
Attribute-Based Encryption for a Subclass of Circuits with
Bounded Depth from Lattices

Xiang Xie1, Rui Xue2

1 Institute of Software, Chinese Academy of Sciences
2 The State Key Laboratory of Information Security

Institute of Information Engineering, Chinese Academy of Sciences
xiexiang@is.iscas.ac.cn, xuerui@iie.ac.cn

Abstract. In this work, we present two Key-Policy Attribute-Based Encryption (ABE) schemes for
some subclass of circuits based on the Learning with Error (LWE) assumption. Our constructions are
selectively secure in the standard model. More specifically, our first construction supports a subclass
of circuits with polynomially bounded depth. We call this subclass the OR-restricted circuits which
means that for any input x, if f(x) = 0 then for all the OR gates in f , at least one of its incoming
wires will evaluate to 0. The second one is a Key-Policy ABE scheme for shallow circuits whose depth
is bounded by O(log log λ), where λ is the security parameter.

Keywords: Functional Encryption, Attribute-Based Encryption, Lattices

1 Introduction

In traditional public key encryption the encrypted message can only be recovered by the person
who has the corresponding secret key. However, More general ways of expressing who should be
able to decrypt the message may be needed. Functional Encryption (FE) [9,32] is a new paradigm
for public key encryption that enables fine-grained control of access to encrypted data. Generally
speaking, in a functional encryption the key generation center allows the user to only reveal some
specific function of encrypted data according to her secret key. One special and powerful case of FE
is the notion of Attribute-Based Encryption (ABE) which is proposed by Sahai and Waters [36].
Two different variants of ABE are considered: Key-Policy ABE (KP-ABE) and Ciphertext-Policy
ABE (CP-ABE) [23]. In a KP-ABE scheme, a ciphertext is associated with a set of attributes which
can be denoted as an assignment x of boolean variables. A secret key is produced by an authority
and is associated with a boolean function or circuit f . A user can decrypt the ciphertext if and only
if f(x) = 1. Alternatively, in a CP-ABE scheme, a ciphertext is associated with a boolean function
or circuit f , while a secret key is associated with an assignment x.

A plenty of constructions have been proposed since the introduction of ABE. These including
efficient constructions e.g. [23,38], lattice-based constructions [11], new techniques to achieve adap-
tive security [26,30,27,28] and applications in outsourcing computation [33]. However, the class of
allowable circuits in the above constructions are all restricted to Boolean formula whose fanout of
every gate is one and is a subclass of NC1.

Very recently, Sahai and Waters [17] achieve ABE scheme for general circuits. Garg, Gentry,
Sahai, and Waters [18] show a general primitive called witness encryption and turn it to ABE
schemes for circuits along with witness indistinguishable proofs. Both work uses the multilinear
map which is instantiated from the recent exciting work presented by [16]. A concurrent work with
better results proposed by Gorbunov, Vaikuntanathan, and Wee [22] presents ABE schemes for
all circuits (not restricted ones as ours) based on the Learning with Errors (LWE) assumption.
The schemes in [17] and [22] have succinct ciphertext in that the ciphertext size depends on the
depth of the circuits. Goldwasser et al. [21] show how to use succinct ABE for circuits and fully
homomorphic encryption schemes (e.g. [19,14,13,12]) to get succinct function encryptions.

Our results. In this paper we show a way to construct ABE for some restricted circuits, which
we call OR-restricted circuits. A circuit f is said to be OR-restricted, if for any input x such that
f(x) = 0 then for all the OR gates in f , at least one of its incoming wires will evaluate to 0.
Our scheme supports any OR-restricted circuits with polynomially bounded depth and arbitrary
fanout (the fanout of the entire circuit is 1). The security of the construction is based on the LWE
assumption (with subexponential module). Our method is a lattice-based analogy to the one in
[17]. The ciphertexts of our KP-ABE scheme are associated with a k-tuple x of boolean variables
and keys are associated with boolean circuits f of a max depth `, where k and ` are polynomially
bounded and previously determined at the stage of setup. The circuits in our construction are
monotonic which means that it only contains AND and OR gates. As discussed in [17], any general
circuit can be transformed into a monotonic one with negation only appearing at the input wires
for the same function with the same depth and twice as the size. The ciphertext size only depends
on the max depth of the circuit ` (not the size). We also present a possible solution to overcome
the restricted circuits and give an ABE for circuits whose depth is very shallow,say, O(log log λ),
where λ is the security parameter.

We remark that our first result is incomparable with the ones for Boolean formulas. While our
scheme supports restricted circuits with polynomially bounded depth, their constructions support
Boolean formulas without restriction but only with depth O(log λ).

Difficulty and Our Techniques. The major difficulty (as discussed in [17]) to achieve circuit
ABE is to prevent backtracking attacks. More specifically, consider a boolean circuit with fanout
greater than 1. Suppose an OR gate C with two input wires which are the output wires of gates A
and B. When decrypting, if C evaluates to 1, the user (or adversary) can compute some intermediate
value EC for C from the one EA for A (if A evaluates to 1) or EB for B (if B evaluates to 1). Now
suppose that A evaluates to 1, B evaluates to 0. If the user or adversary can backtrack the value
EB from EC (possibly,together with the secret key) then we call it a backtracking attack. The side
effect of backtracking attack is that although B evaluates to 0, the user or adversary can still get
the value EB (which represents B evaluates to 1), and follow an undesired path to the output gate.

If the fanout of the circuits is one (e.g. Boolean formulas), then the backtracking attack does
not affect the security. Because the output wire of gate B only feeds to C and has nowhere to go.
Even the attacker backtracks the value EB, it will eventually only compute EC . However, suppose
we want to consider circuit with fanout of two or more, and the output wire of B also feeds into an
AND gate D. In this case, the backtracking attack would allow an adversary to act like B evaluates
to 1 in the circuit even it does not. This misrepresentation can then be applied to other different
paths due to the large fanout and harms the security of the scheme. This is also the major reason
that the construction in [39] only works for Deterministic Finite Automata (DFA).

The technique in [17] to avoid backtracking is called “move and shift” by using multilinear
map. Informally speaking, the secret key of a monotonic circuit f with depth ` works on a sequence
of group (G1, ...,G`). Each wire w in the j-th layer is associated with a random value rw and a
ciphertext is associated with a random value s. When decrypting, the algorithm works by computing
gsrwj for each wire w in the circuit that evaluates to 1 on input x. The values are computed from

the input wire, and get gsrwj from g
srA(w)

j−1 and g
srA(w)

j−1 by multilinear map according to the gate,
where A(w), B(w) are the incoming wires of w. The reason of this method to resist backtracking is
that it’s infeasible to compute g

srA(w)

j−1 or g
srB(w)

j−1 from gsrwj even with secret keys according to the
assumptions of multilinear map.

