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Abstract. Preneel et al. (Crypto 1993) assessed 64 possible ways to construct a compression function out of
a blockcipher. They conjectured that 12 out of these 64 so-called PGV constructions achieve optimal security
bounds for collision resistance and preimage resistance. This was proven by Black et al. (Journal of Cryptol-
ogy, 2010), if one assumes that the blockcipher is ideal. This result, however, does not apply to “non-ideal”
blockciphers such as AES. To alleviate this problem, we revisit the PGV constructions in light of the recently
proposed idea of random-oracle reducibility (Baecher and Fischlin, Crypto 2011). We say that the blockcipher
in one of the 12 secure PGV constructions reduces to the one in another construction, if any secure instantiation
of the cipher, ideal or not, for one construction also makes the other secure. This notion allows us to relate
the underlying assumptions on blockciphers in different constructions, and show that the requirements on the
blockcipher for one case are not more demanding than those for the other. It turns out that this approach divides
the 12 secure constructions into two groups of equal size, where within each group a blockcipher making one
construction secure also makes all others secure. Across the groups this is provably not the case, showing that the
sets of “good” blockciphers for each group are qualitatively distinct. We also relate the ideal ciphers in the PGV
constructions with those in double-block-length hash functions such as Tandem-DM, Abreast-DM, and Hirose-
DM. Here, our results show that, besides achieving better bounds, the double-block-length hash functions rely on
weaker assumptions on the blockciphers to achieve collision and everywhere preimage resistance.

1 Introduction

The design of hash functions (or compression functions) from blockciphers has been considered very early in mod-
ern cryptography. Preneel, Govaerts, and Vandewalle [PGV94] initiated a systematic study of designing a compres-
sion function F : {0, 1}n×{0, 1}n → {0, 1}n out of a blockcipher E : {0, 1}n×{0, 1}n → {0, 1}n by analyzing all
64 possible ways to combine the relevant inputs and outputs using xors only. Preneel et al. conjectured only 12 out of
these 64 PGV constructions to be secure, including the well-known constructions of Matyas–Meyer–Oseas (MMO)
and Davies–Meyer (DM). The idea continues to influence hash-function design till today. Indeed, one of the former
five final candidates in the SHA-3 competition, Skein [FLS+08], explicitly refers to this design methodology, and
other former candidates like Grøstl [GKM+11] are based on similar principles.

The conjecture about the 12 secure PGV variants was later shown to be true in the ideal-cipher model (ICM) by
Black et al. [BRS02, BRSS10]. Roughly speaking, Black et al. show that assuming E implements a random blockci-
pher, the 12 secure PGV compression functions achieve optimal security of Θ(q2 · 2−n) for collision resistance and
Θ(q ·2−n) for preimage resistance, where q is the number of queries to the ideal cipher (and its inverse). Black et al.
also discuss 8 further variants which, if used in an iteration mode, attain optimal collision resistance and suboptimal
preimage resistance of Θ(q2 · 2−n). The remaining 44 PGV versions are insecure.
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IDEALIZED MODELS. As pointed out by Black et al. [BRSS10], security proofs for the PGV schemes in the ICM
should be treated with care. Such results indicate that in order to break the security of the PGV scheme one would
need to take advantage of structural properties of the blockcipher. Yet blockciphers such as AES, or the Threefish
blockcipher used in Skein, clearly display a structure which is far from an ideal object. For instance, IDEA seems
quite unsuitable to base a compression function on [WPS+12], while for AES recent related-key attacks [BK09,
BKN09] cast some shadow on its suitability for this purpose. Indeed, Khovratovich [Kho10, Corollary 2] states
unambiguously that “AES-256 in the Davies–Meyer hashing mode leads to an insecure hash function,” but remarks
that it is not known how to attack, for instance, double-block-length constructions. Moreover, it is currently still
unknown how to exploit these weaknesses in AES-256 to break the standard collision or preimage security of any
AES-instantiated PGV compression function. Consequently it may well be that AES makes some of the 12 PGV
constructions secure, whereas others turn out to be insecure, despite a proof in the ICM. Unfortunately, it is very
hard to make any security claims about specific PGV constructions with respect to a “real” blockcipher, or to even
determine exactly the necessary requirements on the blockcipher for different PGV constructions to be secure.

Recently, a similar issue for the random-oracle model, where a monolithic idealized hash function is used, has
been addressed by Baecher and Fischlin [BF11] via the so-called random-oracle reducibility. The idea is to relate the
idealized hash functions in different (primarily public-key) schemes, allowing to conclude that the requirements on
the hash function in one scheme are weaker than those in the other scheme. That is, Baecher and Fischlin consider
two cryptographic schemes A and B with related security games in the random-oracle model. They define that the
random oracle in scheme B reduces to the one in scheme A, if any instantiation H of the random oracle, possibly
through an efficient hash function or again by an oracle-based solution, which makes scheme A secure, also makes
scheme B secure. As such, the requirements on the hash function for scheme B are weaker than those for the one
in scheme A. To be precise, Baecher and Fischlin allow an efficient but deterministic and stateless transformation
T H for instantiating the random oracle in scheme B, to account for, say, different input or output sizes of the hash
functions in the schemes. Using such transformations they are able to relate the random oracles in some public-key
encryption schemes, including some ElGamal-type schemes.

OUR RESULTS FOR THE PGV CONSTRUCTIONS. We apply the idea of oracle reducibility to the ideal-cipher model
and the PGV constructions. Take any two of the 12 PGV constructions, PGVi and PGVj , which are secure in the
ICM. The goal is to show that any blockcipher (ideal or not) which makes PGVi secure, also makes PGVj secure.
Here, security may refer to different games such as standard notion for collision resistance, preimage resistance, or
everywhere preimage resistance [RS04], or more elaborate notions such as preimage awareness [DRS09]. Although
we can ask the same question for indifferentiability from random functions [MRH04], the PGV constructions, as
pointed out in [CDMP05, KM07], do not achieve this level of security.1

Our first result divides the 12 secure PGV constructions into two groups G1 and G2 of size 6, where within
each group the ideal cipher in each construction reduces to the ideal cipher in any other construction (with respect
to collision resistance, [everywhere] preimage resistance, and preimage awareness). We sometimes call these the
PGV1-group and the PGV2-group respectively: these two schemes are representatives of their respective groups.
Across different groups, however, and for any of the security games, starting with the ideal cipher we can derive
a blockcipher which makes all schemes in one group secure, whereas any scheme in the other group becomes
insecure under this blockcipher. This separates the PGV1-group and the PGV2-group in terms of direct ideal-
cipher reducibility. In direct reducibility we use the blockcipher in question without any modifications in another
construction. This was one of the reasons to investigate different PGV constructions in the first place. For free
reductions allowing arbitrary transformations T of the blockcipher, we show that the PGV constructions can be
seen as transformations of each other, and under suitable T all 12 PGV constructions reduce to each other.

Preneel et al. [PGV94] already discussed equivalence classes from an attack perspective. Our work reaffirms
these classes and puts them on a solid theoretical foundation. Dividing the 12 constructions into two groups allows

1This, and other points discussed within the body, motivates why we chose the oracle reducibility notion of [BF11] rather than the
indifferentiability reducibility notion in [MRH04].
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us to say that, within each group, one can use a blockcipher in a construction under the same qualitative assumptions
on the blockcipher as for schemes; only across the groups this becomes invalid. In other words, the sets (or more
formally, distributions) of “good” blockciphers for the groups are not equal, albeit they clearly share the ideal cipher
as a common member making both groups simultaneously secure. We note that our results are also quantitatively
tight in the sense that the blockciphers within a group are proven to be tightly reducible to each other in terms of the
number of queries, running times, and success probabilities.

PGV AND DOUBLE-BLOCK-LENGTH HASHING. Double-block-length (DBL) hash or compression functions aim at
surpassing the 2n/2 upper bound for collision resistance of the PGV constructions by using two “PGV-like” construc-
tions in parallel, doubling the output length. There are three major such compression functions, namely, Tandem-
DM (TDM, [LM92]), Abreast-DM (ADM, [LM92]), and Hirose’s construction (HDM, [Hir06]). Several results
underline the optimality of collision-resistance [Hir06, LK11, LSS11] and preimage-resistance bounds [AFK+11]
for these functions in the ICM.

Continuing with ideal-cipher reducibility, we establish a connection between the basic PGV constructions and
the double-block-length compression functions. Since all the DBL constructions have a “PGV1-part” (with twice
the key size) built in, it follows that any collision for any of the DBL functions immediately yields a collision for
PGV1 built from a blockcipher with 2n-bit key. In other words, the ideal cipher in the DBL constructions directly
reduces to the one in double-key PGV1. We also prove that there is a free reduction to single-key PGV1 from this
double-key variant, thereby relating DBL functions to PGV1 for free transformations. It follows, via a free reduction
to PGV1 and a free reduction from PGV1 to PGV2, that DBL functions reduce to PGV2 for free transformations.
An analogous result also applies to the everywhere preimage-resistance game, but, somewhat curiously, we show
such a result cannot hold for the (standard) preimage-resistance game.

When it comes to free reducibility from PGV to DBL functions, we present irreducibility results for the collision-
resistance and [everywhere] preimage-resistance games. We achieve this by making use of an interesting relationship
to (lower bounds for) hash combiners [Her05, HKN+05, Pie08]. Namely, if one can turn a collision (or preimage)
for, say, PGV1 into one for a DBL compression function, then we can think of PGV1, which has n-bit digests, as a
sort of robust hash combiner for the DBL function (which has 2n-bit outputs). However, known lower bounds for
hash combiners [Pie08] tell us that such a combiner (with tight bounds and being black box) cannot exist, and this
transfers to ideal-cipher reducibility. More in detail, by combining Pietrzak’s techniques [Pie08] with a lower bound
on generic collision finders by Bellare and Kohno [BK04] on compression functions, we confirm the irreducibility
result formally for the simple case of black-box reductions making only a single call to the PGV collision-finder
oracle (as also discussed in [Pie08]). We leave the analysis of the full case to the final version. In summary, not
only do the DBL functions provide stronger guarantees in terms of quantitative security (as well as efficiency and
output length), but they also provably rely on qualitatively weaker assumptions on the blockcipher for the collision-
resistance and everywhere preimage-resistance games.

Finally, we demonstrate that for none of the aforementioned DBL constructions the ideal cipher directly reduces
to the one in either of the other schemes. That is, starting with the ideal cipher, for each target DBL function we
construct a blockcipher which renders it insecure but preserves collision resistance for the other two functions. We
are not aware of an analogous result for free reductions, but can exclude transformations which are involutions.

