake and the Record protocols with respect to the Finished messages. The interaction arises
because of protocol layering: the Handshake Protocol runs as a layer on top of the Record Protocol, but
when the ChangeCipherSpec message is sent in the middle of the Handshake Protocol, this signals
to the Record Protocol that it should start to use the negotiated Record Protocol encryption. The
consequence is that the Finished messages belonging to the TLS Handshake end up being encrypted
at the Record layer. Instead, these two conceptually and functionally different parts of a secure channel
protocol can and should be designed as separate components. This separation makes engineering sense
for implementing and maintaining the protocol, especially in evolving application settings as is the case
with TLS. And it is even more important when it comes to the problem of cryptographic design and
analysis of complex protocols like TLS. Indeed, a suitable separation of authenticated key exchange and
subsequent use of the exchanged keys to protect data in the secure channel allows greater modularisation
of the security analysis, which in turn increases the likelihood that this analysis will be correct and
applicable to the actual protocol under study. More specifically, this separation would enable the designer
to focus on achieving key indistinguishability for the key exchange component and to take advantage of
well-established formal models for key exchange, whilst analysing the subsequent use of the exchanged
keys under the assumption that they are truly random (which is the usual assumption when analysing
symmetric key protocols). This separation also allows cleaner analysis of further mechanisms such as
the derivation of additional keys for future sessions (as in TLS’s session resumption feature) and would
makes design errors in protocol extensions, such as the famous TLS renegotiation bug [47, 27], easier to
spot.

In addition to the above structural weakness of the protocol, TLS has suffered from the early
implementation of its public key encryption mode, TLS-RSA, with RSA PKCS#1v1.5. This led to
Bleichenbacher attack on the original SSL protocol that exploited the error message output by the
server when receiving an invalid ciphertext. Rather than moving to a CCA-secure implementation
of the encryption function (e.g., via RSA-OAEP), the TLS community responded to the attack by
keeping RSA PKCS#1v1.5 as the default implementation but disabling the error message in case of
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a decryption error. Instead, there is now a single error message for both the case of decryption errors
and failed authentication (to mask timing information, a server receiving an invalid ciphertext continues
the protocol by choosing a random pre-master key). Before the present paper it was unknown whether
the hiding of ciphertext invalidity was sufficient to make the protocol secure; we resolve this question
positively. Yet, we would like to stress that our proof of security relies crucially on there being no side
channel that would reveal the existence of decryption failures to the attacker. While the TLS specification
takes care to avoid some explicit forms of leaking this information (as explained above), implementations
may still leak a decryption failure (e.g., a secure token may handle RSA PKCS#1v1.5 decryption errors
in a way that does leak timing information). This makes the security of the protocol non-robust and
shows the clear advantage of using a CCA-secure scheme in TLS that, as we show, would avoid these
complications and potential weaknesses. In addition, the fact that the security proof for TLS-CCA does
not require a random oracle is a further indication of the robustness that this choice would bring (this is
so even in cases where the CCA encryption in use does assume a random oracle, as in the RSA-OAEP
case).

The fragility of the TLS-RSA design is further illustrated by the somewhat “accidental” nature of its
security. Indeed, the security of this mode relies crucially on the fact that the client’s Finished message,
CFIN, is sent by the client immediately after sending the CRES message (containing the RSA ciphertext
in TLS-RSA) and before the server responds with its own Finished message SFIN. Had CFIN been
omitted or sent after SFIN, TLS-RSA would be completely insecure, e.g. subject to Bleichenbacher’s
attack. Moreover, omitting CFIN or sending it after receiving SFIN does not change the proof of security
of any of the other TLS modes. Actually, setting aside TLS-RSA, it would have been advisable to
send CFIN after SFIN as a form of key confirmation by the client once it verified the incoming SFIN.
Incidentally, these subtleties about the changes in protocol security that may arise depending on the
placement of the Finished messages serve as examples of the care one needs to have when analyzing
“variants” of TLS. Such variants may say very little about the security of the actual protocol.

An additional weaknesses in the design of TLS is the fact that the master secret is not only used for
authentication of the TLS handshake while creating a TLS session but is also stored for authentication
and key derivation for resumed sessions. The correct design is to generate three types of keys during
the Handshake: a key for authenticating the Handshake itself, application keys for protecting the Record
Protocol (data), and (if so desired) a third key that can be used for derivation of further session keys
without having to run a full handshake with the cost of public key operations that this incurs. These three
keys can be derived using a PRF in a way that the compromise of any of them does not compromise the
others. This is the approach taken, for example, in IPsec’s IKE protocol [28, 17].