In our construction, we use the Regev’s [35] encryption to “move and shift”. The decryption
works by computing hw = Ct

ws +∆ for each wire w in the circuit that evaluates to 1 on the input,

where Cw ∈ Zn×mq is a random matrix chosen by the authority when issuing the secret key, s ∈ Znq
is a random vector in the ciphertext, and ∆ is a vector with small norm.3 If w evaluates to 0, the
decryptor should not be able to obtain this value. The decryption works from the bottom up. We
now focus on to OR gates to illustrate how we prevent backtracking attacks. Suppose wire w is
the output of an OR gate with incoming wires A(w), B(w), and on a given input x the wire A(w)
evaluates to 1 and B(w) evaluates to 0. Therefore, the decryptor obtains hA(w) = Ct

A(w)s +∆, but

not h(B(w))C
t
B(w)s +∆. The private key associated with w is (LA(w),LB(w)) ∈ (Zm×m)2 such that

the norm of these two matrices is small and

CA(w)LA(w) = Cw mod q , CB(w)LB(w) = Cw mod q.

To move decryption forward the algorithm computes

LtA(w)hA(w) = LtA(w)(C
t
A(w)s +∆) = Ct

ws +∆ mod q = hw

If the attacker wants to backtrack, recall that the attacker’s goal would be to compute hB(w) =
Ct
B(w)s + ∆ even though B(w) evaluates to false. By the Regev’s encryption, it’s infeasible to

compute some small L′ ∈ Zm×m, such that CB(w) = CwL′ even given the secret key component
LB(w), without a trapdoor of Cw. The security of our scheme lies in this intuition, we will give the
formal proof in Section 3 which captures this intuition.

The AND gates have a similar mechanism, but require both hA(w) and hB(w) for decryption.
The secret key component associated with an AND gate w is a small matrix Lw ∈ Z2m×m such that
[CA(w)‖CB(w)]Lw = Cw mod q. If this process is applied iteratively to the output gate w∗ then
one can obtain hw∗ . The final key component is used to obtain the message according to Regev’s
scheme.

1.1 Other Related Work

Other functionality in a similar vain to ABE includes Inner-Product Encryption (IPE) [25,31],
Spatial Encryption [24] and regular language functionality [39]. Indeed, Waters [39] argues that
backtracking attacks are the major obstacles to achieve Nondeterministic Finite Automata.

Identity-Based Encryption is a simpler functionality of ABE. Since the first construction [7] in
the standard model, many different constructions from bilinear map are proposed, e.g. [10,8,37].
Besides, there are also many lattice-based constructions of IBE, HIBE [1,2,15], Fuzzy IBE [3] and
IPE [4]. Very recently, Boyen [11] proposes a lattice-based ABE scheme by using the “basis-splicing”
framework.

2 Preliminaries

For an integer m, we denote [m] as an integer set {1, ...,m}. We use bold capital letters to denote
matrices, and bold lowercase letters to denote vectors. The notation At denotes the transpose of the
matrix A. When we say a matrix defined over Zq has full rank, we mean that it has full rank module
q. If A1 is an n×m matrix and A2 is an n×m′ matrix, then [A1‖A2] denotes the n× (m+m′)
matrix formed by concatenating A1 and A2. If x1 is a vector of length m and x2 is of length m′,
then we let [x1‖x2] denote the length m + m′ vector formed by concatenating x1 and x2. When
doing matrix-vector multiplication, we always view vectors as column vectors.

3 we use ∆ denote small vectors in the following of the introduction.

A function negl(λ) is negligible, if it vanishes faster than the inverse of any polynomial in λ. The
statistical distance between two distributions X,Y over some finite or countable set S is defined as
∆(X,Y) = 1

2

∑
s∈S

∣∣Pr[X = s]−Pr[Y = s]
∣∣. X and Y are statistically indistinguishable if ∆(X,Y)

is negligible.

2.1 Lattices

A full-rank m-dimensional integer lattice Λ ⊆ Zm is a discrete additive subgroup whose linear
span is Rm. Every integer lattice is generated as the Z-linear combination of some basis of linearly
independent vectors B = {b1, ...,bm} ⊂ Zm, i.e.,Λ = {

∑m
i=1 zibi : zi ∈ Z}. For a matrix A ∈ Zn×mq ,

define the “q-ary” integer lattices Λ⊥(A) = {z ∈ Zm : Az = 0 mod q}.
Let Λ be a discrete subset of Zm. For any vector c ∈ Rm and any positive parameter σ ∈ R>0,

let ρσ,c(x) = exp(−π‖x− c‖2/σ2) be the Gaussian function on Rm with center c and parameter σ.
Denote ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x) be the discrete integral of ρσ,c over Λ, and DΛ,σ,c be the discrete

Gaussian distribution over Λ with center c and parameter σ. Specifically, for all y ∈ Λ, we have

DΛ,σ,c(y) =
ρσ,c(y)
ρσ,c(Λ)

. For notional convenience, ρσ,0 and DΛ,σ,0 are abbreviated as ρσ and DΛ,σ,

respectively.

2.2 The Learning with Errors Problem

We recall the learning with errors (LWE) problem, a classic hard problem on lattices defined by
Regev [35].

Definition 1. Let n ≥ 1 and q ≥ 2 be integers, let α ∈ (0, 1). For s ∈ Znq , let As,α be the
distribution on Znq ×Zq obtained by choosing a vector a ∈ Znq uniformly at random, e← DZ,αq, and
output (a, 〈a, s〉+ e).

The LWE problem is : for uniformly random s ← Znq , given a poly(n) number of samples that
are either from As,α or uniformly random in Znq × Zq, output 0 if the former holds and 1 if the
latter holds.

It is known that when αq ≥ 2
√
n and q = poly(n), this decision problem is at least as hard

as approximating several problems on n-dimensional lattices in the worst-case to within Õ(n/α)
factors with a quantum computer [35] or on a classical computer for a subset of these problems [34].

For subexponential q, i.e. q = 2n
δ

for any 0 < δ < 1, given the current state of the art algorithms
on this problem, the running time is 2O(n1−δ). Therefore, the subexponential LWE says that the
LWE is infeasible even in subexponential q.

In the following, we list some useful facts that make our constructions work.

Lemma 1 ([29] Lemma 2.11). Let x ← DZm,r with r > 0, then with overwhelming probability,
‖x‖ ≤ r

√
m.

Lemma 2 ([5,29]). Let q, n,m be positive integers with q ≥ 2 and m ≥ 6n log q. There is a
probabilistic polynomial-time algorithm TrapGen(q, n,m) that outputs a matrix A ∈ Zn×mq which is
statistically close to uniform in Zn×mq and a trapdoor T with ‖T‖ ≤ O(n log q). We note that T is

either a short basis of Λ⊥(A) or a short matrix satisfying some relation with A. Generally, we call
T a trapdoor of A

Lemma 3 ([1,20]). Let q > 2,m > n and m′, n′ ≥ 0. Let T be a trapdoor of A ∈ Zn×mq and
σ ≥ ‖T‖ · ω(

√
logm). There exists an efficient randomized algorithm Sample that, for any B ∈

Zn×m′q and C ∈ Zn×n′q , takes as inputs A,B,T,C, σ, and outputs S ← Sample(A‖B,T,C, σ),

where S ∈ Z(m+m′)×n′ and the distribution of each si is statistically close to ei +DΛ⊥(U),σ,−ei with

‖si‖ ≤ O(σ ·
√
m+m′). Where U = [A‖B], S = (s1, ..., sn′), C = (c1, ..., cn′) and E = (e1, ..., en′)

be arbitrary solution to Uei = ci mod q. We note that the order of A,B does not matter, i.e. the
algorithm still works for U = [B‖A].