PRACTICAL IMPLICATIONS. Our results show that there is “no clear winner” among the PGV constructions in
the sense that one construction always relies on weaker assumptions about the blockcipher than the other ones and
should be therefore preferred in practice. This depends on the blockcipher in question. As expressed above, settling
this for a specific blockcipher may be tedious, though. Nonetheless, our results do show that DBL constructions are
superior in this regard, and that one may switch between PGV constructions of the same group in order to match
other practical stipulations.
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2 Preliminaries

NOTATION. We write x ← y for assigning value y to variable x. We write x←$ X for sampling x from (finite) set
X uniformly at random. If A is a probabilistic algorithm we write y ←$ A(x1, . . . , xn) for the action of running A
on inputs x1, . . . , xn with coins chosen uniformly at random, and assigning the result to y. We use “|” for string
concatenation, denote the bit complement of x ∈ {0, 1}? by x. We set [n] := {1, . . . , n}. We say ε(λ) is negligible
if |ε(λ)| ∈ λ−ω(1).
BLOCKCIPHERS. A blockcipher with key length k and block length n is a set of permutations and their inverses on
{0, 1}n indexed by a key in {0, 1}k. This set can therefore be thought of as a pair of functions

E : {0, 1}k × {0, 1}n → {0, 1}n and E−1 : {0, 1}k × {0, 1}n → {0, 1}n .

We denote the set of all such blockciphers by Block(k, n). A blockcipher is efficient if the above functions can be
implemented by an efficient Turing machine.

IDEAL AND IDEALIZED (BLOCK)CIPHERS. An idealized (block)cipher with key length k and block length n is a
distribution E on Block(k, n). We often consider an E-idealized model of computation where all parties are given
oracle access to a blockcipher chosen according to E . The ideal-cipher model is the E-idealized model where E
is the uniform distribution on Block(k, n). We denote the set of all idealized ciphers with key length k and block
length n (i.e., the set of all distributions on Block(k, n)) by Ideal(k, n). Below, when saying that one has oracle
access to an idealized cipher E it is understood that a blockcipher is sampled according to E and that one gets oracle
access to this blockcipher.

COMPRESSION FUNCTIONS. A compression function is a function mapping {0, 1}l to {0, 1}m where m < l.
We are primarily interested in compression functions which are built from a blockcipher. In this case we write
FE,E

−1
: {0, 1}l → {0, 1}m. A compression function is often considered in an idealized model where its oracles are

sampled according to an idealized cipher E .

2.1 Security notions for compression functions

We now recall a number of fundamental security properties associated with blockcipher-based hashing.

Definition 2.1 (Everywhere preimage and collision resistance [RS04]) Let FE,E
−1

: {0, 1}l → {0, 1}m be a
compression function with oracle access to a blockcipher in Block(k, n). Let E denote an idealized cipher on
Block(k, n). The preimage- (resp., everywhere preimage-, resp., collision-) resistance advantage of an adversaryA
in the E-idealized model against FE,E

−1
are defined by

Advpre
F,E(A) := Pr

[
FE,E

−1
(X ′) = Y : (E,E−1)←$ E ;X ←$ {0, 1}l;Y ← FE,E

−1
(X);X ′ ←$ AE,E−1

(Y )
]
,

Advepre
F,E (A) := Pr

[
FE,E

−1
(X) = Y : (E,E−1)←$ E ; (Y, st)←$ A1;X ←$ AE,E−1

2 (st)
]
,

Advcoll
F,E(A) := Pr

[
X0 6= X1 ∧ FE,E

−1
(X0) = FE,E

−1
(X1) : (E,E−1)←$ E ; (X0, X1)←$ AE,E−1

]
.

For the set Sq of all adversaries which place at most q queries to their E or E−1 oracles in total we define

Advpre
F,E(q) := max

A∈Sq

{
Advpre

F,E(A)
}
,

and similarly for the everywhere preimage-resistance and collision-resistance games. We note that although a com-
pression function cannot be collision resistant nor everywhere preimage resistance with respect to a fixed blockci-
pher, reducibility arguments still apply [Rog06].

Some of our results also hold for “more advanced” properties of hash or compression functions like preimage
awareness [DRS09]. (The definition can be found in Appendix A.) If so, we mention this briefly.
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2.2 Reducibility

In order to define what it means for an idealized cipher to reduce to another, we begin with a semantics for secu-
rity games similar to that in [BR06]. We capture the three security properties above by our notion, but can also
extend the framework to cover a larger class of security games, such as complex multi-stage games and simulation-
based notions. In the simpler case, we will consider a game between a challenger or a game Game and a sequence
A1,A2, . . . of admissible adversaries (e.g., those which run in polynomial time). When the game terminates by
outputting 1, this is deemed a success for the adversary (in that instance of the game). To determine the overall
success of the adversaries, we then measure the success probability with respect to threshold t (e.g., 0 for computa-
tional games, or 1

2 for decisional games). We present our formalism in the concrete setting. However, our definitions
can be easily extended to the asymptotic setting by letting the game, its parameters, and adversaries to depend on a
security parameter.

Definition 2.2 (Secure E-idealized games) An E-idealized game consists of an oracle Turing machine Game (also
called the challenger) with access to an idealized cipher E and n adversary oracles, a threshold t ∈ [0, 1], and a
set S of n-tuples of admissible adversaries. The game terminates by outputting a bit. The advantage of adversaries
A1, . . . ,An against Game is defined as

AdvGame
E (A1, . . . ,An) :=

∣∣∣∣Pr

[
GameE,E

−1,AE,E−1

1 ,...,AE,E−1

n = 1

]
− t
∣∣∣∣ ,

where the probability is taken over the coins of Game, A1, . . . ,An, and (E,E−1)←$ E . For bounds ε ∈ [0, 1] and
T,Q ∈ N we say Game is (Q,T, ε)-secure if

∀(A1, . . . ,An) ∈ S : AdvGame
E (A1, . . . ,An) ≤ ε

and Game together with any set of admissible adversaries runs in time at most T and makes at most Q queries to
the sample of the idealized cipher, including those of the adversaries.

For example, the above notion captures everywhere preimage resistance by having A1 terminate by outputting
(Y, st) with no access to the blockcipher, and AE,E−1

2 (st) return some X; the challenger then outputs 1 if and only
if FE,E

−1
(X) = Y . Note that in particular, the construction F is usurped, together with the everywhere preimage

experiment, in the general notation Game. We also note that with the above syntax we can combine multiple games
into one by having a “master” adversary A first send a label to the challenger deciding which subgame to play and
then invoking the corresponding parties and game. Note also that as in [BF11] we assume that an idealized cipher
can be given as an entirely ideal object, as a non-ideal object through a full description of an efficient Turing machine
given as input to the parties, or a mixture thereof.

IDEAL-CIPHER TRANSFORMATIONS. A transformation of ideal ciphers is a function T which maps a blockcipher
from Block(k, n) to another blockcipher in Block(k′, n′). Typically, we will only be interested in efficient transfor-
mations i.e., those which can be implemented by efficient oracle Turing machines in the E-idealized model, written
T E. Note that the requirement of T being a function implies that, algorithmically, the oracle Turing machine is de-
terministic and stateless. Below we envision the (single) transformation T to work in different modes Enc,Dec to
provide the corresponding interfaces for a blockcipher (E′,E′−1). Slightly abusing notation, we simply write T and
T −1 for the corresponding interfaces E′ and E′−1 (instead of T E,E−1

Enc for E′ and T E,E−1

Dec for E′−1). The transformation
is written as

E′(K,M) := T E,E−1
(K,M) and E′

−1
(K,M) := T −1E,E

−1

(K,M) .

Any transformation T also induces a mapping from Ideal(k, n) to Ideal(k′, n′). When E is sampled according
to E , then T induces an idealized cipher E ′ ∈ Ideal(k′, n′) which we occasionally denote by T E .
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Definition 2.3 (Ideal-cipher reducibility) Let Game1 and Game2 be two idealized games relying on blockciphers
in Block(k, n) and Block(k′, n′) respectively. We say the idealized cipher in Game2 reduces to the idealized cipher in
Game1, if for any E1 ∈ Ideal(k, n) there is a deterministic, stateless, and efficient transformation T : Block(k, n)→
Block(k′, n′) such that if

∀(A1,1, . . . ,A1,n1) ∈ S1 : AdvGame1
E1 (A1,1, . . . ,A1,n1) ≤ ε1 ,

whenever Game1 runs in time at most t1 and makes at most Q1 queries to the block cipher sampled according to E1,
then setting E2 := T E1 , we have that

∀(A2,1, . . . ,A2,n2) ∈ S2 : AdvGame2
E2 (A2,1, . . . ,A2,n2) ≤ ε2 ,

where Game runs in time at most t2 and makes at most Q2 queries to the blockcipher sampled according to E2.
In this case we say the reduction is (Q1/Q2, T, t1/t2, ε1/ε2)-tight, where T is an upper bound on the number of
queries that T places to its oracle per invocation. When k = k′, n = n′, and T is the identity transformation, we
say the reduction is direct; else it is called free.

DEFINITIONAL CHOICES. In this work, our focus is on reducibility among blockcipher-based hash functions. In
this setting, there are often no assumptions beyond the idealized cipher being chosen from a certain distribution. In
this case, the strict, strong, and weak reducibility notions as discussed in [BF11] all collapse to the one given above.
Of particular interest to us are two types of transformations. First, free transformations which can be arbitrary, and
second the identity/dummy transformation which does not change the cipher. This latter type of direct reducibility
asks if any idealized cipher making one construction secure makes the other secure too. The former type, however,
apart from appropriately modifying the syntactical aspects of the blockcipher (such as the key or the block size),
asks if the model for which one primitive is secure can be reduced to the model for which the other is secure.

RELATIONSHIP WITH INDIFFERENTIABILITY. Ideal-cipher reducibility can be seen in relation with reducibility of
systems in the indifferentiability framework [MRH04]. In this framework one says system U reduces to system V
if there is a deterministic B such that for all cryptosystems C we have that C(B(V)) is at least as secure as C(U).
Viewing C as a security game, indifferentiability reducibility can be seen as oracle reducibility with respect to all
single-stage games simultaneously. In contrast, we are concerned with a small number of fixed games. In fact this
restriction is hard to avoid, as the PGV compression functions themselves do not behave like a random function given
access to E and E−1; see [CDMP05, KM07]. Also, as demonstrated in [RSS11], the indifferentiability framework
does not cover arbitrary multi-stage security games well, whereas we can easily cast them in our framework.