On TLS-RSA vs TLS-DH. A crucial distinction between TLS-RSA and TLS-DH is that publicly
verifying validity of CRES is easy in TLS-DH (assuming efficient checking of group membership)
but hard in TLS-RSA (where CRES is a RSA PKCS #1v1.5 ciphertext). This distinction underlies
Bleichenbacher’s attack and explains why it is necessary to treat CRES∥CFIN as a monolithic message
in TLS-RSA but not in TLS-DH. Indeed, in applications where the decryption outcome may be leaked
(e.g. via side channels), we recommend using TLS-DH instead of TLS-RSA. Even better, TLS-DHE
also offers forward security, a feature not offered by either TLS-RSA or TLS-DH.

On our attack model. We caution that, while our work shows that accurate descriptions of already-
deployed, complex protocols can be analysed using the provable security paradigm, we only analyse the
“cryptographic core” of TLS. This means that our analysis rules out many (but not all) attacks. More
specifically:
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– Several recent attacks on the TLS Record Protocol are possible because TLS supports symmetric
encryption algorithms that have turned out not to be sLHAE-secure: see, for example, the BEAST
attack [23], the short MAC attack [44], Lucky 13 [3], and the RC4 attacks in [4]. Such attacks can be
mounted by the adversary in our security model but are ruled out by our theorem statements, which
assume the use of an sLHAE-secure encryption scheme. We note that sLHAE-security is achieved
when TLS’s CBC-mode option is carefully implemented [37, 44], or if the weak RC4 stream cipher
is replaced by one whose outputs are indistinguishable from random [37].

– Our description of TLS-RSA includes the standard countermeasures to Bleichenbacher’s attack, and
our security proof then gives assurance that these countermeasures are effective in the context of the
entire TLS protocol. Our work is the first to provide such a guarantee.

On the other hand, we do not treat ciphersuite (re)negotiation nor the TLS Record Protocol’s
compression or fragmentation features, meaning that, for example, none of the ciphersuite downgrade
attack of [38], the renegotiation-based attack of [47], or the CRIME attack [24] are covered by our
analysis.

It is certainly conceivable that features omitted from our model, or an interaction between such
features and the core of TLS, could lead to new attacks. A list of omitted features can be found in
Appendix A. On the other hand, we also believe that our modular approach can be helpful in extending
our analysis to encompass more of these features.

A final thought. We believe that one cannot overstate the importance of adopting protocols in practice
that have been first rigorously analyzed and proven in a plausible cryptographic model. Such proofs are
necessarily limited by the expressiveness of the underlying model and do not guarantee security in every
imaginable deployment setting, yet they can serve as a major source of confidence in the soundness
of the design. This is particularly important given the practical difficulty in changing protocols when
weaknesses are found – and TLS serves as a good example for the latter.
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[35] F. Kohlar, S. Schäge, and J. Schwenk. On the security of TLS-DH and TLS-RSA in the standard model. Cryptology

ePrint Archive, Report 2013/367, 2013. http://eprint.iacr.org/.
[36] M. Kohlweiss and S. Zanella-Béguelin. Private communication, Jan 2014.
[37] H. Krawczyk. The order of encryption and authentication for protecting communications (or: How secure is SSL?). In

CRYPTO, pages 310–331, 2001.
[38] N. Mavrogiannopoulos, F. Vercauteren, V. Velichkov, and B. Preneel. A cross-protocol attack on the TLS protocol. In

ACM CCS, pages 62–72, 2012.
[39] N. Modadugu and E. Rescorla. The Design and Implementation of Datagram TLS. In NDSS. The Internet Society, 2004.

ISBN 1-891562-18-5, 1-891562-17-7.
[40] B. Moeller. Security of CBC ciphersuites in SSL/TLS: Problems and countermeasures. Unpublished manuscript, May

2004. http://www.openssl.org/~bodo/tls-cbc.txt.
[41] P. Morrissey, N. P. Smart, and B. Warinschi. A modular security analysis of the TLS handshake protocol. In ASIACRYPT,

pages 55–73, 2008.
[42] M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-random functions. J. ACM, 51(2):231–262,

2004.

40

http://mitls.rocq.inria.fr/
http://www.rfc-editor.org/rfc/rfc4492.txt
http://www.rfc-editor.org/rfc/rfc4306.txt
http://www.rfc-editor.org/rfc/rfc5246.txt
http://www.rfc-editor.org/rfc/rfc5246.txt
http://www.ekoparty.org/eng/2012/juliano-rizzo.php
http://www.ekoparty.org/eng/2012/juliano-rizzo.php
http://www.rfc-editor.org/rfc/rfc2409.txt
http://www.rfc-editor.org/rfc/rfc2409.txt
http://www.rfc-editor.org/rfc/rfc2313.txt
http://www.rfc-editor.org/rfc/rfc2313.txt
http://eprint.iacr.org/
http://www.openssl.org/~bodo/tls-cbc.txt


[43] T. Okamoto and D. Pointcheval. REACT: Rapid enhanced-security asymmetric cryptosystem transform. In CT-RSA,
pages 159–175, 2001.