Lemma 4 ([20]). Let n, q be positive integers and q be prime, let m ≥ n log q. Then for uniformly
random A ∈ Zn×mq , and any σ ≥ ω(

√
logm), the distribution of u = Ae mod q is statistically

close to uniform in Zq, where e← DZm,σ.
In particular, fix u ∈ Znq , and let t ∈ Zm be arbitrary solution to At = u mod q, then the

conditional distribution of e← DZm,σ given Ae = u mod q is exactly t +DΛ⊥(A),σ,−t.

2.3 Circuits

As discussed in [17], given a Boolean circuit C, one can use De Morgan’s rule to construct a
monotonic circuit C̃ with negation only appearing in the input and computes the same function
of C. The depth of C̃ is the same as C and the size is no more than twice the size of C (for more
details, we refer to [17]). Therefore, we only consider the monotonic circuits, i.e., only has AND and
OR gates. Note that inputs to the circuit correspond to boolean variables xi and xi = 1 captures
having the i-th attribute.

We define the notation for circuits by adapting the model and notation in [6]. We first restrict
our circuits to be boolean circuits, then our circuits will have a single output gate. Finally we only
consider monotonic circuits where gates are either AND or OR gates with two inputs. We remark
that the output wires of the intermediate gates will feed to more than one gate.

We denote a circuit to be a five tuple f = (k, r, A,B, GateType). Here k ≥ 2 is the number
of inputs and q is the number of the gates. Denote Inputs={1, ..., k}, Wires={1, ..., k + r}, and
Gates={k+ 1, ..., k+ r}. The wire k+ r is the designated output wire. Then A : Gates → Wires is a
function where A(w) identifies w’s first incoming wire. B : Gates→ Wires is a function where B(w)
identifies w’s second incoming wire. Finally, GateType : Gates → {AND, OR} is a function that
identifies a gate is either an AND or an OR gate. We require that w > B(w) > A(w). In addition,
we let f(x) be the evaluation of the circuit f on input x ∈ {0, 1}k, and let fw(x) be the value of
wire w of the circuit on input x.

A circuit f is said to be OR-restricted on x, if for every OR gate w in f it will have fA(w)(x) = 0
or fB(w)(x) = 0. In other words, f will not evaluate both to 1 on the two incoming wires of an OR
gate with input x. Denote C` be the set of all the circuits whose depth are bounded by `. We further
defined a subset of C` called OR-restricted circuits family

OR-C` = {f ∈ C` : ∀x, f(x) = 0⇒ f is OR-restricted on x}.

Our first construction supports OR-C` circuits for previously settled polynomial ` before setup. The
other construction supports C` circuits with ` = O(log log λ), where λ is the security parameter.

2.4 Definition of ABE for Circuits

We now describe the formal definition of Key-Policy Attribute-Based Encryption for circuits in C`.

Setup(1λ, k, C`) This algorithm takes as input the security parameter λ, then length of the input
k and a bound ` on the circuit depth. It outputs the public parameters PP and a master secret
key MSK.

Enc(PP, x ∈ {0, 1}k,M ∈ {0, 1}) This algorithm takes as input the public parameters PP , a bit
string x ∈ {0, 1}k, and a message M . It outputs a ciphertext CT .

KeyGen(MSK, f = (k, r, A,B, GateType) ∈ C`) This algorithm takes as input the master secret
key MSK and a description of a circuit f ∈ C`. It outputs a private key SKf .

Dec(SKf , CT) This algorithm takes as input a secret key SKf and a ciphertext CT . It outputs
M or a special symbol ⊥.

Correctness For all (PP,MSK) ← Setup(1λ, k, C`), for all message M , string x ∈ {0, 1}k
and f ∈ C`. For all CT ← Enc(PP, x,M), and SKf ← KeyGen(MSK, f), if f(x) = 1 then
Dec(SKf , CT) = M ; otherwise, Dec(SKf , CT) = ⊥.

Security Model of Attribute-Based Encryption for Circuits We now describe the selective
security model of ABE for circuits. An attacker first announces an input string x∗ he wants to
challenge, after that the attacker will be able to query for multiple keys but not ones that evaluate
to true on input x∗. In the end, the adversary needs to distinguish two ciphertexts whose messages
are chosen by himself. We review the selective security game (e.g. [23]) as follows.

Init The adversary announces a challenge string x∗.

Setup The challenger runs the setup algorithm and gives the public parameters PP to the adver-
sary and keeps MSK secret.

Phase 1 The adversary makes any polynomial number of private key queries for circuit description
f ∈ C` of its choice. The challenger returns KeyGen(MSK, f). For any circuit f requested, it
should satisfy that f(x∗) = 0.

Challenge The adversary submits two equal length message M0 and M1. Then the challenger flips
a random bit b ∈ {0, 1}, and computes CT ∗ ← Enc(PP, x∗,Mb). The challenge ciphertext CT ∗

is given to the adversary.

Phase 2 The same as Phase 1.

Guess The adversary outputs a guess b′ of b.

The advantage of an adversary A in this game is defined as Pr[b′ = b]− 1/2.

Definition 2. An Attribute-Based Encryption scheme for circuits in C` is selectively secure if all
polynomial time adversaries have negligible advantage.

3 Construction

In this section, we describe our constructions. The first one is a Key-Policy ABE (KP-ABE) scheme
for all circuits in OR-C`. We also give another construction for circuits in C`. However, the length
is very shallow, say, ` = O(log log λ).

3.1 ABE for OR-restricted Circuits

We now give the construction. Our main construction is a Key-Policy ABE scheme. The scheme is
a “public index” variety of functional encryption, where only the message M is hidden while x can
be efficiently discovered from the ciphertext. The ciphertext size only depends on the circuit depth
`, not the size of the circuit.

Setup(1λ, k, C`) The setup algorithm takes as input a security parameter λ, the maximum depth
` of circuits, and the number of boolean inputs k. It first generates integers q = q(λ, `), n =
n(λ, `),m = m(λ, `) and error rate α = α(λ, `) and sampling parameter σ = σ(λ, `). Then
it generates k uniformly random matrices from Zn×mq together with trapdoors (Ai,Ti) ←
TrapGen(q, n,m) for i ∈ [k], chooses an uniformly random vector u← Znq . Output

PP = ({Ai}i∈[k],u, n,m, q, α, σ) , MSK = ({Ti}i∈[k]).