3 Reducibility among the PGV Functions

We start by recalling the blockcipher-based constructions of hash functions by Preneel et al. [PGV94, BRSS10]. The
PGV compression functions rely on a blockcipher E : {0, 1}n × {0, 1}n → {0, 1}n, and map {0, 1}2n to {0, 1}n:

PGVE
i : {0, 1}2n → {0, 1}n for E : {0, 1}n × {0, 1}n → {0, 1}n .

There are 64 basic combinations to build such a compression function, of which 12 were first believed [PGV94]
(under category “X” or “FP”) and later actually proven to be secure [BRSS10] (under category “group-1”). We
denote these secure compression functions by PGV1, . . . ,PGV12 and adopt the s-index of [BRSS10] (as defined in
Figure 2 there); they are depicted in Figure 1. It is worthwhile mentioning that PGV1 is known as Matyas–Meyer–
Oseas (MMO), PGV2 as Miyaguchi–Preneel, and PGV5 as Davies–Meyer (DM). The PGV1 and PGV5 functions
can be instantiated with a blockcipher whose key length and message length are not equal. The remaining functions,
however, do not natively support this feature but they can be generalized such that they do [Sta09].
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1 4 5 8 9 12

2 3 6 7 10 11

Figure 1: The 12 optimally secure PGV constructions PGVE
i for i ∈ [12]. A triangle denotes the location of the key input. When used in

an iteration mode, the top input is a message block and the left input is the chaining value. The first (resp. second) row corresponds to the
PGV1-group (resp. PGV2-group).

For i ∈ [12] and q ≥ 0, the security bounds for uniform E according to [BRS02, Sta09, BRSS10] are

Advcoll
PGVi,E(q) ≤

q2

2n
, Advpre

PGVi,E(q) ≤
2q

2n
, and Advepre

PGVi,E(q) ≤
2q

2n
.

These bounds also hold when the key length and block length are not equal. Furthermore, for uniform E , there exist
adversaries A and B making q queries to their E and E−1 oracles in total such that [BRSS10]2

Advcoll
PGVi,E(A) ≥ 1

8e

q2 + 1

2n
, Advpre

PGVi,E(B) ≥ q + 1

2n+1
, and Advepre

PGVi,E(B) ≥ q + 1

2n+1
.

As we will show in the two following theorems, when it comes to ideal-cipher reducibility, the 12 secure PGV
constructions can be further partitioned into two subgroups as follows, which we call the PGV1-group and PGV2-
group, respectively.

G1 := {PGV1,PGV4,PGV5,PGV8,PGV9,PGV12} G2 := {PGV2,PGV3,PGV6,PGV7,PGV10,PGV11}

The PGV1 and PGV2 functions will be representative of their respective groups.
The next proposition shows that, within a group, the compression functions are ideal-cipher reducible to each

other in a direct and tight way (i.e., with the identity transformation and preserving the security bounds). It is worth
pointing out that Preneel et al. [PGV94] already discussed equivalence classes from an attack perspective. Present
work reaffirms these classes and puts them on a solid theoretical foundation. As noted before, we cannot hope that
any PGV compression function construction is indifferentiable from random (given access to E and E−1), so we
do not cover this property here; we can, however, include the notion of preimage awareness [DRS09] to the games
which are preserved.

Proposition 3.1 Any two PGV constructions in G1 (resp., in G2) directly and (1, 1, 1, 1)-tightly reduce the idealized
cipher to each other for the [everywhere] preimage-resistance, collision-resistance, and preimage-awareness games.

Proof. This is straightforward for [everywhere] preimage resistance and collision resistance. To see this, observe
that there is a syntactical one-to-one correspondence with respect to the inputs within any two functions in each
group. Relabeling variables immediately turns any collision (or preimage) for one function into one for the other
function. For the sake of concreteness, we consider the collision-resistance ideal-cipher reducibility from PGVE5 to
PGVE1 where for any (E,E−1) sampled according to E we have

PGVE
1 (K,M) := E(K,M)⊕M and PGVE

5 (K,M) := E(M,K)⊕K .

2The “plus one” terms are introduced in order to compactly capture the zero-query lower bounds.
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Assume towards contradiction that there is an adversary which outputs a PGVE
5 collision (X,Y ) 6= (X ′, Y ′) for this

E. Turn this collision into (Y,X) 6= (Y ′, X ′), and output it as a PGVE
1 collision. It is clear that

PGVE
1 (Y,X) = E(Y,X)⊕X = E(Y ′, X ′)⊕X ′ = PGVE

1 (Y ′, X ′) ,

where the inner equality holds whenever the alleged PGVE
5 adversary succeeds. Since this holds for any E the claim

also follows for any distribution E on such blockciphers.
For preimage resistance of the same compression functions, the reduction would again simply turn a preimage

(X,Y ) into (Y,X).
As for preimage awareness, if an adversaryA5 against PGVE

5 is able to break preimage awareness by outputting
(X,Y ), we could easily turn this into an adversaryA1 against PGVE

1 by returning (Y,X). Any extractor X1 refuting
a successful attack of A1 could be, vice versa, turned into an extractor X5 against A5 by swapping the components
of X1’s outputs. �

Note that since we can combine the individual games into one, we can conclude that any blockcipher making
a scheme from one group secure for all games simultaneously, would also make any other scheme in the group
simultaneously secure. Also, the above equivalence still holds for PGV1 and PGV5 in case they work with a
blockcipher with different key and message length.

The next theorem separates the two groups with respect to the collision-resistance and [everywhere] preimage-
resistance games.

Theorem 3.2 No PGV construction in G1 (resp., in G2) directly reduces to any PGV construction in G2 (resp., in
G1) for any of the collision-resistance and [everywhere] preimage-resistance games.

For collision resistance and preimage resistance we assume the ideal cipher, whereas for everywhere preimage
resistance we only need the minimal property that there exists some blockcipher making the schemes in one group
secure, in order to achieve the separation. Due to space constraints we present the proof in Appendix B.

Proposition 3.3 Any two PGV constructions PGVi and PGVj for i, j ∈ [12] (1, 1, 1, 1)-tightly reduce the idealized
cipher to each other for the [everywhere] preimage-resistance and collision-resistance games (under free transfor-
mations).

To prove this, we first show that there is a transformation such that there is an inter-group reduction, i.e., PGV2 ∈
G2 reduces to PGV1 ∈ G1 and vice versa—indeed we will use the same transformation for either direction. By
transitivity we then obtain a reduction for any two constructions through Proposition 3.1, where we may view the
identity transformation as a special case of an arbitrary one.

Proof. Consider PGV1 and PGV2. We claim that for the transformation defined through

T E(K,M) := E(K,M)⊕K and T −1E
−1

(K,C) := E−1(K,C ⊕K) ,

the security of PGVT2
E

reduces to PGVE
1 . This is because both compression functions are identical for any E,

implying that the idealized cipher T E reduces to the idealized cipher E . This can be easily done vice versa, too, for
the same transformation, noting that applying T twice is the identity transformation. Observe that T E is indeed a
permutation for any fixed key K; the statement now trivially follows. �
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Figure 2: The three double-block-length compression functions. The hollow circle in Abreast-DM denotes bitwise complement.

4 Double-Block-Length Hashing and PGV

4.1 Reducibility from DBL to PGV

In this section we study the relation between three prominent double-block-length hash function constructions in
the literature, namely, Hirose-DM [Hir04, Hir06], Abreast-DM [LM92, LK11], and Tandem-DM [LM92, LSS11,
FGL09a], and the PGV constructions. All the DBL compression functions under consideration here map 3n-bit
inputs to 2n-bit outputs, and rely on a blockcipher with 2n-bit keys and n-bit block. More precisely, these construc-
tions are of the form

FE : {0, 1}3n → {0, 1}2n where E : {0, 1}2n × {0, 1}n → {0, 1}n .

We denote the Hirose-DM for a constant c ∈ {0, 1}n\{0n}, the Abreast-DM, and the Tandem-DM compression
functions by HDMc, ADM, and TDM, respectively. These functions are defined as follows (see Figure 2 for pictorial
representations).

HDME
c (A1, A2, A3) := (E(A1|A2, A3)⊕A3,E(A1|A2, A3 ⊕ c)⊕A3 ⊕ c)

ADME(A1, A2, A3) :=
(
E(A2|A3, A1)⊕A1,E(A3|A1, A2)⊕A2

)
TDME(A1, A2, A3) := (E(A2|A3, A1)⊕A1,E(A3|E(A2|A3, A1), A2)⊕A2)

The next proposition shows that collisions (resp., somewhere preimages) in HDMc directly lead to collisions
(resp., somewhere preimages) for the double-key versions of PGV1 and PGV5 functions.

Proposition 4.1 The idealized ciphers in HDMc, for any c ∈ {0, 1}n\{0n}, ADM, and TDM compression functions
directly and (1, 1, 1, 1)-tightly reduce to those in the (double-key versions of the) PGV1 and PGV5 functions for the
everywhere preimage-resistance and collision-resistance games.

Proof. We only treat the case of PGV1 as reducibility to PGV5 is proved similarly. Note that the first component
of any of the DBL constructions is a PGV1 value (up to relabeling of the variables). This means that any adversary
breaking the collision resistance of, say, HDMc can be used to break the collision resistance of PGV1. A similar
argument applies to the everywhere preimage-resistance game. We take the output of a first-stage adversary which
returns an image value for HDMc and pass its first component out as the candidate image point for PGV1. When the
second stage of the adversary outputs a preimage, we also use it as our own guess. �

Note that despite the tightness of the reduction, a blockcipher that makes the schemes PGV1 and PGV5 ideally
secure is not guaranteed to make the double-block-length compression functions secure beyond the implied single-
length security bound.
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Curiously, the above argument fails for the preimage-resistance game as we cannot extend a challenge value
for PGV1 to a full challenge value for a DBL construction. The proof of the following proposition appears in
Appendix C.

Proposition 4.2 The idealized cipher in none of the DBL constructions directly reduces to the idealized cipher in
PGV1 (and hence neither to the one in PGV5) for the (standard) preimage-resistance game.

Direct ideal-cipher reducibility to the other PGV constructions is not syntactically possible as only the PGV1

and PGV5 constructions can be natively instantiated with a double-block-length blockcipher.3 Note that the above
proposition leaves open the (im)possibility of free reductions from DBL to PGV, which we leave to future work.