[44] K. G. Paterson, T. Ristenpart, and T. Shrimpton. Tag size does matter: Attacks and proofs for the TLS record protocol.
In ASIACRYPT, pages 372–389, 2011.

[45] L. C. Paulson. Inductive analysis of the internet protocol TLS. ACM Trans. Inf. Syst. Secur., 2(3):332–351, 1999.
[46] E. Rescorla and N. Modadugu. Datagram Transport Layer Security, Apr. 2006. URL http://www.rfc-editor.org/

rfc/rfc4347.txt.
[47] E. Rescorla, M. Ray, S. Dispensa, and N. Oskov. Transport Layer Security (TLS) Renegotiation Indication Extension.

RFC 5746 (Proposed Standard), Feb. 2010. URL http://www.ietf.org/rfc/rfc5746.txt.
[48] V. Shoup. On formal models for secure key exchange. Cryptology ePrint Archive, Report 1999/012, 1999. http:

//eprint.iacr.org/.
[49] S. Vaudenay. Security Flaws Induced by CBC Padding - Applications to SSL, IPSEC, WTLS ... In EUROCRYPT, pages

534–546, 2002.
[50] D. Wagner and B. Schneier. Analysis of the SSL 3.0 protocol. In USENIX Workshop on Electronic Commerce, pages

29–40, 1996.

A The TLS Handshake Protocol without Client Authentication

Here, we justify our model for the TLS Handshake Protocol given in Section 2. We focus mostly on the
case of TLS-RSA, with modifications for DH modes being sketched. This description is based on the
current TLS specification [22].

Client Request. Here, the client sends a request message CREQ containing a value ηC . In the TLS
specification, this 32-byte field is formed from a random component and a time-based component;
in our analysis, we model it as a random λ-bit string. Also in the specification, as part of the first
message (called the Client Hello), the client sends its highest supported TLS protocol version number
and a list of ciphersuites indicating which algorithms and key exchange methods it is prepared to
use. We omit these features in our model.

Server Response. Here, the server responds with SRES, containing a random λ-bit string ηS and the
server’s public key PKS where (PKS , SKS) ← KeyGen(1λ). In the TLS specification, ηS is again
a 32-byte field is formed from a random component and a time-based component. Also in the
specification, as part of the message containing ηS (called the Server Hello), the server sends a
protocol version number and a single ciphersuite from the list offered by the client in the first
message. Again, we omit these features from our model. In the TLS specification, the server’s public
key is optionally accompanied by a certificate chain. We model this via the inclusion of CERTS which
binds the server identity IDS and public key PKS .

Client Response. For TLS-RSA, the message CRES carries the client’s choice of pre-master secret
(PMS) encrypted under the server’s public key PK using FC(PK). In the TLS specification, PMS is
then a 48-byte value whose leading 2 bytes are an encoding of the TLS protocol version number sent
previously by the client and whose remaining 46 bytes are random. In our model, we take PMS to be
a λ-bit string. For DH ciphersuites, CRES carries the client’s choice of DH public value (equivalently,
an Elgamal-type KEM key encapsulation).

Client-side Finished and Key Derivation. From PMS, the client derives the master secret MS :=

Kdf(PMS, ηC∥ηS) via an application of pseudo-random function Kdf, and then deletes PMS. From
the TLS 1.2 specification [22]:

master_secret = PRF(pre_master_secret, ‘‘master secret’’,

ClientHello.random + ServerHello.random)[0..47];
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This step is needed in practice to allow for different forms of PMS coming from different key
establishment methods supported by TLS. In our analysis of TLS-RSA, we model the function Kdf

by a random oracle, and for all other modes that we analyze it as a PRF. The client then computes the
client Finished message UCFIN by applying the PRF to a hash of the previous hanshake messages
(in our notation, these are the messages CREQ, SRES, CRES). From [22]:

PRF(master_secret, finished_label, Hash(handshake_messages))

It also computes the application key AKEY = CKEY∥SKEY via further pseudo-random function
applications.

key_block = PRF(SecurityParameters.master_secret, ‘‘key expansion’’,

SecurityParameters.server_random + SecurityParameters.client_random);

Each of CKEY and SKEY is then parsed to provide a MAC key, an encryption key, and an IV (if
needed), to be used in TLS’s stateful authenticated encryption scheme stE.