Enc(PP, x ∈ {0, 1}k,M ∈ {0, 1}) This algorithm takes as input the public parameters PP , an
input x ∈ {0, 1}k and a message M ∈ {0, 1}. Define S to be the set of i such that xi = 1. It
chooses a uniformly random vector s ← Znq , and samples Gaussian error vectors xi ← DZm,αq
for i ∈ S, a Gaussian error scale x← DZ,αq. It computes, for i ∈ S

ci = At
is + xi mod q ; c = uts + x+M · bq/2c mod q.

Output ciphertext CT = (x, {ci}i∈S , c).

KeyGen(MSK, f = (k, r, A,B, GateType) ∈ C`) The algorithm takes as input the master secret
key MSK and a description f of a circuit. Recall that the circuit has k + r wires with k input
wires, r gates and the wire k+r is designated as the output wire. The algorithm chooses random
matrices together with trapdoors (Ci,Yi)← TrapGen(q, n,m) for i ∈ [k+ r], where we think of
random matrix Cw as being associated with wire w. The algorithm first generates a “header”
component

KH = ek+r ∈ Zm,

where ek+r ← Sample(Ck+r,Yk+r,u, σ). By Lemma 3, we know that ‖ek+r‖ is small and
Ck+rek+r = u mod q.

Next, the algorithm generates key components for every wire w < k + r. The structure of the
key components depends upon if w is an Input wire, an OR gate, or an AND gate. We describe
how it generates for each case.

– Input Wire: If w ∈ [k], then it corresponds to the w-th input. The key generation algorithm
samples Lw ← Sample(Aw,Tw,Cw, σ) such that ‖Lw‖ is small and AwLw = Cw mod q.
We note this is possible since the algorithm knows the master secret key Tw. Output

Kw = Lw ∈ Zm×m.

– OR Gate: Suppose that wire w such that GateType(w) =OR. The key generation algorithm
generates LA(w) ← Sample(CA(w),YA(w),Cw, σ) and LB(w) ← Sample(CB(w),YB(w),Cw, σ).
Again, from Lemma 3 we have ‖LA(w)‖, ‖LB(w)‖ are small, and CA(w)LA(w) = Cw mod q,
CB(w)LB(w) = Cw mod q. Output

Kw = (LA(w),LB(w)) ∈ Zm×m × Zm×m.

– AND Gate: Suppose that wire w such that GateType(w) =AND. The key generation al-
gorithm generates Lw ← Sample(CA(w)‖CB(w),YA(w),Cw, σ). We note that the algorithm
can also use YB(w) to sample Lw. By Lemma 3, ‖Lw‖ is small and [CA(w)‖CB(w)]Lw = Cw

mod q. Output

Kw = Lw ∈ Z2m×m.

Finally, the algorithm outputs the secret key SKf = (f,KH , {Kw}1≤w<k+r).

Dec(SKf , CT) Suppose that we are evaluating decryption for a secret key associated with a circuit
f = (k, r, A,B, GateType) and a ciphertext CT = (x, {ci}i∈S , c). We will be able to decrypt if
f(x) = 1. We will evaluate the circuit from the bottom up. Consider wire w; if fw(x) = 1 then,
the algorithm will compute hw = Ct

ws + x̂w where x̂w is some small error vector. If fw(x) = 0
no one can get the value hw. The algorithm proceeds iteratively starting with computing h1

and proceeds in order to finally computes hk+r. We breaking the cases according to whether
the wire is an Input, AND or OR gate.

– Input Wire: If w ∈ [k], then it corresponds to the w-th input. Suppose that fw(x) = 1. The
algorithm computes

hw = Ltwcw = Ltw(At
ws + xw) = Ct

ws + x̂w mod q,

where x̂w = Ltwxw. We note that if fw(x) = 1, i.e., xw = 1, we always get cw from the
ciphertext, otherwise if xw = 0, no one can compute hw because now cw is not included in
the ciphertext.

– OR Gate: Consider a wire w such that GateType(w) =OR. Suppose fw(x) = 1. Then, If
fA(w)(x) = 1, the algorithm computes:

hw = LtA(w)hA(w) = LtA(w)(C
t
A(w)s + x̂A(w)) = Ct

ws + x̂w,

where x̂w = LtA(w)x̂A(w). Note that now we have hA(w) from the iteration. Alternatively, if

fB(w)(x) = 1, it computes:

hw = LtB(w)hB(w) = LtB(w)(C
t
B(w)s + x̂B(w)) = Ct

ws + x̂w,

where x̂w = LtB(w)x̂B(w).

– AND Gate: Consider a wire w such that GateType(w) =AND. Suppose fw(x) = 1, then
fA(w)(x) = fB(x)(x) = 1. It computes:

hw = Ltw[hA(w)‖hB(w)] = Ltw([CA(w)‖CB(w)]
ts + [x̂A(w)‖x̂B(w)]) = Ct

ws + x̂w,

where x̂w = Ltw[x̂A(w)‖x̂B(w)].

If f(x) = fk+r(x) = 1, then the algorithm will compute hk+r = Ct
k+rs + x̂k+r. It finally

computes v = c− etk+rhk+r mod q, if |v| ≤ q/4, then returns 0; otherwise, returns 1.

3.2 Correctness and Parameters

To analyze the correctness and the parameters. We first estimate the norm of the error terms in
the shifting step. Before that, we view the circuits as layered ones. Denote Bs for 0 ≤ s ≤ ` to be
the norm of the error vectors in hw when w is in the s-th layer. Since for any ci = At

is + xi, we
have ‖xi‖ ≤ αq

√
m, then B0 ≤ αq

√
m. Denote R be the upper bound of the norm of the matrix

generated from the sample algorithm. Lemma 3 implies R ≤ O(σ · m). The shifting step in the
decryption algorithm shows that Bs ≤ 2

√
m ·R ·Bs−1 ≤ O(σ ·m3/2) ·Bs−1. Therefore, the norm of

the error vector B` in hk+r satisfies B` ≤ 2O(log(σ·m)·`) ·B0. Furthermore,

v = c− etk+rhk+r = uts +x+M · bq/2c− etk+r(C
t
k+rs + x̂k+r) = x− etk+rx̂k+r +M · bq/2c mod q.

A simple analysis shows that if |x−etk+rx̂k+r| ≤ q/4, the decryption algorithm will return the right
message. Therefore, we only need to set the parameters to satisfy the inequality. Since |x| ≤ αq

√
m,

‖ek+r‖ ≤ R and ‖x̂k+r‖ ≤ B`. Hence |x − etk+rx̂k+r| ≤ αq
√
m +

√
m · R · B` ≤ αq · 2O(log(σ·m)·`).

A feasible selection of parameters is that given `, set λ = `1/δ for some constant 0 < δ < 1/2.