We next show that under free transformations a double-block-length instantiation of PGV1 reduces to a single-
block-length instantiation of PGV1. By the transitivity of reductions we obtain reducibility of the idealized cipher
in the DBL constructions to that in any of the PGV constructions.

Proposition 4.3 The idealized cipher in PGV1 instantiated with an idealized cipher in Ideal(2n, n) (2, 2, 1, 1)-
tightly reduces to the one in PGV1 when instantiated with an idealized cipher in Ideal(n, n) for the everywhere
preimage-resistance and collision-resistance games.

Proof. We define the required transformation as follows.

T E,E−1
(K1|K2,M) := E(E(K1,K2)⊕K2,M) T −1E,E

−1

(K1|K2, C) := E−1(E(K1,K2)⊕K2, C)

Note that the above transformed blockcipher, when used in PGV1 with twice the key length, yields a fixed-length
Merkle–Damgård (MD) iteration using a random initialization vector of PGV1 for cipher E (with single key length):

PGVT
E

1 (K1|K2,M) = PGVE
1 (PGVE

1 (K1,K2),M) .

As shown in, say [ANPS07], this MD chaining preserves both collision resistance and everywhere preimage resis-
tance of PGVE

1 (but requires two blockcipher calls per evaluation). This proves the proposition. �

REMARK. Although Merkle–Damgård chaining does not in general preserve the preimage resistance of the under-
lying compression function, there exist more sophisticated chaining rules, such as ROX [ANPS07], which do so.
If such chaining rules are used to compress the keys in the proposition above, we also obtain reducibility for the
preimage-resistance game.

4.2 Separations among the DBL compression functions

We now investigate direct reducibility among the DBL compression functions, as well as PGV1 and DBL functions.
We focus on collision resistance, but similar techniques (for separations) may be applicable to the other security
games. For this game, there are twelve relations to be considered, three of which have already been settled by
Proposition 4.1. We study the remaining relations by providing separations among all the possible pairs. In doing
so, we give blockciphers E such that one of the DBL constructions (and hence by Proposition 4.1 the PGV1 function,
too) admits a trivial collision, whereas the other two constructions are simultaneously secure.

We start with the HDMc compression function where c 6= 0n. Let E be a blockcipher. Define a modified
blockcipher Ẽ as follows.

Mc := E−1(0n|0n,E(0n|0n, 0n)⊕ c) , C0 := E(0n|0n, 0n) , Cc := E(0n|0n, c) .
3There exist modifications of the PGV constructions which can be instantiated with DBL blockciphers [Sta09]. We leave their treatment

to future work.

10



Ẽ(K1|K2,M) :=


C0 ⊕ c if (K1|K2,M) = (0n|0n, c) ;

Cc if (K1|K2,M) = (0n|0n,Mc) ;

E(K1|K2,M) otherwise.

Ẽ−1(K1|K2, C) :=


c if (K1|K2, C) = (0n|0n, C0 ⊕ c) ;

Mc if (K1|K2, C) = (0n|0n, Cc) ;

E−1(K1|K2, C) otherwise.

Note that Ẽ and Ẽ−1 above define a blockcipher and we have c 6= 0n. Hence,

HDMẼ
c (0n, 0n, 0n) = (Ẽ(0n|0n, 0n)⊕ 0n, Ẽ(0n|0n, c)⊕ c) = (C0, C0 ⊕ c⊕ c) = (C0, C0) ,

HDMẼ
c (0n, 0n, c) = (Ẽ(0n|0n, c)⊕ c, Ẽ(0n|0n, 0n)⊕ 0n) = (C0 ⊕ c⊕ c, C0) = (C0, C0) .

and the pair ((0n, 0n, 0n), (0n, 0n, c)) thus constitutes a non-trivial collision for HDMẼ
c . However, the next lemma

shows that ADM and TDM remain collision resistant for this cipher. The proof appears in Appendix D.

Lemma 4.4 Let Ẽ be a blockcipher as above with a distribution according to (E,E−1)←$ Block(2n, n). Then
ADMẼ and TDMẼ are both collision resistant.

Due to space constraints we provide the remaining separating examples in Appendix D.

Theorem 4.5 Let c ∈ {0, 1}n \ {0n}. Then among the compression functions HDMc, ADM, and TDM neither one
directly reduces the idealized cipher in either one of the other two functions for the collision-resistance game.

As a corollary of the above results we get that there is no direct reduction from PGV to any of the DBL compres-
sion functions: otherwise we also obtain direct reducibility to any other DBL compression function via Theorem 4.1,
which we have shown to be impossible in the above theorem. In the next section we will extend this irreducibility
result to free reductions.

4.3 Irreducibility of PGV to DBL

We now turn our attention to the converse of Propositions 4.1 and 4.3: can one convert any idealized cipher which
makes a DBL construction secure to one which makes a PGV construction secure? We show strong evidence
towards the impossibility of such a reduction. To this end, we restrict the class of reductions under the construction
to black-box ones [RTV04]. Such a reduction is a pair of oracle Turing machines (T ,R). Both machines have
access to a blockcipher, T is a transformation which implements an idealized cipher, and R is a reduction which
given oracle access to an algorithm B breaking the security of a PGV construction when instantiated with T E, breaks
the security of a DBL construction with respect to E (for random E). As it will become apparent from the proof
of the theorem, the type of reductions that we actually rule out allow both the transformation and the reduction to
depend on the blockcipher and hence, in the terminology of [RTV04], the class of reductions that we rule out lies
somewhere in between fully black-box and ∀∃semi-black-box reductions. More concisely, this class is captured as
an NBN reduction in the CAP taxonomy of [BBF13], meaning that the Construction may make non-black-box use
of primitive, and that the reduction makes black-box use of the Adversary resp. non-black-box use of the Primitive.

We make two further simplifications on the structure of the reduction. First we assume that R queries its
break oracle B once. We call this a single-query reduction. Second, we require the reduction to succeed with a
constant probability whenever B is successful. Now, the intuition behind the impossibility of the existence of such
a reduction follows that for lower bounds on the output size of hash combiners [Pie08]. The underlying idea is that
the collision-resistance security of any of the DBL constructions is beyond that of the PGV constructions. More
precisely, around Θ(2n) queries are needed to break the collision resistance of any of the DBL constructions with
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(3.a) Results for the identity transformation.
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(3.b) Results for arbitrary transformations.

Figure 3: Summary of our reducibility results for collision resistance. A “Y” or “N” in a cell means that any cipher which makes the
compression function corresponding to the row collision resistant also makes the compression function corresponding to the column collision
resistant. A “–” in direct reductions indicates a syntax mismatch. The number below an entry indicates the theorem/proposition supporting
the claim. An arrow “→” means that the result is implied by the left table. Reductions on the diagonal of TDM, HDMc, and ADM trivially
follow by self-reductions. Note that for arbitrary transformations each cell might be using different transformations. The star symbol “?”
denotes reducibility by transitivity. An “n” is a separation for a restricted class of transformations; see Section 5.

noticeable probability, whereas this bound is only Θ(2n/2) for the PGV constructions. To derive a contradiction, we
may simulate the break algorithm B for the reduction with only Θ(2n/2) queries, and the reduction will translate
this collision efficiently to a DBL construction collision, which contradicts the Θ(2n) collision-resistance bound.

We are now ready to state our irreducibility theorem. Since we are dealing with an impossibility result, for the
sake of clarity of the presentation we present the theorem in asymptotic language. The proof appears in Appendix E.

Theorem 4.6 There is no single-query fully black-box ideal-cipher reduction from any of the PGV constructions
to any of the DBL constructions for the collision-resistance and [everywhere] preimage-resistance games as long
as the reduction is tight: when the number of queries, run times, and success probabilities are parameterized by a
security parameter, the reduction is (O(1),O(1),O(1),O(1))-tight.

It is conceivable that the techniques of [Pie08] can be leveraged to derive a more general theorem which rules
out reductions that call the break oracle multiple times. Furthermore, one might also be able to extended the result
to arbitrary games for two given constructions, as long as a lower bound on the success probability of an attack on
the security of the first construction is noticeably higher than an upper bound on the security of the second.

5 Summary and Future Work

We summarize our reducibility results in Figure 3 and refer to the caption for details. One important observation
from these results is that we do not have one single “Y” column, i.e., a compression function which reduces to all of
the other ones—or, equivalently, a compression function which is secure if any of the others is secure. This would
be a clear winner in the sense that it is the safest choice for practice.

For the “n” entries of Table 3.b we can show that there is a separation for a large class of potential transformation
functions. More specifically, we show that there is no surjective transformation T to reduce, say, ADM to HDM1n ,
as long as the transformation also preserves HDM-security “backwards.” Here, surjectivity means that T E varies
over all possible blockciphers if E runs through all blockciphers, and backward security preservation means that
E is secure for HDM if T E is. Transformations which are covered by this include, for example, those of the
form T E

π1,π2(K1|K2,M) = π2(E(K1|K2, π1(M))) for fixed involutions π1, π2 over {0, 1}n, or more generally, any
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transformation which is an involution (over Block(2n, n)).4 The argument is as follows. Assume that there exists
such a T . Then for any blockcipher E which makes HDM secure, the blockcipher T E makes ADM secure. However,
we also know that there is a blockcipher E? such that E? gives rise to a collision-resistant HDME?

1n but renders ADME?

collision tractable (see Appendix D). Now define E to be any blockcipher in the preimage of E? under T (such an
E exists as T is surjective). The transformation now maps E to E?, which means that it fails to provide security for
ADM. Furthermore, E makes HDME

1n collision resistant by assumption about backward security. This, however,
contradicts the requirement of reducibility from ADM to HDM, because E makes HDM secure but T E is insecure
for ADM.

OPEN PROBLEMS. Recall that we showed that one can transform a good blockcipher E (or rather distribution E)
for the PGV1-group into a good one T E for the PGV2-group. We also presented a transformation in the opposite
direction. Ideally, though, one would be interested in a single transformation T which, given E making a PGV
construction secure, turns it into T E which simultaneously makes both the PGV1-group and the PGV2-group secure.
Such a transformation would be of interest because incorporating it into the compression function would result in a
construction that relies on a weaker assumption than either just PGV1 or PGV2. Consequently, it would provide a
handle to strengthen existing schemes (in a provable way). Note that such a result would not contradict the separation
of direct reducibility between the PGV1-group and the PGV2-group, because simultaneous security looks for a
(transformed) cipher in the intersection of good (distributions over) blockciphers for both groups. This intersection
is clearly non-empty because it contains the ideal cipher; the question to address here is how hard it is to hit a
distribution when starting with the minimal security assumption that (a potentially non-ideal) E is good for at least
one PGV construction. We remark our technique of separating the DBL constructions from PGV1 does not seem to
apply here, as the simultaneous security bound for PGV1 and PGV2 is Θ(q2/2n). However, surjective, backward-
secure transformations are still ruled out according to the same argument as in the HDM vs. ADM case.