Client Finished Message. The client then sends the client Finished message CFIN which consists of
a header field HC followed by the symmetric encryption of UCFIN under stE using the key CKEY,
header HC , and target ciphertext length ℓC . In the TLS specification, the header field has a specific,
5-byte format, consisting of a 1-byte content type field, a 2-byte protocol version field and a 2-byte
length field. Because the content is a Handshake Protocol message, the content-type field has value
0x16. The target ciphertext length ℓC reflects that the client may use the Record Protocol’s variable
length padding feature. In the TLS specification, the client sends a change cipher spec message
before this client Finished message to indicate to the server that it is switching to use the newly
established application keys in the Record Protocol. We omit this message from our analysis only
for ease of presentation. We stress that in our model, we allow the honest client the same flexibility
in choosing HC and ℓC ; in particular, HC and ℓC are not fixed by the transcript of the protocol up to
CRES. For simplicity, we also assume that the server does not validate HC (checking, for example,
that the content-type field has value 0x16) but just interprets the received message CFIN as containing
a Handshake Protocol message according to its internal state at the point of receipt.

Server-side Processing. For TLS-RSA, when the server receives CRES, it decrypts it using its private
key SK in an attempt to recover PMS. In earlier versions of the protocol (namely SSL 3.0), an error
message was returned immediately if the RSA decryption failed. This enabled Bleichenbacher’s
attack [14], which exploits the fact that RSA PKCS#1v1.5 is not CCA-secure to recover the PMS

value chosen by an honest client in a target protocol session. In TLS 1.0 and higher, the specification
mandates suppressing any decryption error message, setting PMS to a random value, and then
carrying on with the Handshake if decryption of CRES fails. We model this, with the server setting
PMS to be a random λ-bit string if decryption fails, and then proceeding to process the CFIN message
when it arrives, using the derived master secret MS. This processing involves use of stE’s decryption
algorithm, followed by recomputing the value UCFIN and comparing it to the received value. For
simplicity, we keep the operation of replacing PMS by a random value upon an invalid ciphertext in
our generic description of TLS, yet we note that this operation is not necessary for the security of the
DH modes or TLS-CCA. For DH ciphersuites, the server computes PMS ← FS(SKS , CRES), that is,
it completes the DH key exchange based on the received DH value and its static private key SKS to
compute PMS. It then proceeds to process the CFIN message as above.

Server Finished Message. If these steps succeed, then the server prepares and sends the SFIN message,
which consists of a header field HS followed by the symmetric encryption of USFIN under stE using
the key SKEY. Similar considerations apply to HS and ℓS as to HC and ℓC . In the TLS specification,
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the server first sends a change cipher spec message; we omit this message from our analysis. The
server Finished message is received at the client and processed in the same way as the client
Finished message is processed at the server.

Pseudorandom Function. According to [22], both the key derivation function Kdf and the pseudoran-
dom function PRF are derived from a single pseudorandom function HMAC.PRF based on HMAC
with different prefixes, namely:

Kdf(PMS, x) := HMAC.PRF(PMS, master secret∥x)
PRF(MS, 0∥x) := HMAC.PRF(MS, key expansion∥x)
PRF(MS, 1∥x) := HMAC.PRF(MS, client finish∥H(x))
PRF(MS, 2∥x) := HMAC.PRF(MS, server finish∥H(x))

Here, H(·) denotes a collision-resistant hash function.
Important note. The use of a collision-resistant hash function H inside the specification of the
function PRF means that the quantified PRF security of PRF assumed across the paper (represented
by AdvprfPRF) already includes the security factor coming from the (assumed) collision resistance of
H, hence there is no explicit quantification of collision resistance in our formal claims.

TLS Record Protocol. Assuming the TLS Handshake protocol concludes successfully at both client
and server, the two parties then continue to use the application key AKEY = CKEY∥SKEY in the
TLS Record Protocol. Specifically, the client uses CKEY to encrypt messages to the server, and
the server uses the same key CKEY to decrypt these messages. Similarly, the server uses SKEY to
encrypt messages to the client, and the client uses the same key SKEY to decrypt these messages.
As noted above, the client and server Finished messages are already protected in this way. As in
[31], we model the TLS Record Protocol via a stateful AEAD scheme stE which we will assume to
be sLHAE-secure. The headers H used in this phase are all 5 bytes in length, as for the Finished

messages, but the content type field is set to 0x17 instead of 0x16. In the TLS specification, the
client and server encryption and decryption states STC

e , STC
d , STS

e , STS
d are 64-bit counters whose

values are zero for the Finished messages and which are incremented for every subsequent Record
Protocol message sent or received until the maximum value is reached, at which point encryption
and decryption algorithms are assumed to output ⊥ (in-line with the TLS specification which forces
rekeying at this point).