Let q = 2`
2

= 2λ
2δ

to be prime, n = λ, m = 2n log q = 2λ1+2δ, σ = n log q ·
√

2m = 2λ1.5+3δ,
α = n/q = λ/2λ

2δ
. It’s easy to check that for sufficient small δ, it will hold that |x−etk+rx̂k+r| ≤ q/4.

Note that, the module q here is set to be subexponential, then the security of our scheme will
be based on the subexponential LWE assumption.

3.3 Security

We now prove selective security of our scheme in the standard model. The security is based on the
subexponential LWE assumption.

Theorem 1. Our scheme is selectively secure for circuits in OR-C`, if the subexponential LWE
assumption holds.

Proof. We show that if there exists a polynomial time adversary A on our ABE scheme for circuit
in OR-C` with non-negligible advantage, then we can construct a polynomial time algorithm B on
the subexponential LWE assumption with non-negligible advantage. We describe how B interacts
with A.

Init A first declares challenge input x∗ ∈ {0, 1}k.

Setup B sets the public parameters according to x∗. If x∗i = 1, then B receives (Ai,bi) from
the LWE oracle; if x∗i = 0, it invokes TrapGen(q, n,m) to generate matrix Ai together with
a trapdoor Ti. It receives another pair (u, w) from the LWE oracle and generates parameters
α = α(λ, `) and σ = σ(λ, `). B sends ({Ai}i∈[k], u, n,m, q, α, σ)to A. According to TrapGen

algorithm, we know that the public parameters are statistically indistinguishable from the ones
in the real game.

Challenge A submits two messages M0,M1. Let S∗ ⊆ [n] be the set of input indices where x∗ = 1.
B flips a random bit b ∈ {0, 1} and creates challenge ciphertext as:

CT ∗ = (x∗, {bi}i∈S∗ , w +Mb · bq/2c).

If bi and w are LWE samples, then the ciphertext is the encryption of Mb; otherwise, the ci-
phertext is uniformly random and independent of Mb.

Key Generation Phase Both key generation phases are in the same manner by the reduction
algorithm. To answer queries, we can think of the proof as having some invariant properties
on each wire of the circuit. For any f ∈ OR-C`, consider a wire w, if fw(x∗) = 1 then the
intermediate matrix Cw is totally random, and B does not know the corresponding trapdoor;
if fw(x∗) = 0 then Cw is generated from the TrapGen algorithm and B knows the trapdoor of
Cw, i.e., Yw. This enables B to sample KH = ek+r, since fk+r(x

∗) = 0. We describe how to
generate key for each wire w.

– Input Wire: Suppose w ∈ [k], if fw(x∗) = 1, then sample Lw ← (DZm,σ)m, and set Cw =
AwLw mod q. Applying Lemma 4, Cw is statistically close to uniform random in Zn×mq . By
Lemma 3 and 4, the conditional distribution of Lw ← (DZm,σ)m given AwLw = Cw mod q
is statistically close to the one in the real game. Note that B does not know the trapdoor of
Cw. B sets Kw = Lw.

If fw(x∗) = 0, B first generates (Cw,Yw)← TrapGen(q, n,m), and then invoke the Sample

algorithm to generate Lw ← Sample(Aw,Tw,Cw, σ). Note that in the Setup phase, B
knows the trapdoor Tw if x∗w = 0. In this way, the generated key component is exactly the
same as the one in the real game and B has the trapdoor of Cw. B sets Kw = Lw.

– OR Gate: Suppose wire w such that GateType(w) =OR. If fw(x∗) = 1, since f ∈ OR-C`,
by the definition of OR-C` circuits and f(x∗) = 0 we know that f is OR-restricted in
x∗. Therefore, either fA(w)(x

∗) = 0 or fB(w)(x
∗) = 0. Without loss of generality, assuming

fA(w)(x
∗) = 0, which means B knows YA(w) the trapdoors of CA(w). Now B samples LB(w) ←

(DZm,σ)m, and sets Cw = CB(w)LB(w) mod q. From Lemma 4, Cw is statistically close
to uniformly random in Zn×mq . Again by Lemma 3 and 4, the conditional distribution of
LB(w) ← (DZm,σ)m, given CB(w)LB(w) = Cw mod q is statistically close to the one in
the real game. Finally, B uses the trapdoor YA(w) and Sample algorithm to get LA(w) ←
Sample(CA(w),YA(w),Cw, σ). B sets Kw = (LA(w),LB(w)).

If fw(x∗) = 0, then fA(w)(x
∗) = fB(w)(x

∗) = 0. B knows YA(w) and YB(w) the trapdoors
of CA(w) and CB(w) respectively. B first generates (Cw,Yw)← TrapGen(q, n,m), then uses
the trapdoors YA(w),YB(w) to sample LA(w) and LB(w) just as in the real game. B sets
Kw = (LA(w),LB(w)).

We remark that when fA(w)(x
∗) = fB(w)(x

∗) = 1, then B does not know how to answer
queries. Since B does not know any of the trapdoors of CA(w) and CB(w), B then can not
sample small matrices L1,L2 such that CA(w)L1 = CB(w)L2. This is the major reason we
have to restrict to OR-C` circuits.

– AND Gate: Consider a wire w such that GateType(w) =AND. If fw(x∗) = 1, then fA(w)(x
∗) =

fB(w)(x
∗) = 1. B samples Lw ← (DZ2m,σ)m and set Cw = [CA(w)‖CB(w)]Lw mod q. By

Lemma 3 and 4, Cw is statistically close to uniform and the conditional distribution of Lw
given [CA(w)‖CB(w)]Lw = Cw mod q is statistically close to the one in the real game. B
sets Kw = Lw.

If fw(x∗) = 0, without loss of generality, we assume fA(w)(x
∗) = 0. B knows YA(w) the

trapdoor of CA(w), B first generates (Cw,Yw)← TrapGen(q, n,m), and invokes the Sample

algorithm to get Lw ← Sample(CA(w)‖CB(w),YA(w),Cw, σ). B sets Kw = Lw.

Finally, since fk+r(x
∗) = 0, B knows Yk+r the trapdoor of Ck+r, and B samples ek+r ←

Sampe(Ck+r,Yk+r,u, σ). B sets KH = ek+r and returns SKf = (f,KH , {Kw}1≤w<k+r) to A.

Guess B receives back the guess b′ from A. If b = b′, B guesses that the samples are LWE samples;
otherwise, it guesses that they are random samples.

This immediately shows that any adversary with non-negligible advantage in the selective security
game will have an identical advantage in breaking the subexponential LWE assumption. ut

3.4 ABE for Shallow Circuits

In order to overcome the restriction on the circuits, we propose a partial solution of the problem in
the OR-gates when simulating. The main idea is as follows. In the simulation of the above proof,
the only case that B can not handle is that when B does not know any trapdoor of CA(w) and
CB(w), B cannot sample small matrix LA(w) and LB(w) such that CA(w)LA(w) = CB(w)LB(w). A
possible way is that instead of one matrix, each wire now is associated with a matrix set. In an
OR gate, when shifting hA(w) or hB(w) to hw, the matrices in wire w are not the same. That is
in this OR-gate w, the shifting part use the fact CA(w)LA(w) = C1

w and CB(w)LB(w) = C2
w, where

C1
w and C2

w are in the matrix set. In this way, we can avoid the case B can not handle the secret
key. However, the drawback now is the size of the matrix set increases very fast with the depth,
which restrict the construction to only support shallow circuits, say, with depth O(log log λ). We
now describe the construction, the Setup and Enc algorithms are exactly the same as in the above
scheme.