Another direction of research left open here is the existence of reductions among two compression functions
for different games. For example, one might ask whether the collision resistance of one construction for a block-
cipher gives preimage resistance in another (or perhaps the same) construction with the same cipher. In particular,
using Simon’s result [Sim98] one might be able to demonstrate the impossibility of reducing collision resistance to
preimage resistance for any of the PGV constructions.

Finally, let us emphasize that all results in this work apply directly to compression functions. Needless to say,
in practice compression functions are iterated in order to hash arbitrary lengths of data. This could extend the set
of E that provide security, potentially changing the scope for transformations between constructions. We leave the
question of the existence of reductions among iterated hash functions as an interesting open problem.
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A Preimage Awareness

Roughly speaking, preimage awareness [DRS09] states that any adversary which comes up with an image Z for a
compression function, already knows a preimage X for it. This is formalized though the existence of an extractor
algorithm X which can recover the value X from Z and the list α of previous queries to E and E−1.

Definition A.1 (Preimage awareness [DRS09]) Let FE,E
−1

: {0, 1}l → {0, 1}m be a compression function with
oracle access to a blockcipher in Block(k, n). Let E denote an idealized cipher on Block(k, n). The preimage
awareness advantage of an adversary A with respect to the deterministic extractor X in the E-idealized model
against FE,E

−1
is defined by

Advpra
F,E,X (A) := Pr

[
Exppra

F,E,X (A) = 1
]
,

where Exppra
F,E,X (A) is shown in Figure 4.

In [DRS09] it has been shown that the 12 optimally secure PGV constructions are preimage aware in the ideal-
cipher model. Vice versa, preimage awareness (for compressing functions) has been shown to imply collision
resistance, and help in proving indifferentiability from a random oracle in certain construction [DRS09].

B Proof of Theorem 3.2: G1/G2 Separations

Theorem B.1 (Theorem 3.2, restated) No PGV construction in G1 (resp., in G2) directly reduces to any PGV con-
struction in G2 (resp., in G1) for any of the collision-resistance and [everywhere] preimage-resistance games.

16



Exppra
F,E,X (A):

(E,E−1)←$ E
X ←$ AE,E−1,Ex

Z ← FE,E
−1

(X)
Return (X 6= V[Z]
∧ Q[Z] = 1)

oracle E(K,X):
Y ← E(K,X)
α← α||(K,X, Y )
Return Y

oracle E−1(K,Y ):
X ← E−1(K,Y )
α← α||(K,X, Y )
Return X

oracle Ex(Z):
Q[Z]← 1
V[Z]← X (Z,α)
Return V[Z]

Figure 4: Experiment defining preimage awareness.

Proof. Take PGV1 and PGV2 as the representatives of their respective groups. Since all the constructions directly
reduce to each other within their group, it suffices to separate these two constructions; by transitivity a reduction
between any other combination would otherwise contradict the fact that PGV1 and PGV2 have been separated.
Recall that

PGVE
1 (K,M) := E(K,M)⊕M and PGVE

2 (K,M) := E(K,M)⊕M ⊕K .

Collision resistance. We first show that the compression functions PGV1 and PGV2 do not reduce to each other
with respect to collision resistance. In order to prove this, take the ideal cipher E (with the uniform distribution),
which is known to make PGV2 secure for collision resistance, and let (K0,M0) and (K1,M1) be from {0, 1}2n
with K0 6= K1. We show how to transform any blockcipher E in Block(n, n) (the support of E) into a new cipher
Ẽ such that the induced distribution Ẽ on such blockciphers still makes PGV2 secure, but for which (K0,M0) and
(K1,M1) form a trivial collision under PGV1 for any Ẽ sampled from Ẽ .

Now for a given blockcipher E and points (K0,M0) and (K1,M1), define

C ′1 := E(K0,M0)⊕M0 ⊕M1 , M ′1 := E−1(K1, C
′
1) , C1 := E(K1,M1) ,

and let Ẽ be the blockcipher identical to E, apart from a reprogramming to change the function value for M1 under
key K1 to C ′1, and redirecting the former’s preimage M ′1 under key K1 to C1:

Ẽ(K,M) :=


C ′1 if (K,M) = (K1,M1) ;

C1 if (K,M) = (K1,M
′
1) ;

E(K,M) otherwise.

Ẽ−1(K,C) :=


M1 if (K,C) = (K1, C

′
1) ;

M ′1 if (K,C) = (K1, C1) ;

E−1(K,C) otherwise.

By inspection, Ẽ is again a blockcipher with inverse Ẽ−1. Finding a collision for PGV1 with respect to any Ẽ chosen
from a tweaked distribution as above is easy since

PGVẼ
1 (K0,M0) = Ẽ(K0,M0)⊕M0 = E(K0,M0)⊕M0 = C ′1 ⊕M1 = Ẽ(K1,M1)⊕M1 = PGVẼ

1 (K1,M1) .

For the analysis of the collision resistance of PGVẼ
2 where E is ideal, we recall the prototype PGV proof

from [BRSS10]. This proof concentrates on the probability that an adversary creates its first collision on the ith
query and subsequently uses a union bound to combine these stepwise probabilities. For this proof all that is needed
(to bound the probability of a success at step i) is (a) that the ith query corresponds to a single compression func-
tion evaluation that (over the randomness of the query’s answer) is uniformly distributed over a set of size at least
2n − i, and (b) that the adversary only knows at most i compression function evaluations prior to making query i.
When using Ẽ instead of a sample E from the ideal cipher, we need to take into account that we have introduced
a dependency among the points (K0,M0), (K1,M1), and (K1,M

′
1). We do this by giving these three queries for

free to the adversary at the beginning of the collision-finding game. If these three points do not cause a collision
among themselves, the original proof goes through as from that moment onwards, (a) Ẽ is identically distributed to
the ideal cipher E and (b) the free queries just resulted in three extra compression function evaluations.

For the tweaked points, we look at the
(
3
2

)
= 3 possible colliding pairs. Let C0 := E(K0,M0).
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1. The first case is:

PGVẼ
2 (K0,M0) = PGVẼ

2 (K1,M1)⇐⇒ C0 ⊕M0 ⊕K0 = C ′1 ⊕M1 ⊕K1 ⇐⇒ K0 = K1 ,

which happens with probability 0 since K0 6= K1.

2. The second case is:

PGVẼ
2 (K0,M0) = PGVẼ

2 (K1,M
′
1)⇐⇒ C0 ⊕M0 ⊕K0 = C1 ⊕M ′1 ⊕K1 .

Adding C1 ⊕K1 to both sides and enciphering with E under K1 we get that the equation is equivalent to

E(K1, C0 ⊕K0 ⊕ C1 ⊕K1 ⊕M0) = E(K0,M0)⊕M0 ⊕M1 .

Since K0 6= K1 it is clear that the probability of equality is 1/2n as the values of the E on the two sides of the
equation are independently and uniformly distributed.

3. The third case is:

PGVẼ
2 (K1,M1) = PGVẼ

2 (K1,M
′
1)⇐⇒ C ′1 ⊕M1 ⊕K1 = C1 ⊕M ′1 ⊕K1 ,

which after rearranging as in the previous case becomes equivalent to

E(K1, C0 ⊕ C1 ⊕M0) = E(K0,M0)⊕M0 ⊕M1 .

Once again, since K0 6= K1, we have that the probability of a collision is 1/2n.

This proves that the idealized cipher Ẽ makes PGV2 collision resistant.
For the converse separation, start with the ideal blockcipher E ′, which makes PGV1 secure. For any E′ in the

support of E ′ consider the blockcipher E with E(K,M) = E′(K,M) ⊕ K and E−1(K,C) = E′−1(K,C ⊕ K).
Since

PGVE
2 (K,M) = E(K,M)⊕K ⊕M = E′(K,M)⊕M = PGVE′

1 (K,M)

this distribution E on blockciphers E now makes PGV2 secure. Furthermore, E itself is again the uniform distribution
on all blockciphers. Run the same transformation from E to Ẽ as above, such that PGVẼ

2 remains secure, whereas
PGVẼ

1 is easy to break. Apply now once more the idea of adding the key to the cipher’s output and define Ẽ′ through

Ẽ′(K,M) = Ẽ(K,M)⊕K , and Ẽ′−1(K,C) = Ẽ−1(K,C ⊕K) ,

such that again

PGVẼ′
2 (K,M) = PGVẼ

1 (K,M) , and PGVẼ
2 (K,M) = PGVẼ′

1 (K,M) .

We conclude that the distribution on blockciphers Ẽ′ now makes PGV1 collision resistant, but any blockcipher allows
to find collisions for PGV2 easily. This proves the separation in the other direction.

Everywhere preimage resistance. For everywhere preimage resistance it is convenient to start with an arbitrary
(not necessarily ideal) distribution on blockciphers E which makes PGV1 secure. We tweak every such E to Ẽ by
setting

Ẽ(K,M) :=

{
M ⊕K if K = E(0n, 0n) ;

E(K,M) otherwise.
Ẽ−1(K,C) :=

{
C ⊕K if K = E(0n, 0n) ;

E−1(K,C) otherwise.
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Obviously Ẽ together with Ẽ−1 constitute a blockcipher.
First observe that we can assume E(0n, 0n) 6= 0n, or else any adversary pair outputting 0n in the first stage and

(0n, 0n) in the second stage would refute everywhere preimage resistance for PGVE
1 . Hence, the probability that

E(0n, 0n) = 0n must be negligible, and from now on we condition on this event not happening. We can now show

that PGVẼ
2 is not secure. For this, let A1(1

n) output 0n, and let AẼ,Ẽ−1

2 (0n) return (K,M) := (Ẽ(0n, 0n), 0n).
Then, since Ẽ(0n, 0n) = E(0n, 0n) by assumption about E(0n, 0n) 6= 0n, we conclude that

PGVẼ
2 (K,M) = Ẽ(K,M)⊕K ⊕M = Ẽ(Ẽ(0n, 0n), 0n)⊕ Ẽ(0n, 0n) = Ẽ(0n, 0n)⊕ Ẽ(0n, 0n) = 0n .