Omissions and Simplifications In order to focus on the cryptographic core of TLS, we omit
several features of the TLS Handshake Protocol, including the ChangeCipherSpec messages, and the
negotiation of protocol versions and ciphersuites. The ChangeCipherSpec messages are trivially added
to our description.

The omission of negotiation means that we do not model ciphersuite downgrade attacks (c.f. [50,
38]) or protocol version rollback attacks. There is little formal analysis of these classes of attacks in
the literature, and we do no worse than previous authors analysing TLS [41, 31] in this regard. This
does however mean that our treatment of the different key establishment methods provides only “stand-
alone” security guarantees for these different methods. On the other hand, if we were to add ciphersuite
negotiation to our our treatment in the obvious way, i.e., by adding the offering and choice of ciphertexts
to the CREQ and SRES messages, respectively, then our approach (in particular our definition of matching
conversations and its use in our security definitions) would at least guarantee that if the TLS mode agreed
upon by the parties is secure then those parties would gain an assurance as to their agreement on the
Handshake messages and the validity of negotiation.
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We model neither session resumption nor ciphersuite renegotiation, the latter also being the subject
of recent attacks and fixes [47] and formal analysis [27]. We also omit consideration of TLS extensions.
Since we do not treat protocol version numbers, we also omit any special treatment of the leading 2
bytes of PMS. The TLS specification [22] indicates that care is needed in their processing in order to
avoid certain extensions of the Bleichenbacher attack [34].

Our choice of modelling the TLS Record Protocol as a stateful symmetric encryption scheme means
that we do not treat TLS’s fragmentation and compression features, with the latter recently being
exploited in attacks [24]. We also simplify TLS’s treatment of error messages and channel management,
omitting detailed consideration of the TLS Alert protocol which handles such issues. (More generally,
we do not model the fact that the TLS Record Protocol actually supports multiple upper-layer protocols,
as identified by the content-type field in its message headers, but just treat all of its messages uniformly.)

Finally, we treat all keys and random numbers as being λ bits in length, where λ is our security
parameter. This modelling choice is easily upgraded to allow for different lengths for the various fields.

B Preliminary Definitions

B.1 Stateful Length-Hiding Authenticated Encryption

We follow [44] in upgrading the stateful CCA security notion of Bellare, Kohno, and Namprempre [10]
to obtain the stateful length-hiding authenticated encryption (sLHAE) security notion.

A stateful (symmetric) AEAD scheme stE = (stE.Gen, stE.Init, stE.Enc, stE.Dec) is a quadruple of
algorithms. The probabilistic algorithm stE.Gen samples a key K from a finite and non-empty set K.
The deterministic algorithm stE.Init initializes two states STe, STd, one for encryption and one for
decryption. The encryption algorithm stE.Enc takes an input (K, ℓ, H,m, STe) ∈ K × N × {0, 1}∗ ×
{0, 1}∗ × {0, 1}∗ (the key, output length, associated data, message, and encryption state) and outputs
(c, STe

′) ∈ ({0, 1}∗∪ ⊥)×{0, 1}∗ such that |c| = ℓ if c ̸=⊥. Here, then, ℓ denotes the desired ciphertext
length, while STe

′ denotes an updated encryption state. The decryption algorithm stE.Dec takes an input
(K, H, c, STd) ∈ K×{0, 1}∗×{0, 1}∗×{0, 1}∗ (the key, associated data, ciphertext, and decryption state)
and outputs (m, STd

′) ∈ ({0, 1}∗∪ ⊥) × {0, 1}∗. The encryption algorithm can be probabilistic while
decryption is always deterministic. We assume that there are setsH ⊆ {0, 1}∗ (the header space), L ⊆ N
(the requested length space),M⊆ {0, 1}∗ (the message space), ST ⊆ {0, 1}∗ (the state space) such that
for allK ∈ K and STe ∈ ST it holds that Pr[stE.Enc(K, ℓ, H,m, STe) ∈ {0, 1}∗] = 1 if (ℓ, H,m, STe) ∈
L ×H×M× ST and Pr[stE.Enc(K, ℓ, H,m, STe) = ⊥] = 1 if (ℓ, H,m, STe) /∈ L ×H×M× ST .
For correctness, we require that, if a key is produced by running stE.Gen and initial states STe

0,STd
0

are output by stE.Init, and the sequence of encryptions (ci, STe
i+1) ← stE.Enc(K, ℓi, Hi,mi, STe

i) is
such that no ci is equal to ⊥, then the sequence of decryptions (m′

i, STd
i+1) ← stE.Dec(K, Hi, c,STd

i)

is such that m′
i = mi for each i ≥ 0.