Setup(1λ, k, C`) The setup algorithm takes as input a security parameter λ, the maximum depth
` of circuits, and the number of boolean inputs k. It first generates integers q = q(λ, `), n =
n(λ, `),m = m(λ, `) and error rate α = α(λ, `) and sampling parameter σ = σ(λ, `). Then
it generates k uniformly random matrices from Zn×mq together with trapdoors (Ai,Ti) ←
TrapGen(q, n,m) for i ∈ [k], chooses an uniformly random vector u← Znq . Output

PP = ({Ai}i∈[k],u, n,m, q, α, σ) , MSK = ({Ti}i∈[k]).

Enc(PP, x ∈ {0, 1}k,M ∈ {0, 1}) This algorithm takes as input the public parameters PP , an
input x ∈ {0, 1}k and a message M ∈ {0, 1}. Define S to be the set of i such that xi = 1. It
chooses a uniformly random vector s ← Znq , and samples Gaussian error vectors xi ← DZm,αq
for i ∈ S, a Gaussian error scale x← DZ,αq. It computes, for i ∈ S

ci = At
is + xi mod q ; c = uts + x+M · bq/2c mod q.

Output ciphertext CT = (x, {ci}i∈S , c).

KeyGen(MSK, f = (k, r, A,B, GateType)) The algorithm takes as input the master secret key
MSK and a description f of a circuit. Recall that the circuit has k+r wires with k input wires,
r gates and the wire k+ r is designated as the output wire. For each wire w, we define a matrix
setMSw, where the size ofMSw is defined in a recursive way according to w. If w ∈ [k], i.e., w
is the input wire, then |MSw| = 1; If GateType(w) = OR, then |MSw| = |MSA(w)|+|MSB(w)|;
If GateType(w) = AND, then |MSw| = |MSA(w)| · |MSB(w)|. We note that the size of allMSw
is polynomial bounded if ` = O(log log λ).
The algorithm chooses random matrices together with trapdoors for each matrix set MSw.
I.e. For each wire w, it generates (Ci

w,Y
i
w) ← TrapGen(q, n,m) for i ∈ [|MSw|]. And let

MSw = {C1
w, ...,C

|MSw|
w }. The algorithm first generates a “header” component

KH = {e1, ..., e|MSk+r|},

where ei ← Sample(Ci
k+r,Y

i
k+r,u, σ) for i ∈ [|MSk+r|]. By Lemma 3, ei ∈ Zm×m are small

and Ci
k+rei = u mod q.

Next, the algorithm generates key components for every wire w < k + r. The structure of the
key components depends upon if w is an Input wire, an OR gate, or an AND gate. We describe
how it generates for each case.

– Input Wire: If w ∈ [k], then it corresponds to the w-th input. Since now |MSw| = 1, we know
that MSw = {C1

w}. The key generation algorithm samples L1
w ← Sample(Aw,Tw,C

1
w, σ)

such that ‖L1
w‖ is small and AwL1

w = C1
w. Output

Kw = L1
w.

– OR Gate: Suppose that wire w such that GateType(w) =OR. For convenience, denote
|MSA(w)| = tA, |MSB(w)| = tB. Then for each matrix Ci

A(w) ∈ MSA(w), it generates

LiA(w) ← Sample(Ci
A(w),Y

i
A(w),C

i
w, σ) and LjB(w) ← Sample(Cj

B(w),Y
i
B(w),C

j+tA
w , σ), for

i ∈ [tA], j ∈ [tB]. From Lemma 3, ‖LiA(w)‖, ‖L
j
B(w)‖ are small, Ci

A(w)L
i
A(w) = Ci

w mod q

and Cj
B(w)L

j
B(w) = Cj+tA

w mod q. Output

Kw = ({LiA(w)}i∈[tA], {L
j
B(w)}j∈[tB]).

– AND Gate: Suppose that wire w such that GateType(w) =AND. It generates Li,jw ←
Sample(Ci

A(w)‖C
j
B(w),Y

i
A(w),C

(j−1)·tA+i
w , σ), for i ∈ [tA], j ∈ [tB]. By Lemma 3, ‖Li,jw ‖ are

small, and [Ci
A(w)‖C

j
B(w)]L

i,j
w = C

(j−1)·tA+i
w mod q. Output

Kw = {Li,jw ; i ∈ [tA], j ∈ [tB]}.

Finally, the algorithm outputs the secret key SKf = (f,KH , {Kw}1≤w<k+r).

Dec(SK,CT) Suppose that we are evaluating decryption for a secret key associated with a circuit
f = (k, r, A,B, GateType) and a ciphertext CT = (x, {ci}i∈S , c). We will be able to decrypt
if f(x) = 1. We will evaluate the circuit from the bottom up. Consider wire w; if fw(x) = 1
then, our algorithm will compute hw = (Ci

w)ts + x̂w for some Ci
w ∈ MSw, where x̂w is some

small error vector. If fw(x) = 0 nothing needs to be computed for that wire. Our algorithm
proceeds iteratively starting with computing h1 and proceeds in order to finally compute hk+r.
We breaking the cases according to whether the wire is an Input, AND or OR gate.

– Input Wire: If w ∈ [k], then it corresponds to the w-th input. Suppose that fw(x) = 1. The
algorithm computes

hw = (L1
w)tcw = (L1

w)t(At
ws + xw) = (C1

w)ts + x̂w,

where x̂w = (L1
w)txw. We note that if fw(x) = 1, i.e., xw = 1, we always get cw from the

ciphertext, otherwise if xw = 0, no one can compute hw because now cw is not included in
the ciphertext.

– OR Gate: Consider a wire w such that GateType(w) =OR. Suppose fw(x) = 1. Then, If
fA(w)(x) = 1, there exists Ci

A(w) ∈ MSA(w) such that hA(w) = (Ci
A(w))

ts + x̂A(w) and the
algorithm knows i and the value hA(w). It computes:

hw = (LiA(w))
thA(w) = (LiA(w))

t((Ci
A(w))

ts + x̂A(w)) = (Ci
w)ts + x̂w,

where x̂w = (LiA(w))
tx̂A(w). Similar operations can be done if fB(w)(x) = 1.