Hence, the adversary pair always finds an image/preimage pair with a single query to Ẽ.
Next we show that any pair (A1,A2) against PGV1 for Ẽ can be immediately turned into a pair against PGV1

for E. Assume thatA1(1
n) returns some (Y, st), and thatAẼ,Ẽ−1

2 (Y, st) finds (K,M) such that PGVẼ
1 (K,M) = Y .

There are two cases: If K = E(0n, 0n), then letting the second adversary AE,E−1

2 (now against E) return (0n, 0n)
would yield a preimage of Y under PGVE

1 , because then

Y = PGVẼ
1 (K,M) = M ⊕ E(0n, 0n)⊕M = E(0n, 0n) = PGVE

1 (0n, 0n) .

In the other case, i.e., when K 6= E(0n, 0n), it is clear that (K,M) is also a preimage under PGVE
1 . Hence, either

case must be negligible, and PGVẼ
1 must be secure.

For the converse separation, as in the case of collision resistance, we apply the technique of adding the key
once to the innermost blockcipher, and another time to the outer blockcipher. This leads to a separating example for
PGV2 from PGV1 for the everywhere preimage-resistance game.

Preimage resistance. Finally we treat the case of preimage resistance. Given a blockcipher E sampled from
the uniform distribution, we let MK,0 := E−1(K, 0n), CK,0 := E(K, 0n) for each key K, and define a tweaked
blockcipher Ẽ as follows.

Ẽ(K,M) :=


0n if M = 0n ;

CK,0 if M = MK,0 ;

E(K,M) otherwise.

Ẽ−1(K,C) :=


0n if C = 0n ;

MK,0 if C = CK,0 ;

E−1(K,C) otherwise.

Note that PGVẼ
2 (K, 0n) = 0n ⊕ 0n ⊕ K = K. Hence, any adversary which on input Y outputs (Y, 0n)

succeeds with probability 1 in the preimage-resistance game for PGVẼ
2 . It remains to show that PGVẼ

1 is preimage
resistant. An adversary cannot succeed by outputting a pair (K, 0n) since PGVẼ

1 (K, 0n) = 0n, which would arise as
a challenge value with only a negligible probability. Similarly, the challenge digest will originate from (K,MK,0)
for some K with probability 2−n only. Hence any preimage-resistance adversary must either attack PGV1 with
respect to the original cipher E (which we know to be secure) or recover a preimage using the second branch of Ẽ,
i.e., output a preimage (K,MK,0) for

PGVẼ
1 (K,MK,0) = CK,0 ⊕MK,0 = E(K, 0n)⊕ E−1(K, 0n)

for some K. Since E is sampled from the ideal cipher, the two summands are uniformly and independently dis-
tributed for each K (unless K is queried). Thus, for a given target digest, any attacker will only have a negligible
success probability to recover a preimage of this form.

Applying the transformation which reduces G1 to G2 to the cipher Ẽ we obtain an idealized cipher under which
PGV1 is not preimage resistant but PGV1 is. �
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C Proof of Proposition 4.2: DBL/PGV Preimage-Resistance Separations

Proposition C.1 (Proposition 4.2, restated) The idealized cipher in none of the DBL constructions directly re-
duces to the idealized cipher in PGV1 (and hence neither to the one in PGV5) for the (standard) preimage-resistance
game.

Proof. Let us start with separating HDM1n (we briefly discuss how to extend the separation to HDMc for other
nonzero values of c at the end). Recall that there is a natural embedding of {0, 1}n−1 in GF(2n−1) where field addi-
tion corresponds to computing exclusive-or, and field multiplication is performed modulo a fixed irreducible polyno-
mial. For an α ∈ GF(2n−1)\{0, 1}, we define a distribution on Block(2n, n) by picking a cipher E←$ Block(n/2−
1, n/2−1), ignoring the key, and essentially enciphering either the left or the right half of the input block, depending
on the most significant bit of the input. That is, we parse the input M as m1|M1|m2|M2, where mi are bits and Mi

are of length n/2− 1, and set

Ẽ(K,m1|M1|m2|M2) :=

{
0|E(0n/2−1,M1)|m2|(αM2) if m1 = 0 ;

1|E(0n/2−1,M2)|m2|(αM1) otherwise.

Ẽ−1(K, c1|C1|c2|C2) :=

{
0|E−1(0n/2−1, C1)|c2|(α−1C2) if c1 = 0 ;

1|(α−1C2)|c2|E−1(0n/2−1, C1) otherwise.

It is not too difficult to check that Ẽ and Ẽ−1 as above define a blockcipher. To see that HDM1n is not preimage
resistant with respect to the distribution on such Ẽ, note that with probability 1/4 in the preimage-resistance game
we have that m1 = m2 = 0, in which case

HDMẼ
1n(A1, A2, 0|M1|0|M2) =

=
(

0|(E(0n/2−1,M1)⊕M1)|0|(αM2 ⊕M2), 1|(E(0n/2−1,M2)⊕M1)|1|(αM1 ⊕M2)
)
.

Now given a preimage-resistance challenge value as shown above, we can recover M2 from the second part of
the first component, (α + 1)M2. Note that here we use that α 6= 1 and thus α + 1 6= 0 over the field of char-
acteristic 2. Then using M2 and the second part of the second component we can also recover M1. The tuple
(0n, 0n, 0|M1|0|M2) is a valid preimage (note that A1 and A2 do not affect the value of the compression function).

It remains to show that PGVẼ
1 for such distributed blockciphers Ẽ is preimage resistant. Note that

PGVẼ
1 (K,m1|M1|m2|M2) :=

{
0|(E(0n/2−1,M1)⊕M1)|0|(αM2 ⊕M2) if m1 = 0 ;

0|(E(0n/2−1,M2)⊕M1)|0|(αM1 ⊕M2) otherwise.

For preimage resistance, observe that the K and m2 inputs and the 0s in the output can be discarded (cf. [Sta08,
Lemma 3]), so for the preimage resistance of PGVẼ

1 we can instead regard the two functions

FE0 (M1|M2) := (E(0n/2−1,M1)⊕M1)|(αM2 ⊕M2) ,

FE1 (M1|M2) := (E(0n/2−1,M2)⊕M1)|(αM1 ⊕M2) .

Using techniques similar to those from [BRSS10, Section 10], one can prove that for either function the uniform
distribution for (M1|M2) together with the uniform distribution E for E, induce a close to uniform distribution over
the possible challenge digests. Consequently, if both FE0 and FE1 are everywhere preimage resistant, then PGVE

1 is
preimage resistant (as the adversary against PGVE

1 needs to find a preimage of a randomly selected digest under
either FE0 or FE1 ). For the preimage resistance of FE0 it suffices to observe that M1 7→ E(0n/2−1,M1) ⊕M1 is well
known to be everywhere preimage resistant (e.g., [Sta09, Theorem 6]) as appending (αM2⊕M2) does not affect the
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security (it is independent of M1). To prove that FE1 is also preimage resistant, we start by considering the auxiliary
compression function

FE(M) := E(0k,M)⊕ (α−1 ·M) for α 6= 0 .

This function is preimage resistant for an ideally distributed E (which follows from [Sta09, Theorem 6]). We now
show that any preimage-resistance adversaryA against FE1 can be used to break the preimage resistance of FE. Given
a challenge value Z for FE, choose Y2 ←$ {0, 1}n/2−1, set Y1 := Z ⊕ Y2, and run A(0|Y1, 0|αY2). By a simple
code expansion, the challenge value (Y1, αY2) can be seen as being generated by choosing a random (K,M2) and
computing (E(0k,M2)⊕M1, αM1 ⊕M2) where M1 := α−1M2 ⊕ Y2. Note that M1 is uniformly distributed and
is independent of (K,M2). Hence when A returns a successful preimage (M1,M2), the second component, M2,
would be a valid preimage for Z.

We briefly discuss how to extend the above argument to HDMc for other nonzero values of c. To this end, we
need to ensure that adding c in the second component has the same effect of flipping the first bit of the input as above.
We do this by first noting the position, ic, of the most significant nonzero bit of c. Instead of differentiating the two
branches of the cipher based on m1 we do this by inspecting mic and leak this bit accordingly. The remaining bits
are then used to form what was M1 and M2 before.

We now give an idealized cipher separating the preimage resistance of ADM from that of PGV1. For any
blockcipher in Block(n/2, n/2), define the function fE(X) := E(0n/2, X) ⊕X . It is straightforward to show that
this function is one way in the presence of E and E−1 oracles sampled uniformly from Block(n/2, n/2). With
notation as in the previous example, and denoting the most significant bit of K by msb(K), based on fE we define
the following blockcipher.

Ẽ(K11|K12|K21|K22,M1|M2) :=

{
(fE(K12)⊕M1)|αM2 if msb(K11) = 0 ;

(fE(K22)⊕M1)|αM2 if msb(K11) = 1 .

Ẽ−1(K11|K12|K21|K22, C1|C2) :=

{
(fE(K12)⊕ C1)|α−1C2 if msb(K11) = 0 ;

(fE(K22)⊕ C1)|α−1C2 if msb(K11) = 1 .

Observe that Ẽ and Ẽ−1 as above define a permutation for each key and hence constitute a blockcipher. Let us now
look at ADMẼ values conditioned on the event that msb(A21) = 0 ∧msb(A31) = 1 which occurs with probability
1/4 for randomly chosen A2 and A3:

ADMẼ(A11|A12, A21|A22, A31|A32) =
(
fE(A22)|(αA12 ⊕A12), f

E(A12)⊕ 1n/2|(αA22 ⊕A22)
)
.

Clearly ADMẼ is not preimage resistant in this case as all the values on which the compression depends can be
read off from the digest value. More specifically, given such a value in the preimage-resistance game, the point
(0n/2|A12, 0

n/2|A22, 0
n) is a valid preimage. To see that PGVẼ

1 is preimage resistant for such blockciphers (over
the choice of E) observe that any successful preimage-resistance adversary can be immediately used to invert fE,
which we have discussed is one way in the ideal-cipher model.

Finally, it turns out that the above blockcipher also separates the preimage resistance of TDM from that of
PGV1: whenever msb(A21) = 0 and msb(A31) = 1 (which happens, again, with probability 1/4 in the preimage
game) we have that

TDMẼ(A11|A12, A21|A22, A31|A32) =
(
fE(A22)|(αA12 ⊕A12), f

E(αA12)|(αA22 ⊕A22)
)
,

from which a preimage value can be readily computed since α is public. For the sake of concreteness, a preimage
is given by (0n/2|A12, 0

n/2|A22, 0
n). The fact that the distribution of blockciphers Ẽ preserves preimage resistance

for PGV1 has been shown before, concluding the proof. �
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D Proofs of Lemma 4.4 and Theorem 4.5: DBL Separations

Lemma D.1 (Lemma 4.4, restated) Let Ẽ be a blockcipher as defined in Section 4.2 with a distribution according
to (E,E−1)←$ Block(2n, n). Then ADMẼ and TDMẼ are both collision resistant.