We further make a restriction that whether or not stE.Enc returns⊥ does not depend on the message
in any way other than its length (all other inputs kept equal). Formally, for all keys (K, ℓ, H, STe) ∈
K × L × H × ST and for all m,m′ ∈ M such that |m| = |m′| it holds that for all coins
stE.Enc(K, ℓ, H,m, STe) =⊥ iff stE.Enc(K, ℓ, H,m′, STe) =⊥.

We recall from [44] that this syntax supports encryption schemes that return variable-length
ciphertexts of the same plaintext m, with ℓ denoting the desired ciphertext length. Notice that if ℓ and m
are such that encryption would return ⊥ (e.g. because ℓ < |m|, or the encryption algorithm does not
support ciphertexts of length ℓ), then it does so always.
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main sLHAEstE:

K ←R stE.Gen()

(ST0
e, ST0

d)←R stE.Init()

i← 0; j ← 0; phase← 0

b←R {0, 1}
b′ ←R AEnc,Dec

Ret (b′ = b)

procedure Enc(ℓ, H,m0,m1):

i← i+ 1

(c0, ST0
e)←R stE.Enc(K, ℓ, H,m0, STe)

(c1, ST1
e)←R stE.Enc(K, ℓ, H,m1, STe)

If c0i =⊥ or c1i =⊥ then return ⊥
Set ci = cb, Hi = H and STe = STb

e

Ret ci

procedure Dec(H, C):

If b = 0 then Ret ⊥
j ← j + 1

(m, STd)← stE.Dec(K, H, c, STd)

If j > i or c ̸= cj or H ̸= Hj then
phase← 1

If phase = 1 then Ret m
Ret ⊥

Fig. 6. The sLHAE security game.

We associate to adversary A and stateful AEAD scheme stE the advantage measure

Advlh-st-ae
stE (A) = Pr [ sLHAE1stE ⇒ true ]− Pr [ sLHAE0stE ⇒ true ]

where sLHAE1stE (resp. sLHAE0stE) is the game defined by setting b = 1 (resp. b = 0) in game
sLHAEstE shown in Figure 6. We say that stE is sLHAE-secure when the advantage of all adversaries
consuming “reasonable” resources is “small” (where “reasonable” and “small” can be quantified in a
concrete security setting).

Notice that when b = 0 in this game, the adversary is given access to an encryption oracle for
m0 and a decryption oracle that always returns ⊥, while if b = 1, then the adversary is given access
to an encryption oracle for m1 but a decryption oracle that correctly decrypts decryption queries after
phase ← 1 (and returns ⊥ otherwise, in order to suppress outputs from the decryption oracle allowing
trivial wins for the adversary). The adversary’s task is to distinguish these two views. This game captures
both the desired confidentiality and integrity properties of a stateful AEAD scheme. Notice that we also
modify the conditions under which phase ← 1 from [44] so as to capture header integrity as well as
ciphertext integrity. This gives a stronger and more natural definition than in [44].

It is shown in [44] that the sLHAE security notion is equivalent to the INT-sfCTXT integrity notion
from [10] in combination with a stateful, length hiding IND-CPA security notion. A main result of [44]
is that the encryption scheme MEE-TLS-CBC employed in the TLS Record Protocol is sLHAE-secure
under reasonable hypotheses concerning the security of its MAC and block cipher components and the
relative size of MAC tags and cipher blocks. Results from [37] can be used to show that when the TLS
Record Protocol is instantiated using a stream cipher, then it is also sLHAE-secure (though without
providing any length hiding, i.e. in the degenerate case where |m0| = |m1| in all encryption queries).

B.2 PKE, KEMs and PRFs

A public key encryption (PKE) scheme (KeyGen,Enc,Dec) with message space M consists of three
polynomial-time algorithms (PTAs). Via (PK, SK) ← KeyGen(1λ) the randomized key-generation
algorithm produces public/secret keys for security parameter 1λ; via C ← Enc(PK,M), the randomized
encapsulation algorithm produces a ciphertext C for a message M ∈ M; via M ← Dec(SK, C), the
possessor of secret key SK decrypts ciphertext C to get back a message M or a special reject symbol ⊥.
For consistency, we require that

Pr[C ← Enc(PK,M);Dec(SK, C) =M ] = 1,

where the probability is taken over the choice (PK, SK) ← KeyGen(1λ), M ← M and the coins of all
the algorithms in the expression above.
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A key encapsulation mechanism (KEM) (KeyGen,Enc,Dec) with key-space {0, 1}λ consists
of three PTAs. Via (PK, SK) ← KeyGen(1λ) the randomized key-generation algorithm produces
public/secret keys for security parameter 1λ; via (ψ,K) ← Enc(PK), the randomized encapsulation
algorithm creates a uniformly distributed symmetric key K ∈ {0, 1}λ, together with a ciphertext ψ; via
K ← Dec(SK, ψ), the possessor of secret key SK decrypts ciphertext C to get back a key K which is an
element in {0, 1}λ or a special reject symbol ⊥. For consistency, we require that

Pr[ (ψ,K)← Enc(PK);Dec(SK, ψ) = K ] = 1,

where the probability is taken over the choice (PK, SK) ← KeyGen(1λ) and the coins of all the
algorithms in the expression above.