– AND Gate: Consider a wire w such that GateType(w) =AND. Suppose fw(x) = 1, then
fA(w)(x) = fB(x)(x) = 1. Then there exists Ci

A(w),C
j
B(w) such that hA(w) = (Ci

A(w))
ts +

x̂A(w) and hB(w) = (Cj
B(w))

ts + x̂B(w). It computes:

hw = (Li,jw)t[hA(w)‖hB(w)] = (Li,jw)t([Ci
A(w)‖C

j
B(w)]

ts+[x̂A(w)‖x̂B(w)]) = (C(j−1)·tA+i
w)ts+x̂w,

where x̂w = (Li,jw)t[x̂A(w)‖x̂B(w)].

If f(x) = fk+r(x) = 1, then the algorithm will get hk+r = (Ci
k+r)

ts + x̂k+r for some i ∈
[|MSk+r|]. It finally computes v = c − etihk+r mod q, if |v| ≤ q/4, then returns 0; otherwise,
returns 1.

3.5 Correctness and Parameters

The correctness and selection of parameters are very similar to the scheme in section 3.2. We now
consider the size of the matrix set MSw. The size increases faster in an AND gate than in an
OR gate (although it increases fast in an OR gate as well). For an AND gate w, we have that

|MSw| = |MSA(w)| · |MSB(w)|. As the depth increasing, the size of MSk+r will be O(22
`
), this

restrict the scheme only support circuits with depth O(log log λ). Since ` = O(log log λ), the module
q can be set to be polynomial and the security of this construction will be based on the standard
LWE assumption.

3.6 Security

We now prove selective security of our scheme in the standard model. The security is based on the
LWE assumption.

Theorem 2. Our scheme is selectively secure for circuits in C` with ` = O(log log λ), if the LWE
assumption holds.

Proof. We show that if there exists a polynomial time A on our ABE scheme for circuits of depth
` and of length k inputs with non-negligible advantage, then we can construct a polynomial time
algorithm B on the LWE assumption with non-negligible advantage. We describe how B interacts
with A.

Init A first declares challenge input x∗ ∈ {0, 1}k.

Setup B sets the public parameters according to x∗. If x∗i = 1, then B receives (Ai,bi) from
the LWE oracle; if x∗i = 0, it invokes TrapGen(q, n,m) to generate matrix Ai together with
a trapdoor Ti. It receives another pair (u, w) from the LWE oracle and generates parameters
α = α(λ, `) and σ = σ(λ, `). B sends ({Ai}i∈[k], u, n,m, q, α, σ)to A. According to TrapGen

algorithm, we know that the public parameters are statistically indistinguishable from the ones
in the real game.

Challenge A submits two messages M0,M1. Let S∗ ⊆ [n] be the set of input indices where x∗ = 1.
B flips a random bit b ∈ {0, 1} and creates challenge ciphertext as:

CT ∗ = (x∗, {bi}i∈S∗ , w +Mb · bq/2c).

If bi and w are LWE samples, then the ciphertext is the encryption of Mb; otherwise, the ci-
phertext is uniformly random and independent of Mb.

Key Generation Phase Both key generation phases are in the same manner by the reduction
algorithm. To answer queries, we can think of the proof as having some invariant properties
on each wire of the circuit. Consider a wire w, if fw(x∗) = 1 then the intermediate matrices in
MSw is totally random, and B does not know all the trapdoors; if fw(x∗) = 0 then B knows
all the trapdoors of the matrices in MSw, i.e., Yi

w. This enables us to sample {ei}i∈[|MSk+r|],
since fk+r(x

∗) = 0. We describe how to generate key for each wire w.

– Input Wire: Suppose w ∈ [k], if fw(x∗) = 1, then sample L1
w ← (DZm,σ)m, and set C1

w =
AwL1

w mod q. By Lemma 4, C1
w is statistically close to uniformly random in Zn×mq . From

Lemma 4 and 3 the conditional distribution of L1
w given A1

wL1
w = C1

w mod q is statistically
close to the one in the real game. B sets Kw = L1

w.
If fw(x∗) = 0, B first generates (C1

w,Y
1
w)← TrapGen(q, n,m), and then invokes the Sample

algorithm to get L1
w ← Sample(Aw,Tw,C

1
w, σ). Note that in the Setup phase, B knows the

trapdoor Tw if x∗w = 0. B sets Kw = L1
w.

– OR Gate: Suppose wire w such that GateType(w) =OR. If fw(x∗) = 1, at least one of the
sets MSA(w), MSB(w) B does not know all the trapdoors of the matrices. If B knows the
trapdoor of some matrix in MSA(w) or MSB(w), it generates the key component exactly
as in the real game. For each matrix Ci

A(w), B does not know the trapdoor, it samples

LiA(w) ← (DZm,σ)m, and sets Ci
w = Ci

A(w)L
i
A(w) mod q. Similarly, for each matrix Cj

B(w), B
does not know the trapdoor, it samples LjB(w) ← (DZm,s)

m, and sets Cj+tA
w = Cj

B(w)L
j
B(w)

mod q. By the same analysis as before, the distribution of LiA(w), LjB(w), Ci
w and Cj+tA

w are

statistically close to the real game. B sets Kw = ({LiA(w)}i∈[tA], {L
j
B(w)}j∈[tB]).

If fw(x∗) = 0, then fA(w)(x
∗) = fB(w)(x

∗) = 0. B knows all the trapdoors of matrices
in MSA(w) and MSB(w). For every i ∈ [tA], j ∈ [tB], B first generates (Ci

w,Y
i
w) ←

TrapGen(q, n,m), and (Cj+tA
w ,Yj+tA

w) ← TrapGen(q, n,m). Then it uses the trapdoors to
sample LiA(w) ← Sample(Ci

A(w),Y
i
A(w),C

i
w, σ) and LjB(w) ← Sample(Cj

B(w),Y
j
B(w),C

j+tA
w , σ).

B sets Kw = ({LA(w)i }i∈[tA], {L
B(w)
i∈[tB]}).

– AND Gate: Consider a wire w such that GateType(w) =AND. If fw(x∗) = 1, then fA(w)(x
∗) =

fB(w)(x
∗) = 1. Therefore, B does not know all the trapdoors of the matrices in MSA(w),

MSB(w). For any i ∈ [tA], j ∈ [tB], it samples Li,jw ← (DZ2m,s)
m and set C

(j−1)·tA+i
w =

[Ci
A(w)‖C

j
B(w)]L

i,j
w mod q. By a similar analysis, the distributions of the Li,jw and C

(j−1)·tA+i
w

are statistically close to the real game. B sets Kw = {Li,jw ; i ∈ [tA], j ∈ [tB]}.
If fw(x∗) = 0, w.l.o.g, we assume fA(w)(x

∗) = 0, then B knows all trapdoors of the matrices

in MSA(w). B first generates (C
(j−1)·tA+i
w ,Y

(j−1)·tA+i
w)← TrapGen(q, n,m), for i ∈ [tA], j ∈

[tB], then invokes the Sample algorithm to get Li,jw ← Sample(Ci
A(w)‖C

j
B(w),Y

i
A(w),C

(j−1)·tA+i
w , σ).