Proof. We consider ADM where we first recall the existing proof of collision resistance in the ideal-cipher model
by Lee and Kwon [LK11]. We will argue that with only minor modifications, their proof goes through also for the
almost ideal cipher Ẽ. The original proof relies on the observation that queries to the blockcipher can be grouped
into cycles by taking into account how they can be used to evaluate the ADM compression function. Suppose an
adversary wants to evaluate ADME(A1, A2, A3). This requires the queries E(A2|A3, A1) and E(A3|A1, A2) to be
made. Here the second query is intended for the evaluation of the lower half of Fig. (2.b), but it could also be
used in the upper half, as part of the evaluation of ADME(A2, A3, A1). In that case, the lower-half query would
be E(A1|A2, A3). Now this query could also be used in the upper half, leading to lower-half query E(A2|A3, A1).
It might seem that this could go on for a while, but after E(A3|A1, A2) and E(A1|A2, A3), the next query in this
sequence is E(A2|A3, A1) which we already saw at the very beginning. Thus after at most six steps the cycle
is complete; moreover, when distinct, the six blockcipher queries within a cycle uniquely determine six ADM
compression function evaluation and they are not used for any other ADM evaluations. This observation is used in
the proof by limiting a collision-finding adversary to querying full cycles only: whenever he makes a query, he will
get the remaining queries in the cycle for free. For this modified adversary, Lee and Kwon subsequently bound both
the probability of finding a collision within a single cycle and the probability of finding a collision between cycles.

For the analysis of the collision resistance of ADMẼ (where E is ideal) we need to take into account possible
interdependencies among (0n|0n, 0n), (0n|0n, c), or (0n|0n,Mc). As in our modified PGV proof, we will give these
three queries for free to the adversary, but in line with the Lee–Kwon proof, we will then have to give the full cycles
of these points for free as well. For concreteness, these cycles are of the form

{(0n|0n, x), (0n|x, 1n), (x|1n, 1n), (1n|1n, x), (1n|x, 0n), (x|0n, 0n)}

where x ∈ {0n, c,Mc}. It is not always the case that the three choices for x lead to distinct cycles, but this is not an
issue. Once we have established that these initial free queries do not cause a collision, the Lee–Kwon proof kicks in
(where the free cycles only affect the number of queries made so far).

To ease bounding the probability of a collision due to the free cycles, we will give the corresponding queries for
free in a particular order, starting with Ẽ(0n|0n, 0n) and Ẽ(0n|0n, 1n). Potentially both these points are affected by
our tweaking (if 1n ∈ {c,Mc}), but these two queries only lead to a single compression function evaluation, which
is insufficient to find a collision. For the remaining four queries in this cycle it is easy to check that the key will
be distinct from 0n|0n, so the outcomes will be as for the ideal cipher. When made in order, the third query leads
to one additional compression function evaluation; the probability (over the randomness of the answer of the third
query) that this is the same as the already known ADM(0n, 0n, 0n) is 2−n. The probability the fourth query leads to
a success is at most 2

2n (as there are now two targets to aim for and the key is fresh), the fifth query at most 3
2n−1 (as

the key has been used once before) and the sixth query at most 2·4
2n (as it adds two compression function evaluations).

For the second cycle, first give query Ẽ(0n|0n, c) for free (if c = 1n, move straight to the next cycle). This query on
its own cannot add a compression function evaluation, thus it cannot lead to a collision. The remaining queries in the
cycle all use non-(0n|0n) keys so with similar arguments as for the first cycle, the probability of creating a collision
is bounded by 6

2n , 7
2n , 8

2n−2 , 9
2n , and 20

2n respectively. For the third cycle, start with Ẽ(0n|0n,Mc) (if Mc ∈ {1n, c}
this query has already been made at a point where it could not have caused a collision and we are already done).
Again, as single query in a cycle it cannot lead to a collision; and all the remaining queries in the cycles each have
probability at most 32

2n of creating a collision. Taking a union bound leads to a probability of at most 150
2n−2 of the free

cycles leading to a collision in ADMẼ, which is negligible (for increasing n). This concludes the proof that ADMẼ

is collision resistant.
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For the analysis of TDMẼ we recall the proof by Lee et al. [LSS11]. In fact, they give two proofs: a short,
elegant, and tight one and a second, more tedious and less tight one (in the full version only). As we are not
interested in tightness at this point, we will use the second proof as our starting point, as it is easier to adapt for our
purposes (in particular, it does not modify the adversary). The proof introduces various auxiliary events that bound
the number of certain “bad” configurations, and proceeds by showing that (a) the probability of a collision being
found when these auxiliary events do not occur is small,5 and (b) the probability of these auxiliary events occurring
is small.

When we move from the ideal cipher to Ẽ, we will give the three queries for which we created an interdependency
for free to the adversary. This can have any of three effects: (a) it increases the probability of a collision when the
“bad” events do not occur; (b) it increases the probability of the “bad” events; or (c) it directly leads to a collision.
By inspection, it can be seen that even in the worst case, the three free queries can only lead to a fixed number of
additional bad configurations. Thus by changing the bound on the number of bad configurations, this case is taken
care of. For (a) the probability increases slightly due to the changed bound on the bad events, but otherwise nothing
of note changes. This leaves the investigation of (c). However, it is impossible that just the queries (0n|0n, 0n),
(0n|0n, c), and (0n|0n,Mc) already lead to a collision, as jointly they determine at most one full TDM compression
function evaluation. For neither (0n|0n, c) nor for (0n|0n,Mc) it is possible to occur on the lower half of Fig.(2.c)
(since the corresponding upper-part query would have a key distinct from 0n|0n as both c 6= 0 and Mc 6= 0).
Moreover, (0n|0n, 0n) can occur on the lower half, but it would only match with Ẽ−1(0n|0n, 0n). This could
correspond to either of the free three queries (with very low probability), but never to several. Thus with some
modifications (affecting tightness), the full Lee et al. proof goes through also for TDMẼ. �

We now provide the remaining separations.

Theorem D.2 (Theorem 4.5, restated) Let c ∈ {0, 1}n \ {0n}. Then among the compression functions HDMc,
ADM, and TDM neither one directly reduces the idealized cipher in either one of the other two functions for the
collision-resistance game.

Proof. Let us start by separating Abreast-DM from the other two DBL compression functions. For a blockcipher E,
define the modified blockcipher Ẽ as follows.

M1 := E−1(1n|0n,E(0n|1n, 0n)⊕ 1n) , C0 := E(0n|1n, 0n) , C1 := E(1n|0n, 1n) .

Ẽ(K1|K2,M) :=


C0 ⊕ 1n if (K1|K2,M) = (1n|0n, 1n) ;

C1 if (K1|K2,M) = (1n|0n,M1) ;

E(K1|K2,M) otherwise.

Ẽ−1(K1|K2, C) :=


1n if (K1|K2, C) = (1n|0n, C0 ⊕ 1n) ;

M1 if (K1|K2, C) = (1n|0n, C1) ;

E−1(K1|K2, C) otherwise.

Note that Ẽ and Ẽ−1 as above define a blockcipher. We have

ADMẼ(0n, 0n, 1n) = (Ẽ(0n|1n, 0n)⊕ 0n, Ẽ(1n|0n, 1n)⊕ 0n) = (C0, C0 ⊕ 1n) ,

ADMẼ(1n, 1n, 0n) = (Ẽ(1n|0n, 1n)⊕ 1n, Ẽ(0n|1n, 0n)⊕ 1n) = (C0 ⊕ 1n ⊕ 1n, C0 ⊕ 1n) = (C0, C0 ⊕ 1n) .

5We stress that this statement should not be taken as a conditional probability.
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Hence the pair ((0n, 0n, 1n), (1n, 1n, 0n)) constitutes a collision for ADM with respect to Ẽ. Using a case analysis as
in Lemma 4.4, it is possible to prove that for Ẽ a blockcipher as above, with (E,E−1)←$ Block(2n, n), the TDMẼ

and HDMẼ
1n compression functions are both collision resistant.

We now turn to Tandem-DM. Let E be a blockcipher. For this separation it is easier to derive the separation by
tweaking the cipher at two points. This is due to the nested call that the TDM compression function places to E. Set

M0 := E−1(0n|0n, 0n) , M1 := E−1(1n|1n, 1n) , C0 := E(0n|0n, 0n) , and C1 := E(1n|1n, 1n) .

Now define a modified blockcipher Ẽ as follows.

Ẽ(K1|K2,M) :=



0n if (K1|K2,M) = (0n|0n, 0n) ;

1n if (K1|K2,M) = (1n|1n, 1n) ;

C0 if (K1|K2,M) = (0n|0n,M0) ;

C1 if (K1|K2,M) = (1n|1n,M1) ;

E(K1|K2,M) otherwise.

Ẽ−1(K1|K2, C) :=



0n if (K1|K2, C) = (0n|0n, 0n) ;

1n if (K1|K2, C) = (1n|1n, 1n) ;

M0 if (K1|K2, C) = (0n|0n, C0) ;

M1 if (K1|K2, C) = (1n|1n, C1) ;

E−1(K1|K2, C) otherwise.

Note that Ẽ and Ẽ−1 as above define a blockcipher. We have

TDMẼ(0n, 0n, 0n) = (Ẽ(0n|0n, 0n)⊕ 0n, Ẽ(0n|0n, 0n)⊕ 0n) = (0n ⊕ 0n, 0n ⊕ 0n) = (0n, 0n) ,

TDMẼ(1n, 1n, 1n) = (Ẽ(1n|1n, 1n)⊕ 1n, Ẽ(1n|1n, 1n)⊕ 1n) = (1n ⊕ 1n, 1n ⊕ 1n) = (0n, 0n) .

Hence the pair ((0n, 0n, 0n), (1n, 1n, 1n)) constitutes a collision for TDM with respect to Ẽ. Using a case analysis as
in Lemma 4.4, it is possible to prove that for Ẽ a blockcipher as above, with (E,E−1)←$ Block(2n, n), the HDMẼ

1n

and ADMẼ compression functions are both collision resistant. �

E Proof of Theorem 4.6: Irreducibility of PGV to DBL

Theorem E.1 (Theorem 4.6, restated) There is no single-query fully black-box ideal-cipher reduction from any of
the PGV constructions to any of the DBL constructions for the collision-resistance and [everywhere] preimage-
resistance games as long as the reduction is tight: when the number of queries, run times, and success probabilities
are parameterized by a security parameter, the reduction is (O(1),O(1),O(1),O(1))-tight.