A labeled key encapsulation mechanism (LKEM) (KeyGen,Enc,Dec) is like a KEM, except both
Enc and Dec take an additional input a label L ∈ {0, 1}∗. For consistency, we require that for all labels
L ∈ {0, 1}∗,

Pr[ (ψ,K)← Enc(PK, L);Dec(SK, L, ψ) = K ] = 1,

where the probability is taken over the choice (PK, SK) ← KeyGen(1λ) and the coins of all the
algorithms in the expression above.

Pseudorandom functions. A pseudorandom function (PRF) with key space {0, 1}λ and input space
{0, 1}∗ is a single deterministic polynomial-time algorithm PRF. On input a key K and a string x,
the algorithm outputs a value PRF(K,x) ∈ {0, 1}λ. For a stateful adversary, we define the advantage
function

AdvprfPRF(A) := Pr

b′ = b :

K ←R {0, 1}λ;
x← APRF(K,·)(1λ);

K0 := PRF(K,x);K1 ←R {0, 1}λ; b←R {0, 1};
b′ ← APRF(K,·)(Kb)

− 1

2

with the restriction that A never queries PRF(K, ·) on input x. A PRF is said to be pseudorandom if for
all PPT adversaries A, the advantage AdvprfPRF(A) is a neligible function in λ.

Signature scheme. A signature scheme with message space {0, 1}∗ consists of polynomial-time
algorithms (KeyGen, sig,Ver). For a stateful adversary A, we define the advantage function:

Advsigsig(A) := Pr

[
Ver(PK,M∗, σ∗) = 1 :

(PK, SK)← KeyGen(1k);

(M∗, σ∗)← Asig(SK,·)(VK)

]

with the restriction that A never made a query to sig(SK, ·) on the message M∗. A signature scheme is
said to be existentially unforgeable if for all PPT adversariesA, the advantage Advsigsig(A) is a negligible
function in λ.

C On the Necessity of the PRF-ODH Assumption

The proof of TLS-DH assumes the key derivation function Kdf to satisfy the PRF-ODH assumption
(Section 7.2). Here we prove that solely assuming Kdf to be a (regular) PRF is not sufficient to guarantee
the security of TLS-DH (confirming the intuitive necessity of PRF-ODH from [31]). We show that if a
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Fig. 7. Man-in-the-Middle against TLS-DH with a non-PRF-ODH Kdf

square-resistant PRF exists (as defined next and, in particular, implied by the existence of a PRF-ODH
function) then there is a PRF that when used as Kdf in TLS-DH results in an insecure protocol. The
attack is shown in Figure 7: The attacker replaces the client’s nonce ηC with the same value but with
its least significant bit flipped (the changed nonce is denoted by η̄C). Then in the CRES message, the
attacker changes the client’s value gu to the value (gu)1/2. The rest of the messages are relayed between
C and S unchanged. We will show that for a carefully drafted pseudorandom Kdf, with probability 1/4,
both C and S accept their respective sessions and derive the same application keys even though the
sessions are non-matching due to the different nonces. This violates both channel security and server
authentication. Here are the details.

Definition (square-resistant PRF). A PRF f with keys over a group G is called square-resistant if fk
is indistinguishable from random even when the attacker is given an oracle to fk2 (this can be formalized
in the setting of related-key security from Bellare et al. [8]).

Note: There are other forms of related key security that can be used here, squaring is an example.
Heuristically, standard PRFs such as HMAC could be conjectured to be square-resistant but it would
be interesting to show explicit examples of such functions (e.g., the Naor-Reingold scheme [42] or its
variants may be good candidates as well as some pairing-based schemes). Interestingly, note that a PRF-
ODH function is square-resistant which means that the existence of a PRF-ODH function simultaneously
implies a secure instantiation of TLS-DH as well as the the existence of a PRF for which the protocol is
insecure.

Assumptions. The analysis of the above attack uses the following two assumptions.

1. There exists a square-resistant PRF with keys over TLS DH group G (see above definition).
2. The identity function is used as the collision resistant hash function H in the computation of the

Finished messages. (This means that if one is to prove TLS-DH with a regular PRF one would need
to make assumptions on the functionH beyond its collision resistance, e.g., modelingH as a random
oracle.)