B sets Kw = {Li,jw ; i ∈ [tA], j ∈ [tB]}.

Finally, since fk+r(x
∗) = 0, B knows all the trapdoors of the matrices in MSk+r, and B can

sample ei ← Sample(Cr
k+r,Y

i
k+r,u, σ). B sets KH = (e1, ..., e|MSk+r|) and returns SKf =

(f,KH , {Kw}1≤w<k+r) to A.

Guess B receives back the guess b′ from A. If b = b′, B guesses that the samples are LWE samples;
otherwise, it guesses that they are random samples.

This immediately shows that any adversary with non-negligible advantage in the selective security
game will have an identical advantage in breaking the LWE assumption. ut

Acknowledgements. We are grateful to Xavier Boyen and Jintai Ding for their helpful discus-
sions.

References

1. S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (h) ibe in the standard model. In Advances in Cryptology–
EUROCRYPT 2010, pages 553–572. Springer, 2010.

2. S. Agrawal, D. Boneh, and X. Boyen. Lattice basis delegation in fixed dimension and shorter-ciphertext hierar-
chical ibe. In Advances in Cryptology–CRYPTO 2010, pages 98–115. Springer, 2010.

3. S. Agrawal, X. Boyen, V. Vaikuntanathan, P. Voulgaris, and H. Wee. Functional encryption for threshold functions
(or fuzzy ibe) from lattices. In Public Key Cryptography, pages 280–297, 2012.

4. S. Agrawal, D. Freeman, and V. Vaikuntanathan. Functional encryption for inner product predicates from
learning with errors. In Advances in Cryptology–ASIACRYPT 2011, pages 21–40. Springer, 2011.

5. J. Alwen and C. Peikert. Generating shorter bases for hard random lattices. In Symposium on Theoretical Aspects
of Computer Science STACS 2009, pages 75–86, 2009.

6. M. Bellare, V.T. Hoang, and P. Rogaway. Foundations of garbled circuits. In Proceedings of the 2012 ACM
conference on Computer and communications security, pages 784–796. ACM, 2012.

7. D. Boneh and X. Boyen. Secure identity based encryption without random oracles. In Advances in Cryptology-
CRYPTO 2004, pages 197–206. Springer, 2004.

8. D. Boneh, X. Boyen, and E.J. Goh. Hierarchical identity based encryption with constant size ciphertext. Advances
in Cryptology–EUROCRYPT 2005, pages 440–456, 2005.

9. D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and challenges. In Theory of Cryptography,
pages 253–273. Springer, 2011.

10. Dan Boneh and Xavier Boyen. Efficient selective identity-based encryption without random oracles. Journal of
Cryptology (JoC), 24(4):659–693, 2011. early version in Eurocrypt 2004.

11. Xavier Boyen. Attribute-based functional encryption on lattices. In Theory of Cryptography, pages 122–142.
Springer, 2013.

12. Z. Brakerski. Fully homomorphic encryption without modulus switching from classical gapsvp. In Advances in
Cryptology–CRYPTO 2012, pages 868–886. Springer, 2012.

13. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic encryption without bootstrapping.
In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pages 309–325. ACM, 2012.

14. Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from (standard) lwe. In Foundations
of Computer Science (FOCS) 2011, pages 97–106. IEEE, 2011.

15. D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai trees, or how to delegate a lattice basis. Advances in
Cryptology–EUROCRYPT 2010, pages 523–552, 2010.

16. S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices and applications. Advances in
Cryptology–EUROCRYPT 2013, 2013.

17. S. Garg, C. Gentry, S. Halevi, A. Sahai, and B. Waters. Attribute-based encryption for circuits from multilinear
maps. CRYPTO, 2013.

18. S. Garg, C. Gentry, A. Sahai, and B. Waters. Witness encryption and its applications. STOC, 2013.
19. C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178, 2009.
20. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions.

In Proceedings of the 40th annual ACM symposium on Theory of computing, pages 197–206. ACM, 2008.
21. S. Goldwasser, Y. Kalai, R. Popa, V. Vaikuntanathan, and N. Zeldovich. Succinct functional encryption and

applications: Reusable garbled circuits and beyond. STOC, 2013.
22. S. Gorbunov, V. Vaikuntanathan, and H. Wee. Predicate encryption for circuits. STOC, 2013.

23. V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-grained access control of
encrypted data. In Proceedings of the 13th ACM conference on computer and communications security, pages
89–98. ACM, 2006.

24. M. A. Hamburg. Spatial encryption. Stanford University, 2011.
25. J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunctions, polynomial equations, and inner

products. In Advances in Cryptology–EUROCRYPT 2008, pages 146–162. Springer, 2008.
26. A. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. Fully secure functional encryption: Attribute-

based encryption and (hierarchical) inner product encryption. Advances in Cryptology–EUROCRYPT 2010,
pages 62–91, 2010.

27. A. Lewko and B. Waters. Unbounded hibe and attribute-based encryption. In Advances in Cryptology–
EUROCRYPT 2011, pages 547–567. Springer, 2011.

28. A. Lewko and B. Waters. New proof methods for attribute-based encryption: Achieving full security through
selective techniques. In Advances in Cryptology–CRYPTO 2012, pages 180–198. Springer, 2012.

29. D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In Advances in Cryptology–
EUROCRYPT 2012, pages 700–718. Springer, 2012.

30. T. Okamoto and K. Takashima. Fully secure functional encryption with general relations from the decisional
linear assumption. Advances in Cryptology–CRYPTO 2010, pages 191–208, 2010.

31. T. Okamoto and K. Takashima. Adaptively attribute-hiding (hierarchical) inner product encryption. Advances
in Cryptology–EUROCRYPT 2012, 2012.

32. A. O’Neill. Definitional issues in functional encryption. Technical report, Cryptology ePrint Archive, Report
2010/556, 2010.

33. B. Parno, M. Raykova, and V. Vaikuntanathan. How to delegate and verify in public: Verifiable computation
from attribute-based encryption. In Theory of Cryptography, pages 422–439. Springer, 2012.

34. C. Peikert. Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In Pro-
ceedings of the 41st annual ACM symposium on Theory of computing, pages 333–342. ACM, 2009.

35. O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In Proceedings of the
thirty-seventh annual ACM symposium on Theory of computing, pages 84–93. ACM, 2005.

36. A. Sahai and B. Waters. Fuzzy identity-based encryption. Advances in Cryptology–EUROCRYPT 2005, pages
457–473, 2005.

37. B. Waters. Dual system encryption: Realizing fully secure ibe and hibe under simple assumptions. Advances in
Cryptology-CRYPTO 2009, pages 619–636, 2009.

38. B. Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure realization.
In Public Key Cryptography, pages 53–70. Springer, 2011.

39. B. Waters. Functional encryption for regular languages. Advances in Cryptology–CRYPTO 2012, pages 218–235,
2012.

	Attribute-Based Encryption for a Subclass of Circuits with Bounded Depth from Lattices
	