Let us first recall the precise concrete security bounds for the DBL constructions. We set N := 2n and E to be
the uniform distribution on Block(2n, n) throughout. The bounds for Hirose-DM are

Advcoll
HDMc,E(q) ≤

2q2

(N − 2q)2
+

2q

N − 2q
,

Advpre
HDMc,E(q) ≤

8q

N2
+

8q

N(N − 2)
,

Advepre
HDM,E(q) ≤

8q

N2
+

8q

N(N − 2)
,
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where the collision-resistance bound holds for 2q < N and is from [FGL09b], and the [everywhere] preimage-
resistance bounds are from [AFK+11] and are valid for any number of queries.

For Abreast-DM, when q < N/6, we have [LK11]

Advcoll
ADM,E(q) ≤

q

(N − 6q)
+

18q2

(N − 6q)2
,

Advpre
ADM,E(q) ≤

6q

(N − 6q)2
,

Advepre
ADM,E(q) ≤

6q

(N − 6q)2
.

Finally, for Tandem-DM we have

Advcoll
TDM,E(q) ≤ 2N

(
2eq

α(N − 2q)

)α
+

4qα

N − 2q
+

4q

N − 2q
for any 1 ≤ α ≤ 2q < N,

Advpre
TDM,E(q) ≤

16α

N
+

8q

N2(N − 2)
+ 2

(
2eq

αN

)α
+

4q

αN
+

q

N2(N − q)
for any 1 ≤ α ≤ q < N,

Advepre
TDM,E(q) ≤

16α

N
+

8q

N2(N − 2)
+ 2

(
2eq

αN

)α
+

4q

αN
+

q

N2(N − q)
+

1

N
for any 1 ≤ α ≤ q < N,

where the collision-resistance bound is from [LSS11], and the [everywhere] preimage-resistance bound is taken
from [AFK+11].

Proof. We only need to consider the reducibility of one of the PGV constructions as they reduce to each other via
free transformations by Propositions 3.1 and 3.3.

Collision resistance. We start by treating the collision-resistance game. Let DBLE be a DBL construction with
(E,E−1) sampled from the ideal cipher E . Suppose we have a fully black-box reduction (T ,R) where R succeeds
in outputting a collision for DBLE with constant probability εcoll whenever it is provided with a collision for PGVT

E

1

from B. From R we construct an algorithm A which runs the reduction, simulating B, and breaks the collision
resistance of DBLE with a probability exceeding its best security bound. This leads to a contradiction if the number
of queries that A makes is within the range for which the bound applies. We show this is indeed the case as long as
R does not place “too many” queries.

We deriveA by letting it simulate a PGV collision-finderB for the reduction as follows. The reduction has access
to blockcipher oracles E,E−1 against which A also plays, but the reduction may nonetheless decide to provide T
and B with simulated oracles Ẽ, Ẽ−1. Hence, we consider an adversary AE,E−1

against DBLE which runs

RBT
Ẽ,Ẽ−1

,T −1Ẽ,Ẽ
−1

,E,E−1

and answers R’s queries to E and E−1 using its own oracles. The reduction’s single query to the (black-box)
adversarial interface B is answered as follows. A computes qA values of PGV1 (for a qA to be determined later on)
with respect to T Ẽ,Ẽ−1

. To this end, A needs to run T and answer its blockcipher queries. Note that the reduction
R may be programming the blockcipher and A cannot simply answer T ’s queries by forwarding them to its own
oracles. Algorithm A handles these queries through R. Assuming the reduction places at most qE queries to E or
E−1 for each blockcipher query of T , and that T places at most qT queries to its oracles for each evaluation, we get
that A makes a total of at most qE · qT · qA queries to E or E−1 at this stage. Once the qA values are computed, if A
finds a collision, it returns it. Else it returns a pair of random distinct points. AlgorithmA resumesR as before, and
terminates by outputting whatever R outputs. Assuming that R places at most qR queries to E or E−1 (in addition
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to those for handling T ’s queries), we have that algorithm A makes a total of at most qTot := qR + qE · qT · qA
queries to E or E−1 during its run.

Using the results of Bellare and Kohno that the lower bound for the generic on the collision resistance of a
compression function can only increase if the function is not “balanced” [BK04], we know that for any given
blockcipher E′, the lower bound on the success probability of the attack on the collision resistance of PGVE′

1 (as
given in Section 3) applies. Hence independently of the specification of T we have

Advcoll
DBL,E(qTot) ≥ Advcoll

DBL,E(A)

= Pr
[
A finds a DBLE collision

]
≥ Pr

[
R finds a DBLE coll. | A finds a PGVT

E,E−1

1 coll.
]
· Pr

[
A finds a PGVT

E,E−1

1 coll.
]

≥ εcoll ·
1

8e

q2A + 1

N
.

Let us now consider the above inequality for Hirose-DM. In order to simplify the analysis we use the simpler
6q/N upper bound for the collision-resistance advantage when q ≤ N/4. Setting ε := εcoll/(6 · 8e), we get

ε ·
q2A + 1

N
≤ qR + qE · qT · qA

N
,

which implies

qA ≤
1

2ε

(
qEqT +

√
q2Eq

2
T + 4εqR − 4ε2

)
≤ 1

ε
(qEqT +

√
εqR) .

We obtain the desired contradiction if qA can be chosen so that it is larger than the upper bound given above while
ensuring that the total number of queries falls within the range for which the collision-resistance bound holds, i.e.,
when qTot ≤ N/4. In order to show that these constraints can be met, we need to have that

1

ε
(qEqT +

√
εqR) + 1 ≤ qA ≤

N/4− qR
qEqT

.

This is the case if
q4 + q2

√
2εq + εq2 + εq ≤ εN/4 ,

where q := max{qR, qE, qT }. Whenever q ≤ c · 4
√
εcollN , for a constant c ≈ 6.75, one can always pick a qA such

that it meets the above constraints. Hence reductions satisfying this inequality for q (e.g., those which are tight) are
ruled out.

The collision-resistance irreducibility proofs for Abreast-DM and Tandem-DM are similar to that for Hirose-
DM. The main difference is that we arrive at different constraints for qA.

For Abreast-DM, we may simplify the collision-resistance bound to 8q/N when q ≤ N/12. Setting ε :=
εcoll/(8 · 8e) we get

ε ·
q2A + 1

N
≤ qR + qE · qT · qA

N
.

This inequality is identical to that derived for Hirose-DM (except that the constant ε has a different value), and the
rest of the analysis follows that for Hirose-DM.

For Tandem-DM we set α = 3. This ensures that the collision-resistance bound grows more slowly than q2/N .
(Note that this is not the case when α ≤ 2.) With this choice of α (and noting that e < 3) we obtain the simpler
bound

Advcoll
TDM,E(q) ≤

16Nq3

(N − 2q)3
+

16q

N − 2q
≤ 128q3

N2
+

32q

N
≤ 40q

N
,
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where the penultimate and final inequalities holds for q ≤ N/4 and q ≤
√
N/4 respectively. Setting ε := εcoll/(40 ·

8e) we get

ε ·
q2A + 1

N
≤ qR + qE · qT · qA

N
.

Continuing with the analysis as in Hirose-DM we finally arrive at

q4 + q2
√

2εq + εq2 + εq ≤ ε
√
N/4 ,

where q := max{qR, qE, qT } as before. Therefore reductions for which q ≤ c · 8

√
ε2collN , for some constant c, are

ruled out.

[Everywhere] preimage resistance. The intuition behind the proofs for the [everywhere] preimage-resistance
games for HDM, ADM, and TDM are as in the collision-resistance games. The proof will utilize theorems analogous
to that of Bellare and Kohno [BK04] for the [everywhere] preimage-resistance game. AlgorithmA in the analysis is
modified to output a random domain point if it does not find a preimage among its qA queries. Therefore, the lower
bound corresponding to the success probability of A against PGV1 for the [everywhere] preimage-resistance game,
independently of T , is εpre(qA + 1)/(2N). We now treat each DBL compression function.

For Hirose-DM we use the simplified 32q/N2 bound for [everywhere] preimage resistance when N ≥ 3. (This
can be derived from the more precise bound given in Section 4.3.) Setting ε := εpre/(2 · 32) we get

ε · qA + 1

N
≤ qR + qE · qT · qA

N2
.

It is enough to consider this inequality for qA = 0. In this case we get that qR ≥ εN , and since εpre (and hence
ε) is a constant, the reduction must be placing a large number of queries, and cannot be tight. The analysis for the
everywhere preimage-resistance game is identical.

For Abreast-DM we simplify the [everywhere] preimage-resistance bound to 24q/N2 for q ≤ N/12. Setting
ε := εpre/(2 · 24) we get

ε · qA + 1

N
≤ qR + qE · qT · qA

N2
.

Once again, for qA = 0 we must have that qR ≥ εN , and the reduction cannot be tight. Everywhere preimage
resistance is treated identically.

For Tandem-DM we treat the everywhere preimage-resistance game as the advantage bound for this game is
higher than that for the preimage-resistance advantage by 1/N . We set α = 2 +

√
q so that the advantage bound

grows more slowly than q/N . (Note that a constant value for α is not sufficient to ensure this condition.) We have

Advepre
TDM,E(q) ≤

16(2+
√
q)+1

N
+

4q

N(2 +
√
q)

+2

(
62q2

N2(2+
√
q)2

)(
6q

N(2+
√
q)

)√q
+

q

N2(N−q)
+

8q

N2(N−2)

≤
20
√
q

N
+

72q

N2
+

2q

N3
+

24q

N3
+

33

N
for q ≤ N/2 and N ≥ 3

≤
151
√
q

N
for q ≥ 3 .

Setting ε := εpre/(2 · 151) we finally arrive at

ε · qA + 1

N
≤
√
qR + qE · qT · qA

N
, which implies qA ≤

1

ε2
(qEqT + ε

√
qR) .
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The rest of the analysis is similar to Hirose-DM: applying the bound on the total number of queries for which the
above inequality holds we obtain

q4 + εq2
√
q + ε2q2 + ε2q ≤ ε2N/2 ,

where q := max{qR, qE, qT } as before. As a result reductions for which q ≤ c · 4

√
ε2preN , for some constant c, are

ruled out. �
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