Definition of the function Kdf . Kdf is used in TLS to derive the master secret MS from a pre-master
secret PMS as follows: MS = Kdf(PMS, ‘master secret’∥ηc∥ηS) where PMS = guv.
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Notation: We use x to denote the input to Kdf in the computation of MS and use x̄ to denote a string
equal to x except that the bit corresponding to the least significant bit position of ηC is flipped. We say
that ηC is even if its least significant bit is 0 and say it is odd otherwise. For any function f we define f∗

to be identical to f except that the least significant bit of the output is flipped.

Given a square-resistant PRF f we define Kdf as follows:

– For input x with even ηC , define Kdf(z, x) = f(z, x).
– For input x with odd ηC , define Kdf(z, x) = f∗(z2, x̄).

Claim: The function Kdf is pseudorandom (follows from square-resistance of f ).

Claim: For x with odd ηC , Kdf(z, x) = Kdf∗(z2, x̄) (both sides equal f∗(z2, x̄)).

Corollary: For x with odd ηC :
Kdf(guv/2, x) = Kdf∗(guv, x̄). (1)

Definition of the function PRF. The TLS PRF is keyed with MS and used to derive the following
values

– AKEY = PRF(MS, 0∥ηC∥ηS);
– UCFIN = PRF(MS, 1∥ηC∥ηS∥CERTS∥CRES);
– USFIN = PRF(MS, 2∥ηC∥ηS∥CERTS∥CRES∥UCFIN);

where the prefixes 0, 1, 2 stand for TLS-defined labels (see Appendix B). In addition, the values
CFIN, SFIN are obtained by encrypting UCFIN, USFIN, respectively, with the key AKEY.

Given a pseudorandom function F acting on inputs as the above PRF and with keys that are one bit
shorter than MS, we define the pseudorandom function PRF as follows:

– If the least significant bit of MS is 0 then define for any input x, PRF(MS, x) = F (MS′, x) where
MS′ denotes the key MS with its last bit deleted;

– If the least significant bit of MS is 1 then define PRF(MS, x) = F (MS′, x′) where MS′ is defined as
above and x′ is defined as follows: the least significant bit of ηC is flipped and if CRES is included
in x then in x′ it is replaced with CRES2 (recall that CRES is anelement in the group G).

Claim: The function PRF is pseudorandom (follows from the pseudorandomness of F and the fact that
the transformation from x to x′ is injective).

The values computed by C and S in the attack. The view of C has ηC as the client’s nonce, CRES =

gu, and PMS = guv. The view of S has η̄C as the client’s nonce, CRES = gu/2, and PMS = guv/2. We
consider the case of even ηC (i.e., its lsb = 0) which occurs with probability 1/2 over the client’s random
choices, and denote by MSC ,MSS , the values of MS derived by C and S, respectively. We have

– MSC = Kdf(guv, ‘master secret’∥ηc∥ηS),
– MSS = Kdf(guv/2, ‘master secret’∥η̄c∥ηS).

By Equation 1 we have that MSC and MSS are equal except for their last bit. Letm be the common prefix
of MSC ,MSS and assume MSC ends with 0, i.e., we have MSC = m∥0 and MSS = m∥1.

Consider now the computation of UCFIN by the client and server and denote the computed values by
these parties as UCFINC an UCFINS , respectively. We have:
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– UCFINC = PRF(MSC , 1∥ηC∥ηS∥CERTS∥guv);
– UCFINS = PRF(MSS , 1∥η̄C∥ηS∥CERTS∥guv/2).

These two values are the same as they both equal F (m, 1∥ηC∥ηS∥CERTS∥guv). Similarly, we have:

– AKEYC = PRF(MSC , 0∥ηC∥ηS) = F (m, 0∥ηC∥ηS) = PRF(MSS , 0∥η̄C∥ηS) = AKEYS ;
– USFINC = PRF(MSC , 1∥ηC∥ηS∥CERTS∥guv∥UCFINC) = F (m, 1∥ηC∥ηS∥CERTS∥guv∥UCFINC)

= PRF(MSS , 1∥η̄C∥ηS∥CERTS∥guv/2∥UCFINS) = USFINS

Thus, since the UCFIN, USFIN values computed by both parties are the same and so is the value of AKEY,
then also CFIN and SFIN as computed by each party are the same. It follows that when both ηC and MSC
have a lsb of 0 (which happens with probability 1/4), both C and S accept the run of the protocol in
Figure 7 as valid. In particular, they end with same application keys but in non-matching sessions (since
the client nonce and CRES are different in the views of C and S). This breaks channel security as well
as server authentication.
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